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Abstract

This chapter provides an introductory exposition of stochastic games
with imperfect monitoring. These are stochastic games in which the
playvers inperfectly observe the play. We discuss at length a few basic
issues. and describe selected contributions.

Our objective in this chapter is to provide an introductory exposition
of some recent work on zero-sum stochastic games with imperfect monitor-
ing. We will try to avoid many of the technical subtleties inherent to this
tvpe of work. by discussing at length some fundamental issues. before we
proceed to introduce the basic insights of the known results. This intro-
duction briefly recalls historical developments of the theorv. discussed more
extensively later. and describes the organization of the chapter.

Stochastic games are plaved in stages. At every stage n € N the plavers
are to play one matrix game. taken from a finite set of possible games. called
states. The matrix game plaved at stage n depends on the actions that were
plaved at stage n — 1 and on the previous state. In the present chapter. we
limit ourselves to zero-sum gaines. i.e.. to the case where each component
matrix game is a (two-plaver) zero-sum game. Imperfect monitoring refers to
a situation where past moves of a plaver are imperfectly observed by his/her
opponent. as opposed to perfect monitoring. Most work on stochastic games
assumes perfect monitoring.
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Stochastic games were introduced in a seminal paper of Shapley (1953).
Shaplev introduced discounted games in which each plaver ¢ uses a dis-
counted evaluation. that is. he wishes to maximize the discounted suin
A (1= A1l where A € (0.1) is the common discount factor. and
r! is the pavoff to plaver i at stage n. He proved that anv A-discounted
zero-sum stochastic game with perfect monitoring has a value vy. In addi-
tion. he proved that each plaver has an optimal strategy that is stationary:
it depends only on the current state. and not on past historyv. Blackwell
(1962) analyzed one-plaver stochastic games. better known as Markov deci-
sion process. or stochastic dynamic programming problems. For such games.
Blackwell proved that there is a stationary strategyv that is optimal for every
discount factor A sufficiently close to zero. This robustness. or uniformity.
result was extended by Mertens and Neyman (1981) to the class of zero-sum
stochastic games with perfect monitoring. Specificallv. Mertens and Neviman
proved that. given anv ¢ > 0. each plaver has a strategy that is s-optimal
in the A-discounted game. for every A < A(z). Thus. a single strategy is ap-
proximately optimal. whatever be the discount factor being used. provided
it is sufficiently small. However. by contrast to Shaplev's and Blackwell's
results. in general this strategy cannot be taken to be stationary.

The consequences of imperfect monitoring have been widely explored
within the framework of repeated games. see. e.g.. Radner (1981). Rubin-
stein and Yaari (1983) and Lehrer (1989. 1990. 1992a. 1992b). Most of
the interest focused on tryving to provide a characterization of the set of
equilibrium pavoffs.

Stochastic games with imperfect monitoring were first analvzed in a se-
ries of papers by Coulomb (1992. 1999. 2001). In these papers. Coulomb
analyvzes absorbing stochastic games. These are stochastic games in which
the state changes at most once along the play. Coulomb provides an exam-
ple where the value does not exist. and proves that in this class of games the
max-nmin and min-max values alwayvs exist (see below for definitions). This
existence result was recently extended to all zero-sum stochastic games with
imperfect monitoring independently by Coulomb (2003) and Rosenberg et
al. (2003). Flesch et al. (2000) showed that a slight amount of imperfect
monitoring in non-zero-sum games can prevent the existence of equilibrium
pavoffs.

This chapter is organized as follows. In Section 1. we discuss a num-
ber of classical examples. in order to highlight a few fundamental issues
related to imperfect monitoring. In particular. we will argue that the is-
sue of imperfect monitoring is irrelevant both for zero-sum repeated games
and for A-discounted stochastic games. Alternatively. it is relevant only for
zero-sum stochastic games. in connection with the uniformity property men-
tioned above. In addition. we illustrate on two examples the consequences
of imperfect monitoring. The discussion in this section is mainly kept at a
heuristic level. In Section 2 we will be more specific in introducing a formal



model and in stating existence results. Section 3 contains a discussion of
the proofs. It first summarizes the main insights of the proof of Mertens
and Nevman (1981). It then explains how those insights are used in the
analvsis of games with imperfect monitoring. We conclude by discussing
related work.

1 Basic observations and examples

1.1 Repeated Matching Pennies

We start with one of the simplest games. Matching Pennies. A version of
the strategic form of this game is given by the table

L R
T 0 1
B 1 0

in which plaver 1 and plaver 2 are respectively the row and column playvers.
and whose entries contain the pavoff paid by plaver 2 to plaver 1.

The value of the one-shot Matching Pennies is 1/2. Each plaver has a
unique optimal strategy. which is mixed and assigns probability 1/2 to both
actlons.

Suppose that the game is repeated over time. Consider the strategy o
of plaver 1 that tosses a fair coin at each stage. independent of previous
tosses. and that plays T or B depending on the outcome. Let 7 be any
strategyv of plaver 2. Such a strategyv specifies. for each n € N. the mixed
move (that is to say a probability distribution over the set {L.R}) to be
used at stage n. as a function of all the information available at stage n.
For each given n. the (conditional) distribution of plaver 1's move at stage
n. given the information known to plaver 2. assigns probability 1/2 to each
action. Therefore. the (conditional) expected pavoff at stage n under (o. 7).
given plaver 2’s information. is equal to 1/2. By averaging over all possible
information sets of player 2 at stage n. this implies that the expected pavoff
under (o.7) at each stage n is 1/2.

