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Abstract 

The literature on real options has provided new insights on how to manage irreversible capital investments 

whose payoffs are always uncertain. Two of the most important predictions from the theory are: (i) greater 

risk delays investment timing by firms, and (ii) greater risk increases the option value of waiting. This paper 

shows that these conclusions need not be drawn from models in which the relevant random variable is the 

date of occurrence of an (unfavorable) event. We examine these issues in a setting in which a monopolist can 

launch a product whose profit follows an unknown temporal evolution. 
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1. INTRODUCTION 

The literature on real options has largely modeled situations in which uncertainty regarding 

the value of a project makes it follow a continuous sample path.1 However, several 

investment decisions are mainly characterized by uncertainty referred to the occurrence date 

of a crucial event that would abruptly affect the value of the project. 

For instance, consider the case of a firm that has to choose the timing of investment of 

an R&D project whose outcome can be patented. In winner-takes-all industries, the time 

until discovery of the product or technology is clearly one of the most critical factors to take 

into account because of competitive forces. Yet, the time-to-discovery is usually unknown 

ex ante, so it is reasonable to assume that the relevant randomness of such R&D project 

largely stems from the uncertain discovery date, as well as those of competitors.2 

As a second example, suppose that a company has to make a decision about when to 

build a factory subject to a probable change in environmental or tax policy. As discussed by 

Dixit and Pindyck (1994, p. 304), the date of policy change can be considered to be 

unknown to the firm and “it is commonly believed that expectations of shifts of policy can 

have powerful effects on decisions to invest”. 

Finally, let us consider product launching decisions. In particular, suppose that a firm 

has to decide when to introduce an already developed product under conditions of 

uncertainty about the future date at which a substitute product may be launched. The 

presence of this product may entail the gradual decline in the demand of the product sold by 

                                                            
1 That is, the value of the project is usually assumed to follow a diffusion process, such as the geometric 
brownian motion. See, e.g., McDonald and Siegel (1986), Pindyck (1991) or Dixit and Pindyck (1994). 
2 This example is drawn from Weeds (2002), who formalizes such situations and characterizes the different 
equilibria that arise. 
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the firm. Consequently, randomness about the maturity date of the market would be an 

aspect that would critically affect the firm’s launching decision.3 

The real options literature has certainly been aware of the importance of these 

situations in which the date of occurrence of a key event is uncertain. Indeed, this explains 

the use of Poisson processes in real option valuation. Yet, while Poisson arrivals seem the 

correct way to model such phenomena, this modeling approach is not particularly suited to 

perform many analyses beyond real option pricing. For example, the effects of mean-

preserving spreads on investment timing and option values cannot be determined. For this 

reason, the purpose of this paper is to reexamine some of the conclusions of the theory of 

real options in a general setting in which all uncertainty refers to the instant of occurrence 

of an unfavorable event that critically affects the firm’s payoff.4 

The consideration of uncertain-date events yields that some of the fundamental results 

of the options approach are not clear-cut. In the first place, the canonical real options model 

predicts that the value of an investment opportunity is non-decreasing in the variance 

parameter of the geometric brownian motion that governs the return of the underlying 

asset.5 Greater volatility cannot be harmful because the company always has the option to 

wait for better times or even not to invest should conditions turn out to be adverse. But, at 

the same time, the firm can capitalize on favorable market evolution and invest right on. 

Therefore, there exists an asymmetry due to the following: on the one hand, the firm is 

insured against adverse realizations of uncertainty by waiting; on the other, it can 

simultaneously take advantage of beneficial events. This asymmetry, always present when 

                                                            
3 Such situation is modeled for example in Bollen (1999). 
4 Using the term coined by Samuel-Cahn (1996), the date of occurrence of such event is a random “freeze-
time” variable. One could also think of it as a non-homogeneous Poisson process with a time-dependent 
arrival date in which only the first event that occurs (and its associated effect on the firm’s value) matters. 
5 See, e.g., the classic paper by McDonald and Siegel (1986). 
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there exist options whose payoffs are convex in the random variable, accounts for the non-

negative effects of volatility on the value of investment opportunities. Notwithstanding, one 

of the contributions of our paper is to show that such asymmetry is not present when there 

exists uncertainty about the date of the unfavorable event. In principle, the event may occur 

before or after investing, but in equilibrium, it can be shown that the firm finds it optimal to 

undertake only the investment if its payoff is uncertain. Given this fact and that the space of 

outcomes coincides with that of time, we have that the firm would be insured against bad 

realizations because of waiting, and would take advantage of good ones, but it would be 

damaged by realizations sufficiently close to the optimal time of investment. That is, if the 

event occurred right after investing, then the project may turn out to be unprofitable ex post, 

even though it might have seemed an excellent investment ex ante. As a result, more 

uncertainty may destroy option values, depending on whether a mean-preserving spread 

increases sufficiently the probability of occurrence of the event once investment has taken 

place. 

