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1. Introduction

1.1. Motivation

In many circumstances, even though contracting parties understand the consequences

and probabilities associated with a particular contingency, they fail to take the con-

tingency into account in ex-ante contracts, even if doing so may be mutually ad-

vantageous in principle.1 Starting with Grossman and Hart (1986), the resulting

contracts have been referred to as incomplete in many influential contributions to the

literature.2

Our point of departure in this paper is the observation that there are, broadly

speaking, two types of circumstances in which this failure to condition may arise; one

of which is well understood and widely used in the literature, and a second which,

although often cited informally, is far from settled at least from a formal modelling

point of view. The latter is the focus of this paper.

First, it is well understood that contracting parties may fail to condition on con-

tingencies that are “observable but not verifiable.”3 In this framework, whether the

relevant contingency occurs or not is observed by (and is common knowledge among)

the contracting parties. The problem is that whether the contingency has occurred

or not cannot be observed by a third party. In particular, it cannot be verified by any

third party that is charged with enforcing the terms of the contract (the enforcement

agent, usually a court).

The second type of environment in which such failure to condition on a particular

contingency arises naturally is one in which the contingency is so “complex” that the

1These contingencies have also been called “unforeseen” in the literature (Tirole 1999, p. 743).
Sometimes, we will use this term in this sense in what follows.

Of course, the fact that a contingency is not included in an ex-ante agreement, does not, in general,
imply that the outcome of the contractual situation cannot depend on such a contingency. This is
because of the possible role of ex-post implementation mechanisms (Maskin and Tirole 1999). We
return to this issue in Section 3 below.

2See Section 3 below for a discussion of some related papers.
3An exhaustive list of references here would be enormous and hence out of place. See, for instance,

Holmström (1982) in which to our knowledge the term was first used in its current sense, the seminal
paper by Hart and Moore (1988), and the survey by Tirole (1999).
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contracting parties find it “[...] prohibitively difficult to [...] describe unambiguously

in advance” (Grossman and Hart 1986, p. 696). A formal model of this type of

environment is our goal in this paper.

One way to look at the two approaches simultaneously is as follows. In order for

complete ex-ante contracting to take place, two key ingredients are necessary. The

parties need to describe at an ex-ante stage their will to the court with full precision,

and the court needs to be able to verify ex-post in which category specified by the

contract the actual state of the world falls. The observable but not verifiable approach

takes away the court’s ability to verify ex-post what really took place. In this paper,

we model the difficulties (impossibility) that the contracting parties face in describing

their will to the court, leaving intact its ability to verify the realized state of the world

ex-post.

It is not difficult to imagine real-world examples of the phenomenon we have in

mind. In the well known case of Jacobellis v. Ohio,4 Supreme Court Justice Potter

Stewart argued that only “hard-core” pornography could be banned, but conceded:

“I shall not today attempt to further define the kind of materials I under-

stand to be embraced within the shorthand definition; and perhaps I could

never succeed in doing so,” Stewart had said. “But I know it when I see

it.” (Woodward and Armstrong 1979, p. 94)

We conclude our introduction by noticing that there is a further reason why mod-

elling undescribable contingencies as we do here addresses more than a theoretical

curiosity. In a fully specified model of what courts do, it surely would have to be

the case that their information structure is (at least to some extent) endogenous. If

the ability to verify “finer and finer” events yields large potential “gains from trade,”

then the appropriate resources will be invested to endow the court with the ability

to do so. The model we develop here tells us that, even in the limit case in which

the court can verify all contingencies, the possibility is still open that the parties will

lack the ability to describe them fully in their contractual agreement.

4Jacobellis v. Ohio, 378 U. S. 184 (1964).



Undescribable Contingencies 3

1.2. Overview

The plan of the rest of the paper is as follows. Section 2 outlines the requirements

that, in our view, should be met by a model of undescribable contingencies. In this

section we also claim that some critical features of our model are in fact necessary

features of a model that meets these requirements. We then review some related

literature in Section 3. In Section 4 we set up the co-insurance problem we use as a

backdrop and derive the benchmark efficient allocation that the parties can achieve

in the absence of any constraint. We then define the state space and the associated

probability measure in Section 5. In Section 6 we proceed to give a formal definition

of the notion of a finite contract. In Section 7 we piece together all these elements and

proceed to evaluate the parties’ expected utilities associated with any finite contract.

Section 8 presents our first batch of results: we show that for some instances of our

basic co-insurance problem the only transfers that the parties would like to specify

are contingent on undescribable contingencies. As a consequence, the optimal finite

contract is to specify no transfers at all: the no-contract outcome obtains.

Section 9 briefly reviews our desiderata again, and verifies that they have been

achieved. In Section 10 we present our results that embody the claim that finitely

additive probabilities and a “small” state space are necessary ingredients of a model

that meets the requirements that we set out. Section 11 outlines some extensions

of our model and concludes the paper. For ease of exposition, all proofs have been

relegated to the Appendix.5

2. Desiderata and Necessity

In this section we lay out the requirements that we think a model of undescribable

contingencies should satisfy. We start by outlining the features we believe our model

should have, and then move on to “desired results.” We conclude with a claim that

some critical features of our model are in fact necessary features of any model that

meets the desiderata we have set out.

5In the numbering of equations, definitions, remarks and so on, a prefix of “A” indicates that the
relevant item is to be found in the Appendix.
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2.1. Model Desiderata

1. Expected Utility. Recall first that we seek a model in which the consequences

and probabilities of the relevant events are understood by the parties, and hence

all appropriate expected utility calculations can be carried out. We call this the

“expected utility requirement.”

2. Language Based. We also want to be able to take seriously the notion that we

can distinguish between physical states and their description in ex-ante agreements.6

For want of a better term we refer to this requirement as the fact that we would like

our model to be “language-based.”7

To capture this requirement, we work with a model in which physical states of

nature can be described by means of a language in which a countable infinity of ele-

mentary statements are possible. Each elementary statement represents a particular

feature that can be either present or not in a given state of nature (the sky can be

either “blue” or “not blue”).

So, with little loss of generality, we take each physical state of nature s ∈ S to be

fully described by (at most) an infinite list of elementary statements {s1, . . . , si, . . .}
that determine which features are present in the state. Each feature si can either be

present (si = 1) or not (si = 0) in each state.8

We identify the set of statements about future states of nature that the contracting

parties are able to specify in an ex-ante contract with the language that describes the

6Of course this does not preclude, as will be the case in our model below, that a “full description”
of a state of nature will identify the actual state uniquely.

7The objects of the (co-insurance) contracting problem that we use as a back-drop are states
of nature (see Section 4 below). As we clarify there, depending on the context, the objects of
contracting could also be some actions undertaken by the contracting parties, or the result of both
these actions and the random realization of a state of nature. Here and throughout most of the
paper we simply refer to the object of contractual interest as a state of nature.

8We limit the set of elementary statements to be at most countably infinite, in keeping with the
view that in any logical endeavor a “statement” must be a finite string of symbols drawn from an
alphabet that is itself at most countably infinite. Of course, depending on the cardinality of S a
finite set of elementary statements could suffice to pin down a state uniquely. In this case S would
have to be a finite set. The actual assumption embodied in our statement above is that a countable
infinity of elementary statements is in fact always sufficient to uniquely identify a state s. This
implies that the cardinality of S is at most 2ℵ0 .
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states. There are two “competing” requirements that we wish to accommodate here.

These are model desiderata 3 and 4 that follow.

3. Rich Language. We want to ensure that our model delivers contingencies that

are undescribable because they are too “complex,” and not because the contract-

ing parties are endowed with a language that is simply “too coarse” relative to the

environment they face. Since we want to rule out coarse languages, as a minimal re-

quirement we will insist that the parties can write ex-ante contracts that vary across

any two states s′ and s′′. We refer to this as the requirement of a “rich language.”

4. Finitely Describable Events. The set of statements that can be included in an

ex-ante contract must embody the notion that there are in fact some contingencies

that are “[...] prohibitively difficult to [...] describe unambiguously in advance”

(Grossman and Hart 1986, p. 696). Given that we require that our model be language-

based in the sense above, there is a completely natural way to model this notion. We

will assume that only finite statements about the constituent features of a set of states

can be included in the contract that the parties draw up. We call this the requirement

of “finitely describable” events.

Notice that the requirement of finitely describable events is also appealingly weak

in the following sense. It does not require us to specify a cost function for the inclusion

of more and more features in a contract.9 Clearly, any cost function that becomes

“sufficiently large” in the limit would deliver ex-ante contracts that are coarser than

the ones we obtain in our model.10 This cuts at once through the problem of specifying

a cost function; an exercise which, at least to some degree, is necessarily arbitrary.

It is also worth remarking at this point that since we are only restricting our

descriptions of events to be finite, our results below are immune to changes in the

elementary statements in the language that, for instance, re-code feature “1” and

feature “14” into a single one. A finite statement in one language will correspond

9Anderlini and Felli (1999) and Battigalli and Maggi (2002) are two contributions to the literature
that make explicit use of “writing costs” in a contracting problem.

10For instance any cost function that becomes larger than the available contractual surplus in a
“first best scenario.”
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to a finite statement in the new one and vice-versa. This immunity to re-coding is

relevant in a world in which languages obviously evolve to capture more efficiently

concepts that may once have been considered complex or difficult.

2.2. Results Desiderata

What are then the desiderata for our model in terms of results that embody the

notion of complex undescribable events?

1. No Approximation. Notice that our specification of goals on model features so

far does not preclude the fact that any contingency that cannot be finitely described,

may be approximated more and more finely by events that can be finitely described.

In any model in which utilities are sufficiently well behaved (continuous in conse-

quences) our restriction to finitely describable events would then have a negligible

impact on the parties’ expected utilities.11 This we want to rule out. Using the same

terminology as in Anderlini and Felli (1994), we describe this as the requirement that

the “approximation result” must not hold.

In fact, we seek the strongest possible result in this sense. We want a model that

displays undescribable contingencies that cannot be approximated at all by finitely

describable events.

2. Finite Invariance and Fine Variability. Loosely speaking, we are after a model

in which for some event Z the following two properties hold. First of all, neither Z
nor its complement are certain to happen. So, if we denote by µ(Z) the probability

that Z takes place, then µ(Z) must be strictly between 0 and 1. More importantly,

we require that conditioning on any finitely describable event A does not help at

all in “predicting” Z. In other words, we require that the conditional probability

µ(Z|A) satisfies µ(Z|A) = µ(Z) for every such A. Clearly, if these conditions hold

the contracting parties will not be able to gain by conditioning their ex-ante contract

on any event A, regardless of how mutually advantageous conditioning on Z might

be in principle. Knowing that a state belongs to a set A does not help at all to

11See our discussion of the results in Anderlini and Felli (1994) in Section 3 below.
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predict whether the state is in Z or not. In the words of our title, the event Z is an

undescribable contingency.

