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1 Introduction

We analyze a Principal-Agent relationship where the Principal can influence the preci-

sion of the Agent’s original private information by controlling the release of additional

signals to the Agent. These signals (like the Agent’s original type-estimate) are only

observable to the Agent. We derive the Principal’s optimal contract, whose terms

incorporate an information disclosure policy, and characterize several of its properties.

Besides the theoretical interest in this problem, the model is motivated by several

applications. Suppose, for example, that the Department of Defense (Army, for short,

acting as the Principal) wants to procur large quantities of a new vaccine from a com-

mercial pharmaceutical company (the supplier, or Agent). The Army’s laboratory, the

vaccine’s developer, has extensive information regarding the vaccine (e.g., its chemi-

cal properties), which might be important for the supplier in determining the costs of

production. However, the Army has no expertise in the mass production of vaccines,

therefore, it cannot evaluate the effect of its own information on the supplier’s costs. If

the Army discloses what it knows to the supplier, then all this information becomes the

supplier’s private knowledge, which it can use at its own advantage. The question is

then how the Army should structure the contract with the supplier, including whether

and how it should disclose the information that it controls but cannot evaluate, in

order to maximize its objective function.

Another example could be that of the owner of a proprietary operating system (the

Principal) hiring another software company (the Agent) to develop an application, say,

a program synchronizing the computer and other devices via the internet. The inner

workings of this new program are privately known by the Agent. The Principal may

release information to the Agent regarding the operating system (e.g., its communi-

cation standards), which would help the Agent better gauge the difficulty of adapting

its application to the Principal’s system. Lacking the Agent’s know-how, however, the

Principal does not know whether these revelations would make the Agent’s task harder
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or easier. Therefore, one can model the situation as if the Principal could disclose,

without observing, the realizations of shocks that modify the Agent’s private cost es-

timate.1 The question is then whether and how the Principal should disclose these

signals, and who will be better off due to the availability of more information.

These two examples can be generalized in a model where the Principal (she) is

procuring goods or services from the Agent (he). Before they contract, the Agent has

private information about his productivity, which can be made more precise by the

Principal by providing a better job description, or by releasing other clues that the

Agent can use to evaluate how the job matches his expertise. However, the Principal

does not know how this additional information affects the Agent, that is, she cannot

observe the realization of the signals she can disclose.2 Our goal is then to find the

optimal contract that the Principal can offer, which governs their bilateral trade and

the Principal’s information disclosure.

The Principal can influence how much the Agent can learn about his own type in

other contractual situations as well. The producer of a durable good can offer a trial

period to her buyer during which the buyer can learn the uses of, and therefore his

own valuation for, the good. Another interesting example is that of an employee whose

productivity depends both on his privately known talent and the quality or matching

interests of his colleagues (e.g., a researcher). The potential employer can bring him

in for a round of interviews, during which the candidate can learn more about the

workplace and hence his potential productivity in that environment.3

1This situation is quite common in outsourcing financial, legal, or IT services: the buyer often
does not know whether some of her proprietary information makes the provider’s job easier or more
difficult, because that judgment would already require the provider’s know-how.

2For example, the Principal may be able to give a sample job to the Agent. In this case, we should
assume that only the Agent (and not the Principal) can reliably evaluate the Agent’s productivity
based on the sample job, say, because the Agent can exert hidden effort that substitutes for ability
on this job.

3Another purpose of flying in a candidate is to find out his qualities. However, note that the
candidate (unlike the department) has powerful incentives to exert effort and look like a perfect fit.
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In all these examples, it is interesting to ask whether and how the Principal should

release her clues (the realizations of the additional signals) to the Agent. Starting from

a situation with asymmetric information (recall that at the outset, the Agent already

has a private type-estimate), the disclosure of information may or may not lead to

more social surplus, but nevertheless, it will provide the Agent with private knowledge

that he may be able to draw rents upon. Therefore, we are interested in finding the

optimal contract between the Principal and the Agent (the mechanism that maximizes

the Principal’s utility). This contract will not only specify transfers contingent on the

contractible variable, but it will also incorporate an information disclosure policy.4

In this paper, we characterize the contract that maximizes the Principal’s util-

ity. Our main result is that in this mechanism, all available additional information

is disclosed by the Principal. Moreover, we show that in the optimal mechanism, the

