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Abstract

We study the notion of excludability in repeated games with vec-
tor payoffs, when one of the players is restricted to strategies with
bounded computational capacity. We show that a closed set that does
not contain a convex approachable set is excludable when player 1 em-
ploys only bounded-recall strategies. We also show that when player
1 is restricted to finite automata, player 2 can exclude him from any
closed, non-convex set whose convex hull is minimal convex approach-
able.
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1 Introduction

In a seminal paper, Blackwell (1956) introduced and studied the notions

of approachability and excludability in repeated games with vector payoffs,

which are the analogues of the max-min level and the min-max level in stan-

dard repeated games with scalar payoffs.

In a repeated game with vector payoffs, a set is approachable by player 1

if player 1 has a strategy that guarantees, with arbitrarily high probability,

that the long-run average payoff remains arbitrarily close to the set from some

stage on, regardless of the strategy employed by player 2. A set is excludable

by player 2 if player 2 has a strategy that guarantees, with arbitrarily high

probability, that the long-run average payoff remains far from the set from

some stage on, regardless of the strategy employed by player 1.

Blackwell (1956) provided a geometric condition that guarantees that a

set is approachable, and proved that any convex set is either approachable

by player 1, or excludable by player 2. Spinat (2002) fully characterized

the family of approachable sets; he proved that if a closed set is minimal

(w.r.t. set inclusion) approachable then it satisfies Blackwell’s geometric con-

dition. Vieille (1992) studied the notions of weak-approachability and weak-

excludability, that were also introduced by Blackwell (1956), and proved that

any set is either weak-approachable or weak-excludable.

We are interested in studying repeated games with vector payoffs when

one of the players is restricted to strategies with bounded computational

capacity. Two classes of such strategies that were extensively studied in

the literature are strategies that can be implemented by finite automata

(see, e.g., Neyman, 1985, Rubinstein, 1986, Kalai, 1990), and bounded-recall

strategies, that is, strategies that may condition only on the last k pairs of

actions played in the game, for some fixed k (see, e.g., Lehrer, 1988, Aumann

and Sorin, 1989).

In a companion paper (Lehrer and Solan, 2003) we studied the notions

of approachability with automata, and approachability with bounded-recall
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strategies. That is, which sets are approachable by player 1, if he can only use

strategies that can be implemented by automata, or bounded-recall strate-

gies. We proved that the following three statements are equivalent for closed

sets.

• F is approachable with automata.

• F is approachable with bounded-recall strategies.

• F contains a convex approachable set.

In the present paper we concentrate on the notions of excludability against

automata, and excludability against bounded-recall strategies. A set is ex-

cludable against automata (resp. against bounded-recall strategies) by player

2 if player 2 has a strategy that ensures that when player 1 plays a finite

automaton (resp. bounded-recall strategy), the long-run average payoff is

bounded away from the set.

We provide a complete characterization for the family of sets which are

excludable against bounded-recall strategies: a set is excludable against

bounded-recall strategies if and only if it is not approachable by bounded-

recall strategies. Namely, if and only if it does not contain any convex ap-

proachable set. In the proof we analyze connectedness aspects of the set of

short histories when one of the players is restricted to bounded-recall strate-

gies.

Our result concerning excludability against automata is not as sharp. A

set is C-minimal approachable if it is closed, approachable, and its convex

hull does not strictly contain a convex approachable set. We show that a non-

convex C-minimal approachable set is excludable against automata. Since

any convex approachable set is approachable with automata, this implies

that a C-minimal approachable set is either convex and approachable with

automata, or non-convex and excludable against automata. For this result

we study the Markov chain induced over the states of the automaton when

the opponent plays a stationary strategy.
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We do not know whether any set which is not approachable with au-

tomata by player 1 is excludable against automata by player 2. Solving

this problem will reveal whether the two notions related to strategies with

bounded computational capacity are equivalent.

2 The Model and the Main Results

2.1 Repeated games with vector payoffs

In this section we define repeated games with vector payoffs.

A two-player repeated game with vector payoffs is a triplet (I, J, M), where

I and J are finite sets of actions for the two players, and M = (mi,j)i∈I,j∈J

is a vector payoff matrix, so that mi,j ∈ IRd for every i ∈ I and j ∈ J . We

assume throughout that ‖M‖∞ ≤ 1; that is, all payoffs are bounded by 1.

We denote by S and T the sets of strategies in the repeated game of the

players 1 and 2, respectively.

For every stage t denote by (it, jt) the joint action played by players 1

and 2 at stage t. The average payoff vector up to stage n is x̄n =
∑n

t=1 mit,jt

n
.