For reasons that will become clear in the sequel, an event like Z described in-

formally above will be referred to as displaying both “finite invariance” and “fine

variability.”

2.3. Necessity

Our model meets all the desiderata we have set out, in terms of both model features

and results. We verify this claim in detail in Section 9 below.

Our model also has two critical non-standard features that we discuss extensively

in Section 10 below. The first is the use of a probability distribution over states of

nature that is finitely additive, but fails countable additivity. The second is a state

space that is a “small” (in fact countable) subset of the set of all possible potential

states (the set of all possible infinite strings of 0s and 1s).

One of the goals of this paper is to show that these non-standard features are

necessary ingredients of any model that obtains the desiderata we set out. Section 10

below formally argues that this is indeed the case.

Therefore, this paper can be read in two ways. The first is to conclude that it is

indeed possible to model formally the notion of an undescribable contingency. The

second is that the model we use below to this end, complete with its non-standard

features, is what it takes to get a formal hold of this notion. There is a sense in

which a rejection of the non-standard ingredients that we use here is equivalent to

saying that the formal notion of a contingency that is undescribable because it is “too

complex” rather than because of the parties do not have a sufficiently “rich language”

is unattainable.

3. Related Literature

The intuitive notion of a contingency that is impossible to include in an ex-ante con-

tract, either because it is observable but not verifiable, or because it is “too complex”

has been extensively used in the contracting literature. In short, if we take as given
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that some contingencies cannot be included in an ex-ante agreement (although their

consequences and probabilities are understood by the agents), and therefore that con-

tracts are incomplete, we can then focus on the institutional arrangements that may

reduce the inevitable inefficiencies that are associated with this lack of detail of the

ex-ante contracts that the parties draw up.

This line of research has proved extremely fertile. Among other things, it has

afforded important insights concerning the boundaries of a firm (Grossman and Hart

1986), the allocation of ownership rights over physical assets (Hart and Moore 1990),

the allocation of authority (Aghion and Tirole 1997) and power (Rajan and Zingales

1998) in organizations and the judicial role of courts (Anderlini, Felli, and Postlewaite

2003).

Perhaps precisely because of its prominence and usefulness in modelling a wide

range of economic phenomena, the plain assumption that contracting agents may face

some contingencies that are unforeseen (undescribable) has itself been the subject of

intense scrutiny in a number of recent papers.12

As we mentioned above, this paper puts forth a model of undescribable contin-

gencies that are impossible to include in an ex-ante agreement because they are too

complex for this to be feasible at all.

Anderlini and Felli (1994) and Al-Najjar (1999) are two existing contributions

that are closely related to the results presented here.

In Anderlini and Felli (1994), the contracting parties are restricted to ex-ante

agreements that are finite in a sense that is analogous to the one we postulate in

this paper. However, crucially, in Anderlini and Felli (1994), there is a continuum

of states of nature. One of the results reported there is the so-called approximation

12It should be noted at this point that the term “unforeseen contingencies” has also been used
in a number of decision-theoretic and epistemic models (see for instance Kreps (1992), and more
recently Dekel, Lipman, and Rustichini (2001) and the survey in Dekel, Lipman, and Rustichini
(1998)). Once again (see footnote 1 above), here we are using the term unforeseen contingency
in a different sense — as a synonym of undescribable. Our contracting parties understand (have
common knowledge of) the consequences and probabilities of unforeseen contingencies. They are
simply unable to describe them in advance and hence to incorporate them in any ex-ante agreement.
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result: in a model with a continuum of states, under general conditions of continuity,

the restriction that only finitely many of the constituent features of a state of nature

can be included in any ex-ante agreement has a negligible impact on the parties’

expected utilities.

The restriction to finite agreements clearly precludes the agents from writing some

possible ex-ante contracts.13 Intuitively, the reason why the impact of this restriction

is in fact negligible lies in the requirement that the parties must be able to compute

the expected utilities that an ex-ante agreement generates. In short, if an ex-ante

agreement yields well defined expected utilities to the contracting parties, then it

must yield them utility levels that are “integrable” as a function of the state of nature.

Since a function that is integrable can always be approximated by a sequence of step

functions, it is now enough to notice that (a “sufficiently rich” set of) step functions

can be viewed as finite ex-ante agreements. In the terminology of our Subsection

2 above, in the model studied in Anderlini and Felli (1994), a “rich language” is

sufficient to generate the “approximation result” that instead fails to hold in this

paper.

Intuitively the difference between the two environments can be traced to the car-

dinality of the state space (countable versus continuous) and the nature of the asso-

ciated probability measure (finitely additive “frequencies” in this paper, “standard”

probability measures over the interval [0, 1] in Anderlini and Felli (1994)).14

In Al-Najjar (1999) the state space is akin to the one used here: it is discrete and

is equipped with finitely additive “frequencies,” as in the analysis below. Using this

apparatus, in a very different set-up from the one analyzed below, Al-Najjar (1999)

addresses the question of whether competitive differences between agents get washed

out by imitation. In a model with a continuum of states it is possible to show that

the performance of a successful agent can be replicated asymptotically as more and

13A simple counting argument suffices to prove this point. It is easy to see that in the world of
Anderlini and Felli (1994) there are countably many possible finite ex-ante contracts, while there
are uncountably many possible ex-ante agreements.

14As we mentioned already, we discuss the role of these two features of our model at length in
Section 10 below.
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more data become available: a version of the approximation result described above

holds in this case. However, in a complex environment, imitation does not eliminate

all competitive advantages, even in the limit when an arbitrarily large amount of data

becomes available.

Two further papers have investigated contractual environments in which the ap-

proximation result described above fails. The analysis in both Anderlini and Felli

(1998) and Krasa and Williams (1999) centers on the observation that the approxima-

tion result in Anderlini and Felli (1994) requires the parties utilities to be continuous

in outcomes. The focus of Anderlini and Felli (1998) is to characterize the effects of

discontinuities in the parties’ utilities in a principal-agent model in which only finite

agreements are allowed. Krasa and Williams (1999) focus on a condition that they

label “asymptotic decreasing importance” which, in their model, is necessary and suf-

ficient for the required continuity conditions, and hence for the approximation result,

to hold. By contrast, in this paper the parties’ utilities are assumed to be continuous

in outcomes.

The results in Machina (2003) are also related to our work. His paper is motivated

by a search for events that embody “objective uncertainty” in a standard decision-

theoretic model. He works with a continuous state space and standard countably

additive measures (with an additional “smoothness” condition). He constructs se-

quences of events whose probabilities converge to the same value, regardless of the

overall probability measure placed on the state space. Thus, near the limit these

are “almost-objective events” in the sense that all decision makers (regardless of

their information and priors) will (almost) agree on their likelihood. In a sense, an

“almost-objective event” that has probability neither zero nor one, behaves similarly

to our undescribable contingencies that display finite invariance and fine variability.

The key difference between the two is that in one case (Machina’s) the focus is on

what happens “near the limit,” while in the other (ours) the finite invariance and

fine variability hold in the limit world, which is actually well defined. As we show in

Section 10 what allows us to look directly at the limit world is our departure from

the countably additive measures and continuum of states used in Machina’s set-up.
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These non-standard features are necessary for our results.

Finally, we view this paper as orthogonal to the debate on the role of message

games in models in which complete ex-ante contracting cannot be achieved (Tirole

1999, Maskin and Tirole 1999, Segal 1999, Hart and Moore 1999, Reiche 2001, Maskin

2002, among others). In particular, a number of authors have argued that message

games can in fact substitute for complete ex-ante contracting. The contracting parties

play an ex-post message game in which their private information is revealed in equi-

librium. This enables them to make the contractual outcome depend on contingencies

that the ex-ante contract neglects. As we have stressed already, our contribution here

is to model undescribable contingencies that cannot feature in an ex-ante contract.

If these are present, then the type of message game that is appropriate to the envi-

ronment at hand will be the parties only hope to condition on the contingencies that

they cannot specify directly in their ex-ante agreement.

4. The Contracting problem

For the sake of concreteness, throughout the paper we work using a standard co-

insurance problem as backdrop. Two risk-averse agents, labelled i = 1, 2 face a risk-

sharing problem. The uncertainty in the environment is captured by the realization

of a state of nature, denoted by s; the set of all possible states of nature is denoted by

S. The preferences of agent i are represented by the state contingent utility function

Ui : R×S → R. The agents’ utilities depend on s according to whether or not s falls

in a subset Z of the state space S.

The two agents can agree to a state-contingent monetary transfer t ∈ R, which

by convention represents a payment from 2 to 1. We write the utility of 1 in state s,

if the transfer is t as

U1(t, s) =

{
V (1 + t) if s ∈ Z
V (t) if s ∈ Z

(1)

where Z denotes the complement of Z in S. Party 2’s utility in state s is instead
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written as

U2(t, s) =

{
V (−t) if s ∈ Z
V (1− t) if s ∈ Z

(2)

where V : R → R is a twice differentiable, increasing and strictly concave function

satisfying the Inada conditions

lim
y→−1

V ′(y) = +∞, lim
y→+1

V ′(y) = 0.

Ex-ante, 1 makes a take-it-or-leave-it offer of a contract t : S → R to 2, where

t(s) is the monetary transfer from 2 to 1 if state s is realized. Of course, 1’s take-it-

or-leave-it offer to 2 will have to satisfy a participation constraint for 2 which will be

specified shortly.

The co-insurance problem we have just described is a completely standard one.

Since in (1) and (2) we have specified the agents utilities so that complete insurance

is in fact feasible, in the absence of any additional restrictions, the optimal contract

t∗ will involve only two levels of transfers tZ and tZ with

t∗(s) =

{
tZ if s ∈ Z
tZ if s ∈ Z

(3)

and 1 + tZ = tZ so that

U1(t(s), s) = V (1 + tZ) = V (tZ) ∀ s ∈ S (4)

and

U2(t(s), s) = V (−tZ) = V (1− tZ) ∀ s ∈ S (5)

Agent 2’s participation constraint can be easily specified if we define the proba-

bility p = Pr{s ∈ Z} that s falls in Z. In the absence of any agreed transfers 2’s

expected utility is pV (0)+ (1− p)V (1). Since 2 is the recipient of a take-it-or-leave-it

offer, his participation constraint will bind. Therefore, in addition to (4) and (5) the
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optimal contract t∗ is characterized by

pV (−tZ) + (1− p)V (1− tZ) = pV (0) + (1− p)V (1) (6)

Clearly, equations (4), (5) and (6) uniquely pin down the values of tZ and tZ , so

that the characterization of the solution to our co-insurance problem in the standard

case is complete.

