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Abstract 

We study an oligopoly model of entry over the product life cycle based on empirical evidence of demand for a 

new product growing over time and eventually falling. Yet, we assume that firms do not know ex ante when this 

can occur, which creates incentives to update information by delaying irreversible entry. Our model 

distinguishes and explains different patterns of entry characterized by firms entering simultaneously and/or in a 

sequential fashion, with entry rates accelerating or decelerating under certain conditions related to the rate at 

which individual profit decreases as more firms enter the industry. 
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1. INTRODUCTION 

There is numerous empirical evidence that shows that demand for some products grows over 

time until the market reaches its maturity, and gradually decays thereafter. The so-called 

theory of the product life cycle (PLC) provides a foundation to this pattern of consumer 

behavior based on diffusion models (Bass 1969, or Dodson and Muller 1978).1 This pattern 

of intertemporal changes in demand has certainly become a stylized fact for certain products 

such as durable goods.2 Indeed, many leading companies such as IBM, Sears, Hewlett-

Packard or Eastman Kodak have used the pattern of sales predicated by the PLC theory for 

forecasting purposes (Bass 1980). 

The nature of demand evolution over time is a crucial element when deciding whether 

or not to enter a market, and its role has been extensively studied in settings characterized by 

uncertainty.3 However, the patterns of entry triggered by the specific evolution of demand 

predicated by the PLC literature have not been examined in sufficient detail, at least at a 

theoretical level.4 In practice, uncertainty about the shape of the life cycle is critical for 

                                                            
1 In the industrial organization literature, the theory of the (supply side) PLC refers to a different phenomenon, 

in particular, to the patterns of entry and exit of an industry based on intertemporal changes on supply side 

factors such as innovation capabilities or diffusion of technological knowledge among firms (Gort and Klepper 

1982). This literature (e.g., Jovanovic 1982, or Hopenhayn 1992) has developed comprehensive models of 

industry evolution that focus on competitive selection of firms over time, and systematically ignores demand 

side aspects, as well as oligopoly settings, both of which will be the main focus of this paper. 

2 For example, see Grant (1998, Chapter 10), Kotler (1999, Chapter 10), and Pisano and Wheelwright (1995) for 

a discussion of the existence of PLCs and its implications. For empirical evidence and testing of their existence 

and shape, see Bass (1969, 1980), Brockhoff (1967), Kwoka (1996), Polli and Cook (1969) and Tsurumi and 

Tsurumi (1980). 

3 See Dixit and Pindyck (1994) for an updated treatment of investment under uncertainty. In particular, Chapter 

5 studies the monopoly case, while Chapter 9 examines the duopoly case. 

4 See Lilien and Yoon (1990) for a pioneering empirical analysis. 



 2

decision making insofar it is difficult to predict the various stages through which a product 

will go, as well as their duration. As a result, the pattern of demand growth over time can be 

assumed to be unknown to firms at the time they have to choose their product launching (or 

more generally entry) strategies.5 For this reason, the primary purpose of this paper is to 

propose a theoretical framework to characterize and explain various dynamics of entry into a 

market whose demand follows an unknown life cycle. The basic ingredients of the analysis 

are uncertainty about the PLC, strategic interactions among a finite number of firms, and 

irreversibility of entry. The assumptions that investment decisions made by firms are 

irreversible and demand for their product follows an unknown life cycle allows us to model 

entry decisions as the modern theory of irreversible investment under uncertainty does.6 The 

fact that a firm can delay its entry time allows for the treatment of investment opportunities as 

real options that can be exercised at any instant of time. In addition, the interaction between 

the entry decisions of all firms requires the use of game-theoretic arguments. 

Given this setup, the model we employ provides a theoretical rationale for different 

entry patterns over the PLC. Thus, when the initial size of the market is relatively small, entry 

may occur in a sequential fashion, although the exact number of firms that enter the market 

would be contingent on the duration of the PLC. For intermediate market sizes, a certain 

number of entrants would enter simultaneously at the outset of the game and then no more 

firms would enter if the product turned out to have a short cycle. A successful product would 

attract additional entrants sequentially as the market gradually expanded until it began its 

recession. Finally, very large initial market sizes would lead firms not to care about the 

(unknown) future evolution of the market, despite it may turn out to be too small to 

                                                            
5 For example, Tsurumi and Tsurumi (1980) provide an econometric model in which the transition from one 

stage of the PLC to another is due to gradual shifts in key demand parameters (e.g., income or price elasticity) 

whose date of occurrence is unknown. 
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accommodate all of them. As a result, all firms would enter simultaneously at the initial date. 

In addition, the analysis yields a necessary and sufficient condition for accelerating and 

decelerating entry rates that are frequently observed in the early stages of market evolution.7 

In particular, rates accelerate or decelerate depending on whether the percentage reduction in 

profit due to the immediate follower’s entry decreases or increases with the number of 

remaining entrants. 

