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ABSTRACT

Computations involved in controlling a system or a decision process
are time-consuming in practice. The problem of optimally choosing the
estimation and control delays is formulated in the dynamic programming frame-
work and illustrated by exampleé. Selection of optimal estimation and

control algorithms is outlined conceptually.
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INTRODUCTION: Controlling a feedback system or a realistic economic decision

process involves observation, measurement, estimation and communication of infor-
mation about its state, processing it to generate a control and implementation
of that control, collectively these operations being called estimation and control.
Delays and costs involved in these operations are important practical considera-
tions which affect the system performance. The conceptual stochastic model presented
here explicitly takes them into account, the objective being to determine optimal
strategies for performing the estimation and control operations.

The estimation and control delays are significant if these operatiomns are
slow in comparison with the state changes and if control laws are applied on line,.
In stochastic systems these delays prevent us from implementing a perfect response
to the system state instantaneously and force us to adopt only obsolete estimates
and controls. Typically, for a given state, the estimate (control) quality improves
with the time spent in generating it but only with respect to that older state
and hence the longer delay also results in greater obsolescence, thereby reducing
the effectiveness of the computed estimate (control).

In section 2, given the estimation and control algorithms, the objective is
to optimally utilize them by determining the stopping policies to dynamically yield
optimal estimation and control delays in such a way as to replace an obsolete
estimate (control) by a less obsolete one by balancing improvement against
obsolescence with delay using the Optimality Principle. Section 3 illustrates
applicability of the model by three examples of algorithms operating in stochastic
environments and the corresponding optimal stopping policies. Section 4 considers

the overall problem of finding the best estimation and control algorithms,
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taking into account the time delays and operating and purchasing costs.

2., OPIIMAL DELAYS: Consider a discrete time stochastic control process with

separation. Let x, be an m-vector of the system state at time n, 1< n <N,

™
where N 1is the final time, and X C R the state space. Let Y, be a gq-vector
of the observation of x at time n and Y g;Rq the observation space. Denote

the observation process (assumed to be instantaneous) by

(z.1) yo = 6(x M) 1<n<N
where 7 is the white measurement noise. Let X be the estimate of X available
at n and X the estimate space. (In general, x ~may include conditional density of

P

XN " given the history up to n, e.g. see Application C in Section 3). Due to

”~

time delay required in the estimation-control process X, is not an estimate of

X obtained from Y, but it was an estimate generated previously from an observa-
tion vy, cf an older state L i < n, and then predicted to time =n. An observa-

tion is made only when a new estimate is to be computed, so that Yi17 Va1

are not observed, because. for example, of measurement costs involved (see [2 4
b} > pite, b )

where a related problem of finding optimal number and spacing of observations is

considered). Let u be a p-vector of the latest control available at n and

uc Rp the admissible control space. Again, due to time delay involved in the

estimation-control process, u  was not generated as a responsc to the current
state X, but to an estimate of an older state Xj’ j <mn. At time n the system
earns a return of w(xn,un) and moves according to a Markovian law

(2.2) X4 © f(xn,un,mn) l<nu<N

where w_ is the white system noise.

n
The computations of estimates and controls are carried out consecutively by

two algorithms o' and o, which are assumed to be given, in this section the
. . . . 1 th . . -
objective being to optimally utilize them. Suppose the k application of the

th
estimation algorithm «' {("k  estimation substage") starts at time n, Estimation
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delay d; € D' is then chosen as a decision variable, where D' c {0,1,...,N} is
the set of all possible estimation durations. (For notational convenience the

subscripts on d' and d below will be suppressed.) The estimation algorithm is

~

a (possibly stochastic) transformation a«': ¥ x X x U x D' + X, Starting at n

the algorithm computes for d' time instants using the fresh observation Yo of X

~

to improve upon the latest available estimate X of X - This improved estimate

of X the control un(which stays in force throughout the estimation substage)

and the plant equations (2.2) are then used by a built in predictor to give a

~

prediction x ... of X gre Thus
= A~ 1
2.3) X +d! @ (yn’xn’un’d )

, th
is a predicted estimate of x4 4+ which will be available to the successive k

R . } th
application of the control algorithm o (''k  control substage') starting at (ntd').