In the second place, real options theory usually predicts that increased risk delays 

investment timing, a relevant aspect for both public policy and business purposes. Such 

conclusion basically follows from the “bad news principle of irreversible investment” (see 

Bernanke (1983)). The intuition behind such principle is that the benefit from waiting arises 

from the avoidance of making a poor investment when news is bad (i.e., when events turn 

out to be unfavorable). Given that only adverse events matter and a mean-preserving spread 

increases their probability of occurrence, the marginal benefit from waiting increases with 

uncertainty. On the other hand, the marginal opportunity cost of waiting (namely, current 

profits foregone) is not affected by the spread. Consequently, the net marginal benefit of 

waiting increases with uncertainty, which in turn induces a delay in entry. We show that 
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this need not be true in our setting. More specifically, in our model only adverse events 

matter too. Yet, the firm endogenously chooses whether to position itself in a situation in 

which a mean-preserving spread increases or decreases the probability of occurrence of the 

event, which explains why the conclusions may differ. 

It is not unusual to find the claim that real options theory predicts that greater 

volatility depresses investment, and at the same time increases the value of a firm’s 

investment opportunities. These conclusions can already be found in McDonald and Siegel 

(1986, p. 714). Indeed, the prediction that more uncertainty leads to less investment appears 

to be supported by empirical evidence, as shown by Ferderer (1993) using aggregate data or 

Leahy and Whited (1996) and Guiso and Parigi (1999) using micro data. These two last 

studies suggest that real options theory is the most solid theory of investment under 

uncertainty, which reinforces the need for a more comprehensive framework that helps to 

determine the factors and conditions that drive theoretical conclusions. Our work tries to be 

a step in this direction. 

The remainder of the paper is organized as follows. Section 2 introduces the model 

we analyze, as well as its assumptions, whereas Section 3 solves it. Section 4 identifies a 

necessary and sufficient condition under which an increase in risk speeds up investment and 

provides a numerical illustration. In turn, Section 5 provides a necessary and sufficient 

condition for the value of an investment opportunity to be a non-decreasing function of 

volatility, while Section 6 concludes. A mathematical appendix with all proofs is included 

at the end of the paper. 
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2. FOUNDATIONS OF THE THEORETICAL MODEL 

Let time, denoted by t, be a continuous variable, i.e. ).,0[ ∞∈t  Suppose that a risk-neutral 

monopolist has to make a decision about the instant at which it wants to launch a product 

for which there already exist some potential buyers. Such decision is complicated by the 

existence of uncertainty about the temporal evolution of the market, which in turn affects 

the pattern of profit evolution. Uncertainty is assumed to unravel partially over time and the 

market (and, as a result, profit) is assumed to evolve in the following manner. In a first 

stage, the profit flow, which is positive at date ,0=t  grows over time. However, the market 

reaches its ephemeral maturity at an instant of time τ, where τ  is a continuous random 

variable with known density )(τf  defined on ).,0( ∞  (We will slightly abuse the notation 

and τ  will also denote its realization.) Hence, in a second phase whose beginning is 

unknown at date 0, instantaneous profit decreases over time and converges to 0 as ∞→t , 

perhaps because consumers perceive that there is another product that can serve their needs 

better and choose to switch. 

Formally, we make the following assumptions: 

Assumption 1: Instantaneous profit made by the monopolist if active in the market evolves 

over time as follows: 

[ ]



>−
≤≤

=Π
τταπ

ταπ
τ

tt
tt

t
 if       )2(exp
0 if                 )exp(

),(  

π  denotes the profit made by the monopolist at date 0=t  and is assumed to be positive,6 

while 0>α  denotes the growth rate of the profit flow (if the market is in expansion; 

otherwise, it is its decay rate).7 

                                                            
6 We are implicitly assuming that either operating costs are small enough or they are zero, in order to avoid 
making exit an issue and focus only on entry timing. Zero cost is not necessary, though. For example, in a 
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Assumption 2: The maturity date of the market τ is a random variable with continuous 

density function )(τf  with support ).,0( ∞  

In order to set up a real options framework, we require investment to be irreversible: 

Assumption 3: The monopolist bears an entirely sunk cost of entry 0>K  and discounts 

future payoffs at a constant risk-free interest rate .0≥r  

Henceforward, denote the expectation operator conditional upon information at time t 

by )·(tE  (the expectation is taken over τ). Assumption 4 below ensures that the expected 

discounted value of one dollar that is capitalized at an instantaneous rate of α is finite no 

matter what the duration of the ascending phase of the profit cycle is. This bounds the value 

of the monopolist’s investment opportunity.8 

Assumption 4: ( ) .0  )( ≥∀∞<− teE r
t

τα  

 

3. RESOLUTION OF THE MODEL 

The firm’s objective at time 0=t  is to choose an entry rule that maximizes the expected 

discounted stream of cash flows conditional upon information available at the time of entry. 

We proceed now to characterize such optimal entry rule for the two possible states of the 

system, depending on whether the maturity date of the market has been revealed or not. 

In the first place, it is clear that it is not optimal for the firm to exit at some date after 

having invested, given our assumptions of no scrap value and positive instantaneous profit 

                                                                                                                                                                                      
linear city model such as Hotelling’s, a single firm located at one extreme always makes profits as long as 

,tvc −<  where c  is the constant marginal cost of production, v  is the consumers’ valuation of the good, and 
t  is the transport cost per unit of distance traveled incurred by buyers. If the measure of consumers A is 
uniformly distributed along the line, then profits would always be positive: .0)( >−−= tcvAπ  Hence, exit 
would never occur in this model, since costs are always transferred to consumers, who can afford it. 
7 It is straightforward to introduce different rates of growth and decay. We choose not to do so to keep the 
model simple. 
8 In the traditional real options framework, a parallel convergence condition requires the rate of expected 
growth of the investment to be smaller than the risk-free rate. 
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at any possible situation. This holds no matter if τ  is known or not. In turn, Lemma 1 

below describes the firm’s behavior once the maturity of the market has been reached. 