There are a few previous papers that consider investment in a PLC setting, although 

their object of study is very different from ours. In the first place, Londregan (1990) 

examines the patterns of entry and exit of two firms with different capacities in a 

deterministic setting, and focuses on preemption and war of attrition issues. In the second 

place, Bollen (1999) considers a stochastic life cycle and shows that real options models that 

are based on a geometric brownian motion overvalue (undervalue) the option to expand 

(contract) a project. In the third place, Lilien and Yoon (1990) perform an empirical analysis 

of the tension that exists between the risks of premature entry over the PLC and the problem 

of missed opportunities due to a delay in entry. Appendix B in their paper introduces a simple 

discrete-time dynamic programming model that focuses on the optimal entry time of a 

monopolist over the PLC, but they do not endogenize market structure. In the last place, our 

paper builds on the novel real options framework introduced by Gutiérrez Arnaiz and Ruiz-

Aliseda (2003), which is simpler than that of Bollen (1999). Its main feature is that the 

control space (i.e., time of investment) coincides with the state space (i.e., time of market 

maturity), which greatly simplifies an analysis that otherwise would be very complicated in 

                                                                                                                                                                                         
6 For an excellent survey on this topic, see Dixit and Pindyck (1994). 

7 For instance, Gort and Klepper (1982) show that net entry rates accelerate and decelerate during certain phases 

of industry evolution. 
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the oligopoly case, the focus of this paper.8 In this sense, the present work is the game-

theoretic extension of the monopoly analysis in Gutiérrez Arnaiz and Ruiz-Aliseda (2003). 

The remainder of the paper is organized as follows. Section 2 presents the model as 

well as its assumptions. Section 3 solves it and characterizes the entry patterns over the PLC. 

Section 4 briefly extends the basic model. Section 5 makes concluding remarks. The proofs 

of the propositions are simple but somewhat tedious, so they are relegated to an appendix. 

 

2. FOUNDATIONS OF THE THEORETICAL MODEL 

Let time, denoted by t, be a continuous variable, with ).,0[ ∞∈t  Suppose that at date 0=t  a 

group of firms has to decide when to introduce a new product for which there already exists 

some latent demand. The number of firms is finite and is denoted by .2≥n 9 We also assume 

that firms cannot perform technological improvements upon the product or the production 

technology.10 

All firms face uncertainty about the temporal evolution of demand for the product 

when making their entry decisions.11 Uncertainty is assumed to unravel partially over time 

and demand evolves in the following manner. In a first stage, market size, which is positive at 

                                                            
8 For instance, Bollen (1999) has to resort to numerical methods in a monopoly context. 

9 The finite number of firms seems an appropriate assumption, as suggested by Klepper and Graddy (1990, p. 

36), because of expertise requirements. 

10 Certainly, it would be reasonable to assume that imitators have to develop over time the necessary capabilities 

to serve the market. Indeed, according to some authors such as Gort and Klepper (1982, p. 651), it is precisely 

the diffusion rate of technological knowledge and the possibility to innovate that mainly explains the empirical 

patterns of entry into an industry. In reality, all of these aspects and the ones we are considering come together 

and a more complete analysis should definitely integrate them to examine how they interact. 

11 For example, firms may not know some parameters of the diffusion process and may have to estimate them 

over time, leading to uncertainty about the PLC they face. 



 5

date ,0=t  grows exponentially. This would represent the introduction and growth phases in 

the traditional PLC framework. However, the market reaches its ephemeral maturity at date τ, 

where τ is a random variable with commonly known density )(τf  defined on ).,0[ ∞  We will 

slightly abuse the notation and τ will also denote its realization. Hence, in a second stage 

whose beginning is uncertain at date 0,12 the size decreases exponentially and converges to 0 

as ∞→t , because consumers perceive that new substitutes of the product can serve their 

needs better. This decaying behavior would represent the decline stage of the product, as well 

as its subsequent gradual disappearance. 

Formally, we make the following assumptions: 

Assumption 1: Given ,τ  the size of the market a(·) evolves over time as follows: 
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0>A  denotes the initial market size, whereas 0
2

>
α  denotes the growth rate of the market 

size (if the market is in expansion; otherwise, it is its decay rate).13 

Assumption 2: The instant of maturity of the market τ  is a random variable with continuous 

density function )(τf  with support contained in ).,0( ∞  

                                                            
12 Arguably, we also assume that there are no detection lags regarding the random maturity date. 

13 Our assumption that the market increases at the same rate as it decreases is not important for our qualitative 

results. Also note that for simplicity the growth rate is exogenous, whereas in a more general model it should 

depend on the incumbent firms’ actions to some extent, perhaps on advertising costs or some other marketing 

variable. One could go even further and assume that firms can make some decisions (for instance, promotions) 

to increase the size of the market once it has begun to decay. This more general analysis is beyond the scope of 

this paper. 
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Figure 1 graphically illustrates two possible realizations of this kind of PLC. Despite 

it intends to serve as a “proxy” for the standard PLC, Kotler (1999, Chapter 10) reports that 

cycles such as the one assumed exist for products that are considered to be “fads”, whose 

demand grows as quickly as it decreases and there is no maturity. The exponential growth 

and decline assumption could be considerably relaxed to get most results, but it are very 

useful when identifying the factor that is critical for explaining why entry rates are 

accelerating or decelerating. 

