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Abstract

This paper develops theoretical foundations for an crror analyvsis of approximate
cquilibria in dynamic stochastic general equilibrium models with heterogencous agents
and incomplete financial markets. While there are several algorithims which compute
prices and allocations for swhich agents” first order conditions are approximately satisfied
(rapproximate cquilibria’). there are few results on how to iuterpret the crrors in these
candidate solutions aud how to relate the computed allocations and prices to exact
cquilibriun allocations and prices. We give a simple example which illustrates that
approximate cquilibria might be very far from exact cquilibria. We then interpret
approximate cquilibria as cquilibria for close-by econowics. that is. for cconomies with
close-by individual endowments and preferences. We provide sufficient conditions which
cusure that approximate cquilibria are close to exact cequilibria of close-hy cconomies.

We give a detailed discussion of the error analyvsis for two models which are commonly
used in applications. an OLG model with stochastic production and an asscet pricing
model with infinitely lived agents. We illustrate the analysis with some numerical
cexamples. In these examples the derived bounds are at most one order of niagnitude

larger than maximal crrors in Euler equations.

“An earlier version of this paper was circulated under the title “The accuracy of numerical solutions for
dvnamic GEI models”. We thank seminar participants at various universities and conferences and espe-
cially Don Brown. Johin Geanakoplos. Peter Hammond. Martin Hellwig. Ken Judd. Mordecal Kurz. Alvaro

Sandroni. Manuel Santos and Touy Smith for helpful discussions and useful commenms.



1 Introduction

The computation of equilibria in dynamic stochastic general equilibriunn models with het-
erogencous agents hax become ereasingly important in finance. macroeconomics and public
finance. Many econouic nsights can be obtained by analyzing quantitative features of re-
alistically calibrated models {prominent examples in the literature include. among others.
Rios-Rull (1996). Heaton and Lucas (1996) or Krusell and Suiith (1997)).

Unfortunately there are often no theoretical foundations for algorithms which claim to
compute contpetitive equilibria in models with incomplete markets or overlapping gencera-
tions. In particular. since all computation suffers from truncation and rounding crrors it
1s obviously mpossible to mmnerically verify (as some applied rescarchers claim) that the
optimality and market clearing conditions are satisfied and that a competitive equilibrium
is found. The fact that the cquilibrium conditions are approximatcly satisfied generally
does not vield any implications on how well the comiputed solution approximates au exact
cquilibrium.  Computed allocations and prices could be arbitrarily far from competitive
cquilibrium allocations and prices.

In this paper we develop an error analvsis for the computation of conmpetitive equilibria
in models with heterogeneous agents where equilibrium prices are infinite dimensional. We
define an c-equilibriun as a collection of finite sets of choices and prices such that there exists
a process of prices and choices which takes values exclusively in these sets and for which
the relative errors in agents” Euler equations and the errors in market clearing conditions
are below some small ¢ at all times.

Existing algorithis for the computation of equilibria in dyvnamic models can be in-
terpreted as computing c-cquilibria and the finiteness of c-equilibria allows us to compu-
tationallv verifv if a given collection of endogenous variables (i.e. a candidate solution)
constitutes an ¢-cquilibrium.  In order to give an cconomic interpretation of the concept
we follow Postlewaite and Schineidler’s (19281) analvsis for finite econonties and interpret -
cquilibria as approximating exact cquilibria of a close-by economy.

In finite econowics the problenn of interpreting c-equilibria is easiest illustrated in a
standard Arrow-Debreu exchange economy.  Scarf (1967) proposes a method which ap-
proximates” equilibria for any given finite economy in the following sense: Given individ-
ual endowments ¢! for individuals /7 = J... .. I and an aggregate excess demand function
Elp. (")) and given an ¢ > 0. the methods finds a p such that L&(p. (¢')}] < e. As Richter
and Wong (1999) point out! this fact does not imply that it is possible to find a j such that

| p—p < ¢ for some exact equilibriuin price vector pT.

They examine the problem of the computation of equilibria from the viewpoint of computable analyvsis
as developed by Turing (19361 and point out that while Scarf’s algoritlun generates a sequence of values
converging to a competitive equilibriun knowing any Hinite initial sequence might shed no light at all on the

fimit.
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However. if individual endowiments are interior and if the value of the excess demand
function at p. L&(p. (¢))[. is small. then § is an equilibrium price for a close-by cconomy.
Homogeneity of aggregate excess demand implies trivially that if 5. €(p. (")) = 0 then
ey = (s (5}'))\1 < e with £(p*. (€")) = 0. It is possible that p is not a good approxi-
mation for the equilibrium price of the given economy. However researchers rarely know the
exact individual endowments of agents anvway. and if close-by specifications of exogenous
variables lead to vastly different cquilibria it will be at least useful to know one possible
equilibrium for one realistic specification of endowments. As Postlewaite and Schmeidler
(1981) put it. “If we don't know the characteristics. but rather. we must estimate them.
it is clearly too much to hope that the allocation would be Walrasian with respect to the
estimated clhiaracteristics even if it were Walrasian with respect to the true characteristics.”

This issue has been well understood for a long time from a viewpoint of computational
mathematics. In general. sources of errors in computations can be classified in three cate-

SOr1es!:

1. Errors due to the theory: The economic model contains many idealizations and si-

plifications.

2. Errors due to the specification of exogenous variables: The economic model depends on
parameters which are themselves computed approximately. the results of experimental

nieasurenients or the results of statistical procedures.

3. Truncation and rounding errors: each limiting process must be broken off at some
finite stage. computers usuallv use floating point arithmetic resulting in round-off

CITOTS.

In contrast to standard error analvsis. which aims to hound the distance of the approx-
mate solution to the exact solution. "hackward error analvsis’ exploits a trade-off between
2 and 3 and examines how much the given problem would have to be perturbed in order for
the calculated solution to be an exact solution of the perturbed problem (see e.g. Wilkinson
{1963) or Higham (1996)). While in the applied economic literature which uses computa-
tions there is a large debate about the trade-off between 1 and 3. there is surprisingly little
discussion about a possible trade-off between 2 and 3. This paper explores how this latter
trade-off can be used to interpret approximate solutions to dyvnamic general equilibrium
models via backward error analvsis.

We examine two concrete applications where we take as given that standard algorithins
compute values for the endogenous variables for any possible sequence of exogenous shocks.,
We describe a method to construet an c-equilibrium from the computer output. Although
our definition of recursive cquilibrium is diserete. it turns out to be very useful to use

continuous algorithms to compute the c-equilibria in practice. In particular swe examine



algoritlins which assume that approximate policy and pricing functions are smooth. We
show that in these applications our methods lead to reasonable and cconomically meaningful
crror hounds.

For models with a single agent. Santos and his co-authors have developed such sufficient
conditions and give explicit error bounds both on poliey functions and on allocations (Santos
and Vigo (1998). Santos (2000). and Santos and Peralta-Alva (2002)). While even in their
framework these conditions do not hold for all interesting specifications of the model. in
applications. the conditions can often be verified. Under these conditions. crror bounds on
allocations can be derived from Euler equation residuals. However. most of these results do
not generalize to models with heterogeneous agents and incomplete markets. No sufficient
conditions are known which allow the derivation of error bounds on computed equilibrium
prices and allocations in the models considered in this paper.

Backward error analysis 1z a standard tool in numerical analvsis that was developed in
the late 19505 and 1960s. see Wilkinson (1963). It i surprising that it has. to the best of
our knowledge. not been widely used in economics. (Judd's texthook (1998). for example.
mentions backward error analvsis and provides a c¢itation from the nmmerical analysis liter-
ature but never applies the concept to an cconomic problent.) The only somewhat related
concept in economics is “hacksolving” which was introduced by Sims (1984) for solving
noulinear. stochastic svstenis. Ingram (1990) describes backsolving from an econometric
viewpoint. The endogenous variables in a stochastic dynamic optimization problem are
affected by random shocks. Instead of taking a distribution of shocks as given and then
solving for the distribution of the ecndogenous variables. hacksolving hegins by specifving a
convenicnt or intuitive distribution for some of thie endogenous variables and then attempts
to find underlyving distributions of randowm shocks and other variables that would yield the
assuied distributions of the endogenous variables. Note that this approach is different
from backward error analysis hecause it does not address the question how far away the
exogenous distribution is from some desired or estimated one. In backward error analysis
exXOgenous parameters arc givell. then an approximate solution is computed. and then the
necessary perturbations i exogenous parameters are determined. Clearly, we always would
like to have very small backward crrors. In faet. the focus of our analysis of popular models
in Sections H and 6 of this paper is the calculation of backward errors. Due to the nature of
cconontic problems we cannot perform “pure” backward error analvsis and only perturh ex-
ogenous parameters. Instead. we will compute bounds on perturbations of both exogenous
parameters and endogenous equilibrinm values. Higham (1993) e¢alls this “mixed” backward
error analysis.

The analysis in our paper is. from a theoretical perspective. perhaps closest to Mailath
et al.’s (2003) discussion of c-equilibria in dynamic games. An important difference is that

thev allow for perturbations in the instantaneous pav-off functions of the game. In our



framework this can lead to preferences over pavoff streams that are far away from the
original preferences. Therefore. we cannot consider these as admissible.

The paper is organized as follows. In Section 2 we illustrate the main intuition in
a simple two-period example. Section 3 outlines an abstract dyvnamic model and defines
what we mean by close-by economies. Section 4 develops the theoretical foundations of our
method. In Section 5 we apply this method to a model with overlapping generations and
production. In Section 6 we apply the methods to a version of Lucas™ {1978) asset pricing

model with heterogeneous agents.