2.2 On bounded-capacity strategies

In this section we define two types of bounded-capacity strategies: strategies

with bounded recall, and strategies that can be implemented by automata.

Let k ∈ IN be a natural number. A k-bounded-recall strategy of player

1 (resp. player 2) is a pair (m, σ) (resp. (m, τ)) where m ∈ (I × J)k and

σ : (I × J)k → ∆(I) (resp. τ : (I × J)k → ∆(J)). When playing a k-

bounded-recall strategy (m, σ), at any stage player 1 plays σ(x), where x is

the string of the last k joint actions. He starts the game with the (virtual)

memory of m. Thus, at the first stage he plays the mixed action σ(m), at the

second stage he plays σ(m′, i1, j1), where m′ are the last k − 1 coordinates

of m and (i1, j1) is the realized pair of actions of the two players at the first

stage, and so on.
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We denote by SBR the set of all bounded-recall strategies of player 1.

A (non-deterministic) automaton A is given by (i) a finite set of states,

(ii) a probability distribution over the set of states, according to which the

initial state is chosen, (iii) a finite set of inputs, (iv) a finite set of outputs, (v)

a function that assigns to every state a probability distribution over outputs,

and (vi) a transition rule, that assigns to every state and every input a

probability distribution over states. The number of states of the automaton

is the size of the automaton.

An automaton implements a strategy for player 1 as follows. The initial

state of the automaton is chosen according to the initial distribution given in

(ii). At every stage, as a function of the current state an action of player 1 is

chosen by the probability distribution given in (v), and a new state is chosen

as a function of the pair of actions played (by both players), according to

the probability distribution given in (vi). SA denotes the set of player 1’s

strategies that can be implemented by an automaton.

Observe that every k-bounded-recall strategy can be implemented by an

automaton with |I × J |k states.

2.3 Excludability against bounded-capacity strategies

Let d(x, y) denote the Euclidean distance between the points x and y in IRd.

For every set F in IRd and every x ∈ IRd, let d(x, F ) = infy∈F d(x, y) be the

distance of x from F . For every δ > 0, let B(F, δ) = {x ∈ IRd : d(x, F ) ≤ δ}
be the set of all points which are δ-close to F .

Blackwell (1956) defined the notion of excludability in repeated games

with vector payoffs. A set F is excludable if player 2 can guarantee with

arbitrarily high probability that the long-run average payoff will never get

close to F from some point on.

Definition 1 (Blackwell, 1956) A set F is excludable by player 2 if there
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exists a strategy τ ∈ T such that

∃ε > 0,∀η > 0,∃N ∈ IN,∀σ ∈ S, Pσ,τ ( inf
n≥N

d(x̄n, F ) < ε) < η.

We are interested in studying when a given set is excludable by player 2,

provided player 1 is restricted to use bounded-recall strategies, and strategies

that can be implemented by automata.

Definition 2 A set F is excludable against bounded-recall strategies by

player 2 if there exists a strategy τ ∈ T such that

∃ε > 0,∀η > 0,∀σ ∈ SBR,∃N ∈ IN, Pσ,τ ( inf
n≥N

d(x̄n, F ) < ε) < η.

The set is excludable against automata if a similar condition holds, when

SBR is replaced by SA.

Observe that in this definition, N depends on the strategy used by player

1, whereas in Definition 1, it does not. If N is required to be independent

of the strategy employed by player 1, excludability against bounded-recall

strategies (or against automata) turns out to be equivalent to excludability.

Nevertheless, it is desirable that N depends only on the size of the memory of

the strategy (or on the size of the automaton), and not on the strategy itself.

Studying excludability against bounded computational capacity strategies

under this stronger definition is left for future research.

2.4 C-Minimal Approachable Sets and Sharp Points

To present our results, we define the dual notion of approachability.

Definition 3 (Blackwell, 1956) A set F is approachable by player 1 if

there exists a strategy σ ∈ S such that

∀ε > 0,∀η > 0,∃N,∀τ ∈ T , Pσ,τ (sup
n≥N

d(x̄n, F ) ≥ ε) < η.

In this case we say that σ approaches F .
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A set F is approachable if player 1 can guarantee with arbitrarily high proba-

bility that the long-run average payoff will be arbitrarily close to F . A closed

set F is minimal approachable if there is no proper closed subset of F which

is approachable.

For every pair (p, q) of mixed actions (i.e., distributions over the respective

action sets), denote by mp,q =
∑

i,j pimi,jqj the expected vector payoff. This

is the expected stage-payoff when player 1 plays the mixed action p and

player 2 plays the mixed action q.