For example,

~

a'(yn;Xn;U“;d') = E{Xn+d'\xn = Xn -+ K‘(d')[yn - E(G(Xn;ﬂn))]:un}
where K'(d') 1is a correction matrix which approaches the 'correct'" value as d'
increases and K'(0) = 0. Usually, the longer the estimation interval d' the

better is the estimate of X, generated but the longer delay also increases the

mean squared error of the prediction so that the worse is X 44+ @S an estimate of

L ST The objective is to find optimal d' or, more generally, to find an

. . th ,
optimal stopping rule for determining the estimation delay. If the k estima-

tion substage starts at time n upon observing (y,,¥ ,4 ) then a stopping rule
5&:Y x X x U~ D' specifies a delay
2.4 d' = 8'(y_,x

(2.4) 6k(yn’kn’u )

n

For exawple, it is conceivable that optimal d' will be small if, roughly, Yy is
close to E(G(xn,ﬂn)) (so that the initial estimate appears to be a good onc) or

’~

if u is an inferior control in face of x_ (so that it may be optimal to spend
n

little time estimating and introduce a better control early). During these d'



.

instants the expected estimation cost (including observing yn) denoted by

~

' . . . : 1 131 s
Cv(yn,xn,un,d ) will be incurred (for example it 1is c1 + c2d ), control u will
stay in force and the system will move according to (2.2) with n + j replacing

n for j =1,2,...,d"-1, yielding the net expected return denoted by
~ d'-1

] 1 = N
(2.5) r (yn’xn’un’d ) jfo E[w(xn+j,un)lyn’xn

~

’un] - C! (yn’xn’d')

The expectation is computed using the conditional distribution of Xn+j given

(xn,un) following the law of motion (2.2) for j steps.

th
Upon the termination of the k  estimation substage the kth control sub-
stage begins at time n + d' with the latest estimate Xo4d ! and the (same)

control u 44 = u_ - The control delay d € D is chosen as another decision

n+d'’

variable from the set D c {0,1,...,N} by means of the kth control stopping rule

5" X x U~ D, so that

@.6) 4= gy g

(Note that d' is in fact dé and d 1is in fact dn+d' ). The control algorithm
n

then starts at (ntd') and computes for d time instants given the latest available

control u 4. = u_ (which serves as an initial solution and which stays in force
~

throughout the control computation) and the latest available estimate xn+d.,which

is further predicted to time n+d'+d by another predictor built in the controller
to give x_ 4144 (which serves as the parameter). The control algorithm is a
(possibly stochastic) transformation «:X XU x D - U.

~

Xn+d"un+d"d)

2-7) Untd'hd a(

is thus the contrel generated by the algorithm at time (n+d'+d) and will stay in

force until a2 new control is computed next time around. For example,
"~ o

Al Vg @) T Vgt KO,

- o N L i o ot “O1
d '+ un+d'] where K(d) is a correction factor

with K(0) = 0 and approaching I as d 1increases and U ig'eq 1S the cptimal

control at (n+d'4d) with respect to the prediction

~

*n-d '+ 1]. Usually th2 longer the computation interval

- E{xn+d'+d \ Fatd kgt

d the better is the control generated but alse more obsclete it gets due to
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stochastic changes in the system state. It is conceivable that optimal d will

be swmall if, roughly, with information Xotd! the control Uo+d! is a good one so
that any further improvement in the solution is smaller than obsolescence due to

further delay. The objective is to find an optimal stopping rule 5k to give d.

~

During these d instants the expected control computation cost C(xn+d"un+d”d)

is incurred, the control Upgqr - Yy stays in force and the system moves accord-
ing to (2.2) with n+ d' + j replacing n for j =1,2,,..,d-1, yielding the

net expected retum
~ d—l ~ ~
(2.8) r(xn+d.,un,d) = jio E[w(xn+d'+j’un)1Xn+d"un] - C(xn+d,,un,d)
where the conditional expectation is computed in the same way as in (2.5). The

~

two outputs of the controller X +d'+d and U td+d together with a new observation

. s . . .
Yotd'+q Serve as the input to the (kt+1)  estimation substage, thus completing

the “kth.stage” and starting the (k+1)St.