As a consequence. the strategv o guarantees that the (expected) pavoff
to plaver 1 in the repeated game is exactly 1/2. whatever be the weights
assigned to the different stages. A similar analvsis holds true for plaver 2.

In other words. the value of the infinitelyv repeated Matching Pennies is
the same as that of the one-shot Matching Pennies. Moreover. the strategy in
the repeated game that repeats an optimal strategyv of the one-shot game is
optimal. Plainly. these conclusions are not specific to the Matching Pennies




game. and hold more generally for every repeated two-plaver zero-sum game.
Note that the preceding observation holds. whatever be the information
about past play that is available to the plavers. Therefore. the nature of
monitoring — perfect or imperfect - is irrelevant for the analvsis of repeated
ZETO-SUNL ganies.

To conclude this example. it may be helpful to realize why the conclu-
sions are dramatically different for non-zero-sum repeated games. Let G be
a given strategic form game. that is repeated over time. Generalizing upon
the above observation. the strategy profile that consists of repeating over
time a given equilibrium profile r of the game G is a Nash equilibrium of
the repeated game. whose pavoff coincides with the pavoff induced by x in
G. By contrast to zero-sum games. this need not be the unique equilibrium
pavoff of the repeated game. When it comes to a characterization of the
equilibrium pavoffs in the repeated game. the nature of monitoring is cru-
cial. Tvpical proofs of the so-called Folk Theorem (see. e.g.. Sorin. 1990.
or Aumann and Shapley. 1994). proceed along the following lines: given a
pavoff vector. a play path is identified that induces this pavoff. A strategy
profile is next designed. under which the plavers are required to follow the
play path. and to “punish”™ reciprocally in case of deviations from this path.
Clearly. whether or not this profile is an equilibrium depends on the extent
to which deviations are observed and deviators identified. A complete char-
acterization of equilibrium pavoffs is not vet available. A solution has been
provided by Lehrer (1989.1990.1992a.1992b) for various notions of undis-
counted equilibrium and/or under specific assumptions on the monitoring
structure. Only partial results have been established for discounted games.
see. €.g.. the January 2002 special issue of the Journal of Economic Theory.
and the references therein.

1.2 The Big Match

We here recall well-known results on the Big Match game. an example of an
absorbing stochastic game introduced in Gillette (1957) and later analyzed
by Blackwell and Ferguson (1968). Although the formal model of stochastic
games has vet to be introduced. this example will clarifv why the issue of
monitoring is irrelevant for the analysis of the discounted games. but not
if one seeks to establish optimality properties which are uniform w.r.t. the
discount factor.
The Big Match is described by the table

L R
T 0 1"
B 1 0

Both players have two actions. As long as plaver 1 plays the Bottom row.



his pavoft is given by the above table. As soon as he plays the Top row. say
at stage 6. the pavoff to plaver 1 at this stage and all subsequent stages is
0 or 1. depending on whether plaver 2 plaved the Left or the Right column
at stage 6. Equivalently. at stage . the play moves to one of two possible
trivial (absorbing) states. in which the pavoff is constant.

As proven in Shaplev (1953). the value vy of the A-discounted game satis-
fies a dynamic programming principle. Indeed. vy is uniquely characterized
as the value of the following one-shot zero-sum game I'(vy):

L R
T 0 1 }
Bl Ac(1-Nex | (1— ey ’

AMoreover. let r) denote an optimal mixed move of playver 1 in the game
T'(vy). Then the stationary strategy that plays x) at every stage is an
optimal strategy in the A-discounted stochastic game.}

Again. this property is not specific to the Big Match. Aore generally.
the existence of stationary optimal strategies in A-discounted games ensures
that the A-discounted value vy is independent of the type of monitoring. as
long as both plavers are alwayvs informed of the current state. Hence the
issue of monitoring is irrelevant for the analysis of A-discounted games.

We now discuss the existence of strategies that are s-optimmal in all A-
discounted games. provided A is close enough to zero. We shall discuss only
the problem faced by plaver 1. since the stationary strategy of plaver 2 that
assigns probability 1/2 to both actions is optimal for each A > 0. Assume
first that the assumption of perfect monitoring holds. that is. at each stage
n. plaver 1 knows the complete sequence of actions selected by player 2 up
to stage n.

Blackwell and Ferguson (1968) devised a parametric family (ox)yen of
strategies. For n € N. define ¢, to be the excess number of stages up to
n in which plaver 2 selected the Left column: e, = [, — r,. where [, and
r, are respectively the number of stages up to stage m in which plaver 2
plaved the Left and the Right columns. The strategy o plays the Top row

with probability ﬁ (assuming plaver 1 plaved the Bottom row in all

previous stages). Then there is a constant Ax such that for every strategv
7. the A-discounted payvoff induced by o~ and 7 is at least \2(2 provided
A < An: for a proof of this result see Blackwell and Ferguson (1968) and

Coulomb (1996).

'One can check that for the Big Match. v = 1/2. plaver 1 has a unique optimal
strategy that assigns probability A/(1 + A) to the Top row. and playver 2 has a unique
optimal strategy that assigns probability 1/2 to each column.