Before we move on to a detailed description of our state space and the probability

measure that we place on it, it is worth emphasizing here that the co-insurance prob-

lem that we use to exemplify our results is adopted mostly for the sake of simplicity.

In fact our results in this paper can be easily translated to apply to other contracting

problems.

Starting with Hart and Moore (1988) a class of models that fall within the fol-

lowing broad sketch has become somewhat canonical in the incomplete contracting

literature.15 Two contracting parties, a buyer and a seller, have the opportunity to

undertake an ex-ante unobservable relationship-specific investment that affects the

cost and/or value of the object (a “widget”) of the potential exchange. Subsequently,

the cost and value of the widget are realized, typically as a function of the realiza-

tion of a state of nature as well as of the levels of relationship-specific investment.

The presence of non-contractible variables in this set-up then gives rise to a hold-

up problem, which in turn determines inefficient levels of ex-ante investments. In

particular the ex-ante investments, the actual cost and value of the widget and the

state of nature cannot be directly contracted on, even though it would be advanta-

geous in principle to the parties to write an ex-ante contract that conditions the sale

price of the widget (and possibly whether the exchange is to take place or not) on (a

combination of) these variables.

Our results below could be applied, virtually unchanged, to yield a model of the

15What follows is not meant to be a summary description of the actual model analyzed in Hart
and Moore (1988), but merely a description of the main ingredients common to many contributions
to this area of the literature. We also refer the reader to our earlier discussion of related literature
in Section 3 above.
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type we have just outlined in which one or more of the relevant variables cannot be

profitably included in an ex-ante contract because the relevant contingencies are too

complex.

5. States and Probabilities

We are now ready to proceed with a formal description of our state space S and the

associated probability measure µ.

As we mentioned above, both of these ingredients of our model are not of a

standard form. They are building blocks of a world in which details, no matter how

small, can matter a lot. The inability to capture these details in any finite ex-ante

agreement is at the center of our model of complex undescribable contingencies.

A discussion of our modelling choices is postponed until Section 10 below.

5.1. The State Space

We think of there being a countable infinity of physical states of the world S =

{s1, . . . , sn, . . .}.

The parties have a common language to describe each state sn. The language

consists of a countable infinity of elementary statements (characteristics) that can

be true or false about each state of nature sn. Hence the complete description of a

state of nature sn can be thought of as an infinite sequence {s1
n, . . . , s

i
n, . . .} of 0’s and

1’s. Each element of the sequence is simply interpreted as reporting whether the i-th

elementary statement is true (si
n = 1) or false (si

n = 0) about state sn.

The formal definition of our state space simply encapsulates what we have stated

so far about S.

Definition 1. State Space: The state space S is a countably infinite set {s1, s2,

. . . sn, . . .}. Each sn is in turn an infinite sequence of the type {s1
n, . . . , s

i
n, . . .} with

si
n ∈ {0, 1} for every i and n.
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5.2. Probabilities

As we mentioned already, the probability measure µ that we place over S is non-

standard in the sense that it fails countable additivity. Again, we postpone a discus-

sion of this and other features of our model until Section 10 below.

Our first step is to define the density of a set of states.

Definition 2. Density: Given any Q ⊆ S, let χQ denote the characteristic function

of Q so that χQ(sn) = 1 if sn ∈ Q and χQ(sn) = 0 if sn 6∈ Q. We define the density

of Q to be

µ(Q) = lim
N→∞

1

N

N∑
n=1

χQ(sn) (7)

when the limit in (7) exists. The density is otherwise left undefined. We denote by

D the collection of subsets of S that have a well defined density.

Two points should be noted. First, the density of a set µ(Q) is its “frequency”

in the standard sense of the word. Thus, for instance, every finite set of states has a

density of zero and the set of all “even numbered” states {s2, s4, s6, . . .} has a density

of 1/2. Second, the density of a set (and whether or not it is well defined) depends on

the ordering of the states {s1, . . . , sn, . . .}. This ordering is taken as given and fixed

throughout the paper.16

We conclude this subsection with two observations that will become useful below.

First, given two sets Q′ and Q′′ that have well defined densities and such that

µ(Q′) > 0 and µ(Q′ ∩ Q′′) is also well defined, we can define the conditional density

µ(Q′′ | Q′) as µ(Q′ ∩Q′′)/µ(Q′).

Secondly, if we let Σ be the set of all subsets of S. Then there exists an extension

to Σ of the density µ in Definition 2 above which is a finitely additive probability

measure. In other words

16The class of permutations of the states of nature that leave our results unaffected includes all
finite permutations. We do not attempt a general characterization of such permutations in this
paper.
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Remark 1. Finitely Additive Probability Measure: There exists a finitely additive

probability measure µ̃ over (S, Σ) that for every set of states B ⊂ S satisfies µ̃(B) =

µ(B), whenever µ(B) is defined.17

6. Finitely Definable Sets and Finite Contracts

The set of ex-ante contracts that our agents can draw up intuitively coincides with

those agreements that are finite in a sense to be defined shortly in a formal way.

It is convenient to start our description of what a finite contract is by introducing

the notion of a finitely definable set. Intuitively, these are subsets of S that can be

defined referring only to a finite set of their features.

For each state of nature sn, let si
n ∈ {0, 1} indicate the value of the i-th feature

of sn. Define also

A(i, j) = {sn ∈ S such that si
n = j} (8)

so that A(i, j) is the set of states that have the i-th feature equal to j ∈ {0, 1}.
These are the elementary statements of the underlying language to which we referred

informally in Subsection 2 above.

We are now ready to define the finitely definable subsets of S. These are the sets

that can be described in the language of our contracting parties.

Definition 3. Finitely Definable Sets: Consider the algebra of subsets of S gener-

ated by the collection of sets of the type A(i, j) defined in (8). Let this algebra be

denoted by A. We refer to any A ∈ A as a finitely definable set.

Elements of A can be obtained by complements and/or finite intersections and/or

finite unions of the sets A(i, j). Hence every element of A can be defined by finitely

many elementary statements about the features of the states of nature that it contains.

17See, for example, Rao and Rao (1983, p. 41) for a proof.



Undescribable Contingencies 17

A suitable definition of a finite contract is now easy to get. The key feature of

a finite contract is that it should specify a set of transfers that is conditional only

on finitely definable sets. For simplicity we also restrict attention to contracts that

specify a finite set of values for the actual transfer t. This is clearly without loss of

generality in our simple co-insurance problem described in Section 4 above.

Definition 4. Finite Contracts: A contract is finite if and only if the transfer rule

t(·) that it prescribes is measurable with respect to A, and takes finitely many values

{t1, . . . , tM}. The set of finite contracts is denoted by F .

While it is possible, as we do here, to take Definition 4 as a primitive that embodies

the notion of a contract as a finite object, it is important to point out that this

requirement can be supported in a different way (than just taking Definition 4 at face

value).

Anderlini and Felli (1994) put forward the idea that it is natural to consider

contracts that yield a value for a sharing rule that is computable by a Turing machine

as a function of the state of nature. The justification for this requirement is a claim

that if a function is computable in a finite number of steps by any imaginable finite

device then it must be computable by a Turing machine.18 Obviously, any finite

contract must be computable. It is also possible to show that the converse holds:

requiring that contracts be finite exhausts the set of all computable contracts. For

reasons of space, we omit any formal analysis of this topic.

7. Computing Expected Utilities

We now have set out all the ingredients of our model. In essence we want to char-

acterize what the agents can achieve using finite contracts when the state space and

associated probability measure are as in Section 5.

As we mentioned already, we want to restrict attention to those cases in which the

agents can base their choices on the expected utility that an ex-ante contract yields.

18This claim is known in the literature on computable functions as Church’s thesis. See for instance
Cutland (1980), or Rogers (1967).
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Since we want the agents to be able to contemplate all possible finite contracts, we

need to ensure that all such contracts can be evaluated in this way. So far, there is

nothing in our framework that guarantees that this is the case. This is because our

Definition 2 above does not, by itself, guarantee that all finitely definable sets have a

well defined density. The proposition that follows guarantees that this can indeed be

done.

Proposition 1. Existence: There exists a state space S as in Definition 1 such that

every A ∈ A has a well defined density µ(A). In other words, there exists an S such

that A ⊆ D.

The proof of Proposition 1 is a simple consequence of the law of large numbers.

Think of S as a realization of countably many i.i.d. draws from, say, a (countably

additive) density µ̂ over {0, 1}N. It is then sufficient to observe that the law of large

numbers guarantees that, with probability one, the limit frequency of draws that falls

into any finitely definable set A is in fact well defined and equal to its density µ̂(A).

The set of realizations of these i.i.d. draws that have the properties required by the

statement of the proposition has probability one in the space of realizations of this

process. It then follows that it must be not empty. Hence, setting S to be equal to a

“typical” realization of these i.i.d. draws as described is sufficient to prove the claim.

To evaluate the expected utility accruing to each party from any finite contract

we will also need to refer to the conditional densities of certain events. This is an easy

task if we restrict attention to finitely definable sets. The following remark is stated

without proof since it is a direct consequence of the fact that, by assumption, since A
is an algebra, the intersection of two finitely definable sets is itself finitely definable.

Remark 2. Well Defined Conditional Densities: Let S be as in Proposition 1 and

let A′ and A′′ be two finitely definable sets with µ(A′) > 0. Then the conditional

density µ(A′′ | A′) is well defined.
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Of course, to compute the expected utility of a finite contract, the parties must

be able to compute more than the frequencies of finitely definable sets. They need to

compute the density of the intersection of Z with any finitely definable set.

Our next definition makes precise what it means for a set of states to meet this

requirement.

Definition 5. Well-Defined Frequencies: A set Z has well defined frequencies if

Z ∩ A ∈ D ∀ A ∈ A

in other words Z has a well defined density, conditional on any finitely definable set

A (provided of course that µ(A) > 0).

We have now introduced all the elements that will allow us to study a class of

co-insurance problems in which undescribable contingencies can arise, and in which

the expected utilities for both agents from any finite contract are well defined and

can be computed in a simple way.

The fact that undescribable contingencies can arise in this model is the subject of

our next section. For the time being, we remark that the expected utilities from any

finite contract are well defined.

Our next statement takes the shape of a definition (rather than a proposition)

since we are in fact defining what the natural meaning of expected utilities is in a

world in which probabilities are equated with the densities of Definition 2 above.

Definition 6. Expected Utilities: Consider the co-insurance problem described in

Section 4. Let a density µ as in Definition 2 be given and let S be as in Propo-

sition 1. Assume further Z has well defined frequencies in the sense of Definition 5.