Principal’s utility is the same as if she could observe the realizations of the signals

whose release she can control. In other words, although the Agent enjoys information

rents due to his original private information (his initial type-estimate), in the optimal

mechanism, the Principal appropriates all rents for the additional signals that she con-

trols. That is, in a second-best world, the one who controls the flow of information

appropriates the rents of information.5

This economic lesson is valid in other environments as well. In Eső and Szentes

(2002), we show that similar results hold in a special multi-agent adverse selection

model, specifically, in an auction for a single good with risk neutral buyers and in-

dependent private valuations. There, we exhibit a simple mechanism, dubbed the

“handicap auction,” which is optimal when the seller controls the release of informa-

tion that refines the buyers’ original value-estimates. The properties of the optimal

4For example, outsourcing contracts may specify a trial (learning) period at the end of which the
provider has the option to renew at a pre-specified lower price.

5This may be the reason why Newman (the mean postal worker) exclaims in one of the Seinfeld
episodes, “If you control the mail, you control – information!”
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handicap auction are similar to those of the optimal contract in the present model. For

example, the seller discloses all information she controls, implements the same alloca-

tion rule as if she could observe the additionally released signals, and extracts all rents

for them. However, the specification of the optimal handicap auction is considerably

simpler than that of the optimal contract in the present model due to the special form

of the payoffs in the monopolist’s selling problem.

Information disclosure has been studied in the agency literature mostly in the con-

text of the monopolist’s selling problem. Milgrom and Weber (1982) investigate the

Principal’s (seller’s) incentives to disclose public (as opposed to private) information

in the standard auction formats in an environment with interdependent values. Otta-

viani and Prat (2001) show that a monopolist is always better off by committing to

reveal public signals affiliated to the buyer’s information, provided she can adjust the

selling mechanism in response to the additional signals. Another fruitful area has been

the study of the buyer’s incentives to acquire private information in different auction

formats (see Persico (2000), Compte and Jehiel (2001) and the references therein). In

contrast to these models, here, the Principal will decide whether to disclose (without

observing) private information to the Agent. There are very few papers discussing the

value for the monopolist of the private information of the buyer (see Lewis and Sap-

pington (1994), and Bergemann and Pesendorfer (2002)). The two crucial differences

between these papers and ours is that in our model, the Agent already has private

information when the game starts, and that we allow the Principal to fully incorporate

the rules of information disclosure into the optimal contract (in the two papers men-

tioned above, the seller first chooses a disclosure policy and then optimizes the selling

mechanism without prior commitment).

An interesting strand of contract theory (see Caillaud et al. (1992) and the refer-

ences therein) investigates adverse selection models where the Principal can contract

on a noisy estimator of the Agent’s action instead of the action itself. It is shown that
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(under certain conditions) the Principal can achieve the same allocation with noisy

observation as in the case when the action is verifiable without error. The key in these

models is that the optimal mechanism can be implemented via a menu of contracts

where the transfer is linear in the Agent’s action. Since the Agent is risk neutral,

the optimal contract will be robust to any (unbiased) noise in the observation of the

action. Note that our problem is very different as the signals that the Principal can

reveal pertain to the type of the Agent, and actions are contractible without noise.

The paper is structured as follows. In the next section, we outline the model and

introduce the necessary notation. In Section 3, we first derive the optimal contract for

the case when the Principal can observe the additional signals that refine the Agent’s

type-estimate. Then, we show that the outcome can be attained even if the Principal

cannot directly observe the additional signals, and further characterize the optimal

contract. We conclude in Section 4.

2 The Model

Assume that two parties, a Principal and an Agent, are about to enter a contractual

relationship. The contractible decision (which could be the Agent’s production, the

Principal’s or the two party’s joint activity) is represented by a real number, x, be-

longing to a compact interval [x, x̄]. The Agent has a characteristic, called type or

ability, which is the sum of two independent random variables, θ and s, and influences

the utilities of both parties. Here θ, called the type-estimate, is the Agent’s private

information, while s, called the shock, is initially not observable to him. However, the

Principal can disclose, without observing, the realization of s to the Agent.6

The type-estimate, θ, is distributed on [0, 1] according to a cumulative distribution

function, F , with a positive density, f . The monotone hazard rate condition is satisfied,

6We allow, but not require, that the Principal can release (without observing) other signals that
are correlated with s as well.
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that is, the hazard rate, H = (1 − F )/f , is weakly decreasing. We do not make any
assumption regarding the distribution of the shock except that s is independent of θ.