Definition 4 (Spinat, 2002) A closed set F is a B-set if for every z ∈
IRd there is a mixed action pF (z) of player 1, and a point y ∈ A, such

that (i) d(z, y) = d(z, F ), and (ii) for every mixed action q of player 2,

〈z − y, mpF (z),q − y〉 ≤ 0.1

Blackwell (1956) proved that every B-set is approachable, and Spinat

(2002, Theorem 4) proved that every minimal approachable set is a B-set.

We are going to study closed approachable sets whose convex hull does not

strictly contain a convex approachable set. Denote by conv(F ) the convex

hull of F .

Definition 5 A closed set F is C-minimal approachable if there is no proper

closed and convex subset of conv(F ) which is approachable.

For any mixed action q of player 2, denote H(q) = {mp,q : p is a mixed

action of player 1}. When player 2 plays the mixed action q, the expected

stage-payoff is always in H(q), regardless of the mixed action chosen by player

2.

Definition 6 Let F be a closed set. A point x ∈ F is sharp in F (or simply

sharp) if for every ε > 0 there is some mixed action q of player 2 such that

H(q) ∩ F ⊆ B(x, ε).

1For z, y ∈ IRd, 〈z, y〉 =
∑d

i=1 ziyi is the standard inner product.

7



A point x in a convex set D is exposed if x is a unique point at which a

linear functional attains its maximum over D. That is, x is exposed if there

is y such that 〈x, y〉 > 〈x′, y〉 for every x′ ∈ D \ {x}.

Example 1 Consider the following game, where both players have two ac-

tions, payoffs are two dimensional, and the payoffs matrix is

2, 2

−1, 1

−1,−1

1,−1

One has

H(q) = conv{(1− 2q,−1 + 2q), (−1 + 3q,−1 + 3q)}.

The set F = [(2, 2), (0, 0)] ∪ [(1,−1), (0, 0)] is minimal approachable. Define

zβ to be the point (−1, β), − 1 ≤ β ≤ 1. For every −1 ≤ β ≤ 1 the closest

point to zβ in F is the origin. The graph of gβ(x) = 1−β2

β(β+5)
− x

β
, β 6= 0 is

perpendicular to zβ. Player 1 has a mixed action pβ = (3β+3
β+5

, 2−2β
β+5

) such that

for every mixed action q of player 2, the point mpβq lies on the right side of

the graph of gβ(x), β 6= 0. When β < 0 the graph of gβ meets the interval

[(2, 2), (0, 0)] at the point (1−β
β+5

, 1−β
β+5

) and when β > 0 gβ meets the interval

[(1,−1), (0, 0)] at the point (1+β
β+5

, 1+β
β+5

). Since (1−β
β+5

, 1−β
β+5

) and (1+β
β+5

, 1+β
β+5

) are

bounded away from the origin, there is a small λ > 0 such that convF \
conv{(0, 0), (λ, λ), (λ,−λ)} is still a convex approachable set. Therefore, F

is not C-minimal.

The point (0, 0) is not sharp. Indeed, when player 1 plays the mixed

action p = (3
5
, 2

5
) he ensures that for every mixed action q of player 2, the first

coordinate of mp,q is at least 1
5
, which is out of sufficiently small neighborhood

of (0, 0). Note that (2, 2) and (1,−1) are sharp, and therefore F does not

contain the convex hull of its sharp points.

We need the following result.

Lemma 1 Suppose that conv(F ) is approachable. Then, F is C-minimal

approachable if and only if any exposed point of conv(F ) is sharp.
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Proof. We start with the “only if” direction. If F is a singleton the

lemma trivially holds. We therefore may assume that F is not a singleton.

Let x be an exposed point of conv(F ), so that there exists y such that

〈x′, y〉 < 〈x, y〉, for every x′ ∈ F \ {x}. We have to prove that x is sharp.

Denote, for every δ > 0,

Mδ(x) = {x′ ∈ F : 〈x′, y〉 > 〈x, y〉 − δ}.

Since F is not a singleton, for δ > 0 sufficiently small conv(F \ Mδ(x)) is

non-empty, closed, convex and a strict subset of conv(F ). Since conv(F ) is

C-minimal approachable, conv(F \Mδ(x)) is not approachable. By Blackwell

(1956) every B-set is approachable, and thus conv(F \Mδ(x)) is not a B-set.