2 The Main Intuition in a Two-period Economy

In this section we demonstrate the main themes of this paper in a simiple two-period model.
We first show how competitive cquilibria can be characterized by a svstem of equations
that relates endogenous variables in one period to endogenous variables of the next period.
Thesce equations, which we will refer to as the cquilibrium equations. enable us later in the
paper to describe infinite equilibria with finite sets. Secondly. we define an e-equilibrium and
provide an example that shows that e-cquilibrium prices and allocations can be a terrible
approximation to exact equilibria. We show that in the example perturbations in individual
endowments can rationalize e-cquilibria as exact equilibria.

We consider a simple pure exchiange economy with two agents. two thne periods and no
uncertainty. There is a single commodity i cach period. agents” endowments are (cg,. ¢7)
for + = 1.2, Ageuts can trade a bond which payvs one unit in the second period. the price
of the bond is denoted by ¢q. Agents” bond holdings are 6'. i = 1.2. Agents preferences are

represented by time-separable utility
Uy ) = vilag) —uilay)., =12,

for increasing. differentiable and concave functions ¢, u; : R — R A competitive equilib-

riuin is a collection of choices (¢, 8'),21.9 and a bond price g such that both agents maximize

utilitv and markets clear. i.e. #' + 6% = 0 and for both 7 = 1.2.
(") carg max U'(c) st co=c¢y—qf. o =c)+0.

In order to represent equilibria for infinite horizon models we want to derive a svstem of
cquations that lnks endogenous variables (i.e. choices and prices) today to endogenous
variables next period and which is necessary and sufficient for equilibrium. In this simple
example. we define the vector of relevant endogenous variables to consist of current con-
sumption. current portfolios and current prices. = = {(¢'. #);=1.2.q). (Even though ageluts
do not trade the boud in the sccond period we include zero bond holdings and a zero price

for the bond in the state variable z; for that period. This set-up has the advantage that the

(]



resulting equilibrium expressions look very similar to those in the infinite-horizon problems
that we examine in the main part of the paper.)

In this two-period example. we define a system of equations i{zg. /. 21) such that

e 8210.7) € B2 x R % B2 » 2 x B_ ix a competitive equilibrium if and only if there
exist & = (k1 K%) € B2 s B2 such that B3, x.5) = 0. with 5, = ((F{,,F)ﬁ")/zl_g.(]) and

31 ={(1.0),210.0). The system is as follows:

—quic) — WAl — qorly = Ry T=1.2
A 1 N -
oy = Loy — qofly ) i=1.2
N o S )

Mo s o) = ] — e =640 i=1.2

o ho2) = H : 5
K< t=1.2
R s 9
ISR 1 =1.2
ol — 6-

{In the analyvsis below we refer 1o B(-) as the equilibrinm equations. In order to characterize
cquilibria of infinite cconomics. we require that for all periods . cudogenous variables at #
and at 1+ 1 satisfy the agents” first-order conditions and the market-clearing conditions.
which we in turn summarize in a svstem )

An exact equilibriumn is characterized by /it = 0. but computational methods can rarely
find exact solutions. All one can usually hope for is to find an c-equilibrivin. namels (. 27)
such that

win [h(zg. k.27)0 < e,
o4

W

Unfortunately. even in this very simple framework. one can coustruct cconomies where
c-cquilibria can be arbitrarily far from exact equilibria.
2.1 Approximate Equilibria can be far from Exact

Consider the following class of economices parameterized by 6 > 0.

1 1 .
o lar) = . (11(.1'):77. = (2.0).
; 1 5
volar) = ——.  ualr)=ua. ¢ = (0.2).

£

This equilibrium is unique for 6 > 0.
1

vol—c

In addition. for 4 <

— 1 the following values of the asset price and holdings vield
an ¢-cquilibriun.
: 1
)
g=16=-¢>=-.
2
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All equations except for I = 0 for agenr 1 hold with equalitv. The error in this equation is
below € by construction.

This example shows that even for very small € > (0 we can construct an economy and
an c-equilibrium which is far from an exact equilibrium botly in allocarions and prices. Fur-
thermore it is worth noting that agents” welfare levels differ significantly between the exact
equilibrium and the e-equilibriuin. For very small 8. utility levels in the exact equilibrium
are approximately (1. U?) = (1. -2} while in the e-cquilibrium they are approximately
(U} U2) = (—2.1). No matter how one looks at it. the c-equilibrium is evidently a terri-
ble approximation for the exact cquilibrimmn®. This observation motivates us to interpret

e-cquilibria as approximate equilibria for “close-byv™ economies.

2.2  Perturbing Endowments Makes Approximate Equilibria Exact

In our exaimple. we can easily explain the idea that an e-cquilibrium can be understood as
approximating an exact equilibrinm of a ~close-by™ economy. If § = 0. we obtain an econony
with close-by endownients. For this economy ¢ = 4 and 8! = —§% = 1/2 constitutes an
exact equilibrivan. We make this ohservation repeatedly in this paper and therefore describe
explicitly how to find the necessary perturbation in endowments: At the e-equilibriuin ¢ = 4.

6! = —6? = 1/2 the only equilibrinm equation that does not hold with cquality is

If we replace the endowments 1 by ¢ = el —o for some small o we can evidently set it =0
by using 0 = —4. The equilibrium equations imply directly which perturbations must he
used. The c-equilibrium is exact for the perturbed economy.

While this is the main idea underlving our error analyvsis in the infinite 1inodel. there is
one additional complication which arises when agents live for many periods: Errors may
propagate over time and no sensible bounds on perturbations in endowments can be derived
by perturbing endowments every period. In Section 4. we will discuss this problem and a

solution in great length. First we nced to layv out the basic infinite horizon model.

3 A General Model

In this section we fix the main ideas in an abstract framework which encompasses both
economics with overlapping generations and econonties with infinitely lived agents as well
as cconounlies with and without production. In Sections 5 and 6 below we consider two

standard models and show how to apply the methods developed in this and the next section.

D~ . . . . . e . . e .
“For finite economies there do exist suthicient conditions which relate approximate equilibria to exact
cquilibria (see for example Blum ¢t al. (1998, chapter 8) and Anderson (1986)). However. these cannot be

generalized 1o the infinite horizon economies we consider in this paper.



3.1 The Abstract Economy

Time and uncertainty are represcented by a countably infinite tree ¥. Each node of the tree.
a2 Y. is a finite history of shocks 0 = s = (50, 57... .. ;) for a given initial <hock sy. The
process of shocks (s) i1s assumed to be a Markov chain with finite support §. If s s a
successor of ' we write ' = &', The number of clements in S is S, Given an S> S transition
matrix I1. we define probabilities for cach node by #(sq) = 1 and ={s') = (s 5 (s
forall t > 1.

There are L commmodities. [ € £. at cach node. Ax it is commonly doue in the dynamice
GEI literature (sce for example Magill and Quinzii (1991)) we take the commodity space
to be

(L (S L) = {{{ry(a).. .. rp{al) s sup o) < x )

(o.1eXxL
There are countably many individuals 7 € 7 and countably many firms & £ A, Anindividual
i £ 7 iz characterized by his consumption set X0 his individual endowments ¢f € X' C (.
his preferences PO X¢ s X7 (where PCo= {(o.y) € X' x X' 0 =" y}) and tradiug
constraints. To simiplifv notation. we assuine that the consmnption sets are identical across
agents and write X = X',

A firm k € A is characterized by its production set Y*. An economy &€ is characterized
by a demographic structure. assers. techmologies and preferences. endowments and trading
constraints. I the concerete models helow we describe £ explicitly.

The original economy is assumed to be Markovian. The number of agents active in
markets at a given node is finite and time-invariant hut mayv depend on the underlving
shock. agents maximize tine and state-separable utilitv, finis ouly make decisions on spot
markets and all individual endowments, pavoffs of assets. production sets of firims and
spot utility functions of individuals are thme-invariant functions of the shock. s, alone. In
particular we assume that individual endowments depend only on the shock and can be
written as ¢'(s') = e'(s). We define ageregate endownients efs) = Z%Ie’(s). for all
s £ §. Since there are finitelyv many shocks. this allows us to describe the econoniy by

finitely many spot utility functions. production sets. endowinent vectors and asset pavoffs.

3.2 Close-by Economies

As explained in the introduction we are interested in analvzing equilibria of cconomies £’

which are close-by to an original Markovian economy £ in the sense that all individuals’
cendowinents and preferences are close-by. In order to formalize this idea. we index economies
by preferences and endowments. ie. we write & = (2. (T). where PT denotes the profile
of prefercnces across agents and ? denotes the profile of individual eudowments.  We
also parameterize ccononies by node-dependent perturbations ofa) € @ € B and write

Elola))gec) for a given (possibly non-stationary) perturbed economy. I the original

s



cconomy o{a) = 0 for all o € ¥, The vector o{a) may contain perturbations of endowments
or prefercnces or both.
We need to define a metric on economies. i.e. distances for preferences and for endow-

ments. Throughout the paper. for a vector @ € R”. || denotes the sup-norm.

Pt = max{ rii.... Ty b

For an clement of the commodity space r € (. we define

el = sup (o)l
(o2 x L

In many applications we are interested in exaimining close-by economies with identical
preferences. It these cases o{og) are additive perturbations of endowients of individuals
which are active in markets at node o. Individual endowinents are then called “close-by™ if
the sup-noriu of their difference is small.

