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1 Introduction

In this paper we show how to characterize dominant strategy mechanisms in

environments with quasi-linear utilities and multi-dimensional types. While

the characertizations themselves are of interest, we believe the techniques are

of independent interest and will be of use in other applications.

We consider direct revelation mechanisms where types are private. With

a change in notation the results would extend to the interdependent value

setting and ex-post incentive compatibility.

Any direct mechanism can be decomposed into two parts: an allocation

rule and a payment rule. The allocation rule determines the allocation of

resources as a function of the profile of reported types. The payment rule

determines the payment each agent must make as a function of the profile of

reported types. Recent characterizations of dominant strategy mechanisms

(eg. Jehiel and Moldovanu (2001), Krishna and Perry (1997)) are in terms of

the utility that will be delivered to the agents. Here we offer characterizations

in terms of a monotonicity property on the allocation rule itself. Examples

of characterizations with this flavor that appear in the literature are Myer-

son (1981), Bikhchandani, Chatterji and Sen (2003) and Lavi, Mu’alem and

Nisan (2003). In fact the characterizations offered in those papers can all be

derived (as we illustrate) using the technique reported here. We also derive

a characterization for a preference domain not covered by previous work.

Specifically, the methods of Lavi, Mu’alem and Nisan do not apply when the

type space is compact. The arguments of Bikhchandani, Chatterji and Sen

( 2003) apply to one specific environment, i.e, additive marginal valuations.

To give a flavor of the results that are obtained, we describe the result of

Bikhchandani, Chatterji and Sen (2003) that inspired this paper. That paper

considers the allocation of k indivisble units of the same good to agents with

additive marginal valuations. Specifically, each agent has a type t ∈ [0, 1]k.

Their value for the ith unit is ti. Thus an agent with type t who receives α

units of the good derives a utility of
∑α

i=1 ti.

Fix an agent i and hold the profile of types, t−i, of the other agents fixed.

Suppose the allocation rule, f will assign a quantity f(t, t−i) to agent i if

she reports type t. Bikhchandani, Chatterji and Sen show that the rule f is
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dominant strategy incentive compatible iff.

f(t,t−i)∑

j=1

tj −
f(s,t−i)∑

j=1

tj ≥ −[
f(s,t−i)∑

j=1

sj −
f(t,t−i)∑

j=1

sj] ∀s, t.

In particular, if f(t, t−i) > f(s, t−i) then
∑f(t,>t−i)

j=f(s,t−i)+1 tj ≥ ∑f(t,t−i)
j=f(s,t−i)+1 sj.

Bikhchandani, Chatterji and Sen call this condition nondecreasing in mar-

ginal utility. We show that a generalization of this condition characterizes

dominant strategy mechanisms in other environments.

The next section introduces notation. The subsequent section introduces

the condition and a description of an approach to characterizing dominant

strategy mechanisms using this condition. We then give four applications of

the approach.

2 Notation

T is a set of (multi-dimensional) types, T ⊆ 	k. Denote by T n the set of

all n-agent profiles of types1. An element of T n will be usually be written as

(t1, t2, . . . , tn) or t.

Γ is a finite set of at least three outcomes. An allocation rule is a

function

f : T n → Γ.

We assume that f is onto, i.e., for each α ∈ Γ there is a t ∈ T such that

f(t) = α. A payment rule is a function

P : T n → 	n,

that is, if the reported profile is (t1, . . . , tn) agent i makes a payment of

Pi(t
1, . . . , tn). Utilities are quasi-linear. The value that agent i with type

t ∈ T assigns to an allocation α ∈ Γ is denoted vi(α|t). Let Rα = {t ∈ T n :

f(t) = α} ∀α ∈ Γ. Clearly T n = ∪α∈ΓRα.

Beginning in section 3.3 we will assume that vi(α|t) is linear in t. There-

fore, we can identify each α ∈ Γ with a vector aα ∈ 	k such that vi(α|t) =

1The type space need not be identical across agents. We make the assumption for
simplicity of notation
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aα · t. Note that this vector may depend on the identity of the agent, but in

most cases will be identical for all agents.

Let us describe three cases.

1. Homogenous, multi-item auctions with additive valuations.

Suppose we have k units of a homogenous good to allocate. The type

of an agent is a vector in 	k
+ whose jth component is the marginal value

for the jth unit. Each α ∈ Γ can be represented by an integral vector

in 	k
+ whose ith component represents the quantity allocated to agent

i and sum of components is k. The ith component will be denoted αi,

and vi(α|t) =
∑αi

j=1 tj. Alternatively, for agent i we can represent all α

with same αi by a vector aα ∈ 	k
+ with αi leading 1’s, and the rest of

its coefficients being equal to 0, in order to have a representation such

that vi(α|t) = aα · t.

2. Combinatorial Auctions. We have a set M of distinct goods to

allocate. The type of an agent is a vector in 	2|M|
+ with one component

for each subset of M that corresponds to the value assigned to that

subset. If the allocation α assigns the set S ⊆ M to agent i with type

t then vi(α|t) = tS. The vector representation of α is now given by the

unit vectors in 	2|M|
.

3. Unrestricted Preferences. Following the previous example, but now

we want to allow for the possibility that an agents payoff depends not

just on the goods assigned to him, but the goods assigned to other

agents as well. In this case a type would be a vector with one component

for each allocation, i.e. in 	|Γ|
+ .

We can fold the previous two models into the set up of unrestricted

preferences. Consider the combinatorial auction example. An agent

would be indifferent between any two allocations that give him the

same set. Thus the set of types of an agent would not ‘fill out’ 	|Γ|
+ ,

i.e., they form a subspace of 	|Γ|
+ . This absence of full dimensionality

is the reason why results obtained for unrestricted preferences will not

automatically apply to more restrictive settings.
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An allocation rule f is dominant strategy incentive compatible if

there exists a payment rule P such that for all agents i and all types s �= t:

vi(f(t, t−i)|t) − Pi(t, t
−i) ≥ vi(f(s, t−i)|t) − Pi(s, t

−i) ∀ t−i. (1)

Our goal is to characterize the class of dominant strategy allocation rules.

In the sequel we fix an agent i and a profile of types for the other n− 1

agents. For this reason we suppress dependence on the index i and t−i in the

sequel unless we say otherwise.