 

[FIGURE 1] 

 

 In turn, Assumption 3 deals with the relationship between ),( τta  and instantaneous 

profits made by firms active in the market. In particular, we implicitly assume that firms 

compete à la Cournot at any instant of time and are risk-neutral, so they maximize expected 

payoffs. Also, the instantaneous demand function is linear and unit variable costs are zero:14 

Assumption 3: If i firms are active in the market at date t, then each makes instantaneous 

profits of .
1
),(), ,(

2









+
=

i
tati ττπ  

It is also natural to assume that investments are completely irreversible, which makes 

risk-taking a potentially relevant factor in explaining the patterns of entry: 

Assumption 4: Any entrant bears a sunk cost of entry 0>K 15 and discounts future payoffs 

at the risk-free interest rate .0≥r  

                                                            
14 Assumption 3 is relaxed in section 4. 

15 One may think of costs of setting up a distribution channel or the creation of brand equity through advertising 

expenditure, for example. 
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Henceforward, denote the expectation operator conditional upon information at date t 

by )·(tE  (the expectation is taken over τ). Assumption 5 below ensures that the expected 

discounted value of one dollar that is capitalized at an instantaneous rate of α is finite no 

matter what the duration of the ascending phase of the PLC is. This bounds the value of the 

firms’ investment opportunities. 

Assumption 5: ( ) .0 )( ≥∀∞<− teE r
t

τα  

 

3. RESOLUTION OF THE MODEL 

We employ the methodology of optimal stopping games in order to solve the dynamic game 

with incomplete information. Throughout this section, we use the solution concept of open-

loop pure-strategy Nash equilibrium,16 and thus, without any loss of generality, we let the 

firm’s index denote the position of entry no matter whether the market is growing or not. 

Hence, we first analyze firm n’s optimal entry strategy, assuming that it invests at a later time 

than firm .1−n  After obtaining firm n’s optimal strategy we will proceed analogously with 

the preceding 1−n  firms, taking into account that these firms know the followers’ entry time. 

In an open-loop equilibrium, firms must commit at 0=t  to their entry times (see 

Reinganum 1981), so they cannot change their entry strategy even if they have incentives to 

preempt competitors as the game unfolds. For this reason, equilibria of this sort are also 

labeled “precommitment equilibria” (following Fudenberg and Tirole 1985). Note that there 

will be !n  identical equilibria of this kind, interchanging the indexes of all the firms. Using 

this solution concept implies that firms can avoid coordination failures when entering. 

                                                            
16 Unfortunately, the closed-loop equilibrium may not exist if there are more than two entrants as shown by 

Fudenberg and Tirole (1985). It is easy to characterize the closed-loop equilibrium for two firms, which 

involves rent equalization as it is usual in these kind of games. 
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Firm i’s problem at time ,0=t  , ,...,1 ni =  is to choose an entry rule )(⋅iT  that 

maximizes its expected discounted stream of cash flows conditional upon information 

available at the time of entry. More generally, we have },Out,In{}1,0{),0[: →×∞iT  that is, 

firm i’s strategy assigns a decision of whether to be in the market (“In”) or not (“Out”) to 

every instant of time depending on whether τ  has been revealed to the firm at that time or 

not (events that are denoted by “1” and “0”, respectively). 

First of all, we proceed to characterize some of the common properties of the 

equilibrium strategies of all firms for the possible states of the system. Given our assumptions 

(no scrap value and positive profit-margin at any possible situation and date), one of the 

properties of these functions is that firm i stays in the market forever once it has entered. This 

holds no matter if τ  is known or not. In turn, Lemma 1 below describes the firms’ behavior 

once the maturity of the market has been reached. According to this result, firms prefer to 

invest immediately once τ  is revealed, but only if such date is sufficiently large (depending 

on the firm’s index); otherwise, they prefer not to invest: 

Lemma 1: It is optimal for firm i ) ,...,1( ni =  to invest immediately at the revealed maturity 

date τ  ,)1)((log1,0max 
2

2
max 














 ++

=≥∀
A

irKti
α

α
τ  while investment during the declining 

phase of the market is not profitable . max
it<∀τ  

To characterize the equilibrium outcome fully, it only remains to focus on the optimal 

time *
it  at which firm i ) ,...,1( ni =  would enter were the cycle in its ascending phase (i.e., 

when τ  is not known yet). We first derive firm n’s entry rule when τ has not been realized 

yet and all preceding firms have chosen to enter at ,*
it  .1,...,1 −= ni  Using Lemma 1, the 

value of firm n’s investment opportunity at date 0=t  as a function of its entry time 0≥nt  is: 
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If firm n chooses to wait until ,nt  then, for realizations smaller than ,nt  it seizes the 

payoff to immediate investment at τ  if and only if it is non-negative. In contrast, if firm n 

ends up entering at nt  while the product life cycle is growing, then it seizes an expected 

payoff that is conditional upon the information at time nt  (namely, that τ must be greater than 

).nt  Note that, by another application of Lemma 1, )( nn tV  can be rewritten as follows: 
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)( nn tV  can be easily shown to be continuously differentiable, so solving for firm n’s optimal 

entry time amounts to solving the following: 

*
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The non-negativity constraint requires firm n to make a profitable investment, in expectation, 

when the market is still growing. We have omitted the ex post non-negativity constraint 

because it is directly satisfied. Further, Lemma 1 has additional implications for the ex ante 

constraint, since letting max
nn tt =  would automatically satisfy the constraint. Put differently, 

the lemma implies that there exists an instant of time max
nt  such that, if the market kept on 
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growing, profits would be so large that even firm n would find it profitable to enter the 

industry even though the market began to decay right after entry. Hence, the value of firm n’s 

option to invest when the PLC is growing can never be negative at the optimum, and thus the 

constraint can be dropped from the firm’s optimization program. However, we will solve the 

following program: 

       
(P2)                 0   s.t.