Therefore, for every2 δ > 0 there exist zδ ∈ IRd and yδ ∈ conv(F \ Mδ(x))

that satisfy d(zδ, yδ) = d(zδ, conv(F \Mδ(x))) such that for every p ∈ ∆(I)

there is q ∈ ∆(J) with 〈zδ − yδ, mp,q − yδ〉 > 0. By the Minmax Theorem,

for every δ > 0 there exists qδ ∈ ∆(J) such that

〈zδ − yδ, mp,qδ
− yδ〉 > 0 ∀p ∈ ∆(I). (1)

Since yδ is the closest point to xδ in conv(F \Mδ(x)),

〈zδ − yδ, a− yδ〉 ≤ 0 ∀a ∈ conv(F \Mδ(x)). (2)

Eqs. (1) and (2) imply that H(qδ) ∩ conv(F \ Mδ(x)) = ∅. Thus, H(qδ) ∩
conv(F ) ⊆ Mδ(x). However, since x is exposed, ∩δ>0Mδ(x) = {x}, and

therefore for every ε > 0 there is δ > 0 such that Mδ(x) ⊂ B(x, ε). Thus, for

every ε > 0 there is qδ such that H(qδ)∩ F ⊆ H(qδ)∩ conv(F ) ⊆ B(x, ε), so

that x is sharp.

As for the “if” direction, assume that conv(F ) is approachable and all

its exposed points are sharp. Suppose to the contrary that there is a proper

2Here and below, when we say “for every δ > 0” we mean “for every δ > 0 such that
F \Mδ(x) is not empty.”
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closed and convex subset G of conv(F ) which is approachable. Thus, not all

extreme points of conv(F ) are in G.

Straszewicz Theorem (see Rockafellar, 1970, p. 167) states that the set of

exposed points is dense in the set of extreme points. Therefore, there is an

exposed point x of conv(F ) which is not in G. Furthermore, since G is closed,

there is ε > 0 such that B(x, 2ε)∩G = ∅. By assumption this exposed point

is sharp in conv(F ). It means that there is a mixed action of player 2, qε,

such that H(qε) ∩ G = ∅. However, this implies that G is not approachable

by player 1. Indeed, if player 2 plays the mixed action qε at every stage, the

long-run average payoff is in H(qε), which is bounded away from G. This

contradicts the assumption that G is approachable.

2.5 The Main Results

Our main result concerning excludability against automata is the following.

Proposition 2 A closed set F that does not contain the convex hull of its

sharp points is excludable against automata.

Corollary 1 Let F be non-convex closed C-minimal approachable set. Then,

F is excludable against automata.

Proof. By Straszewicz Theorem the closure of the convex hull of the set

of exposed points of conv(F ) is conv(F ). Lemma 1 implies that the exposed

points of conv(F ) are sharp, and therefore the closure of the convex hull

of the sharp points in F is conv(F ). Since F is non-convex and closed, we

conclude that F does not contain the convex hull of its sharp points. The

corollary follows from Proposition 2.

By Lehrer and Solan (2003, Proposition 1), any convex approachable set

is approachable with automata. This result, along with Corollary 1, implies

the following.
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Corollary 2 A closed C-minimal approachable set is either convex and ap-

proachable with automata, or non-convex and excludable against automata.

Our main result concerning excludability against bounded-recall strate-

gies is the following.

Proposition 3 A closed set that does not contain a convex approachable set

is excludable against bounded-recall strategies.

The dual notion to excludability against bounded-recall strategies is ap-

proachability with bounded-recall strategies.

Definition 7 (Lehrer and Solan, 2003) A set F is approachable with

bounded-recall strategies by player 1 if for every δ > 0 there exists k ∈ IN

and a k-bounded-recall strategy σ that approaches B(F, δ).

Lehrer and Solan (2003, Proposition 2) proved that any convex approach-

able set is approachable with bounded-recall strategies. This, together with

Proposition 3, implies that any set that is not approachable with bounded-

recall strategies is excludable against bounded-recall strategies.

To make the discussion complete, we briefly mention the notion of exclud-

ability with a bounded computational capacity strategy. A set is excludable

with a bounded-recall strategy (resp. with automata) by player 1 if player 1

has a bounded-recall strategy (resp. a strategy that can be implemented by

an automaton) that ensures the long-run average payoff remains away from

the set. Theorem 1 in Lehrer and Solan (2003) implies the following.

Corollary 3 A set is excludable with bounded-recall strategies (or with au-

tomata) by player 1 if and only if the interior of the complement of the set

contains a convex approachable set.
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3 Excludability

3.1 Excludability against automata

Here we prove Proposition 2, which states that any closed set that does not

contain the convex hull of its sharp points is excludable against automata.