If we restrict our attention to agent i, we will always identify allocations

between which agent i is indifferent. By this we can assume that for all α �= β

of Γ there exists a type t such that v(α|t) �= v(β|t). Furthermore, we will

for fixed t−i restrict to Γ = {α|∃t ∈ T such that f(t, t−i) = α}. Accordingly,

from now on Rα = {t|f(t, t−i) = α}. Under this convention inequality (1)

becomes

v(f(t)|t) − P (t) ≥ v(f(s)|t) − P (s). (2)

2.1 2-cycle constraint

Reversing the roles of t and s in (2) implies

v(f(s)|s) − P (s) ≥ v(f(t)|s) − P (t). (3)

Adding (2) to (3) yields

v(f(t)|t) + v(f(s)|s) ≥ v(f(s)|t) + v(f(t)|s).

Rewriting:

v(f(t)|t) − v(f(s)|t) ≥ −[v(f(s)|s) − v(f(t)|s)]. (4)

We call (4) a 2-cycle inequality. That the 2-cycle inequality holds for

every pair s, t ∈ T is a necessary condition of dominant strategy incentive

compatibility. We show that this is a sufficient condition for a variety of

preference domains.2 To summarize, our theorems are of the following form:

an allocation rule is dominant strategy incentive compatible iff. it satisfies

2The assumption that |Γ| ≥ 3 is what rescues this statement from being trivial.
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the 2-cycle inequality. The non-decreasing in marginal utility condition of

Bikhchandani, Chatterji and Sen is an instance of the 2-cycle inequality. The

characterization results for other domains in Lavi, Mu’alem and Nisan (2003)

are in terms of 2-cycle inequalities as well.3

3 The approach

Our approach is based on the fact that the constraints (1) have a natural

network interpretation. To see this, it will be useful to rewrite inequality (2)

as

P (t) − P (s) ≤ v(f(t)|t) − v(f(s)|t). (5)

As is explained below, such a system is a linear programming dual to the

problem of finding a shortest path in an appropriate network. The reader

familiar with the theory of network flows can skip the next subsection.

3.1 An aside on paths and cycles

Let N be a finite set of indices and E the set of all ordered pairs of elements

of N . Associated with each pair (i, j) ∈ E is a number wij. Consider the

following inequality system:

xj − xi ≤ wij ∀(i, j) ∈ E. (6)

We can associate a network with (6) in the following way. Each element of

N is interpreted as vertex, and to each ordered pair (i, j) ∈ E we associate

a directed edge from vertex i to vertex j. Each edge (i, j) ∈ E is assigned a

length of wij.

A standard result (which follows from the Farkas lemma) is that (6)

is feasible iff. the associated network contains no negative length cycle.4

Second, if the system is feasible, one solution is to set each xj equal to the

length of the shortest path from an arbitrarily chosen root vertex.

3Lavi, Mu’alem and Nisan use the term weak monotonicity instead of 2-cycle in-
equality.

4If the direction of the inequality in (6) is reversed, then the system is feasible iff. the
network has no positive length cycle.
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To see that cycles should play a role, consider the pair of inequalities

xj−xi ≤ wij and xi−xj ≤ wji. Feasibility requires that wij ≥ xj−xi ≥ −wji,

i.e. wij + wji ≥ 0. In words the length of the 2-cycle i → j → i is non-

negative. Similarly, cycles with more than 2 vertices must not be negative.

Establishing our characterization of dominant strategy incentive compat-

ible mechanisms amounts to proving that an associated network contains no

negative length cycles when all its 2-cyles have non-negative length. Non-

negativity of all 2-cycles does not in general imply non-negativity of all cycles.

3.2 Allocation graph

Given the observations above, a natural step is to associate a vertex with

each type and a directed edge between each ordered pair of vertices. Define

the length of the edge directed from type s to type t by

l(s, t) = v(f(t)|t) − v(f(s)|t),

and call this graph Tf . For technical reasons we allow for loops. But observe

that l(t, t) = 0.

Rochet (1987) was the first to observe the relation between negative cycles

and dominant strategy incentive compatibility. It was rederived again in

Rozenshtrom (1999).

Theorem 1 (Rochet(1987)) Let T be any type space, n ≥ 2 be the number

of agents with quasi-linear utilities over a set Γ of outcomes and f : T n → Γ

an allocation rule. The following statements are equivalent:

(1) f is dominant strategy incentive compatible.

(2) For every agent i, for every report t−i, the corresponding graph Tf does

not have a finite cycle of negative length.

Proof

(as in Rochet (1987)) (1) ⇒ (2)

Let t0 ∈ T be an arbitrary, but fixed type. Define

P (t) = inf(
k∑

i=0

l(ti, ti+1)|k ≥ 0, t1, . . . , tk+1 ∈ T, tk+1 = t).
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Observe that P (t0) = 0. Observe also that P (t) is larger than or equal to

−l(t, t0), and thus larger than −∞, because if not then ΓT would have a

negative cycle. Finally for every t, t′ ∈ T :

P (t′) ≤ P (t) + l(t, t′) = P (t) + v(f(t′)|t′) − v(f(t)|t).

(2) ⇒(1)

Let t1, . . . , tk, tk+1 = t1 be a finite cycle. Since f is dominant strategy incen-

tive compatible there exists a payment function P such that:

k∑

i=1

l(ti, ti+1) =
k∑

i=1

v(f(ti+1|ti+1) − v(f(ti)|ti+1) ≥
k∑

i=1

P (ti+1) − P (ti) = 0.

Observe that for any t, t′ ∈ T such that f(t) = f(t′), it must be that

l(t, t′) = 0. It is easy to see that in this case P (t) = P (t′).

The well known ‘monotonicity’ characterization of dominant strategy al-

location rules when types are one dimensional follows from this cycle char-

acterization.

We find it more convenient to work with a different but related graph,

called the allocation graph. We associate with each element α ∈ Γ a vertex.

The length, l(α, β) of an edge directed from allocation α to allocation β is

given by by

l(α, β) = inf
s∈Rβ

[v(β|s) − v(α|s)].

Symmetrically, we associate an edge directed from β to α with length:

l(β, α) = inf
t∈Rα

[v(α|t) − v(β|t)].