Setting n =n + d' + d and k = k + 1 the process repeats as above until the
finel time N 1is reached. The objective is to determine optimal estimation and
control delays d'’s and d’s successively by finding optimal sequences of

stopping rules (“policies”) n' = {5i:k =1,2,...} and Il = {ék:k = 1,2,...} so as

to maximize the net contribution of the given algorithms «' and a to the system

~

performance, given the initial conditions (yl,xl,ul).
To formulate this problem in the dynamic programming framework let
Y b , . ¢ . . . .
Vn(yn’xn’un) e the optimal net return from n onwarde provided an estimation
substage starts at time n with the "state of the model" (yn,xn,un). Similarly,

~

if a control substage starls at time 1 with the "state of the model” (Xi’ui)’
let vi(;i,ui) be the optiwmal net return from then on. (State of the model
chosen at each substage zives information that is both necessary and sufficient
to make an optimal delay decision at that substage and to predict the state of

the model at the next substage). In computing (V&;n') and (Vi;ﬂ) there are

. Pl . . . . J
two sequential deeision problems, choosing optimal d'’s and d’s alternately,



-6-
meshed together. The Principle of Optimality requires that Vé and Vi satisfy

‘the following functional equations, where Di =0p'nN {j: j < N-k} and

D, = DN {j: j< NI
(2.9) Vé(yn,;n,un) =dvgg' r'(yn,;n,un,d') + E [ Vn+d.(a‘(yn,;n,d'),un)
n
yn,;n,un,d' }
(2.10) vi(;i,ui) =d§;x r(;i,ui,d) + E Vi+d(yi+d’;i+d’a(;i’ui’d))\ ;iui,d
Ui

V; 2 0if n> N and v, = 0 if i > N
Note that both V' amd V appear in cach equation, (2.9) being for the estimation
substage and (2.10) for the control substage. To ontain one optimality equation
for the complete stage, if it does start at time n, consicsting of estimation

and the successive control computation, let i = n + d°', Xod! © @'(Ynqu;d')
Iy

and Ugr T Y in (2.10) and substitute it in (2.9) to give the optimal return

from time n onwards

(2.11) Vé(yann;Un) = Max ‘r'(ynyxnyun:d') + E j Max r(u'(yn,xn,d'),un,d)
e, | LaeD g

. .1 ol ! 1
+ E [ Vn+d'+d(yn+d'+d’xn+d'+d’“¢l (yn)xn)d ))un)d))

‘ a'(ynrxn;d'))Uan] yn’xn’un’d'

The dynamic optimization process represented by (2.11) has a direct counter-

part with a static decision process as in, for example, [7]. In the latter the

"information structure" o.':

X <+ Y partitions the state space X and yields a
"message'" y € Y, the "dccision rule'" «: Y -+ U then operates on the message y to
give an "action” a(y) € U and as a result the "payeff' is W(x,a(a' (x))), whose
expected value is to be wmaximized by selecting optimal <« and a«'. This problem
is solved by {first fixing the information structure o' and {inding the best

decision rule a¥(c') wmeximizing E[W(x,afe’ (x)))] to give W(u', a*(a')), say,

and then choosing the best informaticn structure «'* maximizing the latter;
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the solution is then «'#* and a*(a'*)., In (2.12) the estimation algorithm a'
may be interpreted as the information structure which is chosen at each estima-
tion substage paremetrically by choosing d'; similarly the control algorithm
may be interpreted as a deci;ion rule, which is selected parametrically at each
control substage by choosing d. Thus choosing d'’s and d’s dynamically
corresponds to parametric selection of the information structure and the decision
rule and as above, in each control stage for given value of d' the optimal
d*(d') is found by maximizing the quantity in the inner braces of (2.11) and
then optimal d'* is found by maximizing the quantitity in the outer braces.
Complications in the dynamic model arise due to interrelations between successive
(sub)stages and the delays involved in using the chosen information structures
and decision rules. )