According to this result, the firm prefers to invest immediately once τ  is revealed, but only 

if such date is sufficiently large; otherwise, it prefers not to invest: 

Lemma 1: Immediate investment at the revealed maturity date τ  is optimal 

,)(log1,0max max 
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τ rKt  whereas investment during the declining phase of 

the market is not profitable . maxt<∀τ  

Hence, to characterize the optimal entry rule fully, it only remains to focus on the 

time 1t  at which the firm would enter the market if τ  had not been revealed yet, and thus 

the profit cycle were in its ascending phase. Using Lemma 1, the value of the monopolist’s 

investment opportunity at date 0=t  as a function of its entry time 01 ≥t  is: 
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If the firm chooses to wait until ,1t  then, for realizations smaller than ,1t  it seizes the payoff 

to immediate investment at τ  if and only if it is non-negative. In contrast, if the firm ends 

up entering at 1t  while the profit cycle is growing, then it seizes an expected payoff that is 

conditional upon the information at time 1t  (namely, that τ must be greater than ).1t  Note 

that, by another application of the lemma, )( 1tV  can be rewritten as follows: 
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)( 1tV  can be easily shown to be continuously differentiable. So, unlike conventional 

real option analysis, in which expected payoff functions depend on Ito processes and 

thereby are not differentiable in the classical sense, the monopolist’s optimization program 

can be solved using standard differentiation techniques: 

0),()(   s.t.

)( max

1

1

1

1
10
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The non-negativity constraint requires the firm to make a profitable investment, in 

expectation, when the market is still growing. It is clear that the ex post non-negativity 

constraint we should have included is directly satisfied. However, Lemma 1 has additional 

implications for the ex ante constraint, since letting max
1 tt =  would automatically satisfy the 

constraint. In other words, the lemma implies that there exists an instant of time maxt such 

that, if the market kept on growing, profits would be so large that the firm would find it 

profitable to enter the industry even though the market began to decay right after entry. 

Hence, the value of the option to invest when the cycle is growing can never be negative at 

the optimum, and thus the constraint can be dropped from the firm’s optimization program. 

Now we can examine the firm’s optimal decision rule, but let us first introduce some 

notation. In particular, let 

∫
∞=

t

df

tft
ττ

λ
)(

)()(  denote the hazard rate, that is, the instantaneous 

probability of the market reaching its maturity at date t  given that this event has not 

occurred previously. Let us assume that it is a differentiable function, with 0)(
≤

dt
tdλ  to 
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ensure that )(⋅V  is single-peaked.9 Thus, we can characterize the firm’s optimal rule of 

entry: 

Lemma 2: The monopolist’s optimal entry rule is “enter at ett =*  if ;τ≤et  else do not 

enter” if there exists a unique ),0( maxtt e ∈  such that 

.)(
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αα rK

tr
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The monopolist’s optimal rule is “enter at 0* =t ” if such et  does not exist. 

We can draw a corollary from Lemma 2 that allows us to give an economic 

interpretation to the firm’s optimization problem: 

Corollary 1: If τ has not been realized yet and the optimal entry time et  exists, then it is 

such that: 

.)( )()2( dtdseeKtrKdtdte
e

eee

t

tsrstet








−+= ∫
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The corollary means that if the profit cycle is still growing and the solution to the 

program is interior, then the monopolist decides to enter at the instant of time such that the 

marginal value of waiting equals the marginal cost of delaying entry. The marginal cost is 

the instantaneous profit foregone by waiting dt: .dte etαπ  In turn, marginal value is sunk cost 

saved by delaying entry plus the marginal option value of waiting and avoiding an 

irreversible action. The latter value stems from the “bad news principle of irreversible 

investments” that can be found in Bernanke (1983). This principle indicates that the firm 

                                                            
9 Log-convexity of the density function implies non-increasing hazard rate. Familiar probability distributions 
with log-convex density and support ),0( ∞  include the exponential, gamma and Weibull (in the latter two 
cases if the shape parameter is no larger than 1) and the F-distribution with the first degree of freedom no 
larger than 2. This condition could be relaxed to allow for distributions with an increasing hazard rate for 
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only cares about the bad news that may arrive in the next instant of time when deciding 

whether or not to undertake an irreversible project.10 Thus, the firm believes that the 

demand of the product may suddenly decay right after time et  (this is the bad news), so by 

waiting the firm believes it would elude making a negative payoff with probability 

dtt e )(λ .11 Overall, total marginal value is equal to: 

dtdseeKtrKdt
e

ee

t

tsrste








−+ ∫

∞

−−− )()2()( απλ . 