Denote the graph by Γf . Notice that if the 2-cycle inequality holds,

l(α, β) + l(β, α) ≥ 0 ∀α, β ∈ Γ. (7)

From Rochet’s theorem (or direct appeal to known results) we obtain the

following.
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Corollary 1 Let T be any type space, n ≥ 2 be the number of agents with

quasi-linear utilities over a set Γ of outcomes and . f : T n → Γ an allocation

rule. The following statements are equivalent:

(1) f is dominant strategy incentive compatible.

(2) For every agent, for every report t−i, the corresponding graph Γf does

not have a finite cycle of negative length.

We show in the following that for certain environments Γf does not have

a negative cycle iff. it does not have a negative 2-cycle. We assume from now

on that v(α|.) is linear in t for all α ∈ Γ.

3.3 Describing Rα

In this section we show that if (7) holds the set Rα is contained in a poly-

hedron Qα for all α ∈ Γ, and these polyhedra can be chosen such that the

intersection of T with the interior, I(Qα), of Qα is contained in Rα. Observe

that for t ∈ Rα and s ∈ Rβ we have

v(α|t) − v(β|t) ≥ −[v(β|s) − v(α|s)].

Therefore

v(β|t) − v(α|t) ≤ inf
s∈Rβ

[v(β|s) − v(α|s)] = l(α, β). (8)

Thus Rα is a subset of

Qα = {x ∈ 	k : v(β|x) − v(α|x) ≤ l(α, β) ∀β �= α}.

This is a polyhedron because we assume that v is linear in x.

Now assume I(Qα) �= ∅ and consider a t of T ∩ I(Qα). We show that

t ∈ Rα. Observe that for all β �= α, t �∈ Rβ. Indeed, otherwise we get the

contradiction5

v(β|t) − v(α|t) < l(α, β) < v(β|t) − v(α|t).
5We make use of v(α|.) �= v(β|.) for α �= β. This ensures that inequality (8) has

non-zero left-hand-side, and thus every point in the interior of Qα satisfies (8) with strict
inequality.
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Notice that there is a one-to-one correspondence between the constraints

of these polyhedra and edges of Γf . Specifically, the constraint v(β|x) −
v(α|x) ≤ l(α, β) corresponds to the edge (α, β).

3.4 Implications of negative cycles in Γf

Corrollary 1 says that f is dominant strategy incentive compatible iff. Γf

does not contain a negative cycle. We show below that in many cases, Γf

does not contain a negative cycle iff. Γf does not contain a negative 2-cycle.

In other words, the 2-cycle inequality is a necessary and sufficient condition

for an allocation rule to be dominant strategy incentive compatible.

Necessity, as we have seen already is easy to establish. We focus on

sufficiency. Here is a broad outline of the argument.

Suppose Γf has no negative 2-cycle. Assume, for a contradiction, that

Γf has a negative cycle. From Section 3.3 we deduce that the type space T

can be covered by
⋃

α∈Γ Qα. Invoking the existence of the negative cycle and

the Farkas lemma enables us to construct a vector x �∈ ∪α∈ΓQα, and thus

x �∈ ∪α∈ΓRα. With some additional effort we show that x can be chosen so

that x ∈ T . This contradicts the fact that T ⊆ ∪α∈ΓRα.

In the remainder of this section we describe how to derive the existence

of an x �∈ ∪α∈ΓRα. Establishing that x ∈ T is discussed for each environment

separately.

Suppose Γf has a negative cycle, i.e. there exists a sequence of vertices

α1, α2, . . . , αr, αr+1 = α1 such that

l(α1, α2) + l(α2, α3) + . . . + l(αr, α1) < 0.

Consider the following system:

v(αj+1|x) − v(αj|x) ≥ l(αj, αj+1) + ε ∀ j = 1, . . . , r. (9)

Basically we take one inequality from each Qαj
for j = 1, . . . , r and reverse

it. Here ε > 0 is chosen to be sufficiently small such that the length of the

cycle, even after augmenting the length of edges by ε, is still negative.

Feasibility of the system (9) implies the existence of a vector x such that

x �∈ ∪r
j=1Qαj

. Add to this system one (reversed) inequality from each Qα for
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α ∈ Γ \ {α1, . . . , αr}. We do so in such a way that the corresponding edges

chosen contain only one cycle, the one on α1, . . . , αr. One way of doing this

is to choose for every vertex not on the cycle an edge directed into the cycle.

Let E denote the subset of edges chosen, and consider the system:

v(β|x) − v(α|x) ≥ l(α, β) + ε ∀(α, β) ∈ E. (10)

If (10) is feasible it means there is an x ∈ 	k such that x �∈ ∪α∈ΓQα, and

thus x �∈ ∪α∈ΓRα . If in addition x ∈ T , we would have identified a type not

in ∪α∈ΓRα, a contradiction to ∪α∈ΓRα = T .

The difficulties arise in trying to prove that (10) has a feasible solution

contained in T . A substitution Yα = v(α|x) will reveal some structure that

can be exploited. Linearity of v implies there is a matrix A such that Y = Ax.

(10) becomes:

Yβ − Yα ≥ l(α, β) + ε ∀(α, β) ∈ E

Y = At for some t ∈ T.

Focus on the first set of constraints. The graph (Γ, E) does not contain

a positive length cycle. So the first set of constraints are feasible. Indeed

choose an arbitrary node α0 ∈ Γ and compute and set Yα equal to length of

a longest path from α0 to α. The challenge will be to show that amongst the

set of feasible solutions to the first set of constraints is one, Y , say, that also

satisfies Y = At for some t ∈ T .

4 Unrestricted quasi-linear preferences

Here an agents type is a vector from 	|Γ|, 	|Γ|
+ or [0, 1]|Γ|. The α ∈ Γ com-

ponent of t, denoted tα is the value that the agent with type t attaches to

allocation α.

Theorem 2 Suppose preferences are unrestricted and the type space T is

	|Γ|, 	|Γ|
+ or [0, 1]|Γ|. An allocation rule f is dominant strategy incentive

compatible iff.

tf(t) − tf(s) ≥ −[sf(s) − sf(t)] ∀s, t ∈ T.
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Proof

Suppose first T = 	|Γ|. We confine ourselves to a proof of sufficiency. The

system (10) in this case reduces to:

xβ − xα ≥ l(α, β) + ε ∀(α, β) ∈ E. (11)

Notice that (11) is feasible and that any solution belongs to T .