Let also any finite contract t : S → {t1, . . . , tM} be given. Then the expected utility

to agent 1 from contract t is defined as

EU1(t) =
M∑
i=1

V (1 + ti) µ[t−1(ti) ∩ Z] +
M∑
i=1

V (ti) µ[t−1(ti) ∩ Z ] (9)
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while 2’s expected utility is

EU2(t) =
M∑
i=1

V (−ti) µ[t−1(ti) ∩ Z] +
M∑
i=1

V (1− ti) µ[t−1(ti) ∩ Z ] (10)

We conclude this section with an observation. Using the finitely additive probabil-

ity measure µ̃ of Remark 1 that extends µ to all subsets of S it is possible to compute

the density of every set D ∈ Σ. This in turn would allow us to compute the expected

utility of a much broader class of contracts that are not necessarily finite, allowing

also for a much broader class of state-dependent utilities. Of course, to do this we

would need a way to integrate a much broader class of functions than we effectively

do in (9) and (10) above. Fortunately, there is an elaborate theory of integration with

respect to finitely additive probabilities, which for the most part is analogous to the

usual theory of integration.19

In this paper, we restrict attention to contracts that are measurable with respect

to A and to contracting problems in which Z has well defined frequencies in the sense

of Definition 5. Of course, when we restrict attention to this case, the more general

type of integration that we are referring to gives exactly the expected utilities that

we have defined above.20

To simplify matters further, we also restrict attention (without any loss of gen-

erality in our co-insurance setup) to contracts that take a finite number of values.

It should be noted, however, that the restriction to finitely-valued functions, is in-

troduced only for expository simplicity; our analysis is applicable more generally

(although this would require some additional machinery).

19Dunford and Schwartz (1958) is a classic textbook which provides a unified treatment of inte-
gration for both finite and countably additive measures. A more specialized treatment can be found
in Rao and Rao (1983).

20We proceed as we do here instead than using the more general machinery that we have referred
to because this makes our results more transparent in at least two ways. First, all equations (9)
and (10) of Definition 6 allow the reader to look “directly inside” what would otherwise be buried
in the definition of an “exotic” integral sign. Second, and more important, this way of proceeding
clarifies the fact that our results below depend only of the rather intuitive (frequencies) properties
of the density µ rather than on its non-unique extension to the power set Σ.
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8. Complex Undescribable Contingencies

8.1. Finite Invariance and Fine Variability

In contrast to the cases of a continuous state space and of a countable state space with

a countably additive probability measure, finite contracts cannot always approximate

the first best in the model we have set-up here. The idea is that the allocation t∗

that the agents may be trying to attain could exhibit fine variability as a function

of the state of nature. Any finite contract is bound not to capture part (or all) of

this variability. It is important to stress again that this is in fact possible when the

state-dependence of the agents’ preferences is such that the expected utility of any

finite contract (Definition 6) is well defined.

We begin with two abstract definitions that capture the idea that in the model we

have set up it is possible that a set Z may “look the same” if we look at its restriction

over any finitely definable set, but at the same time may have a characteristic function

that varies “finely” with the state of nature. It will be precisely this type of fine

variability that finite contracts cannot capture and hence give rise to undescribable

contingencies below.

Definition 7. Finite Invariance: We say that Z ⊆ S displays finite invariance if for

every A ∈ A with µ(A) > 0,

µ(Z|A) = µ(Z) (11)

So, Z displays finite invariance if its density is the same conditional on all finitely

definable sets that have positive measure under µ.

In other words, if Z displays finite invariance, knowing that s belongs to any

finitely definable subset of S does not help us to “predict” better whether it belongs

to Z or to its complement. It should be noted at this point that the possibility that

Definition 7 may have a non-trivial content is a feature of the model we have set up,

which does not hold in say a standard model with a continuum of states with Z a
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measurable set. In fact, it is clear that in this case if Z displays finite invariance then

it must have measure either 0 or 1. This is not the case in our model, as we will

demonstrate shortly in Proposition 2 below.

The second abstract definition that we state is a property that we have labelled

fine variability.21

Definition 8. Fine Variability: Let Z be a set that displays finite invariance.

We say that Z displays fine variability if and only if

0 < µ(Z) < 1

The properties that we have just defined may simultaneously hold for a set Z that

also has well defined frequencies as in Definition 5. Our next proposition asserts that,

for some state spaces S as in Proposition 1 even though a set Z may have well defined

frequencies and display finite invariance, its characteristic function may be far from

being constant over S.

Proposition 2. Finite Invariance and Fine Variability: There exists an S such that

the following is true.

Let any p ∈ (0, 1) be given. Then there exists a set Z with well defined frequencies

that displays both finite invariance and fine variability and such that µ(Z) = p.

The formal proof of Proposition 2 is in the Appendix. Here we only sketch the

argument for the case p = 1/2. Let S be as in Proposition 1. We can then construct

Z in the following way. For each given state of nature sn ∈ S we set sn ∈ Z and

sn ∈ Z with equal probability, and with i.i.d draws across all the states sn. The law

of large numbers again guarantees that we can take Z to be a “typical” realization

21Notice that we use the word “variability” with reference to a set. This is not as odd as it may
seem at first sight. In our view the best intuitive way to think about the content of Definition 8
below is that of a set that has a characteristic function that varies “very finely” with the state of
nature.
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of this process to prove the claim. In fact, in any such typical realization, the law of

large numbers ensures that the event Z has a density that is well defined and is equal

to 1/2 conditional on any finitely definable subset of states. This clearly guarantees

that Z displays finite invariance and fine variability, as well as having well defined

frequencies, as required. As we mentioned above, the type of fine variability that is

found in Proposition 2 is at the root of our model of undescribable contingencies.

Our next task is to examine its impact on the simple co-insurance model described

in Section 4 above.

Before proceeding any further, it is useful to dwell further on how our two results

stated so far are proved. The proofs of Propositions 1 and 2 reported in the Appendix

both rely on the law of large numbers. These arguments are appealing in the sense

that they also show that state spaces S as in Proposition 1 and a Z as in Proposition

2 are not “knife-edge” cases in any sense of the word. This is so because the stochastic

processes that we use in the two proofs in the Appendix yield a set of probability

one of realizations in which the two statements hold. However, it is legitimate at this

point to ask whether there are constructive arguments that can be used to prove the

two claims.

The answer to the question is affirmative.22 In fact, the following construction

proves both Proposition 1 and 2.23 We outline it for the case in which µ(A(i, j))

22We are indebted to an anonymous referee for asking the question, and for suggesting the answer.
23It may be argued that the set Z in this example is not complex, and that it is (obviously)

describable—after all, the construction that follows is its description. We believe this to be mislead-
ing, however. To appreciate this point, let N be the set of natural numbers and fix any countable
state space S. Call a function e : N → S an enumeration if it is one-one and onto (thus, under e, we
are labelling a state s ∈ S as the e−1(s)-th state). Given any infinite subset Z ⊂ S, it is obviously
possible to find an enumeration eZ under which Z has a simple description. For instance, one can
easily find an eZ under which Z corresponds to (i.e. e−1

Z (Z) is) the set of even integers. Obviously
Z is simple to describe, but only given the enumeration eZ .

To use the labels in N given by e to identify a set, the description of a set must therefore include a
full specification of the enumeration needed to give it a simple representation (e.g. as the set of even
integers) — an infinite object by itself. The contracting agents in our model are endowed with a
given language, that corresponds to describability in terms of a fixed set of features. This language
is the only available vehicle to convey their will to the court. Thus, the integer labels of the states
are meaningless to our contracting agents in identifying any particular set of states in an ex-ante
contract. The set Z in this example is not describable in the language determined by these features.
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= 1/2 for every i and every j, and µ(Z) = 1/2. Start with the states just being

identified by their labels, the positive integers. Now assign all odd numbered states

to Z and all even states to Z. Among those states that have been placed in Z, assign

a value of 0 for the first feature to the first, third, fifth state and so on (states 1, 5,

9 etc.), and a value of 1 to the other states. Among the states that were placed in Z
assign a value of 1 for the first feature to the first, third, fifth state and so on (states

2, 6, 10 etc.), and a value of 0 to the other states. So now we have four subsets of

states, identified by whether the state is in Z or Z and whether the first feature is 0

or 1.

Now we can divide each of these four subsets into two subsets as follows. Among

those states that have been placed in Z with first feature 0, assign a value of 0 for

the second feature to the first, third, fifth state and so on (states 1, 9, 17 etc.), and a

value of 1 to the other states. Among those states that have been placed in Z with

first feature 1, assign a value of 0 for the second feature to the first, third, fifth state

and so on (states 3, 11, 19 etc.), and a value of 1 to the other states. Symmetrically,

among the states that were placed in Z with first feature 1 assign a value of 1 for the

second feature to the first, third, fifth state and so on (states 2, 10, 18 etc.), and a

value of 0 to the other states. Finally, among the states that were placed in Z with

first feature 0 assign a value of 1 for the second feature to the first, third, fifth state

and so on (states 4, 12, 20 etc.), and a value of 0 to the other states.

We can then complete the construction by subdividing the 16 subsets of states

into two sets each in the same fashion, and continuing ad infinitum in the same way.24

24A schematic representation of the construction we have outlined is as follows.

Z Z︷ ︸︸ ︷
s1 s3 s5 s7 s9 s11 · · ·
0 1 0 1 0 1 · · ·
0 0 1 1 0 0 · · ·
0 0 0 0 1 1 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .

︷ ︸︸ ︷
s2 s4 s6 s8 s10 s12 . . .
1 0 1 0 1 0 · · ·
1 1 0 0 1 1 · · ·
1 1 1 1 0 0 · · ·
1 1 1 1 1 1 · · ·
...

...
...

...
...

...
. . .
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It is then easy to verify that all the requirements of Propositions 1 and 2 are

satisfied with µ(A(i, j)) = 1/2 for every i and every j, and µ(Z) = 1/2.

8.2. Undescribable Contingencies and Fine Variability

The possibility that the contract t∗ in the co-insurance problem described in Section

4 above may have the fine variability described in Proposition 2 has far reaching

consequences on what the contracting parties can achieve by means of a finite contract.

In this section, we characterize the impact of fine variability when it is associated

with finite invariance. In this case, any finite contract will be unable to capture any

of the fine variability of t∗. As a consequence the agents will choose a trivial contract

that prescribes a transfer of t = 0 in every possible state. This is of course the same

as saying that no contract will be drawn up.