The following estimate on Markov chains with finite state space will be

useful. Chebychev’s inequality (Shiryayev, 1984, p. 121) and the decompo-

sition theorem of irreducible chains (see Feller, 1968, p. 405) imply that for

every finite irreducible Markov chain3 there is a constant C > 0 such that

for every two states s, s′, and every λ > 0,

P

(∣∣∣∣1ls1=s + . . . + 1lsn=s

n
− π(s)

∣∣∣∣ > λ | the initial state is s′
)

<
C

nλ2
, (3)

where 1lst=s = 1 if the state at stage t is s and 0 otherwise, and π =
(
π(s)

)
s

is the (unique) invariant distribution.

Proof of Proposition 2: Let F be a closed set that does not contain the

convex hull of its sharp points. Thus, there are sharp points x1, ..., xL and

non-negative numbers, λ1, ..., λL, such that
∑L

l=1 λl = 1 and z :=
∑L

l=1 λlxl 6∈
F . Choose δ > 0 such that d(z′, F ) > 2δ. Thus, d(

∑L
l=1 λlB(xl, δ), F ) > δ.4

Since (xl)
L
l=1 are sharp, there are mixed actions q1, ..., qL ∈ ∆(J) such

that H(ql) ∩ conv(F ) ⊆ B(xl,
δ
2
), for l = 1, ..., L.

Define a strategy τ that plays in blocks whose lengths are history depen-

dent.

• There are L types of blocks, one for each l = 1, ..., L. Block of type l

is referred to as an l-block.

• For every l, at every stage of an l-block τ plays the mixed action ql.

3A finite Markov chain is irreducible if any state can be reached from any other state.
4For every two sets A,B ∈ IRd and every λ1, λ2 > 0, λ1A + λ2B := {λ1x + λ2y : x ∈

A, y ∈ B}, and d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
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• Suppose that the k-th block is an l-block. The block terminates when

two conditions are simultaneously satisfied: (i) the average payoff within

this block is in B(xl, δ), and (ii) the length of the block is at least k4+k.

If the average payoff along any prefix of the block longer than k4 + k

is never in the respective ball, the block never terminates.

• Suppose that at stage n the k-th block terminates. Let ml be the

overall number of stages up to stage n spent in l-blocks (in particular,∑L
l=1 ml = n). The next block is a j-block if j is the minimal index in

argmaxl=1,...,L(λl − ml

n
). Thus, if the gap between λj and the relative

frequency of past stages spent in j-blocks is maximal, it means that

j-blocks are under-played. To correct that, a j-block is played, and

thereby the gap is narrowed.

To prove that F is excludable against automata, we fix an automaton A

and η > 0, and we show that there is NA,η ∈ IN such that

PA,τ

(
inf

n≥NA,η

d(x̄n, F ) <
δ

4

)
< η. (4)

To this end, we show that with probability at least 1− η/2, either (A.i)

there are finitely many blocks, so that the last block never terminates, and

the long-run average payoff is out of F , or (A.ii) there are infinitely many

blocks, and the ratio between the length of the k-th block and the total

length of all preceding blocks goes to 0, as k goes to ∞.

Suppose that (A.i) holds. Let k be the index of the last (infinite) block,

and let l be its type. Since at every stage of the block player 2 plays the

mixed action ql, the average payoff along any prefix of the block is in H(ql).

Since the block never terminates, the average payoff is not in B(xl, δ). Since

H(ql) ∩ conv(F ) ⊆ B(xl,
δ
2
), the average payoff is not in B(conv(F ), δ

2
).

Suppose that (A.ii) holds. For l ∈ {1, . . . , L} let πl,n be the proportion

of stages prior to stage n that are spent in l-blocks. We claim that (πl,n)n∈IN

converges to λl as n goes to infinity. Indeed, letting len(k) denote the length
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of the k-th block, we obtain that πl,n ≤ λl + maxk len(k)
n

, where the maximum

is over all k such that block k does not start after stage n. Since both (λl)l

and (πl,n)l sum up to 1, this implies that πl,n ≥ λl − |L| × maxk len(k)
n

, and the

claim follows since by (A.ii) maxk len(k)
n

goes to 0 as n goes to infinity. Since

average payoff during (a finite) block k is in B(xl, δ), this means that the

long-run average payoff is in B(
∑L

l=1 λlxl, δ) = B(z, δ), which is disjoint of

B(F, δ).

Choose N = NA,η sufficiently large such that with probability 1− η (A.i)

and (A.2) hold, and, in addition,

(B.1) all blocks that start after stage δN are finite, and

(B.2) for each n ≥ N and every l = 1, . . . , L, |πl,n − λl| < δ
2
.