Now suppose that T = [0, 1]|Γ|. Before proceeding it is useful to see

where the previous argument fails as this suggests a natural fix. In this case

|l(α, β)| ≤ 1 for all (α, β). An arbitrary solution x of (11) may not reside in

[0, 1]|Γ|. This may happen in particular when l(α, β) = 1 for some (α, β) ∈ E.

In which case xβ −xα ≥ 1+ ε requiring that either xα > 1 or xβ < 0. We can

modify (11) to account for this difficulty by conisdering the following system:

xβ − xα ≥ min{l(α, β) + ε, 1} ∀(α, β) ∈ E (S1)

xγ ∈ [0, 1] ∀γ ∈ Γ

Considering again the pair (α, β) such that l(α, β) = 1, (S1) yields

xβ − xα ≥ 1.

If l(α, β) = 1 > −l(β, α) this inequality is still sharp enough to allow us to

exclude x from Rα. Thus another difficulty arises when l(α, β) = −l(β, α) =

1. This second difficulty motivates a definition. Call a pair {α, β} tight if

l(α, β) = −l(β, α) = 1. We assume first that Γf has no tight pairs.

Suppose for a contradiction that Γf has a negative length cycle. Amongst

all such cycles, choose one, C, say, that has as few vertices as possible. Let

C = {α1, . . . , αr} and d(αj, αk) be the length of the path on C going from

αj to αk with respect to edge lengths l(αi, αi+1). If d(αj, αk) ≥ 1, we can

replace this path by the edge (αj, αk), producing a negative cycle, with fewer

vertices. Thus d(αj, αk) < 1 for all j, k. We use this property to show that

there is a solution to

xβ − xα ≥ min{l(α, β) + ε, 1} ∀(α, β) ∈ C (S2)

xγ ∈ [0, 1] ∀ γ ∈ C
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Consider the following linear program.

min y − z (S3)

s.t. xβ − xα ≥ min{l(α, β) + ε, 1} ∀(α, β) ∈ C

xγ − z ≥ 0 ∀γ ∈ C

y − xγ ≥ −1 ∀γ ∈ C

This is the dual to the problem of finding a longest path in a network that

contains the cycle C plus two additional vertices. One vertex is associated

with the variable z, call it the source and the other is associated with y

called the sink. For each α ∈ C there is an edge directed from the source

into α of length 0. From each α ∈ C there is an edge directed into the

sink of length −1. It is easy to see that this network has no positive length

cycle and so a longest path from source to sink exists. Notice also that any

path must start at the source, enter some vertex αi ∈ C, traverse C and

leave for the sink via some vertex αk ∈ C. The length of this path is at

most d(αi, αk) + (k − i)ε − 1 ≤ 0. Since the variables in (S3) correspond to

longest path lengths from the source, there is an optimal solution (x∗, z∗, y∗)

to (S3) where z∗ = 0 and y∗ < 0. Hence x∗
γ ≥ 0 for all γ ∈ Γ. Also

−1 ≤ y∗ − x∗
γ ≤ −x∗

γ, i.e. x∗
γ ≤ 1 for all γ ∈ C. Therefore x∗ is a feasible

solution to (S2).

If x∗
α < 1 for all α ∈ C we can construct a new solution x to (S2) where

xα = 1 for at least one α ∈ C. Simply increase all x∗
α at the same rate until

one of them becomes 1. All constraints of (S2) are satisfied. For all γ �∈ C

set xγ = 0. It is easy to see that x ∈ [0, 1]|Γ|. We claim that x �∈ ∪α∈ΓRα.

Given the absence of tight pairs we conclude that x �∈ ∪α∈CRα. To show

that x �∈ Rγ for all γ �∈ C choose an α ∈ C such that xα = 1. Then

xα − xγ = 1 ≥ min{l(γ, α) + ε, 1} > −l(α, γ).

The last strict inequality follows from the absence of tight pairs.

We now drop the assumption that there are no tight pairs. Again suppose

Theorem 2 is false. Amongst all allocation rules f that lead to a counter

example choose one where Γf has as few vertices as possible. Notice that

Γf must contain a tight pair, {α, θ}, say, otherwise the previous argument

13



applies. Let A = {β ∈ Γ : {α, β} is tight}. We construct a new allocation

rule g as follows:

1. g(t) = f(t) when t �∈ Rα ∪ {∪β∈ARβ}

2. g(t) = α when t ∈ Rα ∪ {∪β∈ARβ}

The allocation rule g will have three properties.

1. Γg has fewer vertices than Γf .

2. All 2-cycles in Γg are non-negative.

3. Γg has a negative length cycle.

Such a g gives the lie to the existence of the minimal counterexample f and

completes the proof.

The first property of Γg is clearly true. To prove the second property,

denote by lg the length function of edges in the network Γg.

Observe first that lg(γ, θ) = l(γ, θ) for all θ �∈ A∪ {α}. It suffices then to

verify that lg(γ, α) ≥ −lg(α, γ) for all γ �∈ A ∪ {α}. Next

lg(γ, α) = min{l(γ, α),min
β∈A

{ inf
t∈Rβ

[tα − tγ]}}.

For any β ∈ A, l(α, β) = −l(β, α) = 1, therefore for all t ∈ Rβ we have

tα − tγ = tα − tβ + tβ − tγ = −1 + tβ − tγ.

Hence

lg(γ, α) = min{l(γ, α),min
β∈A

{−1 + l(γ, β)}}.

If the first term in the minimand is the smaller, then lg(γ, α) = l(γ, α) ≥
−l(α, γ) = −lg(α, γ). So we may suppose that lg(γ, α) = −1 + l(γ, β) for

some β ∈ A. If −1 + l(γ, β) ≥ −l(α, γ) = −lg(α, γ) the second property is

proved. If not

−1 + l(γ, β) + l(α, γ) < 0. (12)

Therefore α → γ → β → α is a negative length cycle in Γf .