Consider the co-insurance problem described in Section 4. For a given S, µ and

Z, let t∗∗ be the optimal finite co-insurance contract, if it exists. In other words, if it

is well defined let t∗∗ be the solution to

max
t

EU1(t)

s.t. EU2(t) ≥ µ(Z)V (0) + µ(Z)V (1)

t ∈ F

(12)

where EUi(t) are the parties’ expected utilities as in Definition 6 above.

Proposition 3. Optimal Finite Contract: Consider the co-insurance problem desc-

ribed in Section 4. Then there exist an S, µ and Z with µ(Z) ∈ (0, 1) with the

following properties.

1. The set Z has well defined frequencies.

2. The optimal finite contract t∗∗ that solves problem (12) exists unique, up to a set

of states of µ-measure zero.
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3. The optimal finite contract t∗∗ prescribes no transfer between the agents in every

state of nature. In other words t∗∗(s) = 0 for every s ∈ S, up to a set of states of

µ-measure zero.

Once again the formal proof of Proposition 3 is presented in the Appendix. Intu-

itively, Proposition 3 is a fairly direct consequence of Propositions 1 and 2 coupled

with the strict concavity (in t) of the agents’ preferences.

Again, we start with an S as in Proposition 1. Recall now that in the co-insurance

problem described in Section 4 above the parties are able to achieve full insurance

by agreeing on a transfer contingent on the event Z. We now choose the event Z to

display finite invariance and fine variability as in Proposition 2. Let pZ and pZ be

the densities of Z and Z respectively, conditional on any A ∈ A.

Notice that by definition of finite invariance the event Z has been defined so that

any attempt by the parties to condition on a finite set of characteristics (the only

feasible ex-ante description available to them) will leave them with a set of states

of which only a fraction pZ actually belongs to Z. This is true whatever finitely

definable subset of S the parties decide to condition their contract on. The fact

that the parties are risk averse now implies that the optimal finite contract should

specify the same transfer from 2 to 1 contingent on any finitely definable subset of

S. Any transfer function that varies across two finitely definable sets of states will

be strictly dominated (in terms of the parties expected utility) by a constant transfer

that coincides with the average of the transfer function we started from.

The optimal contract t∗∗ is now immediately obtained from the observation that

the only constant (across all states) transfers from 2 to 1 that are compatible with 2’s

participation constraint are non-positive. Since 1’s expected utility is monotonically

increasing in the constant transfer from 2, the optimal finite contract must clearly

prescribe a transfer of 0 in all states.

The allocation entailed by the optimal finite contract coincides with the no-

contract outcome. Clearly the fact that the two parties to the contract are strictly
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risk averse implies that party 1’s expected utility associated with the no-contract

outcome is bounded away from the full-insurance contract t∗ described in Section 4.

In our terminology, the event Z is an undescribable (or unforeseen) contingency.

The agents understand its probability pZ and use it in their expected utility compu-

tations. However, no matter how finely they attempt to describe it in a finite ex-ante

agreement, they will only be correct a fraction pZ of the time. The extreme prediction

that the parties will choose an allocation equivalent to no-contract at all of course

derives from the particular event Z we constructed above in the sense that it displays

finite invariance and fine variability.

9. Desiderata Re-Visited

In Section 2 above we set key characteristics that a model of undescribable contin-

gencies should, in our view, possess. There, we also specified what results should

be true in a model of undescribable contingencies. In this section we briefly review

our desiderata and verify that they are indeed met by our model. We also refine

our desiderata in terms of results in a way that could not be specified up-front for

technical reasons.

Our Model Desiderata 1 was that the contracting parties should be able to evaluate

ex-ante contracts by means of expected utility. In view of Definition 6 above, this we

have clearly achieved.

Our Model Desiderata 2 was that it should be language-based, so that the notion

of a finite statement could be anchored to the underlying language used to describe

the states. Clearly, the model that we put forth in Sections 5 and 6 satisfies this

requirement. Each state (or set of states) is identified by the constituent features

that describe it.

Our set-up also clearly meets Model Desiderata 3 of a rich language. Indeed, it

does so in a stronger sense of the term than the “separation” property that we spelled

out in Section 2 above.25 Recall that meeting the requirement of a rich language is key

25The algebra of finitely definable sets A of Definition 3 is capable of “approximating” any state
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to our claim that our model captures contingencies that are undescribable because

they are too complex, and not because the parties’ language or their information is

too coarse for the task.

Definition 4 above specifying what we mean by a finite contract, and the definition

(3) of finitely definable sets clearly meet Model Desiderata 4 of finitely describable

events that we set forth above.

From Proposition 2 it is also clear that the approximation result does not hold in

our model in the strong sense that our model displays both finite invariance and fine

variability. Hence Results Desiderata 1 and 2 are met.

Our model delivers a version of these results that is in some sense stronger than

we specified in Section 2 above. It is worth expanding on this point as it could not be

addressed fully in our introductory remarks, before the formal results were laid out.

The set Z of Proposition 3 above that exhibits finite invariance and fine variability

is in some intuitive sense expressible in the language defined by the features that

describe each state of nature. Simply, Z is not expressible by any finite statement in

the language. The formal counterpart of the intuitive claim we have just made is the

following. It is in fact the case that the undescribable contingency Z is in the sigma

algebra σ(A) generated by the algebra A of finitely definable sets.26 So, if we were

to allow (countably) infinite statements in the language, we would be able to capture

Z exactly.

The fact that Z is in the sigma algebra σ(A) is a key property of the model that

increases the appeal of our results. This is so not only because it brings out the fact

that it is precisely the restriction to finite statements in the language that drives our

s ∈ S in the following obvious sense. For every given s ∈ S there exists a nested decreasing sequence
of sets {An}∞n=1 with An ∈ A for every n, and such that An ↓ s. For want of a better term, in what
follows we will refer to this feature of our model as the “zoom-in” property.

26Throughout the rest of the paper, we use the following notation. If B is any algebra of sets,
then σ(B) denotes the sigma algebra generated by B.

Given the zoom-in property mentioned in footnote 25 above, the formal proof of this statement
is trivial. The zoom-in property tells us that every singleton s ∈ S is in σ(A). But since S is itself
countable, it then follows that every subset of S is in fact in σ(A).
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results. It also rules out another possible type of phenomenon that may give rise

to failures of the approximation result. This is best discussed with reference to a

concrete example.

It is well known that if we let (Ω, σ(B), ν) be a measure space (equipped with the

sigma algebra σ(B), and ν a countably additive finite measure), then given any non-

measurable set B∗ 6∈ σ(B), we can extend the measure ν to B∗ in an arbitrary way

as follows.27 The sigma algebra σ(B) can be (minimally) enlarged to σ(B)∗ so as to

include B∗, and the measure ν can be extended to ν∗, where ν∗ assigns any arbitrary

value to B∗, provided it is between the inner and outer measure of B∗ under the

original measure ν. Moreover, under ν∗, the event B∗ is independent of any event B

in the original sigma algebra σ(B).

Clearly, the set B∗ will display finite invariance and fine variability if we take our

algebra of finitely definable sets to be B (or even the entire sigma algebra σ(B) that it

generates). So, the approximation result will fail in the strongest possible way. Yet,

there is a clear sense in which this construction is unsatisfactory. The non-measurable

set B∗ has in a very real sense no relationship with the algebra B, or even with the

generated sigma algebra σ(B). This is precisely the reason it can be assigned an

arbitrary measure and taken to be independent of all events in σ(B). If B is meant

to embody the statements of a language, then the set B∗ has no relationship with

the language at all. It cannot be interpreted as a finite or even a countably infinite

statement of the language embodied in B. The viability of this arbitrary construction

is simply a by-product of the fact that there exists sets that are not σ(B)-measurable

in the first place.

By contrast, the undescribable contingency Z of Proposition 3 is in the sigma

algebra σ(A), and its density µ(Z) is computed in exactly the same way as the

density of any finitely definable set A ∈ A — it is its limit frequency in S.

27See for instance Billingsley (1995, Exercise 1.4.10) for the case in which Ω is the unit interval,
or Royden (1988, Theorem 12.38) for the general case in which Ω is any underlying space equipped
as appropriate with the algebra B.
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10. Necessity Re-Visited

In Section 2 above we claimed that two critical ingredients of our model are necessary

features of a model that delivers the results that we obtained here. In this section,

we substantiate this claim.

10.1. Finitely Additive Probabilities

The most unusual feature of our model is undoubtedly the fact that the measure µ

that we place on the state space S is finitely additive but fails countable additivity.

It turns out to be the case that this is a necessary feature of any model in which

there is an event that cannot be approximated by events in an algebra A, but which

is in the sigma algebra σ(A) generated by A. To put this in reverse, if we define any

algebra of events A over a state space S, and let µ be a countably additive measure

over (S,A), then any event Z in σ(A) can be approximated arbitrarily closely by

events in A. So, in particular, no such Z could display finite invariance and fine

variability.

To state this claim formally, we obviously first need to specify what we mean by

approximating an event in a probability space.

Definition 9. Approximation: Let any set S be given, and A an algebra of subsets

of S. Let also µ be a finitely additive probability measure on (S,A) (not necessarily

countably additive). Let µ∗ be any extension of µ to the sigma algebra σ(A).

We say that the approximation result holds for the space (S,A, µ) if and only if

for every Z ∈ σ(A) and every real number ε > 0 there exists a set A ∈ A such that

µ∗(Z4A) < ε.28

Clearly, if the approximation result holds for a space (S,A, µ), then no set Z ∈
σ(A) will display finite invariance and fine variability in the sense of Definitions 7

and 8.

28Throughout the rest of the paper we use the standard notation C4D to indicate the symmetric
difference between the two sets C and D. In other words we define C4D = [C − (C ∩ D)] ∪
D − (D ∩ C)].
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Our next step is to formalize the claim that a model of undescribable contingencies

that delivers a set Z ∈ σ(A) that cannot be approximated in the sense of Definition

9 must involve a measure µ that fails to be countably additive.

Proposition 4. Finitely Additive Measures: Let a space (S,A, µ) as in Definition 9

be given, and assume that µ is countably additive on A.

Then the approximation result holds for the space (S,A, µ).

The intuition behind Proposition 4 is not hard to outline. Roughly speaking,

since µ is countably additive on the algebra A it has, by Carathéodory’s Extension

Theorem,29 a unique countably additive extension µ∗ to the sigma algebra σ(A). Con-

sider now a sequence of sets {An} in A such that the symmetric difference An∆Z ↓ ∅.
Then, by countable additivity µ∗(An∆Z) converges to 0 and hence the approximation

result holds.

If a set Z displays finite invariance and fine variability, the approximation result

fails strongly in the sense that Z cannot be approximated at all (Z is independent of

all A ∈ A), and it fails uniformly over the entire state space S. These two features

of our model determine the fact that not only µ must fail countable additivity, but it

must fail to be countably additive in the strongest possible way.