While small differences in individual endowments are casv to interpret. differences in
preferences are much harder to quantifv. However. in some cases (¢.g. when endowinents are
specified to lie on the boundary and we do not want to counsider interior endownients) we
need to perturb preferences in order to provide an economically meaningful interpretation
for an approxilnate equilibrium.

Following Postlewaite and Scluneidler (1981) and Debreu (1969) we use the Hausdorft
distance to define closencss of two preferences P oand P’ However. in the models we
consider. aggregate endowients are alwayvs bounded. While it is conceivable that an agent
may contemplate consulmption bundles that exceed aggregate endownients., it simplifies the
analvsis cousiderably to call preferences close-by if they are close over fixed hounded sets.

For this purpose. we define
f=max!e(s) aud C={(r.y) € X x X :|(r.y)] <&}

The distance between two preferences is then

d"T(P.P') = max sup inf | (aoy) — ()| sup inf |(roy). (2 Y

(rape Prc \yer (e e \lrasl

We define a distance between the economies.

d(€.&) = max (max {x([ — (”\}.(1H(Pi.P")}) .

3.2.1 Admissible Perturbations of Preferences

We assume throughout the paper that preferences can be represented by a time-separable
expected utilitv funetion. We consider linear additive perturbations to Bernoulli utilities

(as is often done in general equilibriuin analysis. see e.g. Mas-Colell (1985)). For simplieity



the following dizcussion focuses on the case where agents are infinitely lived and their con-
suminption sets are infinite dimensional. The case of finitely lived agents follows hmmediately
from this case.

Given common heliefs and discount factors (we discuss possible perturbations in beliefs

and discounting below). IT and 3. for an infinitely hved agent ¢ there exists a Bernoulli

function u' : BX % 8§ — R such that with
X
Uy = Z 3 ZT(S’)Uy(l(\i) <)
=0 o

we have
(r.y) e P if and onlyv if U' ) > U'(y).
In the original unperturbed economy. Bernoulli utilities only depend on the current shock.

Lo w(rosty = o' (wsp). We assume that cach of is continuously differentiable. strictly

7

M

increasing and concave for . Asaresult there exists e > O such that D, u' (@ s) >

forall 1 € £ and all x € BE with o] < 27 and all s € S

Given u' (. s;) and a utility perturbation o' (s") £ 25 the perturbed Bernoulli utility is

g sy = ulie sy = o' (s

For the perturbed atility function to remain strictly inereasing we need to restrict attention
to sufficiently small perturbations and thus require that o' (s} < 5 for all X
denotes the original preferences. we denote the implied perturbed preferences by P which
we represent by the utility function

~

Ullr) = 3 Z sy (u (") sy = o (1) - ().

=0
The following lennna giving bounds on @7 (P, Py is proven in the Appendix.

Leania 1 Given perturbations (0'(7))scx, define & = sup, .o'(7)l'. Then a bound on the
distance between original and perturbed preferences is as follows.

-1

dNPLPYy <L
m
1t i clear that as | {0(7))gzv! — 0 we have that d' (_P‘.]S") — 0. Moreover. the hound in

|
the lemma is invariant to affine transtforimations in a’. Note. however. that the hound does
depend on the lower bound 77 on marginal utilities. As a result. multiplving all endowments
by some factor does affect the bound on the preference distance. This comes as no surprise.
since a fixed perturbation o' (') of marginal utilits: will be much more significant when the
original marginal utility was rather small. Also note that hecause of the relationship & < 2
we have an upper bound (PP < L@ T—HI < L_f Clearly this bound is too crude: we

always want 2 to be orders of magnitude smaller than .

10



3.2.2 Possible Other Perturbations 7

While we can show that the considered linear perturbations in Bernoulli functions lead
to close-by preferences. it is obviously not true that given a preference. P. all close-by
preferences can be represented by utility functions with hnear perturbations. It will become
clear i Section 6 below that in general most additional perturbations in preferences do
not facilitate the error analvsis. However. it may appear tempting to perturb conditional
probabilities and node-dependent discount factors. It is therefore useful to point out that
such perturbations may lead to preferences which are very far away from the original ones.
Perturbations in resulting unconditional probabilities may get arbitrarily large for events
far along the cvent-tree and therefore marginal rates of substitution for the perturbed
preferences will be far from those of the original preferences. The preferences will be far in

the Hausdorff distance.

3.3 Equilibrium

A competitive equilibriun for the economy E{o{d))yex) s a process of endogenous vari-
ables (z(0))gpex with z(0) € 2 C BYM. which sole agents’ optimization problems and
clear markets. We refer to the collection of the cconomy and the endogenous variables.

(E((ola))gexv). (2(0))ges). as an "cconomy in equilibriun’.

3.3.1 The Expectations Correspondence

For the computation of conipetitive equilibria it is important that equilibriuin conditions can
be summarized in a set of inequalities which relate current period exogenous and endogenous
variables to endogenous and exogenous variables one period aliead. Duffie ot al. (1994)
describe this relation via an erpectations correspondence. We use their terminology but
slightly alter the coneept for our specific purposes.

We restrict attention to economies where a thne invariant expectations correspondence
can encompass all conditions for agents” optiunality and market clearing. A competitive
equilibrium can then be characterized by an expectations correspondence which maps en-
dogenous variables today to possible (i.e. consistent with individuals” Euler equations and
market clearing) endogenous variables and perturbations of the fundamentals at the S pos-

sible shocks next period. That is. we want to be able to define a correspondence

HZSXZ:@(C)XZ)A

s£8

where (z(a))yex is an equilibrium for E((0(0))gex) if for all ' € T,

(0(s'1). 2(s"1) o Lo(sTS) 2(578)) € Hsg.2(s1)).

11



We assuie furthermore that elements in the graph of the expecrations correspondence can
be characterized as (part of ) a solution to a svstem of equations. e, we assumne that there

exists a set K < BY. and a function

h:S w2 x K~ (Ox.’:’,))—ﬂ?[‘
S

such that (o7.27..... o¢.zx) € His 2y if and only if there exists x € K such that

his 2ok 010210000 og.z¢) = 0.

In this fornwldation the variables £ £ K should be thought of representing slack variables in
imequalities or Wulin-Tucker multipliers. In the applications below the functions b consist
of individuals™ intertemporal Euler equations. market clearing equations and first order
conditions for spot optimality. We refer to b oas the equilibrium cquations. In Section 2. we

described these equations for a sitmple two-period model.

4 Approximate Equilibria and Their Interpretation

As mentioned in the introduction. we want to give conditions which allow us to interpret
the results of algorithms used in practice. It is thercfore usetul to define a notion of «-
cquilibriuni which ix genceral enough that it exists in most interesting specifications of the
model and that is tractable in the sense that actual approximations in the Hterature can be
interpreted as such e-equilibria {or at least that c-equilibria can be constructed fairly easily

from the output of connnonly used algorithnis).

DEFINITION 1 An c-equilibrium is a finite set F = Fy x ... X Fo, Fo T Zforall s =1..... S,
such that for all « € 8 and all 2 = F. there exist (z|..... ) € F such that
ll{iigill(.i.i./f‘O‘ S T 0.0 < (1)

In most interesting models one can show existence of cequilibria for all € > 0 (the
existence of a competitive equilibrium is often a sufficient but not a necessary condition
for the existence of e-equilibria). Obviously e-equilibria are only computationally feasible if
thev have some simple Markovian structure. e, if the sets Fo are “small” relative to Z. In
the applications below this is the case.

We define an c-cquilibrium as a finite collection of points because we want to be able
to verifyv whether a candidate solution constitutes an e-cquilibrinn. and with our definition

this verification involves checking only finitely many inequalities.



4.1 Recursive Methods

The applied computational literature often refers to recursive equilibria. These equilibria
are characterized by policy functions which map the current “state’ of the economy into
choices and prices and by transition functions which map the state today into a probability
distribution over the next period’s state. While in dynamic GEI models. recursive equilibria
do not alwavs exist and no non-trivial assumptions are known which gnarantee the existence
of recursive cquilibria (for counterexamples to existence sce e.g. Hellwig {(1932). Kubler and
Schmedders (2002) and Kubler and Polemarchakis (2003)) recursive methods are useful for
conmputational purposes. In most models. recursive e-equilibria exist whenever e-equilibria
exist and formulating these e-equilibria recursively facilitates the notation and the error
analvsis. In the following we always assume that a given e-equilibrium also has a recursive
represeutation. We therefore now define a recursive c-equilibrium formally.

The relevant endogenous state space ¥ < BEP depends on the underlving model - it is
deterniined by the pavoff-relevant pre-determined endogenous variables: that is. by variables
sufficient for the optimization of individuals at every date-event. given the prices. If U is
the “endogenous state space’ there must exist sets Z7.. ... ZL C EM=P such that for all
s € 80 F, =¥ x Z7. The value of the state variables (sg. 1) € S x ¥ in period 0 is called
‘initial condition” and is part of the description of the economy. It will be often be useful

to make this explicit and to write £, .- A recursive e-equilibrium is defined as follows.