The intuition behind this strategy is as follows. Suppose that e, > 0.
so that so far plaver 2 plaved the Left column niore often than the Right
column. In this case plaver 1 does not want the game to terminate: as long
as the frequency of Left is higher. his pavoff by plaving the Bottom row is
more than 1/2. Therefore. plaver 1 decreases the probability of plaving the
Top row. If. on the other hand. e, < 0. plaver 1 would like the game to
terminate. so he increases the probability of playving the Top row. The effect
of any given stage on the probability of plaving the Top row is small. so that
any strategic manipulation of future behavior of plaver 1 by plaver 2 comes
at the cost of being absorbed to a bad pavoff while the manipulation takes
place. However. this effect is large enough. so that if liminf, _, (e,) < 0.
plaver 1 will eventually play the Top row.

We postpone the discussion of the strategies devised by Mertens and
Nevinan (1981) to Section 3.1. In a nut-shell. according to Mertens and
Nevman. at every stage n plaver 1 plays a stationary A,-discounted strategyv
Ty, . where A, is defined recursively as a function of A,_; and of the choice
of plaver 2 in stage n — 1.

To contrast with the full monitoring case. we now assume that plaver 1
receives no information about past moves of plaver 2. Since the game stops
at the first stage 8 in which plaver 1 chooses the Top row. a strategy of plaver
1 reduces here to a sequence x = (r,)p,en. with the interpretation that x,
is the probability assigned to the Top row at stage n. assuming 6 > n.

Let such a strategy x be given. We shall now check that. given £ > 0.
there is a replv 7 of plaver 2 such that the expected A-discounted pavoff
under x and 7 is at most =. provided A is close enough to zero. Thus. by
playing properly. plaver 2 can lower the expected pavoft of plaver 1 as close
to 0 as he wishes. This will prove that plaver 1 cannot guarantee a positive
pavoff in all discounted games with sufficiently low discount factor.

Let = be given. As x is given. there is N sufficiently large such that the
probability that the game reaches stage N and plaver 1 playvs the Top row at
least once after that stage is at most /2. that is. P(N <6 < +x) < /2.
Let 7 be the pure strategy that plavs the Left column up to stage N. and
the Right column afterwards. If plaver 1 plavs the Top row at some stage
n < N, the terminal payvoff is 0. Since the probability that plaver 1 playvs the
Top row after stage N is at most £/2. and since after stage N plaver 2 plays
the Right column. the expected A-discounted pavoff from stage N on. when
restricted to the event that play reaches stage V. is at most £/2. Therefore.
if A is sufficiently small so that the contribution of the first N stages to the
A-discounted pavoff is at most =/2. we deduce that the A-discounted payvoff
under (x,7) is at most =.



1.3 A modified Big Match

We here discuss a striking example due to Coulomb (1992). which is a mod-
ification of the Big Match. The game is given by the matrix

L M R
T 0* 1* g
B 1 0 ki

where ~ > % is arbitrary. If either the action combination (7.L) or the
action combination (7. 13[) is plaved. the play moves to an absorbing state
with constant pavoff. Note that the current state can change at most once
along any play. as in the Big Match. This game differs from the Big Match
by the adjunction of the column R.

Assuming perfect monitoring. this extra column makes no difference.
since 7 > 1/2 . Indeed. let o be any strategy in the Big Match. and define
a strategy ¢ in the present game as follows. Given a history h. ¢ plays at h
the mixed move that would be plaved by o at h. where h is obtained from h
by deleting all stages in which playver 2 plaved R. It can be checked that ¢
guarantees 1/2— = in the A-discounted game. as soon as ¢ guarantees 1/2—=
in the A-discounted Big \Match.

We shall now assume that plaver | is only imperfectly informed of plaver
2's past choices. Specifically. we shall assume that. whenever playver 1 plavs
B. he is “told”™ "L if playver 2 plaved L. and "M or R” otherwise. The
information received by plaver 1 upon playving T is irrelevant for the present
analyvsis. as well as the signals for plaver 2.

We now check that in this game player 2 can do much better than in the
Big Match. Specifically. given any strategy o of plaver 1 and any £ > 0. we
shall exhibit a strategv 7 of plaver 2 such that the expected A-discounted
pavoff under (o.7) is at most =. for every A close enough to zero. This
result is striking because the signalling structure and the pavoffs are such
that this game is a Big Match with perfect monitoring with an additional
column which pavoffs can be as high as we want. Nevertheless. the highest
quantity that plaver 1 can guarantee in any discounted game with small
enough discount factor decreases from 1/2 which is the value of the Big
Match with perfect monitoring to 0.

Define 6 to be the first stage in which either (7. L) or (T. M) is playved.
so that 6 is the stage at which the game effectively terminates.

Let y be the stationary strategy of plaver 2 that plays L and R with prob-
abilities £/2 and 1 — /2 respectively. and let ¢’ be the stationary strategy of
plaver 2 that plays L and M with probabilities /2 and 1 — =/2 respectively.

If the probability that under (o.y) the game terminates in finite time is
1. then the probability that under (o.y) the game terminates by (7. L) is 1.

=1



so that for every A sufficiently small. the A-discounted pavoff under (o.y) is
at most z. as desired.