Utilities are quasilinear and perfectly transferable.7 Denoting the transfer from the

Principal to the Agent by t, we can write the Agent’s utility as

U = u(x, θ + s) + t,

and the Principal’s utility as

V = v(x, θ + s)− t.

We will use subscripts to refer to partial derivatives, for example, u1 = ∂u/∂x, and

assume that both u and v thrice differentiable.

We assume that u and v are concave in x, that is, the decision variable has a

weakly decreasing marginal effect on the utilities of both parties (they have increasing

marginal costs or decreasing marginal utilities from the decision). We also assume that

the Agent’s utility is monotonic in his ability, and normalize it to be “good,” that is,

u2 > 0. We assume that u2 is uniformly continuous.

We impose the following additional conditions on the functions u and v. First,

we assume that the Spence—Mirrlees (or single-crossing) condition holds: the Agent’s

marginal utility from x is strictly increasing in his ability, u12 > 0. In other words,

the single-crossing condition implies that an increase in the decision variable (activity)

is more beneficial (or less costly) for an Agent with a higher type. We require that

u112 ≥ 0, that is, this “advantage” of a high-type Agent (compared to a low type) from
increasing the decision is greater if x, the level of the decision variable, is higher. We

also require that u122 ≤ 0, that is, the marginal utility of the decision is concave in
the Agent’s type (it is increasing at a weakly decreasing rate). Finally, we assume that

7Our results go through with quasilinear but imperfectly transferable utilities as well.
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v12 ≥ 0, that is, the Principal’s marginal utility from the decision is non-decreasing in

the Agent’s ability. These conditions on the utility functions are standard in Principal-

Agent models and hold in most applications.8

In order to see that these assumptions are reasonable (and hold) in the applications

mentioned in the Introduction as well, let us interpret them in the context of our

leading examples. In the procurement or outsourcing application, x can be thought of

as the amount of goods or services provided by the Agent to the Principal. The type of

the Agent, θ+s, is a parameter influencing the supplier’s production costs. The Agent

initially only knows θ, and the Principal can disclose s to him. Write the utilities for

the Agent and Principal as

U = t− c(x, θ + s),
V = v(x)− t,

respectively. Here, c(x, θ+s) is the Agent’s cost function, v(x) is the Principal’s utility

from consuming quantity x, and t is monetary transfer from the Principal to the Agent.

The assumptions on the derivatives of the utility functions apply as follows. The

Agent’s type is normalized so that cost is decreasing in type, c2 < 0. The single-crossing

condition becomes c12 < 0, that is, the higher the Agent’s type, the lower his marginal

cost of production. The Principal’s utility function is concave in x (her marginal utility

from consuming the good is weakly decreasing). The Agent’s utility is concave in x as

well, meaning that he has weakly increasing marginal cost of production (for a given

type). The conditions on the third derivatives of the Agent’s utility function hold if

c112 ≤ 0, the marginal cost function is “less convex” for higher types (not only that the
marginal cost is lower for higher types, it also increases more slowly in x), and c122 ≥ 0,
the marginal cost decreases in the Agent’s type at a decreasing rate (the Agent’s type

8See the discussion of assumptions A1—A10 in Chapter 7 of Fudenberg and Tirole (1991).
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exhibits decreasing returns at reducing the marginal cost).9 Finally, the Principal’s

utility does not depend on the Agent’s type, so v12 ≥ 0 holds.
An even more specialized version of this model would be one where the Principal

offers an indivisible good or contract to the Agent, and x is interpreted as the proba-

bility of trade. The good or contract, if awarded to the Agent, is worth (θ+ s) to him,

less the monetary transfer (if any) he has to make to the Principal. For simplicity, let

the monetary value of the good or contract be zero for the Principal (the same as the

value of no trade). Under these assumptions, U = (θ + s)x + t and V = −t. This is
essentially a model of auctioning a single item to a single buyer, where the Principal

is the seller and the Agent is the buyer.

3 Results

In Subsection 3.1, we first look at the case where the Principal can observe the real-

ization of the shock (the additional signal, s). We solve for the Principal’s optimal

contract in this benchmark case. Then, in Subsection 3.2, we return to our original

model, where the Principal can decide whether to release, but cannot actually observe,

the realization of the shock. We characterize the mechanismmaximizing the Principal’s

utility by relating it to the optimal contract found in the benchmark case.