DEFINITION 2 Given an c-equilibrium F and a state space ¥, a recursive c-equilibrium consists

of a policy function p: S x ¥ — BY =D sych that

F. = graph(p) forall s € S.

LAl

as well as transition functions 7. : ¥ — W, for all s.s' € S such that for all 5 € S and all
T=(v.T) €T

(2100000 z5h = ((mar(v) pr{Ten (o)) (Tes(U). pslTas(U))

satisfies

nu | /i(5 208002 0.:6)] < ¢
nNeXN

This definition shows that recursive methods enable us to approximate an infinite di-
mensional equilibriutn by a finite set. Given an initial value of the shock. s; and initial
values for the endogenous state. 1. a recursive e-equilibrium assigns a value of endogenous
variables to any node in the infinite event tree: For any node s'. the value of the endogenous
state is given by v(s') = Te,. ]SY<L‘(.<171))‘ the value of the othier endogenous variables is

given by pu(r(s')). We call the resulting stochastic process an c-equilibrium process and

write (29o))qex.
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In most contexts it will be straightforward to derive the transition function from the
policy function. For example. tn a finauce cconomy. the heginning-of-period portfolio hold-
lngs constitute the endogenous state. The policy function assigns new portfolio holdings

wlich then form the endogenous state next period.

4.2 Construction of c-equilibria

Thix paper does not develop explicit algorithius to compute c-equilibria.  In fact. it is
usually not feasible to compute them directly since their diserete nature does not allow
directly for the application of standard methods in numerical analysis (which usually assume
smoothness). For the purpose of the present paper we assune that from some algoritlun
the output =(s") for any finite sequence of shocks can be computed. We want to construct
a recursive e-equilibrium from this output.

For this purpose. fix a simall & > 0. Starting from the root node sg collect all pairs of
shocks and {output of) endogenous variables (s, 2(s")) in a set ). Define the sct of states

rounded to within d by

. ) N )
Y= sz }”‘ eNform=1.....] V[ and there exists (s.2) € Yy with iz — 2%l < 4},

In other words. we restrict the endogenous variables to lie on a grid with erid size 4. The
NQ )’f contains all combinations of exogenous states s and endogenous variable values on
the grid that appear in the computed solution for time . Next we collect all rounded states
which have occurred up to time ¢ in 3. so we define ) = U;,:U}‘t‘i. Obviously. for fixed
orid size 4 > () the number of clements of 3 s finite. If for some . }'f. < YD then
the set 31 contains all states that will ever be visited in the constructed approximate
equilibrium!  In other words. all states that may ever occur along the event tree have
been reached at least once. By construction the set 371 vields an c-equilibrium for
some ¢ > (. The actual ¢ can be computed by evaluating the error in the expectations
correspondence at all s . z € F.2 1 is evident that this procedure has two problems that
may potentially render it useless. First. the procedure may be hopelessly inetficient since for
sufficiently small § the porential number of clements in F is huge. Secondlv. the resulting
value for € mav not be as small as desired. Surprisingly. we found that in our cconomnic
applications these problems are not severe. The output from our algorithm computing

smooth approximations for policy and transition functions is good enough in order to make

e sufficiently small. Moreover. after a surprisingly small number of periods 17 all states start

In mauy applications rescarchers verify errors only along one randomly determined path. The implicit
assunption is that simulating the economy along one sanple path suffices 1o verify the accuracy of compu-
tations. Iowever, an example in Kubler and Scliunedders (20053h) shows that this is often not sufficient. In
particular. for a given finite sample path. it is obviously impossible 1o infer the iaximal error from the error

along the path.
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to be revisited. even when the dimension of the endogenous state space is fairly large. In
sunmmnary. the outlined procedure for computing an e-equilibrium from smooth equilibrium

approximations appears to work well for interesting economic applications.

4.3 Error Analysis

In the context of recursive equilibria den Haan and Marcet (1994) and Judd (1998) suggest
to evaluate the quality of a candidate solution using Euler-equation residuals. In these
methods relative maxiimal errors in Euler equations of € usually imply that the solution
describes an e-equilibrium.  Unfortunately e-equilibria defined by condition (1) are very
difficult to interpret. What does an e-equilibrium describe for. say ¢ = 0.001 ? Should this
be regarded as a good approximation or as a had one? The example in Section 2 shows that
the computed e-equilibrimmn may be far away from an exact equilibrium for the econony.
no matter how small ¢.

Several authors (e.g. Judd (199%)) justifv c-cquilibria (or maximal relative errors in
Euler equations) as a measure of quality of a solution via a bounded rationality argument.
They argue that economic agents have bounded computational capacity and can only find
approximately optimal choices. Any improvenient over their choices results in an extra gain
of at most ¢. However. in dyvnamic general equilibrium models with rational expectations
there is a tension between assuming that agents have rational expectations about future
prices and assuming that they make errors in choosing their consumptions given the correct
forcecasts for prices. Furthermore. since markets clear exactly. future prices must already
reflect the agents” optimization crrors. We thercfore want to move away from a bounded
rationality justification and interpret e-cquilibria as approximating exact equilibria of a
close-by economy.

Ideally a recursive c-equilibrium would gencrate an c-cquilibrium process that is close-by
to a competitive cquilibrium for a close-by econoniy at all date-events. If this were the case
one could find small perturbations of endowments and preferences of the original economy
such that the perturbed economy has a competitive equilibrium which is well approximated
by the c-equilibrium process at each node of the event tree. This observation leads to the

following definition of approximate equilibriun.

DEFINITION 3 An e-equilibrium process (:(c)),ex for an economy &, ., path-approximates
an economy in equilibrium with precision & if there exists a close-by economy in equilibrium,

(& ex ), & = Eo(a))gex), with

C .
Sty

d(E.EY < & and sup |2 (o) — (o))} < 4.

[

In models where agents are infinitely lived. it is not to be expected that a recursive

c-equilibrium actually gives rise to a process that path-approximates a close-by econoniy in
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equilibrium.  If agents make small errors in their choices each periods. these are likelv to
propagate over time and after sufficiently many periods the e-equilibrium allocation will be
far away from the exact cquilibrimmn allocation. The following simple example illustrates
that it is easy to construct c-equilibria which do not path-approxiniate an economy in
cquilibrium for any reasonable precision 4. no matter how small ¢

ExantpLe 1 Consider an infinite horizon exchange economy with two infinitely lived agents, a
single commodity and no uncertainty. Suppose that agents have identical initial endowments
' > 0 for all t and identical preferences with u;(¢;) = log(c¢y) and with a common discount
factor 3 € (0.1). There is a consol in unit net supply which pays 1 unit of the consumption
good each period. The price of the consol is q;, portfolios are #{. Each agent i, i = 1.2, faces

a short sale constraint 8; > 0 for all t.

Even thouel the example is shmple. it is useful to explicitly spell out the equilibrium
cquations. Let the endogenous variables be 2 = (62,67 ¢'.in'),;=1.2.q). Admissible pertur-
bations are o = (0. 0} Ji=12 € R ie. we allow for perturbations in endowments as well as
in preferences. The expectations correspondence is characterized by 1i{Z. x.0.2) = 0 where

o= (... LYy with

7 — *1’fn;,—(—f,\;m)""i i=1.2
12 = pip i=1.2
= =g =1 =0 — (' —0l) i=1.2
W= gt g i =1.2
W=t = (dlleh) = ol P=1.2

W= gl -7 1

The natural endogenous state space for this economy consists of beginning-of-period consol
holdings.  We build market clearing into the state space and only consider 4L .62 with
g1 — 6% = 1. We write ¢ = #1 to represent a typical state of the economy. implicitly
assumning market clearing.

Obviously. for any initial condition ¢ € (0. 1). the unique exact equilibrium is no trade
in the consol with cacli agent cousuming #),_ — ¢'. 6, = ¢y = 1 — #2_. cach period and
in the absence of bubbles the price of the cousol being ¢ = 1‘-% for all t+ > 0. However,
1t s also an e-equilibrium if each period agent 1 sells a sinall amount of the tree to agent
2. In this casc. the consumption of agent 1 converges to ¢! while the consumption of agent
2 converges to ¢ — 1. Unfortunately. there is no economy witl close-by endowments for
which this allocation is an approximate cquilibrium allocation.

To analyze this case i more detail we construct a recursive e-equilibrium as follows,
Decfine

v—4d ife>4é

v otherwise.



. Ri N
Define g = py(v) = 125. ' = pyi(c) = 7(¢) and o) = v(g - 1) = bg. ¢
el — 2= ¢#). Given any initial condition ¢y € (0. 1), these functions describe a recursive
1-.4 . . R
Qﬂ—,’. Except for the Euler equations i all equilibrium

equations hold with equality. For #_ = ¢ > 24. the error in Euler equations for agent 1 is

2

(#) =1+
c-equilibrium as long as 0 < 4 <

given by
=0 +0)qg+1)—bq, g 1)

= -1 -
= b +~0g—1)—0g+dqg ol
For 26 > ¢ > 4. we have
Vo0 +d)g=-1) -8 og+1
TUEEE { g —1) 9 - (g1
‘ (L +0(g+1)—06g s

and finally for ¢ < & we have h! = 0. The argument for agent 2 is analogous.

For the initial condition ¢y = 0.5, the constructed recursive equilibrium obviously im-
plies an c-equilibrium process whicl. in the sup-nori. is far from any exact equilibrium
of a close-by cconomy. Note that this is a general problemn that does not only occur in
economies with incomplete markets. the same phenomenon can even arise for an approxi-
mate solution to a single-agent decision problem. In the applied literature this problem is
commonly solved by ignoring it*: A computed solution is considered a good approximation
if the computed policy function is close-by the true policy function. Usually no reference
1s made about how the stochastic process of choices arising from the approximate policy
function relates to the stochastic process of optimal choices. For some purposes this mav be
good enough. At least for the first few periods. given any initial conditions. the constructed
recursive e-equilibrium is a good approximation to the exact equilibriun if e is sufficiently
small.