So assume that this probability is strictly less than 1. Therefore. there is
N such that the probability that under (o.y) stage N is reached and plaver
1 plays the Top row after stage N is at most =/2. Let 7 be the strategy that
coincides with y up to stage N. and with y’ afterwards. Since the signal to
plaver 1 is "M or R”. whether the action pair is (B. M) or (B.R). as long
as plaver 1 follows ¢ and does not play the Top row. he cannot tell whether
he plavs against y or against 7. Since the probability that plaver 1 plavs
the Top row after stage N is at most /2. the probability that plaver 1 can
distinguish between y and between 7 is at most /2. This means that the
probability that under (o.7) plaver 1 plavs the Top row after stage N is
at most £/2. while the probability that plaver 2 plays L at any given stage
after stage N is 1 —=/2. so that the expected A-discounted pavoff. restricted
to the event that the gamne is not terminated before stage N. is at most =.
If X is sufficiently small so that the contribution of the first N stages to the
discounted pavoff is at most . we deduce that the expected A-discounted
pavoff under (o.7) is at most 2z.

The two phases in the definition of 7 have a natural interpretation. In
the first phase. plaver 2 exhausts the probabilityv that the play will end up
in an absorbing state. In the second phase. plaver 2 switches to a mixed
move that vields a low stage pavofl. The fact that the mixed moves used
by plaver 2 in the two phases cannot be distinguished by plaver 1 (as long
as he plavs B) guarantees that the probability that the play moves to an
absorbing state in the second phase is very low. This two-part definition of
a reply of plaver 2 to a given strategy of plaver 1 turns out to be a powerful
tool. see Section 3.4.

2 The model and the results

2.1 Stochastic games with imperfect monitoring

We proceed to the model of stochastic games with imperfect monitoring.
Given a finite set K. A(A') will denote the set of probability distributions
over K. An element k € A will be identified with the element of A(K’) that
assigns probability one to k.

A two-person zero-sum stochastic game with imperfect monitoring is de-
scribed by (1) a set S of states. (ii) action sets A and B for the two plavers.
(iii) a daily reward function r : S x A x B — R. (iv) signal sets M and M?
and (v) a transition function ©': S x A x B — A(M?! x A% x S). The sets
S.A.B.M" and M? are assumed to be finite.

The game is plaved in stages. An initial state s; is given and known to
both plavers. At each stage n € N. (a) the plavers independently choose
actions a, € 4 and b, € B: (b) a triple (m}.m?2.s,.1) is drawn according
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to U(8y.ay.by): (¢) plavers 1 and 2 are only told m}, and m?2 respectively
and (d) the game proceeds to stage n + 1.

We denote by ¢! the marginal of ¢ on M*. It stands for the distribution
of plaver 1's signal. as a function of the current state and the current action
choices. Unlike in the previous examples. note that we allow for the case
where the signal depends stochastically on (s.a.b). We will alwavs assume
that each plaver alwavs knows the current state. and has perfect recall (i.e..
remembers his past choices and past information).

This implies that ¢! is such that (s.a) = (s".a’) assoon as v'!(s.a.b)lm!] >
0 and vl(s".a".b')[m!] > 0. for some m! € Ar'.

We define accordingly +*? as the marginal of v over A/2. We also denote
by ¢ the marginal of v on S. Thus. g(s.a.b)|[s’] is the probability of moving
from s to s'. if the plavers play a and b.

In a sense. ! provides all the information plaver 1 has on plaver 2's
current move. However. since the signals to the two plavers can be corre-
lated. the pair (v!.v?) does not fully describe the information available to
plaver 1 on plaver 2's signal. Therefore. our model is more general than
a model in which. given (s.a.b). the next state and the signals are chosen
independently.

A behavior strategy of plaver 1 is a sequence o = (0, )p>1 of functions
on s HY — A(4). where H! = S x (A*)"~1is the set of “private”™ histories of
plaver 1 at stage n. A stationary strategy depends only on the current stage.
Hence. a stationary strategy of plaver 1 is described by a vector (r9)4cs in
(A(A))°. with the interpretation that x* is the mixed move used whenever
the current state is s € S. Strategies 7 of plaver 2 are defined analogously.
with obvious changes. We let Hy = (S x 4 x B x M x M*)N denote
the set of plays. For i = 1.2. H! denotes the cylinder algebra over H.
induced by H!. and we let Hy = o(HL.H2.n € N) denote the o-algebra
gencrated by all cvlinder sets. A given strategy pair (0. 7). together with an
initial state s € S. induces a probability distribution Py, . over (H..H ).
Expectations w.r.t. Py, . are denoted E, , .. Note that the initial state is
a parameter. and not a data of the game.

Given A € (0.1). the A-discounted pavoff induced by a strategyv pair
(0. 7) starting from state s € S. is given by

(s.0.7) = Eg 5+ )\Z(l — N (s an. by)

n=1

The seminal result of Shapleyv (1953) asserts that the A-discounted game has
a value vy that does not depend on «. That is. for each s £ S. the zero-
sum game with pavoff function ~)(s.-.-) has a value. We now introduce the
definitions of the uniform properties we will be dealing with.



Definition 1 Let 0 € RS. Player 1 can guarantee o if for every = > 0
there exists a strategy o and Ay € (0.1) such that:

Vs € S.VT.VA € (0. Ag). ~a(s.0.7) > ofs) — =.
We then say that the strategy o guarantees © — =.