3.1 The Optimal Mechanism When the Principal

Can Observe the Shock

Assume, in this subsection and for benchmarking purposes only, that the Principal

can actually observe the shock, s, while the Agent cannot. Importantly, the Principal

commits to the contract (mechanism) before observing the shock.

9A simple form of the cost function that satisfies these conditions would be c(x, θ+ s) = xe−(θ+s).
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By the Revelation Principle, without loss of generality, we can restrict our attention

to incentive compatible direct mechanisms where the Agent reports to the Principal

his type-estimate, θ, and then the Principal sets the decision and the transfer as a

function of the reported type-estimate and the realization of the shock, x(θ, s) and

t(θ, s), respectively. Incentive compatibility of a mechanism (x, t) means that

Es[u(x(θ
0, s), θ + s) + t(θ0, s)] ≤ Es[u(x(θ, s), θ + s) + t(θ, s)] for all θ and θ0. (1)

The problem of characterizing incentive compatible mechanisms and then finding the

optimal contract can be solved by using techniques of Bayesian mechanism design.10

The (mainly technical) complication is that incentive compatibility, (1), should hold

in expectation with respect to s, and the order of taking expectation and applying the

utility function cannot be reversed. Incentive compatible allocation rules may not be

fully monotonic (in θ and s), and hence it is not immediate that the Agent’s utility

(together with the Principal’s objective function) can be written in the familiar integral

form.

In the following lemma, we provide a necessary and a (stronger) sufficient condition

for incentive compatiblity of a mechanism in the benchmark case. Subsequently, in

Theorem 1, we characterize the Principal’s optimal mechanism.

Lemma 1 Assume that the Principal can observe the shock after having committed to

a contract with the Agent. If a mechanism (x, t) is incentive compatible then

U(θ) = U(0) +

Z θ

0

Es[u2 (x (z, s) , z + s)]dz, (2)

where U (θ) is the expected payoff of the Agent with type-estimate θ. Moreover, if (2)

holds and x(θ, s) is weakly increasing in θ, then the mechanism is incentive compatible.

10For the origins of these techniques, see Mirrlees (1971). For a textbook treatment, see, for example,
chapter 7 of Fudenberg and Tirole (1991).
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Proof. Suppose that (1) holds. The Agent’s expected payoff with type-estimate θ

if he reported θ0 is

Es[u(x(θ
0, s), θ + s) + t(θ0, s)] = Es[u(x(θ

0, s), θ0 + s) + t(θ0, s)]

+Es[u(x(θ
0, s), θ + s)− u(x(θ0, s), θ0 + s)]

= U (θ0) +Es[u(x(θ0, s), θ + s)− u(x(θ0, s), θ0 + s)].

Therefore, we can rewrite (1) as

U (θ) ≥ U (θ0) +Es[u(x(θ0, s), θ + s)− u(x(θ0, s), θ0 + s)] for all θ and θ0. (3)

Reversing the rules of θ and θ0, (1) is equivalent to the following inequalities

Es[u(x(θ
0, s), θ + s)− u(x(θ0, s), θ0 + s)] ≤ U (θ)− U (θ0)

≤ Es[u(x(θ, s), θ
0 + s)− u(x(θ, s), θ + s)].

From these inequalities, it immediately follows that U is continuous and weakly in-

creasing, since u2 > 0. Therefore U 0 exists almost everywhere. Since u is continuously

differentiable, by the Fundamental Theorem of Calculus, assuming that θ > θ0, we can

rewrite the previous chain of inequalities as

Es
hR θ

θ0 u2(x(θ
0, s), z + s)dz

i
θ − θ0

≤ U (θ)− U (θ
0)

θ − θ0
≤
Es
hR θ

θ0 u2(x(θ, s), z + s)dz
i

θ − θ0
. (4)

By letting θ converge to θ0 and using that u2 is absolute continuous, we conclude that

Es[u2(x(θ
0, s), θ0 + s)] ≤ U 0+ (θ) whenever U 0+ (θ) exists. Similarly, by taking θ0 to θ,

we have U 0− (θ) ≤ Es[u2(x(θ, s), θ + s)] whenever U 0− (θ) exists. Since U is weakly

increasing, its derivative exists almost everywhere (see, for example, Royden (1967),
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Theorem 2), hence

U 0 (θ) = Es[u2(x(θ, s), θ + s)] (5)

almost everywhere.