To obtain optimal stopping policies TI' and II instead of solving difficult
equations (2.11) directly, (2.9) and (2.10) may be solved separately in the
usual rcrecursive fashion. For each n, whether a computation will start at =n
and, if it does, whether it will be an estimation or control computation is
unknown a priori. Thus one must solve (2.9) for each n and (2.10) for each 1,
requiring considerable solution effort. Due to appearance of V' and V in both
types of equations (2.9) and (2.10) must be solved simultaneously for each
value of i = n starting with 1 = n = N and working backwards. Then for each n
and each state of the model <yn’;n’un) optimal delay will be d;(dn) if an
estimation (control) begins at n; the stopping policies are implemented only at
beginning of substages as the systeamn moves. The expectation in (2.9) is computed

~ ’~

using the distribution of the output X 4dt given (yn;xn,un) and the known

stochastic algorithm ¢«'., Similarly in (2.10) the stochastic algorithm «

specifies conditional distvibution of wu.,; given (Xi’ui’d) and, in addition,

the prediction x. is obtained from (xX,,u.) and the law of motion (2.2) for
i+d i'Y1

d-steps, Yi+d being its predicted observation from (2.1). Tinally, it should be
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noted that the maps a' and « must be known completely in determining policies
' and T (but not in implementing them).

In spite of these general remarks on the solution procedure it seems clear
that the total problem and its functional equations may be computationally very
difficult to solve. However, the aim has been to formulate a general model of
many realistic decision and control systems where delays may be appreciable and
their optimal control may be essential, For special cases of this model with
instantaneous and perfect estimation or control operations see [5],[3]. The next
section describes some applications of these special cases, which are economically

interesting and solvable.

3. APPLICATIONS: (A) Optimal Control of a Queue: The server looks at the length

of the queue and decides on how long to service the first customer, longer service
means better quality (up to a point) and greater customer satisfaction but also

a higher cost of waiting by customers in a queue and the new arvivals. The
problem is to determine an optimal quality of service.

Let X = ; =Y ={0,1,2,...}, x being the number of people in the system,
assumed to be observed perfectly and instantly. U =D = [0,o), control u being
the time spent on the previous customer and delay d being that spent on the
present customer, a(x,u,d) = d. With Poisson arrivals, the system moves as

=x, -1+ 2 if X, > 1 and x = 2(d) if X, = 0, where 2Z(d) 1is a

Xet+d t t+d

Poisson random variable with mean >d. The improvement in the generated control
with delay is represented by the concave customer satisfaction function

2
bxd - ad ;2,b> 0. The obsolescence due to delay is represcnted by the cost
pd .
of waiting c¢[xd + | (d-t)\dt], where ¢ < b 1is the cost per customer per unit
G
of his waiting tire,
Dafining Vn(x) as the cptimal return from serving n customers when there

are x in the system, the functional equation becomes, for x > 1,
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«© ) -A\d m
(3.1) V_(x) = Max [(b-c)xd - (a + g_c)dz + 2V (x-T#m) s__(MLJ
0<d< m=0 °~ m!

v =
[, =0
- . . . (b-¢)
If én(x) is the optimal stopping rule, then él(x) = 2a+kcx linear in x

2
and Vl(X) = [(b-c)x]7/2(2a+) c) quadratic in x. 1In general, by induction it can

be shown that Gn(x) is linear in x and Vn(x) is quadratic in x.

(®) optimal R and D Under Rivalry: The problem is to determine an optimal

development period d € D = U = [0,T}] in order to improve a given product before
introducing it into the market, while a competitor is also trying to introduce a

similar product., 1If we introduce it before he does (i.e. x = 1) after delay d,

(R,-R )d
our return in the market will be (with a(x,u,d) = d)W(x,d) = Ry + ——l~52—— while if
- . (P\z" Ro)d
he ‘introduces first (i.e. x = 2) our return will be RO + —— where
Ry > R2 > RO > 0. The state x € X =X =Y = {1,2} can be observed instantly

and correctly, while the time of the opponent's introduction is assumed to be

uniformly distributed on [O0,T].
In this single stage version of the problem, optimal ¢ 1is to be found so

as to maximize the expected total return of

(R,- Ry)d (R,- R,)d
B R? ey, B2n B0
T t T T

(3.2) E[W(Xd;Q(XO,U,d))] =
by striking a balance between the advantage of an improved product and the dis-
(R~ RO)T
adventage of not being the leader. Then optimal d¥ = Ezi—j—§;7 , which is
1

linearly decreasing in Rgy (i.e. the better the initial product the lower is the

optimum effort level).
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~ . 4