)( max

≥n

nnt

t

tV
n

 

P2 is more relaxed than P1, so we will have to check that its solution solves P1. We will use 

this solution procedure for all firms and check later on that it is indeed correct (see Lemma 

4).17 

Now we can examine firm n’s optimal strategy, but let us first introduce some new 

notation. More specifically, let 

∫
∞=

t

df

tft
ττ

λ
)(

)()(  denote the hazard rate, that is, the 

instantaneous probability of the PLC reaching its maturity at date t  given that this event has 

not occurred previously. As shown empirically by Barbarino and Jovanovic (2003), it 

sometimes can be natural to assume that the demand hazard rate is a non-increasing function, 

so let us assume this holds.18 This ensures that )(⋅nV  is single-peaked, so we can characterize 

firm n’s entry rule in a precommitment equilibrium: 

                                                            
17 It is worth noting that throughout we abuse the notation and use the same symbols for the candidate 

equilibrium entry rules and the actual ones. 

18 Log-convexity of the density function implies non-increasing hazard rate. Familiar probability distributions 

with log-convex density and support ),0( ∞  include the exponential, gamma and Weibull (in the latter two cases 

if the shape parameter is no larger than 1) and the F-distribution with the first degree of freedom no larger than 

2. This condition could be relaxed to allow for distributions with an increasing hazard rate for some ranges, such 
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Lemma 2: Firm n’s optimal strategy is “enter at e
ntt =  if ;τ≤t  else, do not enter” if there 

exists a unique ),0( max
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Firm n’s optimal strategy is “enter at 0=t  if ;τ≤t  else, do not enter” if such e
nt  does not 

exist. 

Proof: See Appendix.■ 

Therefore, Lemma 2 implies that a unique *
nt  exists, with }.,0{* e

nn tt ∈  Also, no entry by 

firm n will occur in equilibrium during the declining stage of the PLC, since .max
n

e
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Finally, we can also make the following observation:19 
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If the life cycle is still growing and the solution to the program is interior, then firm n 

decides to enter at the instant of time such that the marginal value of waiting equals the 

marginal cost of delaying entry. The marginal cost is instantaneous profit foregone by waiting 

a differential unit of time: .
)1( 2

2
dt

n
eA e

nt

+

α
 In turn, the marginal value is sunk cost saved by 

delaying entry plus the marginal option value of waiting and avoiding an irreversible action. 
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Thus, firm n believes that the demand of the product may suddenly decay right after time e
nt , 

so by waiting it believes that it eludes making a negative payoff with probability .)( dtt e
nλ 20 

Overall, the marginal value is equal to: 
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In addition, the proof of Lemma 2 shows that )(⋅nV  is quasi-concave. More precisely, 

we note the following: 

Remark 2: 0* =nt  if and only if )(⋅nV  is monotonically decreasing on ),0[ ∞ , or, 

equivalently, e
nn tt =*  if and only if )(⋅nV  is upward-sloping )(0, e

nn tt ∈∀  and downward-

sloping ).,( ∞∈∀ e
nn tt 21 

After having examined firm n’s optimal entry strategy when demand is still growing, 

we solve the remainder of the game for all of its predecessors, taking into account that the 

latter know the entry threshold of subsequent entrants. So let us analyze firm 1−n ’s 

optimization problem now. We will assume that e
nn tt =*  (because the solution to firm 1−n ’s 

problem is 0*
1 =−nt  whenever ,0* =nt  as shown by the proof of Lemma 4 below). )(1 ⋅−nV  can 

be shown to be continuously differentiable at ,max
1−nt  so it suffices to show that it is quasi-

concave with its global maximum smaller than .max
1−nt  Furthermore, we will only pay attention 

to the properties of )(1 ⋅−nV  on the region ),,0[ e
nt  on which firm 1−n ’s payoff function is: 

                                                            
20 This follows from Lemma 1, which implies that the NPV of firm n if it invested at date t is negative if demand 

suddenly decays . max
ntt <∀  

21 Not much can be said about the sign of the second derivative of the function (in fact, it can vary almost 

freely), although this is not relevant since it is not necessary throughout the analysis. 
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If firm 1−n  waits until ,1−nt  then, for realizations larger than 1−nt  but smaller than ,*
nt  

it would gain oligopolistic profits indefinitely (for 1−n  companies). If the cycle is believed 

to last enough so as to allow firm n’s entry, then firm 1−n  will expect to gain oligopolistic 

profits for 1−n  firms until ,*
nt  and oligopolistic profits for n  firms thereafter. Again we 

solve a relaxed program, replacing the constraint ],[ **
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Lemma 3 indicates firm 1−n ’s optimal entry threshold, functionally very similar to 

that of firm n. The reason is that firm 1−n  perceives that firm n can take a fixed part of its 

rents with certain probability, so that entry by the latter is not marginally relevant.22 

Lemma 3: Firm 1−n ’s optimal strategy is “enter at e
ntt 1−=  if ;τ≤t  else, do not enter” if 
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Firm 1−n ’s optimal strategy is “enter at 0=t  if ;τ≤t  else, do not enter” if e
nt 1−  does not 

exist. 