From (4) it follows that

U (θ)− U (θ0)
θ − θ0

≤ sup
z∈(θ0,θ)

Esu2(x(θ, s), z + s) ≤ sup
x,z
Esu2(x, z + s).

Since u2 is uniformly continuous, Esu2(x, z+s) is continuous, therefore supx,z Esu2(x, z+

s) is finite. We can conclude that U is Lipschitz continuous, which implies that it is

also absolute continuous, and hence it can be recovered from its derivative (Royden

(1967), Theorem 13). That is, for all θ ∈ [0, 1],

U (θ) = U (0) +

Z θ

0

U 0 (z) dz.

From this together with (5) we can conclude that (2) is indeed satisfied.

Suppose now that (2) holds and x is weakly increasing in its first argument, and

θ > θ0.Then from (2)

U (θ)− U (θ0) =

Z θ

θ0
Es[u2 (x (z, s) , z + s)]dz

≥
Z θ

θ0
Es[u2 (x (θ

0, s) , z + s)]dz

= Es[u (x (θ
0, s) , θ + s)]−Es[u (x (θ0, s) , θ0 + s)]

where the inequality follows from x being weakly increasing in its first argument and

the single-crossing condition, u12 > 0. But, this is just (3) which was seen to be

equivalent to (1). If θ < θ0 then a similar argument can applied to show that there is

no incentive to deviate upward.
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By Lemma 1, in any incentive compatible mechanism, the Agent’s expected utility

can be written in the familiar integral form (where the integrand is a function of the

decision rule), and this, together with a monotonicity condition on the decision rule, is

sufficient for incentive compatibility.11 Next, we use this lemma to derive the optimal

mechanism in the benchmark case.

Theorem 1 Assume that the Principal can observe the shock after having committed

to a contract with the Agent. In the mechanism that maximizes the Principal’s utility,

x(θ, s) is weakly increasing in both of its arguments and maximizes

v(x, θ + s) + u(x, θ + s)−H(θ) u2(x, θ + s), (6)

where H = (1 − F )/f is the hazard rate. The Agent’s expected payoff is (2) with
U(0) = 0. The Principal’s expected utility is

Es

·Z 1

0

{v(x(θ, s), θ + s) + u(x(θ, s), θ + s)−H(θ)u2(x(θ, s), θ + s)} dF (θ)
¸
.

Proof. The Principal’s expected surplus equals the total surplus minus the Agent’s

surplus, which, using (2), can be written as

Es

·Z 1

0

½
v(x(θ, s), θ + s) + u(x(θ, s), θ + s)−

Z θ

0

u2(x(z, s), z + s)dz

¾
dF (θ)

¸
− U (0) .

Notice that

Z 1

0

Z θ

0

u2(x(z, s), z + s)dzdF (θ) =

Z 1

0

Z 1

z

u2(x(z, s), z + s)dF (θ)dz

=

Z 1

0

(1− F (z)) u2(x(z, s), z + s)dz.

11Lemma 1 is not an equivalence statement due to the presence of the shock. However, this form is
exactly what we need for characterizing the optimal mechanism in the benchmark case.
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Therefore, the Principal’s expected surplus is

Es

·Z 1

0

{v(x(θ, s), θ + s) + u(x(θ, s), θ + s)−H(θ)u2(x(θ, s), θ + s)} dF (θ)
¸
− U (0) .

We can maximize the integrand pointwise and set U (0) equal to zero. That is, for

all θ and s, x (θ, s) is defined as the maximizer of

v(x, θ + s) + u(x, θ + s)−H(θ)u2(x, θ + s),

which is expression (6). By assumption, u and v are concave and u2 is convex in their

first argument, so x (θ, s) is well-defined. Furthermore, it is implicitly defined by

v1(x (θ, s) , θ + s) + u1(x (θ, s) , θ + s)−H(θ)u12(x (θ, s) , θ + s) = 0.