Note from the second term that, in general, waiting allows the firm to update its beliefs 

about the time at which maturity is reached.12 By waiting, the firm benefits from learning 

what some events cannot be (via the denominator of the hazard rate; see its definition), 

which in principle allows it to have a better assessment of the probabilities of still-not-

occurred-events.13 At the same time, waiting implies that the firm faces a smaller 

probability of the market immediately reaching its maturity (via the numerator of the hazard 

rate).14 

We can thus conclude with the characterization of the solution by analyzing how the 

value of the firm’s investment opportunity depends on initial profit. 0* =t  if and only if et  

                                                                                                                                                                                      

some ranges, such as the lognormal distribution. In particular, letting 
)(
/)(sup

t
dttd

t λ
λ

α >  would suffice. It is 

worthwhile mentioning that our results would continue to hold under such assumption. 
10 The intuition is that irreversibility yields no advantages but implies some costs that arise because the firm 
cannot recoup its investment if conditions turn out to be adverse. Thus, irreversibility creates the asymmetry 
that the firm cares about adverse events (which would not be regrettable were investment reversible) but not 
favorable ones. 
11 This follows from Lemma 1, which implies that the payoff to the firm if it invested at date t is negative if 

demand suddenly decays . maxtt <∀  
12 If the stochastic peak is assumed to follow an exponential distribution, pursuing a business strategy of “wait 
and see” does not allow for an updating of information via hazard rate, since the latter is invariant to time (this 
is due to the so called lack-of-memory property). 
13 The reason being that conditioning reduces the outcome space. 
14 Note that a necessary condition for a non-increasing hazard rate is a decreasing density, which explains the 
result. 
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does not exist, so that 0* =t  if and only if ,
)0(
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only if the probability distribution is exponential with parameter λ.) Taking this into 

account, the investment opportunity as a function of date 0’s profit π  is: 
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4. IMPACT OF GREATER UNCERTAINTY ON ENTRY TIMING 

One of the standard predictions of real options models is that more uncertainty delays the 

optimal time of investment. There are some exceptions, though. Dixit and Pindyck (1994) 

observe that greater uncertainty may actually hasten investment if the instantaneous profit 

function is convex in the variable that follows a stochastic process (e.g., price). Then, by 

Jensen’s inequality, a larger variance implies a greater expected present value of the profit 

stream, thus increasing incentives to invest earlier. 

Bar-Ilan and Strange (1996) also conclude that uncertainty may speed up investment 

in a model with investment lags and option to abandon. The reason is that, although the 

benefit of not undertaking an irreversible investment increases with uncertainty, the 

opportunity cost of waiting is also increasing with uncertainty. Waiting implies that the firm 

makes no profits for a certain period of time, so profits are uncertain as they have to be 

realized in the future due to the existence of investment lags. Since the existence of the 
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option to abandon bounds below the profits that the firm can make in the future, an increase 

in uncertainty increases expected profits of waiting again by Jensen’s inequality. Therefore, 

the increase in the opportunity cost of waiting may be larger than the benefit of waiting, 

thus speeding up investment. 

 We now show that the effect on investment timing of a greater spread is also 

ambiguous when the payoff to the firm crucially depends on the unknown date of 

occurrence of an unfavorable event. In particular, we give a necessary and sufficient 

condition for a mean-preserving spread to shorten the optimal time of entry. For this reason, 

we make the assumption that ,*ππ <  so .0* >= ett  Also, we assume throughout this 

section and the following one that the density can be parameterized by +ℜ∈2σ , i.e. 

).( 2στf  2σ  is a parameter such that a rise in it represents a mean-preserving spread, so 

we will usually interpret as the variance of the random variable. As a result, the hazard rate 

is also a function of 2σ , ),( 2σλ t  and, for convenience, we assume that it is differentiable 

in both arguments. Denoting partial derivatives by subscripts, we recall the assumption we 

made in the previous section: .0)( 2 ≤σλ tt  Lastly, let us assume for the remainder of the 

paper that 
π

α
σλ

ασ α
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2
2 rK

tr
etG

e
te e +
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+=  is a continuously differentiable 

function on the neighborhood of any pair ),( 2
00 σet  such that 0),( 2

00 =σetG . Then we can 

establish the following: 

Proposition 1: A mean-preserving spread hastens investment if and only if .0)( 2
002 <σλσ

et  

Assuming for expositional purposes that )( ⋅τf  is a continuously differentiable 

function , τ∀  it follows that 0)( 2
002 <σλ

σ
et  if and only 
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.0)()()(
0

22

0

2
0

2
00

2
00 <+ ∫

et
ee dfttf τστσλσ σσ  

Hence, a mean-preserving spread has two distinct effects that influence optimal 

investment timing. On the one hand, it has an effect on the probability of immediate decay 

).( 2
00 σetf  On the other, there is an additional effect on the value of knowledge attributable 

to waiting until ,0
et  .)(

0

0

2
0∫

et

df τστ  Thus, in the most interesting cases in which both effects 

are in conflict, investment is hastened if: 

− Either the better assessment of future events is relatively less important than the 

decrease in the probability of abrupt decay (a sort of “good news principle”). 

− Or the probability of immediate failure increases little relative to the decrease in the 

value of accumulated knowledge. This implies that the assessment of the instantaneous 

probabilities of future decay worsens, which blurs the belief that irreversibility is costly 

for the firm. 

Either way, the marginal option value of waiting (i.e., the cost of irreversibility) would 

diminish due to the decrease on the weight put on the losses avoided by delaying entry. 