(c) "Optimal Observation Strategy: In this example of estimation delay, at each

stage the probability distribution of the state is known and its maximum like-
lihood estimate is used. Suppose a binary-valued state X, € {0,1} changes
with probability p < % and, at each n, depending on the prior probability
q, that the state is 0 we decide to observe or not; observation is perfect but
delayed by unit time. Then a control is chosen instantaneously to match the
estimate; a correct match yields a return W(Xn’un) = w, a wrong one yields 0
and there are no observation costs. The probabilities q,6 are changed in the
Bayesian fashion upon adjusting for the system motion and the process repeats,
The objective is to determine an observation strategy to maximize expected total
return.

Thus X = ; =Y=U=D'= {O,l}, the state of the model is

(qn,xn) € [0,1] x X, 1f d = 0, a'(xn,qn,O) = (xn,qn); ifd =1,
~ 0, (1- ith babili
@' (x40 ,1) = (0,(1-p)) with probability q_
(1,p) with probability (1 - q_)

a(xn,un,O) =X and another output of o 1is 9t = p(l-qR‘+ (l—p)qn(new

~

prior probability at next stage) and X041 - 0 1iff 9t = 2 Since 9, contains
all the information needed at n define Vp(qn) as the optimal value function

from n on.

- (4} + - i LR
Max {q 0, (1 - q e} +V . (p+q - 2pq) if d' =0
(3.3) Vn(qn) = Max
- +4- - . (-
Vet =)+ (L -q )V P if d' =1
VN+1(q) = 0 and VN(q) = Max {q o, (1l -~ Q)w} with optimal d' = 0,
By induction it can be shown that v (q) 1is convex in q and V_ (q) =V (1 - q)
for all n. From this it can be shown that the observetion region is convex so

that there exist two numbers q' and q; with the property that if q_ € [qé,q;]

it is optimal to observe while if 4, < q; or q_ Z'q; it is not. Also the
observation region decreases as p increascs, Thus greater the uncertainty ebout the
state or more stable the system i{s better it is to make an observation, even though

a delayecd one.
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4, OPTIMAL DESIGN: A fast sophisticated estimator or control computer is expensive

to purchase and operate but it generates superior responses to the system state
changes. The objective is to choose optimal a'* € A" and a* € A, where A' and
A are the sets of available algorithms.

Any pair (a',a) is assumed to be operated according to optimal stopping rules
as in Section 2 to yield the net total optimal return Vi(y,;l,ul) to be
denoted by V(a',a). Also associated with each pair (a',a) 1is the purchasing
cost K(a',a), which should not exceed a given budget M, TFinally, not all
members of A' and A may be compatible since output of a' serves as an
input to «. Define, for each a' € A', T'(a¢') € A as the set of compatible
control algorithms.

For each «' € A' we may chocse a*(c') € A by solving
4.1 Maximize Vka',a)

subject to K{',a) < M
a € T'(@")

to give the optimal worth Vka'3a*(a')), which is then maximized by choosing
a'* € A", This sequential approach then yields the optimal pair (a'*,a*(a'%*)).
The corresponding multiplier associated with the budget constreint in (4.1) has
then the usual marginal worth interpretation.

This has been only a conceptual formulation of the problem of optimal design.
Its complete solution recuires a complete knowledge of sets A',A and functions
V(from (2.11)), K and I'; unfortunately, in practice, this information is very
difficvlt to obtain. Our modest objective has been simply to conceptuzlize the
important and difficult problem of optimal choice and operation of decision
and control procedures, taking into account primarily the time delays and then

ccsts involved that are significant in practice.
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