As explained in the preceding two paragraphs, on the respective set infn≥N d(x̄n, F ) ≥
δ
2
, and Eq. (4) holds.

We now turn to prove that with probability at least 1 − η
2

either (A.i)

or (A.ii) hold. Denote by S the set of states of the automaton. Any mixed

action q of player 2 induces a Markov chain M(q) over S, which reflects

the evolution of the automaton when player 2 plays at every stage the mixed

action q, regardless of past play. We denote by P(A,s),ql
the law of this Markov

chain, when s is the initial state.

By Seneta (1981, Theorem 4.7) there are constants c1 > 0 and ρ ∈ (0, 1)

such that for every l = 1, . . . , L, the probability that by stage k no irreducible

subset for M(ql) is reached is at most cρk:5,6

P(A,s),ql
(sk is in some irreducible subset for M(ql)) ≤ cρk.

Therefore, there is k1 ∈ IN such that the probability that for every k ≥ k1,

an irreducible subset (in the respective Markov chain) is reached by stage

5A subset of states is irreducible if any state in the subset can be reached from any
other state in the subset, and no state outside the subset can be reached from any state
in the set.

6Observe that the family of irreducible sets depends on ql.
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k of block k, is at least 1 − η/4. Denote by E1 the corresponding event.

Observe that on E1, in each block k the process spends at least k4 stages in

an irreducible subset.

By Eq. (3), there is a constant c2 > 0 such that for every l = 1, . . . , L,

and every pair of states s, s′ in the same irreducible set E for M(ql),

∀n ≥ k4, P(A,s′),ql

(∣∣∣∣1ls1=s + . . . + 1lsn=s

n
− πE

l (s)

∣∣∣∣ >
1√
k

)
<

c2

k3
, (5)

where πE
l (s) is the invariant distribution of M(ql) in E. This implies that

P(A,s′),ql

(∣∣∣∣1ls1=s + . . . + 1lsn=s

n
− πE

l (s)

∣∣∣∣ >
1√
k

∀n ≥ k4

)
<

c2

(k − 1)2
.

(6)

Eq. (6) bounds the probability that the empirical frequency of visits to s

after n stages is close to the invariant distribution at s, provided the initial

state is in the same irreducible set as s, for every n sufficiently large. If lk

is the type of block k, Lk is its length, Ek is the irreducible set the process

was absorbed to, and νk(s) is the empirical frequency of visits to each state

s ∈ Ek along the block, then Eq. (6) implies that

PA,τ

(∣∣∣νk(s)− πEk
lk

(s)
∣∣∣ >

1√
k
| sk ∈ Ek, Lk < ∞

)
<

c2

(k − 1)2
. (7)

Summing up Eq. (7) over k, we deduce that there is k2 ∈ IN such that

PA,τ

(
∀k ≥ k2, |νk(s)− πEk

lk
(s)| > 1√

k
| E1, Lk < ∞ ∀k

)
< 1− η

4
. (8)

Denote by E2 the respective event, and by E := E1 ∩ E2. We show that on

E either (A.i) or (A.ii) hold. As PA,τ (E) > 1 − η
2
, this implies the desired

result.

For every irreducible set E for M(ql), denote by yE
l the long-run av-

erage payoff when the initial state of the automaton A is within E, and

player 2 plays the mixed action ql at every stage. It is given by yE
l =

15



∑
s∈E πE

l (s)mps,ql
∈ H(ql), where ps is the mixed action played by the au-

tomaton at state s.

Recall that H(ql) ∩ conv(F ) ⊆ B(xl,
δ
2
). Set ζ = 1

2
min{d(yE

l , conv(F )) :

d(yE
l , conv(F )) > δ

2
}, and k0 = max{k1, k2,

1
(ζ−δ/2)2

}, and let k ≥ k0.

We now restrict ourselves to the event E , and show that either (A.i) or

(A.ii) hold. Consider block k of type l, and suppose that the process is

absorbed to the irreducible set E. If yE
l 6∈ B(xl,

δ
2
) then yE

l 6∈ B(xl, ζ). Since

k ≥ 1/(ζ− δ
2
)2, average payoff in any prefix of the block longer than k4+k−1

remains in B(yE
l , ζ − δ

2
), which is disjoint of B(xl,

δ
2
), so that the block is

infinite.

If yE
l ∈ B(xl,

δ
2
) then average payoff in any prefix of the block longer than

k4 + k− 1 is in B(yE
l , δ

2
) ⊆ B(xl, δ), so that the block terminates after k4 + k

stages.