However, the effect of uncertainty on the value of (probabilistic) knowledge is absent in the 

conventional real options literature. This is due to our setting in which the firm can learn 

about the unknown date of occurrence of the maturity date by waiting, which allows it to 

enhance its information set. Yet, our model predicts that entry may be hastened by a greater 

spread, even though the value of knowledge were unaffected, as long as )( 2
00 σetf  

decreases. 
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Let us next give a numerical illustration of Proposition 1. In particular, assume that τ 

follows a gamma distribution with parameters 0>γ  and 0>ρ : τ ~ G(γ, ρ). Recall that 

γ
ρτ =)(E  and ,)(

2γ
ρτ =Var  which means that we can perform mean-preserving spreads by 

simply multiplying both γ  and ρ by any positive scalar smaller than 1. In addition, let the 

monopolist face a linear demand with intercept 50=a  and slope .1=b  If costs are 

assumed to be zero, then it is well-known that .
4

502
=π  Finally, let 7000=K  and 

.%5== αr  Considering that the hazard rate of the gamma is non-increasing if and only if 

,1≤ρ  then we have the following results, summarized in Table 1: 

 
ρ γ E(τ) Var(τ) t*=te 

0.8 0.4 2 5 0.58 

0.5 0.25 2 8 0.56 

0.1 0.05 2 40 0.2 

 
Table 1: More uncertainty speeds up entry 

 

5. IMPACT OF GREATER UNCERTAINTY ON OPTION VALUES 

Traditional real option theory predicts that an increase in volatility does not harm the value 

of the monopolist’s investment opportunity (see Dixit and Pindyck (1994) or Trigeorgis 

(1996)). We next study conditions under which this may not happen in our setting. More 

precisely, we perform a comparative static analysis on the impact of a mean-preserving 

spread on the value of the investment opportunity, which requires additional notation. In 

particular, let )( 2στF  denote the cumulative distribution function of .τ  
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Let us first modify some results from Section 3 to take into account the fact that we 

are to perform a comparative statics analysis on .2σ  Thus, the threshold that optimally 

triggers immediate investment by the firm becomes a function of 2σ : 

.
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In addition, the value of the investment opportunity as a function of both π  and 2σ  

becomes: 
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As readily seen from this expression, comparative statics are slightly complicated 

because the value of the investment opportunity is a piecewise differentiable function of π  

and the non-differentiability point *π  depends on .2σ  For this reason, we make a mild 

assumption that can be relaxed for some specific probability distributions that do not satisfy 

it. In particular, we assume that )0( 2σf  is a continuous function.15 Now we can 

characterize some relevant properties of :)( 2* σπ  

Lemma 3: )( 2* σπ  is a continuous and non-decreasing function with range bounded by the 

interval ].)(,[ KrrK +α  

Lemma 3 states that )( 2* σπ  is non-decreasing in 2σ , so a mean-preserving spread 

usually makes investment at 0=t  more difficult as happens in traditional real options 

                                                            
15 For example, the lognormal distribution satisfies such assumption, since .  0)0( 22 σσ ∀=f  
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models. Yet, note that, as Proposition 1 shows, investment timing need not be delayed, 

because the firm may not wish to invest at 0=t  even for a low variance. We can now 

establish a necessary and sufficient condition under which a mean-preserving spread does 

not reduce the value of the investment opportunity: 

Proposition 2: A mean-preserving spread does not reduce the value of the investment 

opportunity if and only if .)()())((2 
*
0

2

*
0

2
*
0

0

2
0

2
0

))((2
0

*
0 ∫∫ ≤+

∞
−−

t

t

tr dfdFet τσττστσλα σσ
τα  

The proof of the proposition shows that increasing the risk of the investment 

opportunity has two effects. To identify them, let 00
*
0 >= ett  as well as r=α  (so as to 

eliminate an additional effect due to the existence of discounting)16 and note that, by 

expression (A2) in the Appendix, the following holds: 

.)()(
2

)(
0

2

0

20 2
0

2
0

2
0

' ∫∫
∞∞

− −





 −=

ee

e

tt

t dFdfKeV τστπτστ
α
πσ σσ

α  

This can be rewritten as: 

,
)(

)(
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)(
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2
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0
2
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2
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0
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20





















+





 −=

∫
∫
∞

−
e

t

e

t

t

t

dF
tdfKeV

e

e

e

τστ
πτστ

α
πσ

σ

σ
α  

                                                            
16 As discussed by Klette and de Meza (1986) when performing a mean-preserving spread given a symmetric 
density, the existence of a discount rate (in our case, net of ,α  the capitalization rate) has the general 
implication that delaying the receipt of a sum of money by t years does not decrease the present value by the 
same amount as an advance of t years increases it. When ,r=α  this no longer holds and the decrease equals 
the increase. Furthermore, this allows us to compare delays of t years with advances of s years, where ,ts ≠  
so the symmetric density assumption is also irrelevant. 
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since 00 >et  and 0)(
0

2
02 =∫

∞

τστσ dF  when a mean-preserving spread is performed.17 The 

two effects of higher risk on the value of the investment opportunity can be seen from this 

expression. 

On the one hand, the first term is absent in conventional real option models. It 

represents the effect on the firm’s payoff of increased risk on the probability of occurrence 

of the event after investing, since 
etKe 0

2
α

α
π −−  is the maximum loss made by the firm,18 

which occurs if the market reaches its maturity right after investing at .0
et  On the other, the 

second term in the expression is non-negative et0 ∀ 19 and represents the “option value” 

effect: the decrease in the (maximum) expected opportunity cost of waiting until 00 >et . 