                                                            
22 Since )( 11 −− nn tV  can be rewritten as 

∫ ∫

∫ ∫
∞ ∞
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Proof: See Appendix.■ 

Finally, we use the same procedure to solve for firm i’s optimal entry strategy, 

.2,...,1 −= ni  For these cases, recursiveness allows us to prove Proposition 1, which 

summarizes the optimal entry dates for all firms:23 

Proposition 1: Firm i’s optimal strategy is “enter at e
itt =  if ;τ≤t  else, do not enter” if 

there exists a unique ),0( max
i

e
i tt ∈  such that 

.)1)((
)(

1
2

2

A
irK

tr
e

e
i

t e
i

++
=








+

+
α

λ
αα  

Firm i’s optimal strategy is “enter at 0=t  if ;τ≤t  else, do not enter” if e
it  does not exist. 

Proof: See Appendix.■ 

However, it remains to check that our solution procedure is correct. Lemma 4 proves 

it. 

Lemma 4: *
it  solves the corresponding constrained optimization program, so 

.,...,2  *
1

* nitt ii =∀≥ −  

Proof: See Appendix.■ 

We can now draw a series of straightforward results from Proposition 1. Noticing that, 

if e
it  exists, then e

it 1+  exists ),1,...,1( −= ni  we have the following corollary: 

Corollary 1: (a) If ,01
*
1 >= ett  then .1  ** ≥>∀=>= ijtttt e

ii
e
jj  (b) If ,0(0)1 <V  then, 

. ,...,1  0* nitt e
ii =∀>=  

The first part points out that, if firm 1, the pioneer, finds it more profitable to wait, then 

the followers must wait even longer until the market is sufficiently large to accommodate 

                                                            
23 Although we do not write the functional form of )( ii tV  on the region ),0[ 1

e
it +  in order to avoid a messy 

expression that is constructed in the same way as ),( 11 −− nn tV  it is straightforward to prove both Lemma 3 and 

Proposition 1 using the marginal interpretation that gives rise to Remark 1. 
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them, since instantaneous profit are lower as more firms enter. In turn, the second part means 

that waiting may be valuable for all firms, no matter how many, even though the pioneer’s 

net present value to immediate entry into the market were negative. 

We also identify a necessary and sufficient condition for precommitment equilibria to 

be asymmetric, and provide a characterization of the firms’ equilibrium payoffs (as in 

Reinganum (1981)): 

Corollary 2: (a) Equilibria are asymmetric if and only if 0* >nt  (i.e., e
nt  exists). (b) The 

firms’ equilibrium expected payoffs are non-increasing in the position of entry. 

Proof: (a) Sufficiency is straightforward, whereas necessity follows from the second part of 

Corollary 1 and the fact that entry at 0* >= e
nn tt  is dominated for the first n – 1 firms.■ 

The first part of Corollary 2 is particularly relevant for empirical work because it 

shows that entry may be dispersed over time even when firms have no differing capabilities 

and they are totally symmetric, which contradicts common wisdom (see, e.g., Klepper and 

Graddy (1990, p. 37)). 

On the other hand, Proposition 1 also allows for an analysis of how the value of firm 

i’s investment opportunity depends on initial market size A. 0* =it  if and only if e
it  does not 

exist, so that 0* =it  if and only if ,

)0(
1

)1)((
2
1

2
*



















+
+

++
=≥

fr

irKAA i α
α  given that 

).0()(lim
)(lim

)(lim
)(lim 0

0

0
0 ftf

df

tf
t t

t
t

t
t ≡== ↓∞

↓

↓
↓

∫ ττ
λ  Thus, *

iA  is the initial market size that 

triggers immediate investment by firm i, obviously with .... **
1 nAA <<  It summarizes all the 

factors taken into account by an immediate entrant: the growth/decay rate of the market (α),  

the number of incumbents including itself (i), the degree of irreversibility of the decision (K), 
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the discount rate (r), and the probability of instantaneous failure )).0(( f  Note that an increase 

in the growth/decay rate of the market makes entry at date 0 more difficult for firm i, which 

means that firms care more about the risks of the market than the opportunities it offers.24 

Based on the firms’ equilibrium strategies, Propositions 42 −  fully characterize the 

patterns of entry over the PLC. 

Proposition 2: If ,*
1AA <  then . ,...,1  0* nitt e

ii =∀>=  

So for products whose current market is very small, firms would rather not enter 

immediately and would follow a “wait-and-see” approach. As a result, one may never see 

entry into that market, or, if demand grows sufficiently over time, entry may occur in a 

sequential fashion, with firms entering as the market gradually expands until its decay. 