In particular, if (A.i) does not hold, so that all blocks are finite, the ratio

between Lk and
∑

j<k Lj is bounded by k4+k∑
j<k j4 < 2k4

k3 , which goes to 0 as k

goes to infinity, and (A.ii) holds.

3.2 Excludability against bounded-recall strategies

Here we prove Proposition 3, which states that a closed set that does not con-

tain a convex approachable set is excludable against bounded-recall strate-

gies.

When player 1 plays a k-bounded-recall strategy, we denote by mn his

memory at stage n, that is, the k-history composed of the k pairs of actions

played in stages n− k, n− k + 1, . . . , n− 1.

The next lemma asserts that for every fixed bounded-recall strategy of

player 1 there is a reply of player 2 that ensures the long-run average payoff

remains far from F .

Lemma 2 Let F be a closed set that does not contain any convex approach-

able set. Then there is ε > 0, and for every k ∈ IN and every σ : (I × J)k →

16



∆(I) there is a strategy τ of player 2 such that

∀η > 0,∃N ∈ IN,∀m ∈ (I × J)k, P(m,σ),τ

(
inf
n≥N

d(x̄n, F ) < ε
)

< η.

Proof. Fix k ∈ IN and σ : (I × J)k → ∆(I).

Step 1: Irreducible sets in the space of memories. For every two

memories m,m′ ∈ (I × J)k, m leads to m′ if and only if by playing properly,

player 2 can make the game move in a single stage from memory m to memory

m′ with positive probability. Formally, this happens if and only if m =

(i1, j1, . . . , ik, jk), m′ = (i2, j2, . . . , ik, jk, i
′, j′), and σ(i′ | m) > 0.

Let M be the collection of all irreducible sets w.r.t. the “lead to” rela-

tion. That is, for every M ∈ M, every memory m ∈ M leads only to mem-

ories in M , and for every m, m′ ∈ M there is a sequence of memories m =

m1, m2, . . . ,mL = m′ such that ml leads to ml+1 for each l = 1, 2, . . . , L− 1.

When we say that m ∈M, we mean that m ∈ M , for some M ∈M.

For every irreducible set M we fix an element mM ∈ M . Since each

M ∈M is irreducible, there is a strategy τ∗ and a positive integer N∗
1 , such

that

∀M ∈M,∀m ∈ M, P(m,σ),τ∗(mn = mM for some n ≤ N∗
1 ) > 1− δ.

That is, player 2 can ensure that with high probability the play moves to

the memory mM in a bounded number of stages, provided it starts in the

irreducible set M .

Step 2: Irreducible sets and Approachability

Fix m ∈ M. By Lehrer and Solan (2003, Proposition 3), there is no

bounded-recall strategy that approaches F . Therefore, there is a strategy τm

of player 2, and δ̂m > 0, that on a set of play paths whose probability is at

least δ̂m the average payoff is infinitely often far from F by more than δm.

Since the number of possible memories is finite, δ̂ := 1
8
minm∈∪M∈MM δ̂m > 0.

Thus, we conclude that there is δ > 0, independent of m, and an increasing

17



sequence of integers (N(k))k∈IN such that for every m ∈M,

P(m,σ),τm

(
sup

n≥N(k)

d(x̄n, F ) > 7δ ∀k ∈ IN
)

> δ.

Since payoffs are in a compact set, there is cm ∈ IRd satisfying d(cm, F ) ≥
8δ, and two increasing sequences of integers (N1(k), N2(k))k∈IN , such that

P(m,σ),τ

(
inf

N1(k)≤n<N2(k)
d(x̄n, cm) < δ

)
> δ.

Denote cM := cmM
. We now claim that there is a strategy τ̂ of player 2,

and a stopping time ν, such that

∀M ∈M,∀m ∈ M, P(m,σ),τ̂

(
d(x̄ν , cM) < 2δ

)
= 1. (9)

Indeed, τ̂ starts by playing randomly, until some irreducible set M ∈ M is

reached (that is, until the first stage n that satisfies mn ∈ M.) As player 2

observes past play, he knows the memory of player 1 at every stage. τ then

plays in blocks of random size. Let Bk be the first stage of block k, so that

mBk
is the memory of player 1 at that stage. At the beginning of block k, τ

forgets past play, and follows τmBk
for Bk

δ
stages. It then continues to follow

τmBk
, until the first stage n in which average payoff during the block is in

B(cm, δ), or until the length of the block is N2(l), where l is the minimal

integer satisfying N1(l) ≥ Bk

δ
, whichever comes first.