The following is a standard result that will enable us to formalize the claim we

have just made.30

Remark 3. Decomposition Theorem: Let any set S be given, and A an algebra of

subsets of S. Let also µ be a finitely additive probability measure on (S,A) (not

necessarily countably additive).

Then µ can be written in the form µ = µCA + µFA, where µCA is a countably

additive measure, and µFA is purely finitely additive in the sense that there does not

exist a non-zero countably additive measure ν on (S,A) such that ν ≤ µFA.

29See, for instance, Royden (1988, Ch. 12.2).
30Many of the results we quote and use in our arguments below are well known in the mathematical

literature. A measure that fails countable additivity is known as a “charge.” The most comprehensive
reference of which we are aware in this field is Rao and Rao (1983).
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Moreover, the decomposition of µ into µCA + µFA is unique.31

Finite invariance and fine variability imply failure of countable additivity in the

very strong sense that µ must be purely finitely additive in the sense of Remark 3.

Proposition 5. Pure Finite Additivity: Let any set S be given, and A an algebra of

subsets of S. Let also µ be a finitely additive probability measure on (S,A).

Assume now that there exists a set Z ∈ σ(A) that displays finite invariance and

fine variability.

Then the unique decomposition of µ into µFA + µCA (as in Remark 3) is such

that µFA = µ, and µCA is identically equal to zero.32

Intuitively, if the countably additive component of µ is not identically equal to

zero then, from Proposition 4, we can approximate, at least in part, any event in the

sigma algebra σ(A). This contradicts the presence of a set like Z that displays finite

invariance and fine variability.

Once we know that µ is purely finitely additive, it is easy to see that there cannot

be a state s in S that has point mass. So, another necessary feature of a model that

delivers finite invariance and fine variability is a measure µ that is “diffuse” in a well

defined sense.33

Proposition 6. Diffuse Probabilities: Let any set S be given, and A an algebra of

subsets of S. Let also µ be a finitely additive probability measure on (S,A).

Then if µ is purely finitely additive as in Proposition 5 there cannot be a state in

S that has point mass in the following sense. There exists no s ∈ S and ε > 0 such

that s ∈ A implies µ(A) ≥ ε for every A ∈ A.34

31The proof of this claim can be found for instance in Rao and Rao (1983, Theorem 10.2.1). Notice
that the standard name for a purely finitely additive measure like µFA is that of a “pure charge.”

32In the terminology of Rao and Rao (1983), µ is a “pure charge.”
33We refrain from using the term “non-atomic” here since a whole host of technical problems arise

if one attempts to define this term in a general way for a measure µ that fails countable additivity.
Rao and Rao (1983, Ch. 5) devote an entire chapter to the subject.

34Obviously, if {s} ∈ A, then Proposition 6 tells us that it cannot be that µ(s) > 0.
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10.2. Smallness of the State Space

The set C = {0, 1}N of all infinite strings of 0s and 1s, of course has the cardinality

of the continuum. Yet, the state space S that we use in Propositions 2 and 3 is

countable. In some obvious sense, the state space that we used above to deliver

complex undescribable contingencies is “small” relative to C. This is a significant

statement since, in principle, one could attempt to use the features in the underlying

language to describe any element of C. Nevertheless, in the model we have developed

above, only countably many elements of C do in fact correspond to an actual “physical

state.”

It turns out that the fact that S must be a “small” subset of C, is also a conse-

quence of the fact that the model admits a set Z that displays finite invariance and

fine variability. Hence this is also a necessary feature of a model of undescribable

contingencies that delivers a strong failure of the approximation result, as is the case

here.

We now proceed with the formal version of the claim we just made, postponing an

intuitive discussion of the assumptions and result until the statement has been made

precise.

Let λ denote the “uniform” distribution on C. By this we mean the (unique,

countably additive) probability distribution on C obtained as the product distribution

on the features and under which λ(A(i, 0)) = λ(A(i, 1)) = 1/2 for every feature i.

Note that this may be viewed as the translation of the Lebesgue measure on C.35

Proposition 7. Zero Lebesgue Measure: Let S be any subset of C = {0, 1}N, and let

A be the algebra of finitely definable sets of Definition 3.

35To see this, embed the interval [0, 1] in the real line as a subset of C, denoted C1, by identifying
each point in [0, 1] with its binary expansion. This assignment is unique except for a countable
number of points in [0, 1] that have two possible binary expansions. For these points, we choose a
unique point in C. Then the restriction of λ to C coincides with the Lebesgue measure on [0, 1].

The measure λ is defined formally in Definition A.1 in the Appendix. Remarks A.4 and A.5
formalize the relationship between C and the interval [0, 1] that we have just sketched out.
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Suppose that µ is such that the space (S,A, µ) admits a set Z ∈ σ(A) that displays

finite invariance and fine variability. Assume also that µ(A) > 0 for every A ∈ A.36

Then λ(S) = 0.

Broadly speaking, Proposition 7 is a consequence of the fact that µ must be purely

finitely additive, which in turn of course is a consequence of finite invariance and fine

variability.

Intuitively, it is easiest to think of Proposition 7 in the following way. Suppose

that we equip the set C with the algebra of finitely definable sets A and we place a

finitely additive measure, say ν, on this pair. Then, by a theorem of Kolmogorov we

know that ν must necessarily be countably additive as well.37 It is then clear that we

could not have our state space S equal to C, since to deliver finite invariance and fine

variability we need a measure that is purely finitely additive, as Proposition 5 above

shows.

Could it then be that S contains at least a subset of C which, conditional on say

the first m features being equal to a given sequence of 0s and 1s, contains all elements

of C (a whole “cylinder”)? The answer to this question is no. Roughly speaking, we

could then apply the same theorem to this subset of C to obtain at least a “portion”

of ν that is countably additive. But this is impossible if the measure is to be purely

finitely additive, as Proposition 5 asserts that it must be if we are to obtain finite

invariance and fine variability. It follows that the state space of a model of complex

undescribable contingencies that delivers the results in Propositions 2 and 3 must

have a state space that is a “small” subset of C as in Proposition 7.

36Note that we make the assumption that µ(A) > 0 for every A ∈ A purely for the sake of
simplicity. Without it we would need to take care separately of any possible “superfluous” portion
of C. By this we mean that, for instance, µ could assign a mass of zero to the set of all states in
S that have, say, feature 1 equal to 1. In this case it is possible that this entire cylinder in C is
included in S. Since this part of µ is identically equal to 0, it would be purely finitely additive in
the sense of Remark 3 since both its countably additive component and its purely finitely additive
components are identically equal to 0.

37See for instance Billingsley (1995, Theorem 2.3) or Doob (1994, Theorem V.6).
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11. Conclusions

We have shown that it is possible to construct a contracting environment in which

some contingencies have the following properties. Their probabilities and conse-

quences are understood by all concerned, and all agents involved use this information

to compute expected utilities arising from any possible finite ex-ante contract. Yet

these contingencies are undescribable in the sense that any attempt to describe them

in a finite ex-ante agreement must fail. The contracting parties cannot describe these

contingencies to any degree that will improve their expected utilities relative to an

agreement that ignores them altogether. This is so notwithstanding the fact that the

contracting parties’ language can in fact distinguish between any two states.

In this paper we have considered an environment in which a particularly stark

failure of the approximation of Anderlini and Felli (1994) takes place. In particular,

we obtain undescribable contingencies, like Z above, that display finite invariance and

fine variability. So, the approximation results fails “uniformly” in that membership

of no finitely describable set constitutes useful information about membership of Z.

It is clearly possible to envision intermediate cases in which, say, knowing that

the first feature of a state is 0 tells us something about its membership of Z, but it

is still the case that Z cannot be approximated in the sense of Definition 9.38

In an earlier version of this paper (Al-Najjar, Anderlini, and Felli 2002) we develop

formally a batch of results that deal with these intermediate cases. What follows is a

brief sketch.

It is possible to characterize tightly what the optimal finite contract looks like in

the general case in which the conditional density of Z is not equal across all finitely

definable sets in the algebra A. Applying again the Kolmogorov theorem that we

cited in Section 10.2,39 we can identify the unique countably additive measure on the

continuum set C that agrees with the conditional density of Z, µ(Z|·), on every A in

38Note that in this case, from Proposition 4 we still know that the measure µ must fail to be
countably additive.

39See footnote 37 above and Remark A.3 in the Appendix.
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A.40 Using this measure and keeping fixed the parties’ utility functions we can then

define an “auxiliary” contracting problem on the state space C.

Since the ingredients of the auxiliary contracting problem are all “standard” it

can be solved using familiar techniques. It is then relatively easy to show that the

solution to the auxiliary problem fully characterizes the optimal finite contract in the

general case.

Hence the optimal finite contract is not “null” in the general case. It captures the

variability of the conditional density of Z that can be embodied in its unique count-

ably additive “translation” to C that we have mentioned above. All other variability

in the characteristic function of Z cannot be captured at all by any finite contract.

Hence it can be safely ignored in the characterization of the optimal finite contract

that the parties will sign.

Appendix

Proof of Proposition 1: Consider the set C of infinite sequences of 0s and 1s, C = {0, 1}N, with

typical element c and let ci be the i-th digit of the sequence c. Let also

Ã(i, j) = {c ∈ C such that ci = j} (A.1)

Let H denote the set of all infinite sequences {c1, . . . , cn, . . .} with cn ∈ C for every n. Let

{c̃n}∞n=1 be an infinite sequence of i.i.d. random variables with (countably additive) distribution µ̃

over C, and let P be the (product) probability distribution that this yields for H.

For any i and j now consider the event M(i, j) ⊂ H such that lim
N→∞

(1/N)
∑N

n=1 χÃ(i,j)(cn) =

µ̃(Ã(i, j)). By the law of large numbers, P (M(i, j)) = 1 for every i and j.

Now define,

M =
⋂
i∈N

j∈{0,1}

M(i, j) (A.2)

Clearly, since P (M(i, j)) = 1 for every i and j, and of course P is countably additive, we must also

have P (M) = 1, and therefore M 6= ∅.

40Of course, in the case of finite invariance, this would be the uniform measure on C.
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It is now sufficient to choose S to be equal to any element of M to prove the claim.

Proof of Proposition 2: Fix any p ∈ (0, 1) as in the statement of the proposition. Assume

that S is as in Proposition 1, and that it has the property that any finitely definable set A contains

a countable infinity of elements. This is clearly possible from the construction in the proof of

Proposition 1.