We generalize this idea and apply it to our general framework. Instead of requiring that
the exact equilibrium process is well approximated by the c-equilibrium process we merely
require that for cach node s € ¥ and value of the exact equilibrium z(s') there is some
2 e F,, which is close to 2(s'). Of course this would be a vacuous condition if there are
many Z € F,, which do not approximate any equilibrium values. These considerations lead

us to the following definition.

DEFINITION 4 An c-equilibrium F for the economy & weakly approximates an economy in

equilibrium with precision & if there exists a close-by economy in equilibrium, (£’ (Z(a))sey),

E = E{ola))gex), with d(E.E") < &, such that

min 1z — 3(«') < 8 for all &

1A notable exception is Peralta-Alva and Santos (2002) who derive sufficicnt conditions for sample-path

stability in a representative agent model.
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and such that for all =, = < F. there exist initial conditions (s. ¢) and an equilibrium for the

T

economy £’ {(z(0))pex, such that

sSoato] -

mf " z{o)— 29 <4

Intuitively. the definition mercly requires that for the recursive e-equilibrium the poliey
function iz close to the policy function of an exact recursive equilibriun. In the models
we consider in this paper. existence of exact recursive equilibria cannot be established. We
therefore need to state the definition in terms of competitive equilibria.

This condition is much weaker than requiring that the c-equilibrium process strougly
approximates an cconomy in equilibriuni. This is to e expected since closeness in policy
functions generallv do not imply anvthing about how close equilibrium allocations are. even
in models where recursive equilibria do exist. The definition only requires that there exists
some process with values in F which approxiniates the exact equilibrium but does not
explicitly state how to construet this process. However. given an e-cquilibrium that satisfies
the definition and given any I one cail construct a process which is within & of the exact
cquilibrium process for up to T periods. This will he made explicit in Section 6 helow.

It is casy to see that the c-equilibrium in Example 1 approximates the exact equilibrium
very well. and that Definition 4 is satisfied. However. without knowing the exact equilibrium
it can be difficult to verify the definition from the e-equilibrium alone. I order to derive
a sufficient condition which does not involve the (generallv unknown) exact equilibrinm we
need to use the c-cquilibrium F to construct a process which is an exact equilibrium for a
close-byv economy. Given initial conditions in Example 1. suppose endogenous variables in
the first period are cqual to z;. How can we find values for the next period which are close
to an clement of F and for which the equilibrium equations hold exactlv? One possible wayv
to proceed is to searcl over F for consumption values which make the cerror in 11 identical
across agents. Evidently this is obtained if next period’s individual consumiption is set equal
to this period’s consumiption. This will lead to an exact equilibrivin in this simple example
if we perturb endowents.

In general. of course. verifving that an e-equilibrium satisfies Definition -1 will not he
as straightforward as i this example. In particular. it will generally be impossible to find
clemments of F which ensure that Euler equations hold witli equality, We now describe how

to generalize the idea of the example to more iteresting models.

4.4 A Sufficient Condition

In this scetion we deseribe a genceral method to construcet an exact equilibrium process for
a close-by economy from a given c-equilibrium.  In Section 6 we apply this method to a

CONCrete exanly le.
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We assume throughout that for all & € §. 2 € F¢ we can find values of endogenous
variables which are close-by to clewents in F and small perturbations at all direct successor
nodes such that the equilibrium equations are satisfied exactly. The problem is that for
a given constructed cquilibrium process. endogenous variables at some node s' will not be
exactly equal to anyv element = € F,,. Thercfore we require that for all initial endogenous
variables i1 a small neighborhiood (within some §y < 4) of Z perturbations and values of
endogenous variables can be found for the direct successor nodes such that the endogenous
variables again lie in the same §y neiglhborhood of some value in F. If this is the case. we say
that the c-cquilibrimm is balanced and there exists an infinite process which approximates
an cconomy in equilibriuni.

Aore formally. in order to show that F weakly approximates an economy in equilibrium

with precision 6 is suffices to show that there are non-negative numbers 4., ... Gy < 6
such that for all & 2 € Fo < RV all 2 with ‘2, -3, <4, forallm =1.....] M. there

exist. for all s € §. ofs) with fo(s)] < 4. as well as z(s) such that there is a = € F. with
Zmo— S ls) < by, forallim =1, ... V.. which satisfv
n}i}l\} [H{5. 2.k 0(1).2(1). . ... o(S). z(SHih=0.

I

Evidently. in the simple example above. onlyv marginal utilitics need to be considered.
For all marginal utilities which lie in a 4 neighborhood of marginal utilities in F we can find
next period marginal utilities in the same neighborhood. We discuss a more complicated
{and more interesting) example of balancedness in Section 6 where we consider the Lucas

model with heterogencous agents.

5 A Model with Overlapping Generations and Production

As the first application of our methods. we consider a model of a production cconomy
with overlapping generations and several commodities. This is a generalization of models
frequently used i1 macroeconomics and public finance (sce c.g. Rios-Rull (1996)) and of the
overlapping generations model analvzed in Duffie et al. (1994).

We show that in this model the e-equilibrium process actually path approximates an
economy in cquilibrium and we derive bounds on the distance between the close-by ccon-
omy in cquilibrium and the specified cconomy. These bounds are constructed from the
c-equilibrium F using linear algebra. In Section 5.2 we present a detailed error analysis
which 1s at thmes very tedious because we consider a model with production where indi-
vidual endowments can lic on the houndary. Nevertheless, we present all necessary steps
to show how to implement our ideas in practice. A reader who is mainly mterested in the

computational or in the conceptual aspects of this paper nray want to skip this subsection.
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5.1 The economy

While the olg mode] is fairly standard. we deseribe it in some detail to fix notation. At
each date-event a single individual commences his cconomie life: lie lives for N dates. An
individual is identificd by the date event of his birth. {s'). He consumes at the date-event
s =371 the age of an individual is ¢ = 1., N

There are L physical commodities. [ £ £, and one representative firm at each date-
cvent. s’ The finn produces in spot markets using a constant returns to scale technologies

which depends on the current shock alone.  In order to shmplifv the error analyvsis we

assunle that counnodities 1.0, .. N. KN < L. are always used as inputs to spot production
and commodities K —1... .. L arc alwavs outputs. We assume that the technology can be
desceribed Dy a function f(.s): BY — EL=A A production plan g € RE is feasible for the

S
firin at shock « if and only if {(yp-q... .. yr)y— fll—=yr..... —yn ).~ < 0.
Households have access to a risky intertemporal technology which. for simplicity. is
assumned to be linear. For cach shock s we define an L x L matrix. D{s). where the element
dp; denotes how much of commodity 17 is produced from one unit of commodity 7 used
as input in the previous period. We denote by the vector o7 (s') € ®L the bundle of

commodities invested by individual o into the technology at date event ', the output at

s eiven by D(s~ o™ (s) £ 2%, I order to distinguish between spot production of

the finn and intertemporal houschold production. we refer to the latter as storage.
An agent born at date event «' has individual endowments at nodes ... SNl

. . . . . . . - of ——
which are a function of the shock and his ase alone. 1o for all a = 1., .. N (sl =

e {s—u_1) for some function e’ : & — EL. For an agent 0 = 57 we denote his consumption

choices over his lifetime by a7 = (075" o7 7 v_| e and his investiment choices by
-~ . . . . Ao - -
o7 = (S iCr po N wimy. To simplifv notation we define o (s'71) = 0 for all s'. The

agent has an itertemporal. von Neutaun-NMorgenstern utility function

N
U () = Eo S el s,

a=1
The Bernoulli utility u depends on the age and the current shock alone. At the root node.
sg. there are individuals of all ages s=1 L <Y1 with initial holdings of “(s71). These
determine the initial condition” of the economy.
A competitive equilibrium is a collection of prices. choices of individuals and choices of
the firm (p(o). (o' (a). (o)) 27 Yl ) )azw such that markets clear and agents optimize.

i.e. for all nodes &' € © we have

e Market clearing:
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e Individual's maximize utility:

~l \lk ,gi
(" o7 ) €arg max U7 (r) st
(r.o)>0

!

1)(,&1*“ ) (‘I"\ (Sioa) _ e“’l(s,;a) o C)‘d (Sf-‘-a) _ D(W*”)C)‘U (SI—-—U—I )> <0.a=0...... N1

Optimality conditions for initially alive agents. 71 ... s~V * 1 are analogous.
e The firm niaximizes profits.
L K
Lt e , ‘ N
(y(sh). ... ylsh) €arg  max Y s (=g —yn s+ Y pils (sh)
(yr.yi <0 -
I=h+1 =1
(yw=r(sTh yr{sh) = fll=y(so . —yn(s))s)

The Expectations Correspondence

We want to characterize competitive equilibria by an expectations correspondence.  We

define the endogenous variables at some node o to consist of investments from the previ-

ous period. o_ = (oL..... o). new investments. o = (o'..... o). consumptions. & =
(ot r V) as well as excess demands, € = (€1, V) e BYE and Lagrange multipliers.
A= (A AV e BY. for all individuats alive: of the firm's choice. y. and spot prices. p.

s={o_.0.r. & A y.p).

We build bounds and normalizations into the admmissible endogenous variables. i.e. we only
consider = for which ol =0.0Y =0. 0> 0. o_ > 0. ¢ > 0 and p = 1.