We now show that x(θ, s) is increasing in θ and s, hence Lemma 1 applies, and the

mechanism is incentive compatible. By the Implicit Function Theorem, x1 (θ, s) exists

and equals

−v12(x, θ + s) + u12(x, θ + s)−H
0(θ)u12(x, θ + s)−H(θ)u122(x, θ + s)

v11(x, θ + s) + u11(x, θ + s)−H(θ)u112(x, θ + s)

at x = x(θ, s). Since u12 is positive, v12, u112 are non-negative, and v11, u11, u122

are non-positive, this expression is positive. Also, by the Implicit Function Theorem,

x2 (θ, s) exists and equals

−v12(x, θ + s) + u12(x, θ + s)−H (θ) u122(x, θ + s)
v11(x, θ + s) + u11(x, θ + s)−H (θ) u112(x, θ + s)

at x = x(θ, s). Since u12 is positivie, v12, u112 are non-negative, and v11, u11, u122 are

non-positive, this expression is positive.
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The expression (6) in Theorem 1 may be called the shock-adjusted virtual social

surplus. Due to asymmetric information, in the second-best, the allocation rule is

chosen to maximize (6) instead of the shock-adjusted social surplus, v(x, θ + s) +

u(x, θ + s). The Principal’s utility equals the expected social surplus minus the rents

paid for the Agent’s private information (whose only source is θ).

The optimal decision rule in the benchmark case exhibits another interesting and

useful property. Note that x(θ, s) is implicitly defined by

v1(x (θ, s) , θ + s) + u1(x (θ, s) , θ + s)−H(θ)u12(x (θ, s) , θ + s) = 0,

which is the first-order condition of maximizing (6). Since H is weakly decreasing and

u12 > 0, for x = x(θ, s),

v1(x, θ + s) + u1(x, θ + s)−H(θ + z)u12(x, θ + s) ≥ 0

if and only if z ≥ 0. Observe that the left-hand side is weakly decreasing in x (since
v11 and u11 are non-positive and u112 is non-negative). Hence, in order to make this

expression zero, we must weakly increase x when z ≥ 0, and similarly, we must weakly
decrease x when z ≤ 0. Therefore, x (θ, s) ≤ x (θ + z, s− z) if and only if z ≥ 0. We
state this observation in addition to the previous theorem.

Corollary 1 In the optimal mechanism, for all θ, s, and all z ∈ [−θ, 1− θ],

x(θ, s) ≤ x (θ + z, s− z) if and only if z ≥ 0.

This means that in the optimal mechanism of the benchmark case, the Principal

does not treat the Agent with the same actual type, but different initial type-estimate,

the same way: the decision, x, will be set higher if the Agent’s original type-estimate

is higher. That is, given θ0+ s0 = θ+ s, we have x(θ0, s0) ≤ x(θ, s) if and only if θ0 ≤ θ.
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3.2 The Optimal Mechanism When the Principal

Cannot Observe the Shock

We now return to the original model where the Principal cannot observe the shock

but has the ability to disclose its realization (and, perhaps, the realizations of some

other signals correlated with s) to the Agent. One difficulty with this model is that

the Revelation Principle, in its standard form, does not apply. We will overcome this

difficulty by considering a restricted class of mechanisms, and showing that even in

this class, there exists a mechanism that guarantees the Principal the same utility as

in the case when she could observe the shock. Since the Principal cannot achieve higher

utility by using any mechanism than she did in the benchmark case, the mechanism

that we will find is going to be optimal.

We will consider the class of sequentially incentive compatible two-stage direct

mechanisms, defined as follows. In a two-stage direct mechanism, in the first stage, the

Agent reports a type-estimate, θ, and the Principal gives him a transfer of p (θ). Then,

the Principal allows the Agent observe the shock. In the second stage, the Agent reports

back a value for the realization of the shock, s, and the Principal gives him a transfer

of q(θ, s) and makes a decision of x (θ, s). (Equivalently, the Principal could specify the

transfers in one payment, t(θ, s) = p(θ) + q(θ, s), paid at the end.) We will call a two-

stage direct mechanism sequentially incentive compatible if it has a subgame perfect

equilibrium where, in the first stage, the Agent reports his type-estimate truthfully,

and then also reports the realization of the shock truthfully.12

Obviously, using only this type of mechanism, the Principal cannot attain higher

utility than she did in the optimal mechanism when she could observe the shock. Our

goal is to show that she can still attain the same utility and implement the same

12Two-stage mechanisms like these have been studied by Riordan and Sappington (1987). They
derive the optimal incentive compatible contract between a regulator and a monopolist (chosen from
several candidates according to the highest θ), where the monopolist has both current and future
private information (i.e., a cost estimate and an eventual realization of marginal cost).
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decision rule as in the benchmark case of the previous subsection. Hence, we restrict

our attention to transfers and decision rules that are differentiable and such that x is

weakly increasing in both of its arguments.