Consider the following type in T :
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1. tα = ε

2. tγ = min[max{l(α, γ) + 2ε, 0}, 1]

3. tβ = max{tγ + l(γ, β) + ε, 0}

4. tθ = 0 for all θ �∈ {α, β, γ}

It is easy to see that tθ ∈ [0, 1] for all θ �= β. We delay the treatment of

θ = β for a moment. To complete the proof of the second property it suffices

to show that t �∈ ∪θ∈ΓRθ.

To see that t �∈ Rα notice that either tγ − tα > l(α, γ) ≥ −l(γ, α) or

tγ − tα = 1− ε > −l(γ, α) (for ε sufficiently small). The last strict inequality

follows from the fact that γ �∈ A. Also tα − tβ > −1 = −l(α, β) so t �∈ Rβ.

For any θ �= α, β, γ we have l(α, θ) ≥ 0. This follows from two facts.

First, inf(rα|r ∈ Rα) = 0 because l(β, α) = −1. From this we deduce

that l(θ, α) ≤ 0 for all θ. From the 2-cycle inequality on Γf it follows that

l(α, θ) ≥ −l(θ, α) ≥ 0. Now t �∈ Rθ since tθ − tα = −ε < l(α, θ).

It remains to show that tβ ≤ 1 and that t /∈ Rγ. We distinguish three

cases.

First, assume l(α, γ) = 1. Then tγ = 1 and tβ = l(α, γ) + l((γ, β) + ε.

Then tβ ≤ 1 because of (12). Furthermore tβ − tγ = l(γ, β) + ε > −l(β, γ),

therefore t /∈ Rγ.

Second, assume 0 ≤ l(α, γ) < 1. In this case tγ = l(α, γ) + 2ε (for

sufficiently small ε), and either tβ = 0, or tβ = l(α, γ) + l(γ, β) + 3ε. Again,

tβ ≤ 1 because of (12). Observe that tβ − tγ > l(γ, β) > −l(β, γ), thus

t /∈ Rγ.

Now observe that l(α, γ) < 0 is not possible, because together with

l(γ, α) ≤ 0 it would imply a negative 2-cycle.

To prove the last property let C be a negative length cycle in Γf . If the

pair {α, β} is not on C, then C is present in Γg. If the edge (α, β) is present

in C, the contracted version of C has a length that is exactly 1 unit smaller.

If the edge (β, α) is present in C, let γ be β’s immediate predecessor in C.

Now lg(γ, α) ≤ l(γ, β) + l(β, α) and again the the contracted version of C is

no longer than the original length of C.
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Roberts (1979) offers a characterization of dominant strategy mechanisms

in terms of what are called affine maximizers. An allocation rule f is said to

be an affine maximizer if there exists non-zero w ∈ 	n
+ and d ∈ 	|Γ| such

that

f(t) = arg max
α∈Γ

[dα +
n∑

i=1

wiv
i(α|ti)].

By mimicking the payment scheme of a Vickrey-Clarke-Groves scheme, it is

easy to show that an allocation rule that is an affine maximizer is dominant

strategy incentive compatibility. Roberts shows that any allocation rule that

satisfies the 2-cycle inequality must be an affine maximizer. Since affine

maximizers are dominant strategy incentive compatible this gives another

proof of Theorem 2 in the case when the type space is 	|Γ|.

In the case when the type space is 	|Γ|
+ , Theorem 2 can be found in Lavi,

Mu’alem and Nisan (2003). The case when the type space is [0, 1]|Γ| is as far

as we know new. The proof technique of Lavi, Mu’alem and Nisan does not

apply to this case.

5 Combinatorial Auctions

5.1 General valuations

We have a set of M distinct goods to allocate. The type of an agent is a

vector with one component for each subset of M that corresponds to the

value assigned to that subset. We can index Γ by the subset allocated to

our fixed agent. The type t is now a function defined on subsets of M . So,

v(α|t) = tα. (10) reduces to:

xβ − xα ≥ l(α, β) + ε ∀(α, β) ∈ E. (13)

The remainder of the argument follows the unrestricted preference case. We

summarize the conclusion as follows:

Theorem 3 Suppose the type space T is 	2M
, 	2M

+ or [0, 1]2
M
. An allocation

rule f for combinatorial auctions is dominant strategy incentive compatible

iff.

tf(t) − tf(s) ≥ −[sf(s) − sf(t)] ∀s, t ∈ T.
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When T is 	2M
or 	2M

+ this theorem was first proved in Lavi, Mu’alem and

Nisan (2003) using different methods. The case when T = [0, 1]2
M

is new.

The proof technique of Lavi, Mu’alem and Nisan does not apply to this case.

5.2 Non-decreasing valuations

It is common to impose the free-disposal restriction: tα ≤ tβ if α ⊆ β.

Theorem 3 can be extended to this case. A version of this extenson can be

found also in Lavi, Mu’alem and Nisan (2003). The technique there does not

extend to the case when the type space is [0, 1]2
M

.

If α ⊂ β then l(α, β) = inft∈Rβ
[tβ−tα] ≥ 0, and l(β, α) = inft∈Rα [tα−tβ] ≤

0 . An edge (α, β) with α ⊂ β will be called a forward edge. Forward edges

have non-negative length. System (10) reduces to:

xβ − xα ≥ l(α, β) + ε ∀(α, β) ∈ E. (14)

To ensure that the solution to (14) will be a type in our domain we require

that xβ ≥ xα whenever α ⊂ β. Notice however, these additional constraints

are redundant given the constraints in (14) corresponding to the forward

edges. A similar observation applies to the order based domains defined

in Lavi, Mu’alem and Nisan (2003).

We omit proofs for the claims made in this subsection since we will provide

a proof for a domain that is even more restrictive (see below) than those

discussed so far. It is easy to adapt the argument from the more restrictive

domain to the more relaxed ones discussed thus far.