The reason is that 0
)(

0

0

2
0

0

2

>
∫

e

t

t

dF
e

τστσ

 is the average increase in the probability of decay of 

the cycle before it reaches ,0
et  whereas 00 >etπ  is the maximum amount of profits foregone 

by delaying investment until et0 .20 

Overall, the sum of both effects can be positive or negative, as can be readily seen 

from the necessary and sufficient condition provided in Proposition 2, 

,)()())((2
0

2

0

2

0

2
0

2
0

2
00 ∫∫ ≤+

∞ e

e

t

t

e dfdFt τσττστσλα σσ  given that the left hand side is always non-

positive and the right hand side has an undefined sign. We next provide an example in 

                                                            
17 See Tirole (1988, p. 397, exercise 10.6), or Mas-Colell, Whinston and Green (1995, p. 198, expression 
6.D.1) for an informal argument. 
18 Note that 

etKe 0

2
α

α
π −<  by the first-order condition of the program solved by the entrant. 
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which volatility harms option values. Let us continue with the example of the previous 

section. Noting that the gamma distribution has 22   )0( σσ ∀∞=f  if and only if its hazard 

rate is decreasing, we have the results depicted in Table 2. 

 

ρ γ E(τ) Var(τ) V 

0.8 0.4 2 5 560 

0.5 0.25 2 8 627 

0.1 0.05 2 40 598 

 

Table 2: More uncertainty harms option values 

 

Thus, the usual asymmetry originated by the fact that the firm can take advantage of 

upside risk without being affected by downside risk is not present in this situation any more. 

The ex post value of the investment opportunity is not convex in the realization of the 

random variable unless .0* =t  Indeed, it is not a continuous function of τ, as illustrated by 

Figure 1. It is worth remarking that this result is very specific to settings similar to ours. 

The critical reason is that, in these cases, the outcome space coincides with that of t, which 

allows the discontinuity to appear. Thus, the firm does not invest when its worst-scenario 

payoff is 0 (the only way to prevent the discontinuity from arising), but rather when its 

expected payoff is maximized, that is, at .et  Yet, the monopolist faces risk of losses for 

realizations sufficiently close to et  (since ),maxtt e <  as readily seen in Figure 1(a). So it is 

this risk of losses that explains why increasing the spread may partially destroy option 

values. 

                                                                                                                                                                                      
19 See Tirole (1988, p. 397, exercise 10.6) or Mas-Colell, Whinston and Green (1995, p. 198, expressions 
6.D.1 and 6.D.2). 
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        (a)Present paper framework             (b)Traditional framework 

 
     V                   V 

 
           te 

   goodness of the state      goodness of the state 
        of the world             of the world 

 
       Figure 1: Ex post value of the investment opportunity 

 

As a result, the firm is insured against bad realizations because of waiting, and 

definitely takes advantage of good realizations, but it is damaged by realizations sufficiently 

close to .et  The overall effect of greater uncertainty is thus ambiguous. 

 

6. CONCLUSION 

This paper has focused on investment contexts in which the only source of uncertainty 

affecting the value of a project stems from the unknown date of occurrence of an 

unfavorable event. We have departed from modeling uncertainty over time through a 

stochastic process, and we have assumed under fairly general conditions that the date of 

occurrence of the event is a random variable, as opposed to a Poisson process, which is not 

well suited for certain analyses. 

The consideration of unknown-date events as a source of uncertainty dramatically 

affects some of the core conclusions that characterize conventional real options theory. 

More specifically, we have identified a necessary and sufficient condition under which the 

value of an investment opportunity decreases with risk. The motive why this may occur is 

that the time space and the outcome space coincide. Consequently, waiting allows the firm 

                                                                                                                                                                                      
20 The discount rate does not appear because recall that we have assumed r=α  for expositional purposes. 
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to be insured against adverse states of the world, while taking advantage of favorable states. 

However, the firm cannot avoid being damaged and thus making losses for realizations 

sufficiently close to the optimal time of investment. The reason is that the firm decides to 

invest when expected net present value is maximal, not when downside risk disappears, and 

thus an increase in risk may increase the probability of occurrence of the adverse event by a 

sufficiently large amount. 

In addition, we have shown that increased risk may speed up entry timing in certain 

situations. Pinpointing the conditions under which this occurs is certainly relevant for 

empirical work on the investment-uncertainty relationship. Our model shows that, at the 

margin, the firm cares about the probability of immediate occurrence of the unfavorable 

event. An increase in uncertainty may reduce this probability, thus decreasing the cost of 

making an irreversible investment, which would hasten entry. Greater uncertainty has an 

additional effect also to be taken into account: the impact on the value of information about 

the occurrence of the event in the future,21 an aspect missing on conventional models. 

Lastly, we have set up an alternative theoretical framework for continuous-time real 

option models of investment whenever the demand of a product follows a life cycle that is 

unknown to the firm.22 The setting is simpler than that proposed by Bollen (1998) and is a 

potentially useful building block for issues that we do not deal with, such as the option to 

                                                            
21 This contrasts with Roberts’ and Weitzman’s (1981) model of staged investment, in which the value of a 
project is also unknown to the company but the firm can reduce uncertainty by going ahead in a sequential 
fashion. Yet, in our stylized model, unlike theirs, information gathering does not require an earlier investment. 
Rather, it requires waiting for information to arrive. 
22 Such a model may be relevant based on empirical evidence. Thus, Bowman and Moskowitz (2001, p. 775) 
suggest that one of the mistakes made by Merck when valuing its Project Gamma was the use of the Black-
Scholes formula, instead of taking into account that some biotechnology products follow a life cycle. 
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expand or contract capacity,23 or R&D investment opportunities that open up the option to 

enter new markets that evolve as the one described. 