Proposition 3: If *
1

*
+<≤ ii AAA  for some ,1 ,...,1 −= ni  then ijt j  ,...,1  0* =∀=  and 

. ,...,1  0* nijtt e
jj +=∀>=  

Hence, products with a sufficiently large demand may be simultaneously introduced by 

one or many firms at date 0 and then no more firms if the product is a failure. Otherwise, 

more firms may enter sequentially attracted by a successful product. 

Proposition 4: If ,* AAn ≤  then . ,...,1  0* niti =∀=  

In turn, Proposition 4 implies that for products whose current market is extremely 

large, we would expect all firms entering at the same date 0, no matter how successful the 

product turned out to be in the future. 

                                                            

24 *
iA  can be rewritten as ,

)0(
1

)1))(0((
2
1

2
*



















+
+

++
=

r
f

ifrK
Ai

α

 so it follows that an increase in α  increases .*
iA  
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Finally, it can also be shown that Proposition 1 implies that 

.... *
1

**
2

*
3

*
1

*
2 −−>>−>− nn tttttt  From this set of inequalities it follows that entry rates would 

accelerate over the life cycle if neither firm entered at date 0: 

Proposition 5: If *
1AA <  and the random variable has an exponential distribution with 

parameter λ, then .1,...,2  *
1

***
1 −=∀−<− −+ nitttt iiii  

Proof: See Appendix.■ 

A stylized fact regarding the initial stages of entry into an industry is that the number of 

firms grows in a “convex” fashion (see, e.g., Tirole (1988, p. 402)).25 Proposition 5 provides 

a theoretical rationale for this stylized fact. The proposition also implies that, as the number 

of firms grows large, the difference in the times of entry may be observed to converge to 0. 

Proposition 6 below explains what drives this result. 

 

4. EXTENSIONS 

In this section, we extend the model presented in Section 2 and concisely develop a general 

model that encompasses many different types of competitive situations that may take place 

among symmetric entrants, including instantaneous price competition in cooperative or non-

cooperative settings. Most of our results carry over to this more general setup. 

Following Londregan (1990), let us assume that it is instantaneous profit that follows 

a life cycle. So we replace Assumptions 1 and 3 with the following one: 

Assumption A: If i firms are operating in the market at date t, then each makes an 

instantaneous profit of: 

( )
[ ]




>−
≤≤

=Π
τταπ

ταπ
τ

tt
tt

ti
i

i

 if      )2(exp
0 if                exp

),,(  

                                                            
25 This is for the range of times in which the S-shaped inter-firm diffusion path is convex. See, e.g., stages 1 and 

2 of new product industries in Gort and Klepper (1982). 
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In addition, let us assume that instantaneous profit has the following properties: it is 

monotone decreasing in n and .0>nπ  Hence, either costs are zero or they are sufficiently 

low so as to prevent firms from exiting. 

It can be shown through similar steps to the ones we have followed in section 3 that 

Propositions 42 −  still hold in this more general setup, since the expression in Proposition 1 

can be replaced with: 

.)(
)(

1
i

e
i

t rK
tr

e e
i

π
α

λ
αα +

=







+

+  

Regarding Proposition 5, the general version is as follows: 

Proposition 6: Let τ  be an exponential random variable with parameter .λ  Then 

e
i

e
i

e
i

e
i tttt 11 −+ −<−  1,...,2 −=∀ ni  if and only if ,

1

11

−

−+ −
<

−

i

ii

i

ii

π
ππ

π
ππ

 while e
i

e
i

e
i

e
i tttt 11 −+ −>−  

if and only if .
1

11

−

−+ −
>

−

i

ii

i

ii

π
ππ

π
ππ

 

The assumptions of exponential growth and decay, as well as the assumption of an 

exponentially distributed random variable for the length of the ascending phase of the PLC 

are important because they lead to a simple result by dropping time-dependence. The 

proposition implies that accelerating (decelerating) entry rates in our setting are due to the 

fact that the percentage reduction in individual profit due to the immediate follower’s entry 

decreases (increases) with i. Decreasingness holds in models such as linear Cournot or Salop 

with linear or quadratic costs, as well as collusive settings in which firms evenly divide 

instantaneous monopoly profits. Therefore, our model suggests that one of the driving forces 

of S-shaped diffusion paths would be the existence of a unique *i  such that 

1

11

−

−+ −
<

−

i

ii

i

ii

π
ππ

π
ππ

 * ii ≤∀  and 
1

11

−

−+ −
>

−

i

ii

i

ii

π
ππ

π
ππ

. *ii >∀  This would definitely require 
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some type of critical change in the nature of product market competition due to entry by firm 

.*i  

 

5. CONCLUSION 

The main purpose of this paper is to provide a theoretical framework that explains different 

dynamics of entry over the PLC. The driving factors of entry decisions are strategic 

interaction, uncertainty about future demand evolution and investment irreversibility. In this 

sense, we have examined conditions under which entry into a market may be simultaneous 

and/or sequential, with or without accelerating rates of entry. The results suggest that entry 

rates accelerate or decelerate depending on whether the percentage reduction in individual 

profit due to the immediate follower’s entry decreases or increases with the number of 

remaining entrants. Whether or not demand factors, irreversibility and uncertainty about the 

PLC are relevant in explaining entry patterns is an empirical matter. Still, it seems interesting 

to test them versus inter-firm diffusion of technological knowledge and the rate of innovation 

within the industry. 