6 Diminishing marginal utility

Here we consider the case when there are k units of a homogenous good to be

allocated. The type, t, of an agent is a vector in [0, 1]k whose ith component

is the marginal value for the ith unit. Furthermore, we assume diminishing

marginal utilities (DMU), i.e., ti ≥ ti+1. This is a more restrictive domain

than that considered in Bikhchandani, Chatterji and Sen (2003).6

6We have recently been informed that Bikhchandani, Chatterji and Sen have extended
their argument to the case of diminishing marginal utilities where each ti ∈ [0, Ui] and the
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Each agent is indifferent between all allocations that give him the same

quantity of the good. So we can identify each α ∈ Γ with an integer between

0 and k. Then: v(α|t) =
∑α

j=1 tj. If α < β then

l(α, β) = inf
t∈Rβ

[
β∑

j=1

tj −
α∑

j=1

tj] = inf
t∈Rβ

[
β∑

j=α+1

tj] ≥ 0,

and

l(β, α) = inf
t∈Rα

[
α∑

j=1

tj −
β∑

j=1

tj] = inf
t∈Rα

[−
β∑

j=α+1

tj] = − sup
t∈Rα

[
β∑

j=α+1

tj] ≤ 0.

Notice that |l(α, β)| ≤ |α− β|. Thus, the two-cycle inequality becomes

inf
t∈Rβ

[
β∑

j=α+1

tj] ≥ sup
t∈Rα

[
β∑

j=α+1

tj] for all α < β, α, β ∈ {1, . . . , k}.

Notice also that, if α < α′ < β then l(α, β) ≥ l(α′, β) and l(β, α) ≤
l(α′, α) .

Our goal is to prove the following:

Theorem 4 An allocation rule f for diminishing marginal valuations is

dominant strategy incentive compatible iff.

f(t)∑

j=f(s)

tj ≥
f(t)∑

j=f(s)

sj ∀t, s ∈ T.

Fix the allocation rule f and denote by Γf the set of vertices of the asso-

ciated network. In network terms our goal is to prove the following:

Theorem 4’ An allocation rule f for diminishing marginal valuations

is dominant strategy incentive compatible iff. all 2-cycles in Γf are non-

negative.

Ui’s are not all equal. The domain considered here is more restrictive and not subsumed
by their result.
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As usual we confine ourselves to the non-trivial direction. We assume

that Γf has all non-negative 2-cycles and will prove that all cycles are non-

negative.

An edge (a, b) in Γf is called tight if

1. a > b and l(a, b) = −(a− b), or

2. a < b and l(a, b) = 0.

If Γf has no tight edges, l(a, b) > 0 for all edges (a, b) with a < b and

−l(a, b) < a − b for all a > b. We assume first that the network Γf has

no tight edges. Suppose that Γf consists of the vertices {i1, i2, . . . , ir}. We

denote in the following the set {ip, ip+1, . . . , iq} by [ip, iq].

Lemma 1 If the network Γf has no negative 2-cycle or tight edges, then

l(is, is+1) = −l(is+1, is)

for s = 1, . . . , r.

Proof

Since the network Γf has no negative 2-cycle, we have that l(is, is+1) ≥
−l(is+1, is). For a contradiction suppose that l(is, is+1) > −l(is+1, is) for some

index s ∈ {1, . . . , r}. Choose any x such that

l(is, is+1) > x > −l(is+1, is).

Consider the type t obtained by setting tj = 1 for j = 1, . . . , is, tj = x
is+1−is

for is + 1 ≤ j ≤ is+1 and tj = 0 for j = is+1 + 1, . . . , k.

Since Γf has no tight edges, −l(iq+1, iq) < iq+1 − iq for all q < s. Since
∑iq+1

j=iq+1 tj = iq+1 − iq it follows t �∈ ∪s−1
q=1Riq .

Since l(is, is+1) > x =
∑is+1

j=is+1 tj > −l(is+1, is), it follows that t �∈ Ris ∪
Ris+1 .

Since Γf has no tight edges, liq ,iq+1 > 0 =
∑iq+1

j=iq+1 tj for q = s+1, . . . , r−1,

hence t �∈ ∪r
q=s+2Riq .

Therefore t �∈ ∪r
j=1Rij , a contradiction.

19



Now suppose Γf has no tight edges but does have a negative cycle, C,

say. Choose a cycle C such that for ip being the smallest node in C and iq+1

being the largest, |iq+1 − ip| is minimized.

Since there is no negative 2-cycle, we have p < q. By the choice of C

every cycle through any proper subset of vertices in [ip, iq+1] which does not

include ip and iq+1 has non-negative length. This implies a triangle inequality.

Specifically, for any r, s ∈ [p, q + 1] with |s − r| < |q + 1 − p| and r < s we

have

l(ir, is) ≥ l(ir, ir+1) + . . . + l(is−1, is). (15)

Indeed, we obtain (15) by applying Lemma 2 to

l(ir, is) + l(is, is−1) + l(is−1, is−2) + . . . + l(ir−1, ir) ≥ 0.

Therefore the negative cycle C must be of the form

ip −→ iq+1 −→ . . . −→ ip−1 −→ ip

or

ip −→ ip+1 −→ . . . −→ iq+1 −→ ip.

We will suppose that C is of the form

ip −→ iq+1 −→ . . . −→ ip−1 −→ ip.

The other case can be argued similarly. Since C is a negative length cycle

l(ip, iq+1) + l(iq+1, iq) + ... + l(ip+1, ip) < 0. (16)

Lemma 2 If Γf has no tight edges and (16) holds then

l(iq, iq+1)

iq+1 − iq
<

l(ip, ip+1) + ... + l(iq−1, iq)

iq − ip
.

Proof

If not, then
l(iq, iq+1)

iq+1 − iq
≥ l(ip, ip+1) + . . . + l(iq−1, iq)]

iq − ip
.
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From the DMU assumption we get

l(ip, iq+1) ≥ (iq+1 − ip)
l(iq, iq+1)

iq+1 − iq

= (iq − ip)
l(iq, iq+1)

iq+1 − iq
+ l(iq, iq+1)

≥ l(ip, ip+1) + ... + l(iq−1, iq) + (iq, iq+1)

Invoking Lemma 2 we deduce

l(ip, iq+1) ≥ −l(ip+1, ip) − ...− l(iq, iq−1) − l(iq+1, iq).

This contradicts (16).

Lemma 3 If Γf has no tight edges and (16) holds there is a type t ∈ T , such

that t /∈ ∪r
j=1Rij .

Proof

Let

λ =
l(ip, ip+1) + ... + l(iq−1, iq)

iq − ip
.