Define a stochastic process {h̃1, . . . , h̃n, . . .} where each random variable h̃n takes values in {0, 1}.
Let H denote the set of all realizations of this process, and let P be the probability distribution

on H under which {h̃1, . . . , h̃n, . . .} are i.i.d. random variables with distribution (p, 1 − p). Notice

that a realization h = {h1, . . . , hn . . .} ∈ H of this process can be taken to be a candidate for the

characteristic function χZ : S → {0, 1}. We now proceed to show that the claim can be proved by

setting χZ equal to any such realization of this process in a set of probability 1.

Let any h ∈ H be given and let A(h) be the set of states sn such that sn ∈ A and hn = 1.

The law of large numbers holds for any A ∈ A in the following sense. There is a set HA ⊂ H with

P (HA) = 1 such that h ∈ HA implies that

lim
N→∞

1
N

N∑
n=1

χA(h)(sn) = p µ(A) (A.3)

Since P (HA) = 1, clearly Q =
⋂

A∈AHA also has probability 1. Therefore Q 6= ∅. Now select any

element h = {h1, . . . , hn, . . .} of Q, and set χZ(sn) = hn for every n. This is our candidate χZ .

Since equation (A.3) holds for any A ∈ A it is obvious that Z displays finite invariance as in

Definition 7. Again from the fact that equation (A.3) holds for any A ∈ A, it is clear that Z has

well defined frequencies as in Definition 5. Lastly, again from equation (A.3) it is immediate that

for any A ∈ A with µ(A) > 0 we must have that µ(Z|A) = p, as required.

Lemma A.1: Consider problem (12). Let Z have well defined frequencies as in Definition 5 and

display finite invariance, as in Definition 7.

Let any finite contract t(·) ∈ F that is feasible in problem (12) be given, and {t1, . . . , tM} be

the range of t(·). Finally, for every i = 1, . . . ,M , let Ti be the inverse image of ti under t(·).

Assume now that t(·) has the following property. There exist an i ∈ {1, . . . ,M} and a j ∈
{1, . . . ,M} such that µ(Ti) > 0 and µ(Tj) > 0. Then there exists another finite contract t′(·) ∈
F that is constant over Ti ∪ Tj , which is also feasible in problem (12) and which yields a higher

expected utility for agent 1.
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Proof: Let t′(·) be the same as t(·) for every sn 6∈ Ti ∪ Tj , and set

t′(sn) =
µ(Ti)ti + µ(Tj)tj

µ(Ti) + µ(Tj)
∀sn ∈ Ti ∪ Tj (A.4)

The claim now follows directly by concavity of V , defining U1 and U2 as in (1) and (2). The

rest of the details are omitted.

Lemma A.2: Let Z have well defined frequencies (as in Definition 5) and display finite invariance

(as in Definition 7). Then an optimal finite contract t∗∗ that solves problem (12) exists unique, up

to a set of states of µ-measure zero. Moreover, t∗∗(sn) = 0 for all sn ∈ S, up to a set of states of

µ-measure zero.

Proof: Let Z as in the statement of the Lemma be given. Consider now the following maximization

problem.

max
x

V (1 + x) µ(Z) + V (x) µ(Z)

s.t. V (−x) µ(Z) + V (1− x) µ(Z) ≥ V (0)µ(Z) + V (1)µ(Z)

x ∈ R

(A.5)

The strict concavity of V (·) implies that problem (A.5) has a unique solution by completely

standard arguments. Let this solution be denoted by x̃.

The expected utility V (−x) µ(Z) + V (1 − x) µ(Z) is monotonically decreasing in x. Therefore

the constraint in problem (A.5) is satisfied only when x ≤ 0. Since the objective function in problem

(A.5), V (1 + x) µ(Z) + V (x) µ(Z), is monotonically increasing in x we conclude that the unique

solution of problem (A.5) is x̃ = 0.

From Lemma A.1 above it is immediate that a solution to problem (A.5) must yield a solution

to problem (12). Therefore setting t∗∗(sn) = 0 for every sn ∈ S yields the unique (up to a set of

µ-measure zero) solution to problem (12).

Proof of Proposition 3: Let S be as in Proposition 1. Using Proposition 2 we can now choose Z to

have well defined frequencies, display finite invariance and exhibit fine variability, with µ(Z) ∈ (0, 1).

The claim now follows directly from Lemma A.2.



Undescribable Contingencies 39

Proof of Proposition 4: Since µ is countably additive on A by Catahéodory’s Extension Theorem

there exists a unique extension µ∗ of µ to σ(A). Since Z ∈ σ(A), we must then have that µ∗(Z) is

equal to the outer measure of Z induced by µ. In other words it must be that

µ∗(Z) = inf
∑

n

µ(On) (A.6)

where the infimum extends over all finite and infinite sequences {On} that satisfy

On ∈ A ∀n and Z ⊆
⋃
n

On (A.7)

Hence, for any real number ξ > 0 there exists a sequence {On} satisfying (A.7) and

∑
n

µ(On) − µ∗(Z) < ξ (A.8)

Since the first term in (A.8) is a convergent series, for any real number η > 0 there exists a finite m

such that

∑
n

µ(On) −
m∑

n=1

µ(On) < η (A.9)

Notice next that (A.8) implies that

µ∗(
⋃
n

On ) − µ∗(Z) < ξ (A.10)

Since the sequence {On} satisfies (A.7), the inequality in (A.10) implies that

µ∗(Z 4
⋃
n

On ) < ξ (A.11)

From (A.9) we can now deduce that

∑
n>m

µ(On) < η (A.12)

and hence that

µ∗(
⋃

n>m

On ) < η (A.13)
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from which it follows immediately that

µ∗(
⋃
n

On4
m⋃

n=m

On ) < η (A.14)

It is straightforward to verify that the operator µ∗(·4 · ) is in fact a pseudo-metric on the sigma

algebra of sets σ(A). Hence it satisfies the triangular inequality. Hence

µ∗(Z 4
m⋃

n=1

On ) ≤ µ∗(Z 4
⋃
n

On ) + µ∗(
⋃
n

On4
m⋃

n=m

On ) (A.15)

Using (A.11) and (A.14), (A.15) immediately yields

µ∗(Z 4
m⋃

n=1

On ) ≤ ξ + η (A.16)

Finally, since ξ and η are both arbitrary, and the finite union
⋃m

n=1 On is clearly an element of A,

(A.16) is obviously enough to prove the claim.

We will use the following result in the proof of Proposition 5 below. We state it here without

proof purely for the sake of completeness. For the proof see Rao and Rao (1983, Theorem 10.3.1).

Remark A.1: Let any set S be given, and A an algebra of subsets of S. Let also µ be a finitely

additive probability measure on (S,A) (not necessarily countably additive).

Then µ is purely finitely additive if and only if for every countably additive measure ν on (S,A),

every A ∈ A, and every η > 0 there exists a set M ∈ A such that M ⊆ A

ν(M) < η and µ(A) − µ(M) < η (A.17)

Remark A.2: Let any set S be given, and A an algebra of subsets of S. Let also µ be a finitely

additive probability measure on (S,A) (not necessarily countably additive), and consider its (unique

decomposition) into µCA + µFA as in Remark 3.

Then for every η > 0 there exists a set B ∈ A such that

µCA(B) > µCA(S)− η and µFA(B) < η (A.18)
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Proof: The claim is a straightforward consequence of Remark A.1.

Since µCA is countably additive and µFA is purely finitely additive, in Remark A.1 we can set

µ = µFA and ν = µCA. Hence, setting A = S, Remark A.1 now tells us that for every η > 0 there

exists a set M ∈ A such that

µCA(M) < η and µFA(S) − µFA(M) < η (A.19)

Next, set B = M . We then note that µCA(M) = µCA(S) − µCA(B) and µFA(M) = µFA(S) −
µFA(B). Substituting these equalities in (A.19) now immediately yields that for every η > 0 there

exists a set B ∈ A such that

µCA(S)− µCA(B) < η and µFA(S)− µFA(S) + µFA(B) < η (A.20)

Rearranging (A.20) then immediately gives the result.

Proof of Proposition 5: Use Remark 3 to write µ = µCA + µFA. From Proposition 4 we know

that µCA(S) < 1. Assume now that the Proposition is false. Then it must also be the case that

µCA(S) > 0.

Using Remark A.2 we know that for every η > 0 there exists a set B ∈ A such that

µCA(B) > µCA(S)− η and µFA(B) < η (A.21)

Since by assumption µ(Z) ∈ (0, 1), we can choose η in (A.21) to satisfy

η < µCA(S)
µ(Z)− µ(Z)2

2 + µ(Z) + µ(Z)2
(A.22)

Notice next that since we know that µCA(S) > 0 (the contradiction hypothesis), and by as-

sumption µ(Z) ∈ (0, 1), the inequalities in (A.21) and (A.22) guarantee that µ(B) ≥ µCA(B) >

0. Therefore, we can define the restrictions of µ and µCA to B ∈ A as µB = µ/µ(B) and µCA
B

= µCA/µCA(B). Further, define µFA
B to be identically equal to 0 if µFA(B) = 0, and µFA

B =

µFA/µFA(B) if µFA(B) > 0. Therefore, we can now write

µB = α µCA
B + (1 − α)µFA

B (A.23)

where α = µCA(B)/µ(B). Notice that, since µCA(S) ≥ µCA(B), we can now use (A.21) and (A.22)

to conclude that

α =
µCA(B)

µCA(B) + µFA(B)
>

µCA(S)− η

µCA(S) + η
>

1 + µ(Z)2

1 + µ(Z)
(A.24)
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Next, define ZB = Z ∩ B, and notice that since Z displays finite invariance we have that ZB

displays finite invariance with respect to the restriction µB . In other words whenever A ∈ A and A

⊆ B we must have that µB(ZB |A) = µB(ZB), with the latter of course also equal to µ(Z).

Clearly, µCA
B is countably additive. Applying Proposition 4, for every real number ξ > 0 there

exists Qξ ∈ A such that

µCA
B (ZB |Qξ) < ξ and

∣∣ µCA
B (Qξ) − µCA

B (ZB)
∣∣ < ξ (A.25)

Therefore

µB(ZB |Qξ) =
α µCA

B (ZB |Qξ) µCA
B (Qξ) + (1− α) µFA

B (ZB |Qξ) µFA
B (Qξ)

α µCA
B (Qξ) + (1− α) µCA

B (Qξ)

<
ξ + (1− α) µFA

B (ZB |Qξ) µFA
B (Qξ)

α µCA
B (Qξ) + (1− α) µCA

B (Qξ)

<
ξ + 1− α

α µCA
B (Qξ)

(A.26)

In other words, using the fact that Z displays finite invariance with respect to µB , we can now write

α µB(ZB)(1 − µCA
B (Qξ)) < ξ + 1 − α (A.27)

Since µB(ZB) ≥ α µCA
B (ZB), we can now use (A.25) to re-write (A.27) as

α <
1 + ξ + µB(ZB)2

1 + µB(ZB) (1− ξ)
(A.28)

Since µB(ZB) = µ(Z), for ξ sufficiently small (A.28) implies that

α <
1 + µ(Z)2

1 + µ(Z)
(A.29)

However, since (A.29) directly contradicts (A.24) this is clearly enough to prove our claim.