Let N∗
2 ∈ IN satisfy

∀M ∈M,∀m ∈ M, P(m,σ),τ̂

(
d(x̄min{ν,N∗

2 }, cM) < 2δ
)

> 1− δ.

Step 3: Constructing the excluding strategy. We now define a strategy

τ , which guarantees that the long-run average payoff remains away from F .

τ starts by playing all actions with equal probability, until the memory

of player 1 is in some irreducible set M .

18



From that stage on, τ plays in blocks of varying length. In each block,

τ first follows the strategy τ ∗, until the memory of player 1 is mM , or for

N∗
1 stages, whichever comes first. If the memory of player 1 is not mM , the

block terminates. Otherwise, τ forgets past play and follows the strategy τ̂

for min{ν, N∗
2} stages, assuming that the initial memory is mM .7

Step 4: Average payoff remains out of F . We now argue that the

average payoff under ((m, σ), τ) remains far from F , for every initial memory

m.

There is N0 such that with high probability, the memory mn is in some

irreducible set,

∀m, P(m,σ),τ (mN0 is in some irreducible set) ≥ 1− δ.

Denote by M the irreducible set that contains mN0 , if mN0 is in a irre-

ducible set.

The length of all blocks is bounded by N∗
1 + N∗

2 , and the probability

that the average payoff along each block is in B(cM , 2δ), where M is the

irreducible set the process was absorbed to, is at least 1− 2δ. Since payoffs

are bounded by 1, conditioned that the irreducible set M is reached at stage

N0, the expectation of the distance between the average payoff along each

block and cM is at most 4δ. The lemma follows by the strong law of large

numbers.

Remark 1 Consider the proof of Lemma 2. Suppose that σ′ ∈ (I × J)k sat-

isfies
∣∣∣1− σ(i|m)

σ′(i|m)

∣∣∣ < δ
N∗

1 +N∗
2
. Then the strategy τ we constructed in the proof

of Lemma 2 for σ is good against σ′ as well. Indeed, in each block, and for

every memory m, the L1-difference between the probability distribution over

the plays in the block induced by ((m,σ), τ) and that induced by ((m, σ′), τ)

is at most δ. Hence, the average payoff in 1− δ of the blocks is in B(cM , 5δ),

where M is the irreducible set that contains M , and therefore, by the law of

7That is, once the memory of player 1 is mM , τ completely forgets past play; it supposes
that the virtual memory of player 1 is mM , and follows τ̂ for min{ν,N∗

2 } stages.
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large numbers, the long-run average payoff is in B(cM , 6δ), which is disjoint

from F .

We are now ready to prove Proposition 3.

Proof of Proposition 3: Let F be a closed set that does not contain the

convex hull of any approachable set. Let δ > 0 such that no bounded-recall

strategy approaches B(F, δ).

Remark 1 implies that there is a countable collection of strategies (τl)l∈IN ,

and for every k > 0 a countable collection of positive integers (Nk(l))l∈IN ,

such that for each bounded-recall strategy σ (without the initial memory)

there is an index l(σ) ∈ IN satisfying

P(m,σ),τl(σ)

(
inf

n≥Nk(l(σ))
d(x̄n, F ) < ε

)
< 1/k, ∀m.

Since for every l, τl excludes some bounded-recall strategies from F , and

the probability by which that happens depends on the number of stages τl is

followed, and since for every bounded-recall strategy there is l such that τl

excludes it from F , all we have to do to exclude F against all bounded-recall

strategies is to construct a strategy that enumerates over all strategies (τl)

in a proper fashion.

We now construct the excluding strategy τ . Let r = (r1, r2) : IN → IN2

be a 1-1 and onto function. τ plays in blocks of varying (possibly infinite)

size. In block n, τ follows τr2(n). The block terminates once the following two

conditions are simultaneously satisfied. (i) the length of block n is at least

Nr1(n)(r2(n)), and (ii) the average payoff within this block is in B(F, ε).

It is easy to verify that τ excludes F , provided player 1 uses bounded-

recall strategies. Indeed, fix a bounded-recall strategy (m,σ) and η > 0,

and let k > 1/η. Let n be the unique integer such that r(n) = (k, l(σ)). If

play never reaches block n, then average payoff remains bounded away from

F . If play reaches block n, there is probability at least 1 − η that block n

never terminates, and payoff within this block remains bounded away from F .
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Therefore, there is N sufficiently large such that P(m,σ),τ

(
infn≥N d(x̄n, F ) <

ε
)

< η, as desired.
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