We consider perturbations in individual endowinents and preferences. i.c. define o(o) =

.
Q-L A

(o (o). op{o)) €F to be perturbations in endowments and preferences across all agents

alive at a current node ¢. As explained in Scction 3 preferences are perturbed by perturb-

ing Bernoulli utility functions node by node. We write for agent «'’s perturbed Bernoulli

function at node <=7

Ca(asop(sh)y = u e s - op(st) - o
We characterize the expectations correspondence H via the equilibrium equations. So.
(N=-11L

(011_ S D ()E-. 25) € H(s. 2) if and only if there exist k € R such that



L= ot sy — ot a=2..... N.s S
]12: pls) %) a=1......_ Nose S
W= 2s) = (e (s) —ols)) = Es) — o (s) = Dis)ot(s) a=1...... Nose S
h = = pATh 2 SE L pls) D{s) A (5) — k4 a=2.....N

W= H}’E)}'il a=2.. .. Nilcl
WG = Dour(s).s) —opls) = A{s)pls) a=1...... Nose S
W= Z/L:!\'»l [’/('\_)Uﬁ'(\’f}/l155{[//./,*1/1\".\‘,\4!\) — ceSlU=1... . N
= (yn—ils)e. yLts)) — fl=mis)oo. —yn{x)s) s€8

B = Z;‘\:] s} — yls) se S

We assmne throughout that in 2¢ derivatives are only taken with respect to commodities
which enter the utility function.

Under standard assumptions on preferences and the production function which guaran-
tee that first order conditions arc necessary and sufficient. a competitive equilibrivin can
be characterized by these equations. Kubler and Polemarchakis (2003) prove the existence

of c-equilibria.

5.2 Error Analysis

Throughout this section we use the following well known fact from lincar algebra. For

an under-determined system Ar = b with a matrix 4 that has lincarly independent rows.

denote by 47 = 47 (447)7! the pseudo inverse of 4 (where A4

denotes the transpose
of the matrix A4). The unique solution of the systemnr that minimizes the Euclidean norm
o is then given by rpe = A7h. We assume that 475 can be computed without crror.
While this is obviously incorrect the error analvsis for this problem is well understood and
explicit bounds on the errors are nsnally verv small (see e.g. Highain (1996). Chapter 20).
We use the pseudo inverse below without explicitly assuming that A4 is invertible. If
A4 is singular in our analvsis below. there is no bound on errors. While we are interested

m maximum errors. we use the Euclidean (or two-) norin here since it is well understood

T

how to compute 470 accurately. Evidently. for an - € E". we have that

and so this approach will iimnediately vield an upper bound on the minimal sup-norm of a
solution .r.

For the error analyvsis. we assumne that Bernoulli utility is strictly inereasing in all com-
modities which cuter the utility function and that tliere exists at least on commodity [

such that agents” choices always satisfv - > 0. We restriet the conswuption set of each



agent 1o be bounded above in cach component by twice the maximal aggregate consumption

occurring in the e-equilibrium

and define

o= min min | Du(r. s)]
seSa=1.... N \rz0hr)<e

where again we onlv take derivatives with respect to those commodities which enter the
utility function. It holds that /m > 0 since we assue that the utility function is strictly
mcreasing.

Let G < L consist of all those commodities which are inputs of intertemporal production

(storable conunodities).

L.s&€S8:dp(s) £ 0}

M

r

G'={lccc:3r

‘) . .. . .
and let G C £ consist of all those connmodities which are output of intertemporal produc-

tion (stored commodities).
GP={leL .3 clL.scS dyls)#0}.

We want to distinguish between inputs and outputs of spot production which have previ-
ously been stored and inputs and outputs which can not be produced through the storage
technology. In order to do so with as little notation as possible. we assume” that there are

integers j and m. 0 < j < A <m < L such that
sz{léﬁ:lgj or K =1<1<m}.
Given anv 5.7 € F_. let

(z(1)..... 2{S))=arg min min [ h(s.Z.8.0.2y. ... 0.2¢)1
()20 )eF e

Without loss of generality we can restrict attention to c-equilibria for which Equations 1.

2. h® and B liold with equality at (.3 (1), ... z(.5)) since an error in these equations

can he casily put to zero by increasing the error in other equations. The other equations

will generally only hold with some error. In order to facilitate the error analvsis. it is useful

1o state explicitly the variables these functions depend on.

N

o 17 = (] Domtovses o (). s = G € R

.~ a.s .8

?This assumption unuplicitly states that all counnodities are either inputs or outputs. This simplifies the

notation but the analysis can also be conducted if some comnodities are not part of production.



3

a 3
a.sd

o 1P = (B} Vam1 Niepaess BE () S (s) of (). of_(5) = €

ald.s

M

o3
We assume w.lo.g. that A, holds with equality whenever the individual ¢ has no

endowients in comnodity 1 and that commodity does not cuter his utility function.

NI hj_,(_[m AL (p,,(.«))"i*g._,_ (AUs) =5 R) = (j_, < & where

n<

R R R R A . -
R = argiuin ih;_/(pp N (s " stoRo) L—y
o

Note that for all conmodities which cannot he stored. i.e. { € G there is no equilib-

riui cquation.

o WU = (hY Jam1 o Niegaas. By SIS ) prs)) = o)

a0

o I = (/1:)_\%3 /lz(y(x).p(s)) = e RN

The general strategy to derive error bounds will he as follows. We ideutifv a set of
commoditices whose prices we can perturh at any node in order 1o ensure that 7' (y{s). j) = 0
for the perturbed p. These prices do not appear in 2%, We then give bounds on the errors
caused in AY by perturbations in previous periods of A and j. The perturbations in A and p
then determine the perturbations necessary in individual endowments to satistv the hudget

constraints and in Bernoulli utility functions to satisfv 16 = 0.

Errors in /"

For a given s = 1..... S and z2(<). let the (L - ') x I matrix J denote the Jacobian of
Flos) with respect to all inputs at y(«). For our analysis it is helpful to divide J o 4

submatrices. Denoting the row index by 1 and the column index hy 17 we write

with

i

_ <0f/(*!/1(-*‘) ----- *,UA'(-*L-*’))IH\A‘L -k Jin Ji2

=1k o T

L (C)fl >1:m+] ..... L . (df[ >/—m~l ..... L
J21 = - . 22 = Y -
Ay =1 Ay I'=j—1....K

=~
Il
TN
Sl
P
v
N l
|
LR
: t
S~
to
Il
TN
<@
o
N
A
1=
+ 1
> %

Dcfine a (K — j) — (L — ) vector

Recall that 5. denote the shock and the endogenous variables from the previous period

and let
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The proof of Lemma 2 in the Appendix shows that this bound denotes the maximal relative
perturbation necessary in prices to obtain equality in Equation k" for z. Finallv let A} =
max, -« . Ar{s. ) denote the upper bound on this perturbation across all points in the
e-equilibrium. We can now ensure that there exist relative perturbations in the prices of
connodities | = j — 1..... KNKandl = m-+1..... L (that is. for I € £ — G”) which are
uniformly bounded by Ay and which guarantee that for all s, = € F. /1:(5) = (. The

following lenna states this formally (see the Appendix for the proof).
LEMMA 2 For each s, = € F., there exist jiy, | € £ — G>. with | "]%["’ < A such that
]’,l\(.l/~ (Pre.-.- 1)j~1~’j*1 ~~~~~ PRPK41- - PPl pr)=0.

Note that prices of commodities which are output of the intertemporal storage technol-

2

ogv. i.e. pp for 1 € G-, are not perturbed. Thercfore. the performed perturbations do not
affeet the error in Equation A, Below we need some notation for the perturbed veetor of
all prices: we write py(s) = pi(s) — oy(s) where ¢(s) = el () for 1 € £ —G? and vy(s) =0

for I € G=. In vector notation. pls) = pls) — vfs).

- 2
Errors in /i~

Given s.Z.z(1)... .. 2(S) from above and given perturbed prices. ji(s). 1o cusure that h*
holds with equality. we need to perturh £9(s) for alla = 1.... .. N\ to ensure that p(s)€%(s) =
0. Since we assume constant returns to scale. pls) - y(s) = 0 and since AY = 0 we have that
pls) Z;I\':l &(s) = 0. Since I” is a commodity that is desired by all agents. we have that

- {s) > 0. therefore a sufficient perturbation would be

. 1 =
f[('- (8) = ———— f,l('<*'>1’/<"")'
pr-s)

Now note that py(s)§ (s) = (pr(s)+ey(s)) &' () and thus pls)E9(s) = 21(1’1('“)+1'1(-“)) &(s) =

B . . ot . .
o= > )€ (s). Hence. an upper bound for (& — &L is given by

1 9
As(5.2) = max . —— €+ [ ()E0 (8)
seS.a=1..... AY 1)/*(.5‘)(1 — A1(5.3) . ; " El ( ‘
Define
Ay = max Aafs. 2).
s.zeFL

Errors in 4
Given 5.2, 2(1)... .. 2(S) and As(s.2) from above. recall that 73 is assumed to hold with

cquality for all commodities which do not enter the utility function and in which the agent

has zero endowinents.



For commodities which do not euter the utility function. but in which the agent has
positive endowments. adjust 0 (s} to ensure cquality. These adjustinents all e within L ¢
since by construction. the excess demands € in these commodities were not perturbed in the
previous step. As we mentioned above. we assumne that endowments are sufficientty large
to ensure non-negativity of perturbed endowiments.

For commodities which enter the utility function. adjust +%(s) to ensure cquality, These

commodities include 7™ for which &- has heen perturbed. Define
a e (= = 3 e 3
ré =max{A,(5.2) — ¢, .max ¢ .
: I=("
An upper bound on the necessary perturbations in consumptions is therefore given by

Ay(5.5) = max ve.

a=]

Define Ay = max.cs .. Nygls. 2).