Proof of Proposition 6: Since µ is purely finitely additive, from Remark 3 we know that µCA is

identically equal to 0. Hence from Theorem 10.2.2 of Rao and Rao (1983) we can conclude directly

that

0 = inf

{∑
n

µ(An)

}
(A.30)

where the infimum extends over all (finite or infinite) sequences of disjoint sets {An} such that

An ∈ A for every n, and
⋃

n An = S.
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Suppose now by way of contradiction that the statement of the Proposition is false. Then there

exists an s ∈ S such that µ(A) ≥ ε whenever A contains s. Since for any sequence {An} as above

we must have that s ∈ An for some n, this implies that the infimum in (A.30) is at least ε. This

contradiction is enough to establish the result.

We will use the following result in the proof of Lemma A.3 below. We state it here without

proof purely for the sake of completeness. For the proof see Billingsley (1995, Theorem 2.3) or Doob

(1994, Theorem V.6).

Remark A.3: Consider the set C = {0, 1}N, and any subset S of C. Assume that S is equipped

with the algebra A of finitely definable sets, and equip C with the algebra Ã corresponding to the

algebra of finitely definable sets as follows.

As in (A.1) of the proof of Proposition 1, for each c ∈ C let {ci}i∈N be the sequence of digits in

{0, 1} that define c, and for every i ∈ N and j ∈ {0, 1} let

Ã(i, j) = {c ∈ C such that ci = j} (A.31)

and let Ã be the algebra of subsets of C generated by the collection of sets of the type Ã(i, j). Notice

that in this way, using (8), we obviously have that for every Ã ∈ Ã it must be that Ã∩S = A ∈ A.

Let µ be any finitely additive measure on (A,S) (not necessarily countably additive). Then there

exists a unique countably additive measure µ̃ on (σ(Ã), C) that satisfies µ̃(Ã) = µ(A) whenever Ã∩S
= A.41

Lemma A.3: Let any S ⊂ C be given, and consider a purely finitely additive measure µ on (S,A).

Let µ̃ be the extension of µ to (σ(Ã), C) as in Remark A.3 above.

Then, for every real number ε > 0 there exists Ãε ∈ σ(Ã) such that S ⊆ Ãε and µ̃(Ãε) < ε.

Proof: Since µ is purely finitely additive, appealing again to Theorem 10.2.2 of Rao and Rao (1983)

we can conclude directly that

0 = inf

{∑
n

µ(An)

}
(A.32)

where the infimum extends over all (finite or infinite) sequences of disjoint sets {An} such that

An ∈ A for every n, and
⋃

n An = S. Hence, for every ε > 0 there exists a sequence of disjoint sets

{An,ε} such that An,ε ∈ A for every n,
⋃

n An,ε = S and

∑
n

µ(An,ε) < ε (A.33)

41With a slight abuse of language we refer to µ̃ as the extension of µ to (σ(Ã), C).
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Consider any sequence {An,ε} as in (A.33) and the sequence {Ãn,ε} of subsets of C corresponding

to it in the sense of Remark A.3, so that Ãn,ε ∩ S = An,ε for every n. Let Ãε =
⋃

n Ãn,ε. Observe

that clearly Ãε ∈ σ(Ã).

Notice next that
⋃

n An,ε = S ∩
⋃

n Ãn,ε. Hence S = Ãε ∩ S, and therefore S ⊆ Ãε. Since µ̃

is countably additive we now have that µ̃(Ãε) =
∑

n µ̃(Ãn,ε). Since by construction we must have

that µ̃(Ãn,ε) = µ(An,ε) for every n we also know that

µ̃(Ãε) =
∑

n

µ̃(Ãn,ε) =
∑

n

µ(An,ε) (A.34)

Using (A.33), and (A.34) it is now immediate that µ̃(Ãε) < ε, as required.

Lemma A.4: Let any S ⊂ C be given, and consider a purely finitely additive measure µ on (S,A).

Let µ̃ be the extension of µ to (Ã, C) as in Remark A.3 above.

Then, there exists S̃ ∈ σ(Ã) such that S ⊆ S̃ and µ̃(S̃) = 0.

Proof: From Lemma A.3 we know that, given any sequence εm → 0 we can construct a correspond-

ing sequence of sets {Ãεm} such that S ⊆ Ãεm , µ̃(Ãεm) < εm, and Ãεm ∈ σ(Ã) for every m. To

prove the claim it is then sufficient to set S̃ =
⋂

m Ãεm
and to notice that it must be the case that

S̃ ∈ σ(Ã).

Remark A.4: Each element c of C = {0, 1}N can be interpreted as the binary expansion of a real

number r in the interval [0, 1] by taking the elements of the sequence c to be the digits of the binary

expansion of r following a “0” and the “decimal” point.

This map assign a unique real in [0, 1] to each element of C except for those that are of the form

{c1, . . . , cm, 1, 0, . . . , 0, . . .} and {c1, . . . , cm, 0, 1, . . . , 1, . . .} which obviously correspond to the same

real number r. Notice that there are countably many such pairs of elements of C.

In what follows we will denote by C0 the set of elements of C that are of the form {c1, . . . , cm, 1,

0, . . . , 0, . . .}, excluding {0, . . . , 0, . . .}, and by C1 the remainder of C so that C1 = C − C0.

From what we have just stated, it is clear that we can assign a unique real in [0, 1] to each

element of C1 and a unique element of C1 to every real in [0, 1].

Finally, notice that if we define the sigma algebra σ(Ã1) of subsets of C1 as consisting of the

collection of sets Ã∩C1 for every Ã ∈ σ(Ã) we obtain that σ(Ã1) contains all the half-open intervals

in [0, 1] of the form (a, b] where a and b are reals in [0, 1].



Undescribable Contingencies 45

Remark A.5: Consider the sigma algebra σ(Ã0) of subsets of C consisting of the collection of sets

Ã ∩ C0 for every Ã ∈ σ(Ã). Consider also the sigma algebra σ(Ã1) of Remark A.4.

Then σ(Ã) = σ(Ã0) ∪ σ(Ã1).

Proof: Since C0 is a countable set it is enough to notice that every singleton set is already contained

in σ(Ã). Hence σ(Ã0) consists of all subsets of C0. The assertion is then immediate from the

definition of σ(Ã0) and σ(Ã1). The details are omitted.

Definition A.1: Recall that from Remark A.5 we know that σ(Ã) = σ(Ã0) ∪ σ(Ã1). The Lebesgue

measure λ on C is then defined as follows.

For every Ã in σ(Ã), set λ(Ã) = 0 if Ã ∈ σ(Ã0), and λ(Ã) = L(Ã) if Ã ∈ σ(Ã1) where L is the

Lebesgue measure on the real interval [0, 1] defined in the standard way.

Finally, as is standard, we take λ to be the completion of the measure we have just defined in

the sense that it is defined and is equal to zero on all subsets of all measurable sets that have zero

measure.42

Lemma A.5: Let µ̃ be the extension of µ to (σ(Ã), C) as in Remark A.3, and assume that µ is

such that µ(A) > 0 for every A ∈ A.

Then supp(µ̃) = C, where supp(·) indicates the support of a given measure.

Proof: Suppose not. Then there is a non-empty open set O in C such that µ̃(O) = 0. (We take

O to be open in the product topology generated by the discrete topology on each coordinate of the

elements of {0, 1}N.)

We will show that for every open set O we can find an Ã ∈ Ã that is contained in O. Since

µ̃(Ã) = µ(Ã ∩ S) and the latter is, by assumption, positive this yields a contradiction and hence is

sufficient to prove the claim.

Assume by way of contradiction that we can find a non-empty open O ⊆ C such that Ã 6⊆ O for

every Ã ∈ Ã.

Fix c ∈ O and consider the nested sequence of sets {Ãn} where for every n, Ãn ∈ Ã is the set

(the “cylinder”) of all those ĉ s that have the first n digits equal to the first n digits of c.

By our contradiction hypothesis it must be that Ãn 6⊆ O for every n. Hence, for every n we

must be able to find a ĉn ∈ Ãn and ĉn 6∈ O.

Clearly, the sequence {ĉn} converges to c. But since ĉn 6∈ O for every n, and c ∈ O, this

contradicts the fact that O is open.

42See for instance Billingsley (1995, p. 45).
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Proof of Proposition 7: Let µ̃ be the extension of µ to (σ(Ã), C) as in Remark A.3 and λ be the

Lebesgue measure on C as in Definition A.1.

By Lemma A.4 we know that there exists a set S̃ ∈ σ(Ã) such that S ⊆ S̃ and µ̃(S̃) = 0, and

By Lemma A.5 we know that supp(µ̃) = C.

Since λ is, by definition, complete in the sense that it assigns measure zero to all subsets of

any set in σ(Ã) that have λ-measure zero, it is enough to show that λ(S̃) = 0.43 We proceed by

contradiction. Hence suppose that λ(S̃) > 0.

By the “Lebesgue Decomposition Theorem,”44 we know that µ̃ can be (uniquely) written as µ̃

= µ̃C + µ̃S where µ̃C is absolutely continuous with respect to λ, and µ̃S is singular with respect to

λ.

Let QS = supp(µ̃S) and QC = supp(µ̃C). Since supp(µ̃) = C, we must have that C = QS ∪ QC .

Hence S̃ = [S̃ ∩QS ] ∪ [S̃ ∩QC ].

Notice that, since µ̃S is singular with respect to λ, we immediately know that λ(S̃ ∩ QS) = 0.

Hence, by our contradiction hypothesis it must be that λ(S̃ ∩QC) > 0.

Now let f be the Radon-Nikodym derivative of µ̃C with respect to λ, which of course we know

exists because µ̃C is absolutely continuous with respect to λ. Notice that it must be the case that

f > 0 except for a set of λ-measure zero on S̃ ∩QC . Hence λ(S̃ ∩QC) > 0 implies that

µ̃C(S̃ ∩QC) =
∫
S̃∩QC

f dλ > 0 (A.35)

However, since µ̃ = µ̃C + µ̃S and µ̃(S̃) = 0, we must obviously have that µ̃C(S̃ ∩ QC) = 0. This

contradiction is sufficient to prove the claim.
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