                                                            
23 In particular, Bollen (1998) examines these situations numerically. He shows that real options models that 
are based on a geometric brownian motion overvalue (undervalue) the option to expand (respectively, 
contract) a project. 
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APPENDIX 

Proof of Lemma 1: First we prove that, if immediate investment at the revealed maturity 

date τ  is not preferred to delayed investment at ,' τ>t  then 

,0)'( '

'

)(2 ≤−= −

∞

+−∫ rt

t

sr KedseetNPV αατπ  where 't  and τ  are arbitrary. Lastly, we show that 

immediate investment is profitable if and only if ,maxt≥τ  which will complete the entire 

proof. 

Regarding the first claim, note that rt

t

sr KedseetNPV −

∞

+− −= ∫ )(2)( αατπ  is a strictly quasi-

convex function on ),,( +∞−∞ 24 with 0)(lim =∞→ tNPVt  and 

.log12)(minargˆ 





+=≡

rK
tNPVt

t

π
α

τ  It suffices to show that the contrapositive of the 

claim is true, so assume that .0)'( >tNPV  Because of strict quasi-convexity and existence 

of the global minimum, we must have that either ∞=
∞∈

)(maxarg
],[

tNPV
t τ

 or 

.)(maxarg
],[

τ
τ

=
∞∈

tNPV
t

 In the first case, the fact that 0)(lim =∞→ tNPVt  would contradict the 

assumption that ,0)'( >tNPV  by the definition of maximum. Hence, we must have that 

.)(maxarg
],[

τ
τ

=
∞∈

tNPV
t

 But then ).'()( tNPVNPV >τ  This shows that the contrapositive is 

true. 

As for the second claim, it clearly suffices to show that the entrant’s payoff if it invested at 

maxt  is zero, since .  0)( maxtNPV >∀> ττ 25 Let 0max >t  and note that 

                                                            
24 Formally, because .0

)(
0

)(
2

2
>⇒=

dt
tNPVd

dt
tdNPV

 
25 The proof is as follows. Let .0>δ  Then: 
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.0
)(

)( max
max

max

max
)(

)(2max =−
+

== −
−∞
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tr

t

srt Ke
r

edseetNPV
α

ππ
α

αα  If ,0max =t  then 

.0
)(
)()0( =

+
+−

=
r

KrNPV
α
απ  This completes the proof.■ 

Proof of Lemma 2: We will first show that )( 1tV  is monotone decreasing if .0max =t  In 

this case, the function becomes: 
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Differentiating it with respect to 1t  and performing some algebraic manipulations yields:  

.)()()('
)(

1

111
1

1 ∫
∞

−−=≡
t

rtt dfeerKtV
dt

tdV
ττπ α  

We claim that 0)(' 1 <tV  for .01 ≥t  Otherwise, we would reach a contradiction: 

,0)()()(0
1

1

1

11 <−≤−≤ ∫∫
∞

−
∞

−

t

rt

t

rtt dfKedfeerK τταττπ α  

since 0max =t  if and only if .πα ≤+ KrK  Given that Assumption 4 implies that )( 1tV  is 

bounded above, this shows that )( 1tV  attains a unique global maximum when .0max =t  

To conclude the proof, let .0max >t  Now note that )( 1tV  can be rewritten as follows: 
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where the last equality follows from the definition of .maxt  
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By Assumption 4, this function is bounded above. Differentiating it with respect to ,1t  

solving the integrals, taking into account that 

∫
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1
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λ  and rearranging yields: 
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If an interior maximum et  exists, it must be such that .0)(' =etV  Then multiplying through 

by 

∫
∞

−

+

e

e

t

rt dfe

r

ττπ

α

)(

)(  and rearranging, the first-order condition can be written as follows:26 

(A1)                              )(
)(

1                         
π

α
λ
αα rK
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e
te +

=










+
+  

So if such et  exists, then it must be unique because the hazard-rate is non-increasing (the 

result follows from the intermediate value theorem and expression (A1)). Also, if et  exists, 

then .maxtt e <  Otherwise, given that ,0>et  a contradiction would obtain using (A1) and 

the fact that :0
)(

>
+ etr λ

α  

                                                            
26 If r=α , then we should derive the functional form of V(t1) from scratch, since directly plugging in 

r=α implies that V(t1) is not well defined. Yet, straightforward calculations show that the same expression 
obtains for computing te. 
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Now we check that ,0)('' <etV  so that et  is indeed a global maximizer whenever it exists. 
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where we have made use of (A1). Given that 0)(' ≤etλ  and ete
r

K α

α
π
+

>  because 

,maxtt e <  it follows that .0)('' <etV  

et  may not exist, though. Then we claim that )(⋅V  must be monotone decreasing. To prove 

the claim, first note that 0)( max >tV  by definition of .maxt  Second, it can be shown that 

)(⋅V  is monotone decreasing on the set ),,[ max ∞t  since, on this region, we have: 
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Recall that we showed at the beginning of the proof that  
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111 ∫
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−−=
t

rtt dfeerKtV ττπ α  

Letting ,max
1 δ+= tt  where ,0≥δ  we must have that .0)(' max <+ δtV  Otherwise, the fact 

that 1≥αδe  would lead us to the following contradiction: 
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Now it suffices to prove that )(⋅V  is monotone decreasing on ),0[ maxt  if et  does not exist. 