Definition 2 Let o € R, Player 2 can defend o if for every = > 0 and
cvery strategy o of player 1 there exists a strategy T of player 2 and Ay €
(0.1). such that:

Ys € S.YA € (0. hg).a(s.0.7) < ofs) + =
We then say that the strategy 7 defends o — = against o.

The definitions of a vector guaranteed by plaver 2. and defended by
plaver 1. are similar. with the roles of the two plavers exchanged.

Definition 3 4 wvector v € R s

e the (uniform) value of T if both players can guarantee v:

e the (uniform) maz-min if player 1 can guarantee v and player 2 can

defend v:

e the (uniform) min-mar if player 1 can defend v and player 2 can guar-
antee v.

Assume that plaver 1 cannot guarantee o. Then. for every strategv o
and every Ao € (0.1). there is a strategv 7 such that qy(s.0.7) < o(s) — =.
for some A € (0. A\g) and some s € S. Plainly. it does not follow that plaver
2 can defend o. Therefore the existence of the max-min is not at all a trivial
matter.

Note that the value coincides with limy .ty . as soon as it exists. Also.
if both the max-min and the min-max exist. one has max-min < min-max.

2.2 The results

We first quote two known results. A stochastic game has perfect monitoring
if the signal received by a plaver alwayvs reveals the current state and the
action choices. Formally. given (s.a.b) # (s'.a’.V'). the supports of the
probability distributions ¢(s.a.b) and v'(s'.a’. ') are disjoint. for i = 1.2.

Theorem 4 (Mertens and Neyman, 1981) Every two-player zero-sum
stochastic game with perfect monitoring has a value.
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Actually. the proof of Theorem 4 is valid as soon as the signals the plavers
receive at each stage n contain the new state s, and the pavoff r,, at stage
n.

Let I be a stochastic game. A state s € S is absorbing if g(s.a.b) [s] = 1.
for every (a.b) € A x B. The game I' is absorbing if all states but one are
absorbing.

Theorem 5 (Coulomb, 1992, 1999, 2001) FEvery two-player zero-sum ab-
sorbing stochastic game has a mar-min and a min-maxr. The mar-min
(resp. the min-maz) depends on v only through v (resp. through ).

In the rest of this chapter. we will report on the following theorem.
obtained independently by Coulomb (2003) and Rosenberg et al. (2003).
Our goal is to identify the main ideas of the proof. and to strip the exposi-
tion from details. The interested reader should consult Coulomb (2003) or
Rosenberg et al. (2003)

Theorem 6 (Coulomb, 2003, Rosenberg, Solan and Vieille, 2003)
Every two-player zero-sum stochastic game with imperfect monitoring has a
mazr-min and a min-maz. The mar-min (resp. the min-max) depends on v
only through <! (resp. through v2).

The proof of Theorem 6 is quite related to the proof of Theorem 4. It is
independent of the proof of Theorem 5.

W.lo.g. we focus on the existence of the max-min value. and assume
that pavoffs are non-negative and bounded by 1.

3 Existence of the max-min — Highlights

3.1 On Mertens and Neyman’s (1981) proof

The proof of Theorem 6 builds upon the proof of Theorem 4. We therefore
start by recalling the main insights of Mertens and Nevinan (1981. hereafter
AMN). We will next single out the main computational step in their proof. and
discuss the additional issues that arise in games with imperfect monitoring.

AN offer a wide class of s-optimal strategies o for plaver 1. All share the
following structure. The play is divided into blocks of random finite length
L. On each block k. the strategy requires to play an optimal strategy in the
Ar-discounted game. Both Lj and A, depend on an auxiliary parameter. z:
Ly = L{z) and A = A(zj). In a sense. =z € R is a statistic that summarizes
all the relevant aspects of the plav. up to the beginning of block k.

11



To be specific. given two functions L : [0.+>) — N and A: [0. +x) —
R. and A < R. the sequences (zx). (Ly). (M) are defined recursively by

1 2 Z. B] =1. /\;‘» = /\(:};).L;‘» - L(:k).

+ S (ra—(ss,)

Br<n<Bj_1

By =B+ Li. 241 =max{ Zoz, +

NN

(1)

where v = limy__qty and 7, = 7($,,. a,. by) is the pavoff in stage n. In a first
approximation. the new value z;. of the statistic is obtained by adding to
the previous value z; the excess of pavoffs received over the values of the
states visited along the block.

AN provide sufficient conditions on the functions A(+) and L(-) under
which the above strategy o is s-optimal. for Af large. These conditions are
in particular satisfied for each of the two following simple functions.

Case 1: A(z) = ==% and L(z) = [A(z)"?].2 where a £ (0.1) satisfies |lty —
vllae < AT for every A sufficiently close to 0. and 3 > 1 satisfies
a3 <l

Case 2: A(z)=1/(zIn*z) and L(z) = 1.

Given an appropriate choice for A(-) and L(-). MX prove that ~,(s.0.7) >
v(s) — = for each 7. and that Eg; ; [Z,T;‘l /\kL;J < 4.