The paper has some important limitations too, which would be worthwhile examining. 

We have assumed that the pattern of non-cumulative adoptions of the product by consumers 

is exogenous to the firms, but unknown. Specifically, the time of the peak is uncertain, as 

well as the adoption rate at the peak. The model can easily endogenize the distribution 

function governing the maturity date. This may be relevant if the activities of firms before 

entering the market can affect the properties of the PLC. For instance, let us consider a setting 

with symmetric firms and a random variable that is exponentially distributed with a hazard 

rate positively correlated to pre-entry activities of each of the firms. Under these assumptions, 

the open-loop equilibria we have described would have to consider the incentives of late 

entrants to free-ride on the efforts of earlier entrants. In principle, early entrants would benefit 



 20

more from investing because their expected payoff is higher (by Corollary 2). However, their 

incentives to invest in increasing the hazard rate would lessen because their investment would 

also benefit later entrants, which would speed up entry by the latter.26 As a result, pioneers 

may underinvest relative to later entrants, so that it may happen that it is early entrants that 

free ride on late entrants’ efforts. 

Lastly, we have not studied exit decisions, which would take place if market size were 

small enough so as not to cover operating or opportunity costs, and may require imposing an 

exit order even without the symmetry assumption. The fact that firms would exit the market 

would delay entry in an unpredictable way, and would constitute a significant improvement 

of our understanding about the entry and exit dynamics over the PLC, and aspect that has 

been unexplored thus far. 

                                                            
26 Effects of investment on own entry timing would be of second-order, while effects on later entrants’ entry 

timing would be of first-order. 
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Figure 1: Two possible realizations of the proposed PLC 
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APPENDIX 

Proof of Lemma 1: Suppose that nj <≤0  firms had entered the market during the growth 

phase and suddenly τ  were revealed. By relabeling the remaining firms (as well as the 

associated flow of profits), we can let 0=j  without loss of generality. Denoting firms’ entry 

times by ,d
it  let us solve for firm n’s entry problem, knowing that it cannot enter before 

.1 τ≥−
d
nt  

First we prove that, if immediate investment at d
nt 1−  is not preferred to delayed investment at 

some ,ˆ
1

d
nn tt −>  then .0

1
)ˆ( ˆ

ˆ
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1
)( αατ  is a strictly quasi-convex 

function on ),,( +∞−∞ 27 with 0)(lim =∞→ nnt tNPV
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 and 
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
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+=≡
nrK
AtNPVt nn

t
n

n α
τ  It suffices to show that the contrapositive of 

the claim is true, so assume that .0)ˆ( >nn tNPV  Because of strict quasi-convexity and 

existence of the global minimum, we must have that either ∞=
∞∈ −

)(maxarg
],[ 1

nn
tt

tNPV
d
nn

 or 

.)(maxarg 1
],[ 1

d
nnn

tt
ttNPV

d
nn

−
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=
−

 In the first case, the fact that 0)(lim =∞→ nnt tNPV
n

 would 

contradict the assumption that ,0)ˆ( >nn tNPV  by the definition of maximum. Hence, we must 

have that .)(maxarg 1
],[ 1

d
nnn

tt
ttNPV

d
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−
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 But then ).ˆ()( 1 nn
d
nn tNPVtNPV >−  This shows that the 

contrapositive is true, and thus we must have .1
d
n

d
n tt −=  Repeating this procedure, it is easy to 

show that .  it d
i ∀= τ  Given such entry behavior by all firms, it is clear that our assumption 
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that the entry order of firms is based on their index acts as a coordination device: if there is 

room only for i firms, then only the first i firms enter (not the last ones, for instance). 

So it remains to show that immediate investment at τ  by firm i is profitable if and only if 

,max
it≥τ  which will complete the entire proof. It clearly suffices to show that firm i’s payoff 

if it invested at max
it  is zero, since .  0)( max

ii tNPV >∀> ττ 28 Let 0max >it  and note that 

.0
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max
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22
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++
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=
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nKrANPVi α
α  This completes the proof.■ 

Proof of Lemma 2: We will first show that )( nn tV  is monotone decreasing if .0max =nt  In this 

case, the function becomes: 
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Differentiating it with respect to nt  and performing some algebraic manipulations yields:  
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We claim that 0)(' <nn tV  for .0≥nt  Otherwise, we would reach a contradiction: 

                                                            
28 The proof is as follows. Let .0>δ  Then: 
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where the last equality follows from the definition of .max
it  
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By Assumption 5, this function is bounded above. Differentiating it with respect to ,nt  

solving the integrals, taking into account that 
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If an interior maximum e
nt  exists, it must be such that .0)(' =e

n tV  Then multiplying through 

by 

∫
∞

−

++

e

e

t

rt dfeA

nr

ττ

α

)(

)1)((

2

2
 and rearranging, the first-order condition can be written as follows:29 
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So if such e
nt  exists, then it must be unique because the hazard-rate is non-increasing (the 

result follows from the intermediate value theorem and expression (A1)). Also, if e
nt  exists, 

then .max
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Now we check that ,0)('' <e
nn tV  so that e

nt  is indeed a global maximizer whenever it exists. 