For commuodities that do enter the utility function. this perturbarion mayv increase the

error in A% T order to capture this effecr. define

s

Agls.2) = lnmx | S C D e e s) v ds) — Dot (s sy
S

Define Ag = max,

Equation /9.

Errors in A?

Given 5. Z.z(1)..... 2(5) from above define a pavoff matrix A4 by
A= 7(s 5):2: dy (s pi(s) R = QIAH £ S.
1=G-
- AR

Define ¢r2(a) = 47 (¢! Jiegr and let Ay(5.7) = max, -y S ‘(1'.':’((1)', AL Detine

(€. v NaX

A
Ay = <(1’ max A{s o)l — Ay .
R 7:\
It is straightforward to sce that this lnposes an upper hound on necessary relative pertur-
bations in A which ensure that A holds with equalitv. given the perturbations in prices

for k" and given the errors in Al

Errors in /% Necessary Perturbations in Bernoulli Utilities

Finallv we need to perturb Bernoulli utilities in order to impose equality on the first order
conditions for individuals” spot optinuality. A hound on the necessary (linear) perturbations
Is given by
r =~ - . i «
A =N — Ay max max  pjA
v

~tosow S Ay s Fo \a=1.__
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The following theoremn sunmmnarizes the above discussion and uses Lemma 1 to give

bounds on the overall perturbations in endowments and preferences necessary.

THEOREM 1 Given an ¢ equilibrium F for an economy £, with A, j = 1..... { and AF
as defined above, there exists an economy &' with d(£.£') < APL% and with a competitive
equilibrium (= (o)) szx such that the ¢ equilibrium process = = (0 . o .+ £ A% y*. p*) satisfies

forall o ¢ &,

o' {ay—o_ (o) = 0
ooy —ola) = 0
y(o)—ylo) = 0
o) —alo) < Ay
Aoy = Mo) < Ao
ploy=pla)t < Alpilo))
o) =Slo)l < Ay

Note that the portfolios (02

&

.0%) and the finn's output were not perturhed.

5.3 Parametric Examples

We illustrate by means of an example that the bounds in Theorem 1 are fairly tight and
that methods which lead to low maximal errors in Euler equations usually approximate
an cconomy in cquilibrium very well in our model. Suppose that there are only three
commodities: Capital. k. labor. /. and a consumption good. ¢. The numéraire commodity is
taken to be capital. its price is always 1. Agents have access to a risk-less storing technology.

‘hich transf 3 it of the cons ion good : de s'i 1 unit of capital at ecacl
which transforms one unit of the consumption good at node s into 1 unit of capital at each

b~ &' The riskv spot production function is Cobb-Douglas

node &'~

Flhils) = n(s)kOT % = (1 = 8(s))k"

for shocks 1. 4. Agents live for 9 periods and only derive utility from the consumption good.

An agent born at shock «' has utility function

N
(V_\_z _ Eﬁ.: Z 3(1—1 “((,(Siﬁkufl ))

a=1
We assume that there are 4 shocks which are iid with 7. = 0.25 for s = 1..... 4. Bernoulli
utilities are of the CRRA form |
o' T"
ule) = (2)
) 11—~

with a cocflicient of relative risk aversion ~ = 3. Suppose that J = 0.8 and that individual

endowments are deterministic and given by

(el .. e')=1(1.1.1.1.1.1.0.5.0.0).

[N
~1



We consider 4 different specifications for the shocks to production.

Table 1: Specifications for Shocks
State 1 | State 2 | State 3 | State 4
Case 10 gy 0.95 1.05 0.95 1.05
Case 1. 0 0.7 0.7 0.7 0.7
Case 20y 0.85 1.15 0.85 1.15
Case 2: 6 0.7 0.7 0.7 0.7
Case 3: y 0.95 1.05 0.95 1.05
Case 3: 4 0.5 0.5 0.9 0.9
Case 1y 0.35 1.15 0.85 1.15
Case 10 6 0.5 0.5 0.9 0.9

We do not impose that individual investinent has to be non-negative.  This is done to
siiplifv computations. 1t is easv to sce that the above error analvsis remains valid even

without the non-negativity restriction.

5.3.1 Computation

Due to the finite nature of recursive e-cquilibria it should be possible to derive a globally
convergent aleoritliun which computes an e-equilibrivim for any given ¢ > 0 and any given
specification of preferences and endowients. However. since agents live for 9 periods the
endogenous state space @ is of dimension 7 and any discrete algorithm will he hopelessly
incfficient. Krueger and Kubler (2003) develop an algorithin to approximate cquilibria
in OLG models where agents live for several periods using polyvnomial approximations.
The algorithm assumes that pricing and policy functions which describe a recursive ¢-
equilibrium are defined over a compact set @ and that these functions exhibit a high degree
of smoothness. They approximate them by polynomials, using Smolvak's method to avoid
a curse of dimensionality. The unknown polvnomial cocefficients are solved for through a
tinle iteration algorithn.

Given the discussion above. using this algorithm to obtain recursive e-equilibria might
seem odd: By definition recursive e-equilibria are a finite collection of points and there is
1o guarantee that the functions in the definition can be extended to <mooth functions over
a compact set. However. in practice the algorithm has been proven to converge very well
and 1t is clear that it would be infeasible to conipute a recursive e-cquilibrium direetly for
a T-dimensional state space. Our concept of recursive c-cquilibriuii is not meant to impose
any restrictions on the actual computation of approximate cequilibria. It merely provides a
niethod to assess the quality of a candidate solution.

We use the method described in Seetion 4.2 to construct a recursive e-cquilibrium from

the computed values of the algorithi. We set 4 = 1,/300000. This value results i1 a set F

%



with around 2 million elements. All states are visited within the first 24 periods. L.e. the

algorithm terminates at 35 for t = 24.

5.3.2 Error Analysis in Practice

In this example most of the steps in the proof of Theorem 1 reduce to a single calculation.
The error in Euler equations does propagate over time. hut this is the only source of high
overall errors. Since neither labor nor capital enters individual's utility functions. the errors
in k" are around machine-precision (107 on the machine used for this computation). The
necessary perturbations in spot prices and consumptions are then smaller than 10713, Only
errors in I are significantly higher. around 1077, these then lead to the higher maximal
CITOTS.

The following table reports the crrors along one simulated path of length 100000. simerr.
the e which resulted from taking & = 1/300000 in the above discretization procedure as well
as the maximum perturbation necessary in individual Bernoulli utilities.  Note that the
computational error along a simulated path is alwayvs considerably smaller than that of our

e-equilibriumn.

Table 2: Errors
Case 1l | Case 2 | Case 3 | Case 4

simerr | 83 (-5) | 2.5 (-4) | 82 (-4} | 1.3 (-3)
¢ 9.2 (-1) | 1.2 (-1} | 1.3 (-3) | 2.5 (-3)
AP R2(3) | 83 (-3) 1 9.9 (-3) | 1.3 (-2)

6 The Lucas Model with Several Agents

As a second application we consider the model of Duffie et al. (1994, Section 3). This
model is a version of the Lucas (1978) asset pricing model with finitely many heterogeneous
agents. There are [ infinitely lived agents. 7 € 7. and a single conunodity in a pure exchange
economy. Each agent i € 7 has endowments e'(a) > 0 at all nodes o € ¥ which are time-
mvariant functions of the shock alone. ie. there exist functions €' : & — R such that
¢'(s') = e'(s;). Agent i has von Neumann-Morgenstern utility over infinite consumption
streains

xX

U'e) = Eo Y 3lugler)

=0
for a differentiable. strictly increasing and concave Bernoulli function u; which satisfies an
Indada condition.

There are J infinitely lived assets in unit net supply. Each asset j payvs shock dependent

dividends d,{s). we denote its price at node sy qj(s’). Agents trade these assets bhut are

restricted to hold non-negative amounts of each asset. We denote portfolios by 67 > 0. At
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the root node s agents hold initial shares A2 (=1 which are assumed to be identical across
agents and swn up to 1. 5o Fi"}(.s*l) =1 JforallicZ.j=1...... ]
A competitive equilibrium i a collection ((e'{a). 8 (0))27. g1 ) pex such that market
clear.
Zﬁ;m =lforallo=sS.je 7.
=y

and sucly that agents optimize

o €argmaxesy U} st vol € %
sty = e (s ) = 0 (ST gls) — dis )y = 8N )glsh).
gi(s) > 0.

6.1 The Expectations Correspondence

Following Kubler and Schmedders (2003a) it ix useful to include as an endogenous variable
individual shares of total financial wealth

B (s ) gsT) = d(sp))

11‘/(51) = 7
S Gl = djs

Note that «f = {«!. ... wly e AT the (1 - D-dimensional simplex in B/ We de-

fine the current endogenous variables to consist of wealth shares. asset prices. individuals’
consunption and portfolios.

= (u'z.q.(’I.HI).

Ag before. we built trivial normalizations into the state space. ie. we assunte that 6 > ().
> Ufor all i £ 7 and that «f 2 AL

Since. we want to perturb individual endowiments only (perturbine preferences does not
. fael

<implifv the analvsis). we take perturbations to be T-vectors. of = (o', ... o'y € BRI The
cquilibrium equations are then h{s. Z. A, ()f. < I ()_{. se)=0with h =Rl ... K and
/11l = ~-qui{)— IE, :((1(5) - d(s))ui(v’(x))] -~ K
o o Vel o fgle)=disi)
]1/‘\ = u (\) S_":l(l,"(*"d,/"”
R = (,/(,\)7u.:(,s)zlij(q](s)vd_,(s))—el(,s)»q(js)~(el(,s-)foi(s))
1 _ e
/Iu - h./{-)./
/1:/)5 - Zr%I H‘l/('\) -1

In order to obtain ! = 0 we need to perturb marginal utility which we achieve by perturbing
O11S ions. The residuals in 7% are then se o by perturbine endowinents
consumptions. The residuals in 77 are then set to zero by perturbing endowiments.