The proof relies on the semi-algebraicity of the map A — . due to Bew-
lev and Kohlberg (1976). and on inequality (2) below. which holds for every
7. since during block k ¢ follows an optimal strategy in the Ap-discounted

game:
Bk-lfl

Ecor | M Z (1 - /\l:)n#Bkrn - (1 - Ak>Lk7‘/\A~(SBA'1)i:HBk Z T/\k<513k>'
T’I:Bk

(2)

We conclude this section by a list of standing issues, that need to be

addressed in order to adapt MN's proof to games with imperfect monitoring.
This list is not exhaustive.

e In games with imperfect monitoring. the max-min need not be equal
to the limit of the A-discounted values. The above proof asserts that
plaver 1 can guarantee limy_qty. Therefore. we will have to define
auriliary discounted games. The proof when imperfect monitoring

. P . .
“For every ¢ € R. [¢] is the minimal integer greater than or equal to c.
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is present will assert that the max-min is equal to the limit of the
solutions to these auxiliary discounted games. The definition of these
auxiliary games will take into account the structure v of signals.

e The solution 'y of these auxiliary games will have to be semi-algebraic
as a function of A.

e In (1). the updating formula for z; involves ZBkSn<Bk-1 Ty the pay-
offs received int tlie previous block. Since this quantity is not available
to plaver 1. we will have to estimate it using only the information that
is available to plaver 1. In effect. we will use a measure of the worst
pavoff that is consistent with the distribution of the signals received
in the elapsed block.

e Finally. the =-optimality computation will have to be adapted.

As it so turns out. the last issue is easy. Specifically. replace in (1) the
Byo1— . ~

term niblk 1rn by an H}Bk-measurable variable Lp7.. and let A — wy

be a R%-valued semi-algebraic function. with w := limy_qwy. Let A(-).

L(-) satisfv MN's sufficient conditions. and Al be large enough. A close

inspection of NMN's proof reveals that the following Proposition holds

Theorem 7 There exists Ag € (0.1) such that the following holds. Let (o, 7)
be a strategy pair such that
Eqor MLk + (1= MeLi)ws, (sB,_, ) HE, | = wa, (s8,) — %AA,LA.. (3)

—_

P.y--a.s. for every k. Then for each A € (0. Ag).

+x
E.o- A Z(l — /\)"*lﬁn > w(s)—z. where ﬁn =7% for B < u < Bj.q.

n=1
(4)
Moreover.
+2X
Eoor | MLi| <+ (5)
k=1

3.2 Auxiliary discounted games

We let a stochastic game I' = (S.A.B. M. Af%.v.7) be given. We here
define an auxiliary family of stochastic games. The stage pavoft of these
games incorporates the structure of signals.

A preliminary comment is in order. Consider first a repeated game with
imperfect monitoring. Assume that plaver 1 and plaver 2 consider using
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mixed moves r € A(A4) and y € A(B) in some given stage. If player 2
replaces y by another mixed move y’' € A(B). this replacement can possi-
bly have an effect on the future behavior of plaver 1 onlyv if it alters the
distribution of signals to plaver 1 at that stage. In other words. if ¢’ is
indistinguishable from y. in the sense that the distributions v!(z.y) and
vz ) of signals to plaver 1 coincide. then switching from y to y’ while
plaver 1 is using r has no incidence whatever on plaver 1's future behav-
ior.® This suggests that a proper modified pavoff function for plaver 1 is
7(r.y) = infr(zr.y'). where the infimum is taken over all y’ € A(B) that
are indistinguishable from y given r. That is. 7(zr.y) is the worst pavoff to
plaver 1. given that plaver 1's signals are consistent with y.

This equivalence relation and the corresponding modified pavoft func-
tion have plaved an important role in the analyvsis of games with imperfect
monitoring. see Aumann and Maschler (1995). Lehrer (1989. 1990. 1992a.
1992b) and Coulomb (1999. 2001).

However. this relation is not well suited for general stochastic games with
imperfect monitoring. Indeed. a mixed move y’ can be practically indistin-
guishable from y if the probability that plaver 1 can distinguish between y
and y’ is quite small compared to the discount factor. We therefore amend
it as follows. Given a discount factor A € (0.1). a state s € S. a mixed move
r € A(A). and an additional parameter = € (0.1). we say that y € A(B)
and = € A(B) are indistinguishable. written y ~) . 4, = if

vi(s.a.y) = v (s.a.2) for every a such that xja] > \/=.
Accordingly. we set

(s.x.y) = min r(s.r.z). (6)
ndesay
As above. it can be thought of as the worst pavoff consistent with a given
distribution of signals to plaver 1. The specific role of the parameter = will
be clarified later.

We briefly mention some basic properties of 75. Note first that 75 < r.
Since ~y ..y is an equivalence relation. one has 75(s.r.y) = 75(s.2.2)
whenever = ~y..; y. In addition. it can be checked that. for fixed A. =
and s. the function 75 (s. ...) is continuous with respect to y and upper semi-
continuous in the pair (r.y). Finally. the map (s. A.z.y) — ri(s.x.y) is
semi-algebraic.

We now proceed to introducing a vector v3. that will play the role of the
“value”™ of the auxiliary discounted game. Specifically. define v§ € RY as

#This is equivalent to the requirement that v! (a.y) = v'!(a.y’) for every action a € 4
that is played with positive probability under z.
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the unique solution to the fixed-point equation

v3(s) ;= max min {7 (s.7.y) = (1 - NE [es() Y. w e R,
/\( ) IGA(A)yEA{B){ )\( y) ( ) gls.r.y)t A( )}

(7)

1 Tt follows from this

where E .., ;) is the expectation w.r.t. ¢(s.r.y).
fixed-point property that the map (A.z) — ©¢5(s) is semi-algebraic.