In the next lemma we derive the second-stage transfer (given the decision rule),

which makes it optimal for the Agent to report the realization of the shock truthfully

in the second stage once he had reported his type-estimate truthfully in the first stage.

These are the incentive compatibility constraints expressing that it is optimal to tell

the truth in the second round once the Agent had told the truth in the first round,

s = argmax
s0
{u(x(θ, s0), θ + s) + q(θ + s0)} for all θ, s. (7)

Lemma 2 If x (θ, s) is weakly increasing in s, then (7) holds if and only if

q(θ, s) =

Z s

−∞
u2 (x (θ, z) , θ + z) dz − u (x (θ, s) , θ + s) + C1 (θ) , (8)

where C1 can be any function of θ.

Proof. Suppose first that (7) holds. The first order condition is

u1(x (θ, s) , θ + s)x2(θ, s) + q2 (θ, s) = 0 for all s. (9)

Also observe that u (x (θ, s) , θ + s) + q (θ + s) can be rewritten by the Fundamental

Theorem of Calculus as

Z s

−∞
[u1(x (θ, z) , θ + z)x2(θ, z) + u2 (x (θ, z) , θ + z) + q2 (θ, z)] dz + C1 (θ) ,

where C1 (θ) equals limz→−∞ {u (x (θ, z) , θ + z) + q (θ + z)}. By plugging in the first
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order condition, we get

u (x (θ, s) , θ + s) + q (θ + s) =

Z s

−∞
u2 (x (θ, z) , θ + z) dz + C1 (θ) ,

which is exactly (8). Observe that C1 (θ) can be any constant, since limz→−∞ q(θ + z)

can be chosen arbitrarily.

Suppose now that (8) holds. First, we show that there is no incentive to report

s0 < s. By (8)

u (x (θ, s) , θ + s) + q (θ + s)− u (x (θ, s0) , θ + s0)− q (θ + s0)

=

Z s

s0
u2 (x (θ, z) , θ + z) dz. (10)

Furthermore, by the Fundamental Theorem of Calculus,

u (x (θ, s0) , θ + s) + q (θ + s0)− u (x (θ, s0) , θ + s0)− q (θ + s0)

=

Z s

s0
u2 (x (θ, s

0) , θ + z) dz. (11)

After subtracting (11) from (10) we get

u (x (θ, s) , θ + s) + q (θ + s)− u (x (θ, s0) , θ + s)− q (θ + s0)

=

Z s

s0
[u2 (x (θ, z) , θ + z)− u2 (x (θ, s0) , θ + z)] dz. (12)

Note that the left-hand side is the negative of the Agent’s gain from deviating to s0.

Since x (θ, s) is weakly increasing in s and u possesses the single-crossing property,

u12 > 0, we have

u2 (x (θ, z) , θ + z) ≥ u2 (x (θ, s0) , θ + z) for all z ≥ s0.
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Therefore, the integral in (12) is non-negative, and there is no incentive to deviate

downward. Second, assume that s0 > s. Then, by (8),

u (x (θ, s) , θ + s) + q (θ + s)− u (x (θ, s0) , θ + s0)− q (θ + s0)

= −
Z s

s0
u2 (x (θ, z) , θ + z) dz. (13)

and by the Fundamental Theorem of Calculus,

u (x (θ, s0) , θ + s) + q (θ + s0)− u (x (θ, s0) , θ + s0)− q (θ + s0)

= −
Z s0

s

u2 (x (θ, s
0) , θ + z) dz. (14)

After subtracting (14) from (13) we get

u (x (θ, s) , θ + s) + q (θ + s)− u (x (θ, s0) , θ + s)− q (θ + s0)

=

Z s0

s

[u2 (x (θ, s
0) , θ + z)− u2 (x (θ, z) , θ + z)] dz.

The left-hand side is again the negative of the Agent’s gain from deviating to s0. Since

x (θ, s) is weakly increasing in s and the single-crossing property holds, this integral is

non-negative. Therefore, there is no incentive to deviate upward either.