Kubler and Schinedders (2003a) show that under standard assuniptions on prefercnces
and endowinents competitive equilibria can be characterized by the expectations corre-
spondence and that recursive c-equilibria abways exist. Let p = (pg. (. pg Jie 1) denote the

policy function associared with a recursive e-equilibrium.
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6.2 Error Analysis

The main problem in the error analvsis is that. because agents are infinitely lived. the neces-
sarv perturbations to correct for errors in Ii' mav propagate without bounds. For example.
a small reduction in consumption in a given period may result in a bigger reduction in the
subsequent period which in turn results in a further reduction in the third period and so on.
As a conscequence the perturbed values mav move far awayv from the c-equilibrium. There-
fore. as we explained in Section 4. we are no longer able to show that the e-equilibrium path
approxiniates an economy in equilibrium. Instead we need to show that the e-equilibrium
is balanced and weakly approximates an economy in equilibriunt. For this. we need to per-
turh the distribution of wealth «?. As we move from period to period we must allow for
smiall perturbations in the state of the economy in order to maintain closeness hetween all
perturbed and e-cquilibrium values,

Given a (recursive) c-cquilibriuin F and given any & 2 € Fz. let

(2(1)..... I(S)) =arg  wmin_ 1}}1}{_1\‘/1(.?. TR0 0.:5)|i

{Z1..0 S5 )Ty

Asin Section 5. we can assue w.lo.g. that Equations k¥ and 77 hold with equality given
Pul I JoR

In order for h! to hold with equality. we need to perturh marginal utilities through
perturbations of ¢1... .. es. Define the S x J pavoff matrix A by

Als. 5)_“ = (577.'(%:)((]](\) - (]_I(,s)))

g

Given an agent 7. define ¢’ hyv

e =min{ AT (~qul(c) — IE (G(s) ~ (i(,s'))uf((*/(.s‘))] ~ k) st k-0 =0

K>0 -

Let er1(5.7) = max;erc and 4 = NIAX. -c F. erl(s. z). This last bound denotes the muaxi-
mum necessary perturbation of marginal utilities over the entire set F to obtain equality
in i1 given that marginal utilities last period were not perturhed. However. this only con-
stitutes a lower bound on total necessary perturbations because errors will propagate over
time. We use the concept of balancedness as defined in Seetion 4 to derive an upper bound.
Given that this period’s marginal utilities have been perturbed. we want to derive perturba-
tions i1 next period’s wealth distribution which ensure that perturbations in next period’s
marginal utilities do not propagate.

Using the fact that we consider a recursive e-equilibrium. we can write current endoge-
nous variables as functions of ¢ alone and define

.'\1(11](1). e .u'I(S)) = (,fﬁ(ﬂ‘;)(/)q.](ll'I(h‘)..S) -+ (z’_l(s))) .
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We now determine perturbations in next period’s wealth distribution which guarantee

that necessary perturbations in marginal utilities next period are within 26, given that

perturbations of marginal utilities this period are within 26. For anv i £ E! with T
al(eyh < 26, i we want to find U'IZ ..... u‘z such that there exist ji.. ... s € &7 with

g — uj(/)(.;(zrf 5)): < 26 and with

—gii' — ,fz (s AE):/)(I(M;I. sy—d.p.=0forall i 1.

Since the true wealth distribution is determined through ¢ whicli canuot he perturhbed
in order to achieve equality in 2. &% as it appears in % is fixed. However. the wealth
distribution which supports the new consumptions and prices generally differ from L We
then need to perturb endowments in 2% in order to be able to support polu) and pe(w)
at the predetermined wealth distribution @ We want to fiud 11'11 ..... u'z which minimize

these perturbations iu the endowinents. Le. which minimizes

w Z(/)‘I,/(“{‘H) —dj(~)) = g (/nﬂu'{..s) — (%))

=N

at all « € S. Tn order to ensure that this is possible for all 7 which are within 24 from o/(#)

it suffices to check that at the 37 distinet points. (¢(& )(1—20n;));-7 for all n € {~1.0.1}.

this can be achieved with the perturbations next period lving within one times d. i.e. with

L= udipatuls)) <6

Since F is finite a simple grid search® allows us to determine the following number. Given

ne{-1.0. 1}] define

' uf(/)w(lz'(:l)Al))
min (Mw))™ (ju:(i'-’)(l — 20,8y — M(w) : — K < 0.
#0007 =0

A pe (w(S).S))

Define
Ay (s

I

T

N _
) = max  crr~{n) and Ay = nax Aq{s.z).
ne{-1.0.1}1 sz

The discussion above shows that this is an upper bound on perturbations in individual

endowments necessary 1o offset the perturbations in the wealth distribution. In addition we

"In the example below this issue is dealt with more sophisticatedly.
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need to perturb individual endowinents in order to obtain the “correct” marginal utilities.

For this purpose. we define

A5

) = 1max nmx{ui‘l () (' ()1~ 20)) — &'(). ]ug_l (111(5’(5})(1 —28)) — & (s}

BN

I3

and Ao = max, .o 7 A (s 2).

The following theorem now sunnnarizes our discussion.

THEOREN 2 The c-equilibrium F weakly approximates an economy in equilibrium with precision
K] - S;_).

Note that in order to achicve balancedness. it is crucial that there are sufficiently many
states compared to the munber of assets. In particular. with this construction will gencrally
not he possible when markets are complete. We now turn to two examples which illustrate

that when markets are incomplete. this construction often results in reasonable error bounds.

6.3 Parametric Example

We consider two examples to illustrate the analvsis above. In both exaniples there are two
agents with identical CRRA utility and a coefficient of risk aversion of 2. There are 4 shocks

which are L.i.d. and equi-probable. Dividends and endownients in two cases are as follows:

1. There is a single tree. Dividends are d{«) =1 for all s = 1.. ... 4. Individual endow-

ments are el = (2.5.2.5).e” = (5.2.5.2).

2. There are two trecs. Dividends are di(1) = d1(2) = 1. d1(3) = d;{1) = 2 and d=(1) =
do{3) = 1. do(2) = do(d) = 2. Individual endowments are el = (1.2.1.2).82

(2.1.2.1).

Since there are only two agents. the endogenous state space for the recursive e-equilibrium
shimply consists of the interval 0.1 . We use the algorithm described in Kubler and Schimed-
ders (2003a) and discretize the state space into 10% possible wealth levels to obtain an e-
cquilibriutn. The resulting maximal crror lies around 1072 in both examples. The necessary
{relative) perturbations in individual endowiuents lie around 4.3 x 1073 in the first spec-
ification and around 1.2 x 1072 for the second specification. The maximal error in Euler
equations along one simulated path for 20000 simulated periods lies around 1077, This is
a large discrepancy. but it is mainly caused by the fact that along a simulated path many
areas of the state space are not visited and so many errors are simply missed. Ou the other
hand. a maxinmal perturbation of 1.2 percent might still be viewed as acceptable if one is

only interested in moments of asset prices.
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Appendix: Proofs of Lemmas

Proof of Lemma 1. We want to find a bound on the distance between original and
perturbed preferences. For this task we take as given a point {y..r) € C on the boundary
of P.ty.r) £ 9P C. and construct a = such that (.0} & P is close to (y..r).

For any = € X'. define o' - = Y v Srshot(sha(sh). Since {y.r) € OP and (z.0) £

JP it holds by definition
U'(2)=o - z2>Ur)y—0o -, Ulry=Uly)
and so.
Uty =T yy 2o - (0 — 2).
(Note that we can freely rearrange terms in all series since all of them are absolutely
convergent.) A sufficient condition for z to satisfv this last equation is that cach clement
28" satisfies
St Ty s i gl ot
al s )) —alyls')) 2 o' (s Har(sT) — 2(87))

for all « € T, If o' («"3(e(&") — y(s')) < 00 the condition is trivially satisfied for = = y.
Othierwise. we can find a z such that the u{z(s")) — u(y(s')) = o' (s (r{s") = 2(s1)). (This is
true since for z(«') = 26 and y(«') = @it holds that u(z(s") —uly(<)) > me > o' (< {a(s') —
2(s')).) Note that the appropriate = mav not be an clement of C as we discussed above.

It now follows from the mean value theorem that
T S P SO irer iyt
W{z(s) = w'tyls ) = Dy (E(s7)) (2(s8T) = yls")
for some &(s') € RE eyl < 26 for all s € . (Note that &(s') = az(s') = (1 = a)y(s))
for some o &€ :(). lj.) Therefore
Dya (S0sT ) (s — pls)) = o' (s r(sT) — 20T,
Since for all «'. o («'1(2(s") — (<" < LZ'¢. and with the bound on marginal utility, /7.

we obtain
—

oy <L
i

which proves the lemma, —

Proof of Lemma 2. For cach s. .. the system of Equations A" in linear in prices. We
write it as follows

—(prepy PR (Pt L) ( Jop oo > =¢—(pr-1""pw) ( Ju o Ji >
Equivalently

( NES ( N
Pj—=1" " PK-Pmi—1"" " PL ’ = C=tp PR~ Py ’
’ ' Joy o T o - Jin Jie

Using the definition of the pseudo inverse implies the lemmma. —
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