We will do it by contradiction. Consider first the case in which ).()0( maxtVV ≥  On the one 

hand, note that if )(⋅V  is not monotonically decreasing on ),,0[ maxt  then we cannot have 

.0)0( >
dt
dV  Otherwise, the fact that )()0( maxtVV ≥  implies that there must exist one 

critical point ),0( maxtt ∈  at which ,0)(
1

<t
dt
dV  given the continuity and differentiability of 

).(⋅V  Because ,0)0(
1

>
dt
dV  it follows from the continuous differentiability of )(⋅V  that 

0)ˆ(
1

=t
dt
dV  for some ).,0(ˆ tt ∈  The definition and uniqueness of et  imply that ,ˆ ett =  

which contradicts the non-existence of .et  On the other hand, if )(⋅V  were not 

monotonically decreasing and ,0)0(
1

≤
dt
dV  then exactly the same reasoning as before would 

lead to the existence of a critical point (a minimum in this case), which cannot be either. 

(The case in which )()0( maxtVV =  follows from the fact that the derivative of )(⋅V  is 

clearly not equal to 0 ).),0[ max
1 tt ∈∀  Hence, )(⋅V  must be monotonically decreasing if 

).()0( maxtVV ≥  Therefore, a unique global maximum exists because )(⋅V  is bounded. 

Now suppose that )(⋅V  is not monotonically decreasing on ),,0[ maxt  with ).()0( maxtVV <  

Then the continuity and differentiability of )(⋅V  imply that there must be some ),0( maxtt ∈  

such that .0)(
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dt
dV  Given that ,0)( max
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),(ˆ maxttt ∈  (by the continuous differentiability of )).(⋅V  So we must have that such t̂  is ,et  

a contradiction. All this shows that we indeed have that )(⋅V  must be monotone decreasing 

whenever et  does not exist, and thus )(⋅V  attains a unique global maximum at date 0.    ■ 

Proof of Corollary 1: Algebraic manipulations yield: 
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Solving the integral and rearranging, we have: 
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Proof of Proposition 1: Differentiate ),( 2σetG with respect to et  and 2σ  and rearrange so 
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which completes the proof.             ■ 

Proof of Lemma 3: First note that )( 2* σπ  is a well-defined function (and not a 

correspondence) by the uniqueness of et  for a given 2σ . Indeed, it is continuous by the 

continuity of .  )( 22 σσ ∀⋅f  Furthermore, if a mean-preserving spread is performed so that 
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the variance infinitesimally rises from 2
0σ  to 2

1σ , then )0()0( 2
0

2
1 σσ ff ≥ , so 

),()( 2
0

*2
1

* σπσπ ≥  which implies that )( 2* σπ  is non-decreasing. Finally, note that 

)0( 2σf  can be neither smaller than 0 nor larger than ,∞  which, together with non-

decreasingness of ),( 2* σπ  implies that the range of the function must be bounded by 

].)(,[ KrrK +α               ■ 

Proof of Proposition 2: We proceed to prove the statement of the proposition for three 

different cases: 

(i) If ),(lim 2*
2 σππ σ ∞→≥  then the monopolist’s optimal time of entry is 

,  0)( 22* σσ ∀=t 27 so: 
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Hence, differentiating yields: 
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Integrating by parts, taking into account that 0)(
0

2
2 =∫

∞

τστσ df o  (which follows from 

differentiating both sides of the equation 1)(
0

2
0 =∫
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τστ df  with respect to 2σ ) and 

considering that ∫=
τ

σσ σστ
0

2
0

2
0 )()( 22 dssfF  when a mean-preserving spread is 

performed, we have: 

                                                            
27 This follows from the facts that 22*   )( σσππ ∀>  if and only if the monopolist invests immediately for all 

2σ . 
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This completes the proof when ).(lim 2*
2 σππ σ ∞→≥  

(ii) If ),(lim 2*
02 σππ σ →≤  then we have that 2
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Lemma 2), )( 2σet  is a continuous function by the theorem of the maximum, with 

.)(lim 2
2 ∞<∞→ σσ

et  In addition, we have that )( 2σet  is differentiable on a local 

neighborhood of 2
0σ  by the implicit function theorem. By the envelope theorem, 

effects of 2σ  on )(⋅V  via )( 2σet  are of second-order, so letting ee tt 0
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Integrating by parts and recalling that 0)(
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τστσ df  and 
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Hence, we have that 
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where first we have used the first order condition of the optimization program and 

finally we have used the fact that 0)(
0

2
02 =∫

∞

τστσ df . 

(iii) If ,)(lim)(lim 2*
0

2*
22 σππσπ σσ →∞→ ≥>  define { }.)(:),0[)( 22 πσπσπ =∞∈≡Σ  

Since )( 2* σπ  is continuous by Lemma 3, then )(πΣ  must be convex (if not a 

singleton), so the following facts clearly hold: (1) case (i) applies );(inf 2 πσ Σ<∀  (2) 

case (ii) applies );(inf 2 πσ Σ≥∀  and (3) 0)( 2
0 ↓σet  as ),( 2

0
* σππ ↑  so )( 2* σt  is a 
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continuous function (since )( 2* σπ  is continuous). This shows that, although )( 2σV  

need not be differentiable at ),(inf πΣ  it is clearly continuous and non-decreasing 

under the conditions stated in the proposition.          ■ 

 