Given that 
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we have: 

                                                            
29 If r=α , then we should derive the functional form of )( nn tV  from scratch, since directly plugging in 

r=α implies that )( nn tV  is not well defined. Yet, straightforward calculations show that the same expression 

obtains for computing .e
nt  
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where we have made use of (A1). Given that 0)(' ≤e
ntλ  (we assume differentiability for 

convenience, although it is not necessary) and 
2

2

)1)(( ++
>

nr
eAK

e
nt

α

α
 because ,e

n
e
n tt <  it 

follows that .0)('' <e
nn tV  

e
nt  may not exist, though. Then we claim that )(⋅nV  must be monotone decreasing. To prove 

it, first note that 0)( max >nn tV  by definition of .max
nt  Second, it can be shown that )(⋅nV  is 

monotone decreasing on the set ),,[ max ∞nt  since, on this region, we have: 
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Recall that we showed at the beginning of the proof that  
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Letting ,max δ+= nn tt  where ,0≥δ  we must have that .0)( max' <+ δnn tV  Otherwise, the fact 

that 1≥αδe  would lead us to the following contradiction: 
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Now it suffices to prove that )(⋅nV  is monotone decreasing on ),0[ max
nt  if e

nt  does not exist. 

We will do it by contradiction. Consider first the case in which ).()0( max
nnn tVV ≥  On the one 
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hand, note that if )(⋅nV  is not monotonically decreasing on ),,0[ max
nt  then we cannot have 

.0)0( >
n

n

dt
dV

 Otherwise, the fact that )()0( max
nnn tVV ≥  implies that there must exist one 

critical point ),0( max
nn tt ∈  at which ,0)( <n

n

n t
dt
dV

 given the (continuity and) differentiability 

of ).(⋅nV  Because ,0)0( >
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dt
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 it follows from the continuous differentiability of )(⋅nV  that 
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dt
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 for some ).,0(ˆ
nn tt ∈  The definition and uniqueness of e

nt  imply that ,ˆ e
nn tt =  

which contradicts the non-existence of .e
nt  On the other hand, if )(⋅nV  were not 

monotonically decreasing and ,0)0( ≤
n

n

dt
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 then exactly the same reasoning as before would 

lead to the existence of a critical point (a minimum in this case), which cannot be either. (The 

case in which )()0( max
nnn tVV =  follows from the fact that the derivative of )(⋅nV  is clearly not 

equal to 0 ).),0[ max
nn tt ∈∀  Hence, )(⋅nV  must be monotonically decreasing if 

).()0( max
nnn tVV ≥  Therefore, a unique global maximum exists because )(⋅nV  is bounded. 

Now suppose that )(⋅nV  is not monotonically decreasing on ),,0[ max
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Then the continuity and differentiability of )(⋅nV  imply that there must be some ),0( max
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 for some 

),(ˆ max
nnn ttt ∈  (by the continuous differentiability of )).(⋅nV  So we must have that such nt̂  is 

,e
nt  a contradiction. All this shows that we indeed have that )(⋅nV  must be monotone 

decreasing whenever e
nt  does not exist, and thus )(⋅nV  attains a unique global maximum at 

date 0.          ■ 
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Proof of Lemma 3: The only difference with Lemma 2 is the determination of e
nt 1− , so we 

next show how it is derived. First note that )( 11 −− nn tV  can rewritten as a function of )( *
nn tV  

after some simple manipulations: 
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The value of firm 1−n ’s investment opportunity nests the value of the immediate follower (a 

constant from its viewpoint) so that its maximand is structurally similar to that of the follower 

plus a constant. Hence, its solution must be the same, mutatis mutandis: 
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Proof of Proposition 1: The proposition is true for firms 1−n  and n by Lemmas 2 and 3, 

and we only briefly sketch the formal argument, very similar to proof of Lemma 3. The point 

is that firm i’s problem is identical to that solved by its followers, so its solution must be 

identical, mutatis mutandis.■ 

Proof of Lemma 4: We first show that 0* =nt  implies .0*
1 =t  It is easy to see that 0* =nt  

implies ,0*
1 =−nt  since, otherwise, e

nt 1−  would exist (by Lemma 3), from where it would 

trivially follow that e
nt  also exists, as ,)1)(()(
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A
nrK ++

<
+ αα  contradicting the 

assumption that .0* =nt  Similarly, 0*
1 =−nt  implies ,0*

2 =−nt  and so on and so forth, which 

shows that .0*
1 =t  Hence, ,,...,2  *

1
* nitt ii =∀≥ −  whenever .0* =nt  
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The proof is a little bit more involved when ,* e
nn tt =  so we will refer interested readers to the 

proof of Proposition 2 in Reinganum (1981, p. 621), since it contains all the basic ingredients 

that are required.■ 

Proof of Proposition 5: Suppose not. Then, e
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that the hazard rate of the exponential distribution is the constant λ so straightforward 

calculations yield 
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This is true if and only if 2)1()2( +≥+ iii , which cannot be.■ 

Proof of Proposition 6: e
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1 . The remainder of the proof is 

trivial.■ 