By Lemma 3, λ > 0. Since Γf has no tight edges, −l(ij+1, ij) < ij+1 − ij for

j = p, . . . , q − 1. By Lemma 2, we get λ < 1.

Consider type t defined as follows:

1. tj = 1 for j = 1, 2, . . . , ip,

2. tj = λ− ε, for j = ip + 1, . . . , iq,

3. tj = max(0, l(iq ,iq+1)

iq+1−iq
− ε) for j = iq + 1, . . . , iq+1,

4. tj = 0 for j ≥ iq+1 + 1.

By construction (for ε sufficiently small) and by Lemma 2, ti+1 ≤ ti for

i = 1, . . . , k − 1. Thus t is in our domain T .

21



The absence of tight edges implies that t �∈ ∪p−1
j=1Rij and t �∈ ∪r

j=q+2Rij .

If tj = 0 for j = iq + 1, . . . , iq+1, than t �∈ Riq+1 , again due to the absence of

tight edges. Otherwise,
∑iq+1

k=iq+1 tj = −l(iq, iq+1)− (iq+1 − iq) ∗ ε < l(iq, iq+1).

Hence also in this case t �∈ Riq+1 .

Notice that by definition of λ and by Lemma 1 we have

(iq − ip)λ = l(ip, ip+1) + . . . + l(iq−1, iq) = −l(ip+1, ip) − . . .− l(iq, iq−1).

If t ∈ Riq , we would have

l(ip, iq) ≤ (iq − ip) ∗ (λ− ε) = −l(ip+1, ip) − . . .− l(iq, iq−1) − (iq − ip) ∗ ε.

which contradicts the choice of the negative cycle. Hence, t /∈ Riq .

Observe that t ∈ Rip would imply

l(ip, iq+1) ≥ −l(iq+1, ip) ≥ (iq − ip)λ + l(iq, iq+1) − (iq+1 − ip) ∗ ε.

From this we would get

l(ip, iq+1) + l(iq+1, iq) + . . . + l(ip+1, ip) ≥ −(iq+1 − ip) ∗ ε.

For ε small enough, this contradicts the choice of C.

From what we have seen so far, we know that, for ε0 small enough, for

all ε < ε0 it must hold t ∈ ∪q−1
j=p+1Rij . Therefore there exists an n ∈ {p +

1, . . . , q − 1} such that t ∈ Rin for arbitrary small ε, where t is defined by

this ε.7 In the following we consider such t′s.

Observe that

l(ip, in) ≤ (in − ip) ∗ (λ− ε).

Since ε can be chosen arbitrarily small, we get

l(in−j, in) ≤ λ(in − in−j).

7Formally, construct a sequence (εi)∞i=1 that converges to 0. Let ti be the t defined by
εi. There must be one n such that Rin

contains infinitely many ti.
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By using the triangle inequality

l(ip, in) ≥ l(ip, ip+1) + . . . + l(in−1, ln)

we get

l(ip, ip+1) + . . . + l(in−1, in)

in − ip
≤ l(ip, ip+1) + . . . + l(iq−1, iq)

iq − ip

or, equivalently,

(iq − ip)(l(ip, ip+1) + . . .+ l(in−1, in)) ≤ (in − ip)(l(ip, ip+1) + . . .+ l(iq−1, iq)).

As some terms cancel, rearranging yields:

in − ip
iq − in

(l(in, in+1) + . . . + l(iq−1, iq)) ≥ l(ip, ip+1) + . . . + l(in−1, in).

Consider any t∗ ∈ Rq+1. Then,

t∗ip+1 + . . . + t∗iq+1
= (t∗ip+1 + . . . + t∗in) + (t∗in+1 + . . . + t∗iq+1

).

From the triangle inequality we get

t∗in+1 + . . . + t∗iq+1
≥ l(in, iq+1) ≥ l(in, in+1) + . . . + l(iq, iq+1).

From the diminishing marginal utility condition we get

t∗ip+1 + . . . + t∗in ≥ (in − ip)t
∗
in ≥ (in − ip)

(iq − in)
(t∗in+1 + . . . + t∗iq). (17)

Further from (17) we deduce that

t∗ip+1 + . . . + t∗in ≥ (in − ip)

(iq − in)
[t∗in+1 + . . . + t∗iq ] ≥

(in − ip)

(iq − in)
l(in, iq)

≥ (in − ip)

(iq − in)
(l(in, in+1) + . . . + l(iq−1, iq))

≥ l(ip, ip+1) + . . . + l(in−1, in).

Therefore

t∗ip+1 + . . . + t∗iq+1
≥ l(ip, ip+1) + . . . + l(in−1, in) + l(in, in+1) + . . . + l(iq, iq+1)
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for all t∗ ∈ Rq+1. Since l(ip, iq+1) = inft∗∈Riq+1
[t∗ip+1 + . . . + t∗iq+1

], and from

Lemma 1, it follows that

l(ip, iq+1) ≥ −l(iq+1, iq) − . . .− l(ip+1, ip)

contradicting the negative cycle assumption.

Hence t �∈ ∪r
j=1Rij .

Suppose for a contradiction that Theorem 4 is false. Amongst all alloca-

tion rules f that lead to a counter example choose one where Γf has as few

vertices as possible. Notice that Γf must contain a tight edge, (a, b), say.

Since (a, b) is tight, for any u ∈ Γf with a < u < b either the edge (a, u)

or (u, b) will be tight. To see why suppose that l(a, b) = −l(b, a) = 0. By

the DMU assumption, l(u, b) = 0. By the 2-cycle inequality, 0 = l(u, b) ≥
−l(b, u) = 0 therefore −l(b, u) = 0. If l(a, b) = −l(b, a) = b − a. By DMU

−l(u, a) = u−a. By the 2-cycle condition u−a ≥ l(a, u) ≥ −l(u, a) = u−a.

Therefore l(a, u) = −l(u, a). Hence, if Γf has a tight edge, it has one of the

form (is, is+1) for some s.