One can relate v5 to the sup inf of some non-standard A-discounted game.
Indeed. define the (z.A)-game to be a A-discounted game. in which the
stage pavoff is 7{. The (z. A)-game differs from standard stochastic games
in several respects. At each stage. the plavers choose mized moves in A(4)
and A(B) (and not actions in 4 and B). In addition. the stage pavoff
function depends on the discount factor being used. It can be checked that
3, coincides with the sup-inf of the (. A)-game. when plavers are restricted
to pure strategies.

We conclude this section by offering a candidate for the max-min. Since
the map A +— v§(s) is semi-algebraic for fixed =. the limit limy g v§(s) ex-
ists for every = > 0. In addition. the auxiliary reward 73 is non-decreasing
w.r.t. =. hence so is limy—g v5(s). Asa consequence. the limit ¢ := lim. ¢ limy_o t§
exists. It turns out that ¢ is the max-min of the game I'. as we explain in

the following two sections.

3.3 Guaranteeing v

We here explain why plaver 1 can guarantee v. We shall relv on the tools
introduced in Section 3.1. and we first introduce the function w, that will
be used. Using the theory of semi-algebraic sets. there is a semi-algebraic

function A € (0.1) — =(A) € (0.1) such that A < =(\)? for each A. and
limy g ’L‘;M) = v. We set uy := '(';(/\). Besides. there is a semi-algebraic
map A € (0.1) — x5 = (75)ses € A(A)”. such that. for each s € S. x§
achieves the maximum in the definition of 1'§m. see (7). By semi-algebraicity
again. the set A(s) = {a € 4 : 15 [a] > A/=(A)} is. for X close enough to zero.
independent of A.

We now define the estimate 7y that is used by plaver 1 at the end of
block k to update the statistic z;. At the end of block k. plaver 1 collects the
signals he received during the block. For each state s € S. playver 1 computes
a mixed move §* € A(B) that is “most likelv™ given the signals he received
in state s. Specifically. for each state s € S. and each action a € A(s). plaver
1 computes the empirical distribution ps , of signals that he received in those
stages in which he plaved a while at state s (if there was no such stage. the
definition of pg, is irrelevant). The mixed move 3° is chosen to minimize
over y € A(B) the maximal discrepancy max, 5 Hps‘a - L'l(s.a.y)“x.

*The justification of why the max and min in (7) are achieved is omitted.
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Finally. plaver 1 sets
~ _ ! N ~A ) s s
TE = EZ ST, (s.a3,-¥°)-
€8S

where N is the number of times the state s was visited during block k. In a
sense. 7. is the worst (average) pavoff in block k. given that plaver 2 playved
a stationary strategyv that is consistent with the signals to playver 1.

The strategy of plaver 1 is defined as in Section 3.1. taking Case 1
specifications for A(-) and L(-). To be precise. we first choose d > 0 such
that =(A) < A9 for A close enough to zero. We next choose a < (1 —d.1).
3¢ (1.1/a) and we set A\(z) = =77 L(z) = [A(z)79].

We turn to the intuition of the proof. The crucial part is to show that the
inequality (3) is satisfied. provided A7 is large enough. To this end. we intro-
duce. for each s £ S. the average mixed move 7° used by plaver 2 in state s.°
This average mixed move ¥ can be related to the strategy y that is recon-
structed by plaver 1 at the end of the block. Indeed. fix a state s £ S. and
some action a € A(s). By the definition of A(s). at any visit to the state s.
the action a is plaved with probability at least A/z(A) > A=4. which is much
larger than 1/Lj. provided M is large enough. Thus. provided the number of
visits to s exceeds a small fraction of L. the action a will typically be plaved
many times. Since the action choices of the two plavers are independent
(conditional on past plav). it is quite likelv that the empirical distribution
of signals p, o will be very close to ¢! (s.a. 7). As a result. provided the state
s is visited more than a negligible fraction of L; stages. the reconstructed

strategyv 7 will be such that “Ll(s a.7) —vi(s.a.g%) ‘x is close to zero. By
6

. . . JETI ~= (A g —y ~=( Ap ) )
continuity. this will imply that 7'/\2 g )(s x3,.7%) is close to r)\;_’\k )(sn Ty, y*)
On the other hand. states that are visited less than a negligible fraction of Ly,

stages hardly contribute to 7. Therefore. the expectation E . - [L};?};iH}gkil

L VD I 1
seg NeTy, (s_mj\k.y“)}HBk].

of 7. given past history is close to Eg , ; (Z
Using the optimality of z,, . it can be checked — although this is not a
trivial observation — that the difference

A~ s =8y RSP =(Ax) g
ES.(T.T /\L*Z‘\S'T)\k b (5 'T:\k'y )T (1 - /\I\Lk‘)l)\‘k k (éBk‘])}HlBk —T,\(k ’ (‘gBk)

seS

is minorized by an amount of the order A, L. As a consequence. (3) holds.

"It is given by §° = ,\L Z"‘S”:S yn. where the summation runs over all stages of block
o0 . o
k. and where y, = 7(h}) is the mixed move used by plaver 2 in stage n.