We will derive from f another allocation rule g by a contraction oper-

ation to be described below. If l(is, is+1) is tight and such that l(is, is+1) =

is+1 − is. We construct g as follows:

1. g(t) = f(t) if t ∈ Rij , j �= s, s + 1

2. g(t) = is if t ∈ Ris ∪Ris+1

If l(is, is+1) = 0 we construct g as follows:

1. g(t) = f(t) if t ∈ Rij , j �= s, s + 1

2. g(t) = is+1 if t ∈ Ris ∪Ris+1

In both cases we say that g was obtained from f by contracting (is, is+1).

We will prove three things about g.

1. Γg has one fewer vertex than Γf .

2. All 2-cycles in Γg are non-negative.
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3. Γg has a negative length cycle.

Such a g contradicts the existence of the minimal counterexample f and

proves the theorem. The first of these claims is clearly true. The following

lemma establishes the second claim.

Lemma 4 Suppose Γf has no negative 2-cycles. From amongst all tight

edges of the form (is, is+1) choose the one for which s is largest. Let g be

obtained from f by contracting the tight edge (is, is+1). Then Γg has no

negative 2-cycle.

Proof

Denote by lg(a, b) the length of the edge (a, b) in Γg. Suppose first that

l(is, is+1) = is+1 − is. To verify the 2-cycle inequality for Γg it suffices to

check that lg(ia, is) ≥ −lg(is, ia) for all a < s and lg(is, ib) ≥ −lg(ib, is) for

all b > s + 1. This is because for any pair a and b that are not part of any

tight edge, lg(a, b) = l(a, b).

For a < s

lg(ia, is) = min{l(ia, is), inf
t∈Ris+1

is∑

j=ia+1

tj}.

Since l(is, is+1) = is+1 − is it follows by DMU that

inf
t∈Ris+1

is∑

j=ia+1

tj = is − ia.

Therefore lg(ia, is) = l(ia, is) ≥ −l(is, ia) = lg(is, ia).

For b > s + 1

−lg(ib, is) = max{−l(ib, is), sup
t∈Ris+1

ib∑

j=is+1

tj}.

If −l(ib, is) is the larger of the two terms in the maximand, then −lg(ib, is) =

−l(ib, is) ≤ l(is, ib) = lg(is, ib). So, we suppose that

−lg(ib, is) = sup
t∈Ris+1

ib∑

j=is+1

tj.
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If −lg(ib, is) ≤ l(is, ib) = lg(is, ib) we are done. If not

l(is, ib) = lg(is, ib) < sup
t∈Ris+1

ib∑

j=is+1

tj ≤ (is+1−is)−l(ib, is+1) = −l(is+1, is)−l(ib, is+1).

Hence

l(is, ib) + l(ib, is+1) + l(is+1, is) < 0. (18)

In words is → ib → is+1 → is is a negative cycle. We will use the cycle to

derive a type that is not in ∪r
j=1Rij . Consider now the following system:

X + Y ≥ l(is, ib) + ε

X ≤ −l(is+1, is) − ε

Y ≤ −l(ib, is+1) − ε

1 ≥ X

is+1 − is
≥ Y

ib − is+1

≥ 0

We show that this system is feasible by showing that the following program

has optimal objective function value of zero.

minA + B

subject to

X + Y ≥ l(is, ib) + ε

X − A ≤ −l(is+1, is) − ε

Y −B ≤ −l(ib, is+1) − ε

1 ≥ X

is+1 − is
≥ Y

ib − is+1

≥ 0

A,B ≥ 0

To see that this program is feasible set X = is+1 − is and Y = ib − is+1.

Suppose, for a contradiction, that at optimality A + B > 0. It is easy to

see that at optimality the first three constraints must bind. So

l(is, ib) + ε = −l(is+1, is) − l(ib, is+1) − 2ε + A + B.
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Therefore

l(is, ib) + l(is+1, is) + l(ib, is+1) = −3ε + A + B > 0

for ε sufficiently small, contradicting (18).

Consider now the following type t:

1. tj = 1 for j = 1, . . . , is

2. tj = X
is+1−is

for j = is + 1, . . . , is+1

3. tj = Y
ib−is+1

for j = is+1 + 1, . . . , ib

4. tj = 0 for j = ib + 1, . . . , k

We show that t �∈ ∪r
j=1Rij

1. t �∈ Ris

This follows from the fact
∑ib

j=is+1 tj > l(is, ib) ≥ −l(ib, is).

2. t �∈ Ris+1

This follows from the fact that
∑is+1

j=is+1 tj < −l(is+1, is) ≤ l(is, is+1).

3. t �∈ Rib

This follows from the fact that
∑ib

j=is+1+1 tj < −l(ib, is+1) ≤ l(is+1, ib).

4. t �∈ ∪r
j=b+1Rij

If t ∈ Riq for some q > b then l(ib, iq) = 0 implying by DMU that

l(iq−1, iq) = 0. By the 2-cycle inequality it follows that −l(iq, iq+1)

contradicting the choice of (is, is+1).

5. t �∈ ∪s−1
j=1Rij

If t ∈ Riq for some q < s then l(iq, ib) ≥ −l(ib, iq) ≥ is − iq + X + Y.

However for any δ > 0 sufficiently small, there is a type t′ ∈ Rib such

that
∑ib

j=is+1 t
′
j = l(is, ib) + δ. Thus

l(iq, ib) ≤ is − q + l(is, ib) + δ < is − iq + X + Y ≤ l(iq, ib)

a contradiction.
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6. t �∈ ∪b−1
j=s+2Rij

If t ∈ Riq where is+1 < iq < ib then −l(iq, is+1) ≤ l(is+1, iq) ≤ (iq−is+1)Y
ib−is+1

.

However, by the DMU condition

−l(iq, is+1) ≥ −(iq − is+1)l(ib, is+1)

ib − is+1

.

Therefore
(iq − is+1)Y

ib − is+1

≥ −(iq − is+1)l(ib, is+1)

ib − is+1

.

In other words Y ≥ −l(ib, is+1) which contradicts the choice of Y .

The case when l(is, is+1) = 0 follows similarly.

Observe that the length of an edge can only decrease after a contraction

operation. For example, if a < b < c and (a, b) is a tight pair with l(b, a) =

−(a− b) then

lg(c, a) ≤ l(c, b) + l(b, a).

Hence if Γf has a negative cycle, Γg must have it as well. This observation

completes the proof of the third claim about g.
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