%The formal proof involves many technical complications.
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3.4 Defending v

We here deal with the other side of the analysis. We will prove that plaver
2 can defend ©* := limy_g v for each = > 0. Let = > 0. and a strategy ¢ of
plaver 1 be given. Generalizing upon the example of Section 1.3. we shall
define a reply 7 in two steps.

First. we use the tools of Section 3.1 to construct a strategv 7 that
vields a low discounted pavoff against ¢. when measured in terms of r§. It
is convenient here to use the specifications of Case 1 for the functions A(+)
and L(-): L(z) =1 and A\(z) = 1/(zIn®z). In effect. plaver 2 updates his
summary = at everv stage. We define simultaneously and inductively the
strategy 71 and the estimate 7.

Consider a given stage n € N. and assume that 7 has already been
defined for the first n — 1 stages. together with 7,.--- .7,—1. Consequently.
playver 2 has in mind a fictitious discount factor A, = A(zy). as determined by
(1). At stage n. plaver 2 computes the conditional distribution of plaver 1's
action choice in stage n. given the past sequence of states. To be specific. we
set &1 = Pogry(an = - | $1.....8n). Note that this distribution involves
only the restriction of 71 to the first n — 1 stages. and the observation of past
states. so that player 2 is indeed in a position to compute &,. The strategy
71 recommends plaving a mixed move y,, € A(B). that satisfies

)\‘”Ff\n(sn' En' yTI) + (1 - )\n)E(](Sn-En-yn) {Tinj S Tf\n(sn)' <8)
We set r,, = ?in (Sn-&n-yn). This completes the definition of 7.

By the choice of y,, and the definition of 7,. (3) trivially holds (with the
inequality reversed). which implies that

o

-2
Econ [AD (1=N"""7 (sn-&noyn) | <07(s) +

n=1

(9)

provided A is close enough to zero.

The inequality (9) savs that. if the pavoff at everv given stage were
defined as the worst pavoff 5 . consistent with the actual choice of plaver
2. then the discounted payoff would be low. Since 75 < r. it however fails
to imply vy (s.0.71) < v(s) + 22. We now address this issue.

Given a stage n. we let 2, € A(B) be a mixed move such that z,, ~y -4, ¢,
yn and (s, En.zy) = an(sn.gn. yn). Hence. z, achieves the minimal pay-
off against &,. among all the mixed moves that are indistinguishable from

yn. By the definition of the equivalence relation ~, . the probability

2.8n.&n
(given the sequence of states) that at stage n. plaver 1 plavs an action that
might possibly distinguish y, from z, is at most | 4| A, /s. We next make

use of the fact that

=X
Es.n.n Z)\n <+
=1
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(see Theorem 7) to choose N € N such that Eg , - {Z":_\v /\n} < % Finally.
we let 7 be the strategv that coincides with 7 up to stage N. and plays z,
rather than y, in each subsequent stage n > N.

By the choice of N. the probability that plaver 1 will ever. from stage
N on. play an action that might possibly distinguish = from 7; is at most
‘4Ew- ‘Z;:\ /\nj < z. This implies that the probability distributions
P. .- and P, -, induced over the sequences of states differ by at most =.
Therefore.

) D rn‘ =E o7 7(50-&n- Cn)} =Eiqo- [;f\n (8n-&n-Yn )} (10)
S EL\AU.Tl {ﬁn (877' En‘ yT)J] + £,
The first equality simply states that the pavoft at stage n is the pavoff
function evaluated at the current state. with current mixed actions. The
second equality follows by the choice of z;,. The inequality follows from the
previous claim.
Together with (9). (10) implies that ~,(s.0.7) < ¢(s) + 2=. provided =
is small enough.

Note that the strategv 7 uses only the sequence of states. and not any
additional signal that plaver 2 may receive. It is immportant to observe that
2, need not satisfy (&) since ¢($n. &n-Yn) # G¢(Sp-&n- 2n). Hence. the two-part
definition of 7 cannot be avoided.

4 Concluding comments

The results discussed in the present chapter raise additional questions. We
here mention just a few.

Within the framework of this survev. it would be useful to characterize
the games that have a value. More precisely. given S. 4. B.A! and M?>.
it is interesting to know for which signalling structures ¢ the game has a
value. for every pavoff function 7.

The examples of Flesch et al. (2000) suggest that the analysis of non-
zero-sum stochastic games with imperfect monitoring will need additional
insights. This ficld is vet unexplored.

Finally. challenging problems arise as soon as one drops the assumption
that the current state is observed. The one-plaver case has been investigated
in Rosenberg et al. (2002). Thev prove that the value exists. in the sense
that the plaver can guarantee limy g ty. However. they leave unanswered
basic questions on the nature of s-optimal strategies.

In the two-plaver case. the model is related to stochastic games with
incomplete information (see Sorin. 1984. 1985. 2002. Sorin and Zamir. 1985,
Rosenberg and Vieille. 2000. Rosenberg et al.. 2002). Most work in this area
focused on the case where the state is a pair (k... and (i) the k-component
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is fixed at the outset of the game and known to one plaver only. while (ii)
the w-component can change from stage to stage. but is observed by both
plavers. A recent exception is the paper by Renault (2003). in which the
state s follows a Markov chain. that is. the evolution of s is unaffected
by action choices. and is observed only by one plaver. In this framework.
Renault proves the existence of the value. This literature assumes that
actions are observed.
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