In order to analyze whether truth-telling is incentive compatible in the first stage,

we need to find out what the Agent would report in the second round once he had lied

in the first round. The following lemma establishes just this.

Lemma 3 Assume that (7) holds. If the Agent with type-estimate θ reports θ0 in

the first stage and observes s, then, in the second stage, he will report s0 = s+ θ − θ0.

Furthermore, the payoff of this Agent is the same as if he had type-estimate θ0, observed

shock s0, and truthfully reported both.
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Proof. Observe that if s0 = s + θ − θ0 then the Agent’s second-stage payoff (his

utility less the first-round transfer, p(θ0)) becomes

u (x (θ0, s0) , θ + s) + q (θ0 + s0) = u (x (θ0, s0) , θ0 + s0) + q (θ0 + s0)

≥ u (x (θ0, s00) , θ0 + s0) + q (θ0 + s00) for all s00.

The inequality follows from (7). Therefore, indeed s0 should be reported. This Agent’s

utility is given by just the above expression plus p(θ0), therefore, by the first equality,

his overall utility is the same as if he had type-estimate θ0, observed shock s0, and

truthfully reported both.

Now we turn to the first stage of the game. We want to describe the incentive com-

patibility constraints that guarantee that the Agent reports his type-estimate truthfully

in the first round. By the previous lemma, if the Agent with type-estimate θ misre-

ports θ0 in the first round, then he will “correct” his lie and announce s0 instead of s

for the value of the shock, so that his ability is inferred correctly as θ0+ s0 = θ+ s. His

expected utility will then be

Es [u (x (θ
0, s+ θ − θ0) , θ + s) + p(θ0) + q (θ0, s+ θ − θ0)] . (15)

Therefore, the incentive compatibility constraints for the truthful revelation of θ at the

beginning of the game are

θ = argmax
θ0
Es [u (x (θ

0, s+ θ − θ0) , θ + s) + p(θ0) + q (θ0, s+ θ − θ0)] for all θ. (16)

In the following lemma, we characterize the first-stage transfer function (given the

decision rule and a second-stage incentive compatible transfer scheme) such that the

whole two-stage direct mechanism is sequentially incentive compatible.
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Lemma 4 Assume that (7) holds, and that for all θ, s, and all z ∈ [−θ, 1− θ],

x(θ, s) ≤ x (θ + z, s− z) if and only if z ≥ 0. (17)

Then (16) is satisfied if and only if

p(θ) = Es

·Z θ

0

u2 (x (z, s) , z + s) dz − u (x (θ, s) , θ + s)− q (θ, s)
¸
+ C2, (18)

where C2 can be any constant.

Proof. Suppose that (16) holds. Then the corresponding first order condition is

Es [u1(x(θ, s), θ + s)(x1(θ, s)− x2(θ, s)) + q1(θ, s)− q2(θ, s) + p0 (θ)] = 0.

Since (7) is satisfied, we can use (9) and simplify it as

Es [u1(x(θ, s), θ + s)x1(θ, s) + q1(θ, s) + p
0 (θ)] = 0.

From this it follows that

∂

∂θ
Es [u (x (θ, s) , θ + s) + p(θ) + q (θ, s)] = Es [u2 (x (θ, s) , θ + s)] .

Using the Fundamental Theorem of Calculus we can conclude that

Es [u (x (θ, s) , θ + s) + p(θ) + q (θ, s)] =

Z θ

0

Es [u2 (x (z, s) , z + s)] dz + C2,

where C2 = Es [u (x (0, s) , s) + p(0) + q (0, s)]. This is equivalent to (18). Since p (0)

can be chosen arbitrarily, C2 can be any constant.

Suppose now that (18) holds. We will show that the Agent with type-estimate θ

has no incentive to deviate to θ0 in the first round. Let U(θ) denote the expected payoff
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of the Agent with type-estimate θ. From (18), by rearranging,

U (θ) = Es

·Z θ

0

u2 (x (z, s) , z + s) dz

¸
+ C2. (19)

By Lemma 3, the utility of the Agent with type-estimate θ reporting θ0 is (15), which

can be written using (8) as

Es

"Z s+θ−θ0

−∞
u2 (x (θ

0, z) , θ0 + z) dz

#
+ p (θ0) + C1(θ0). (20)

For θ0 < θ, rewrite (20) as

Es

·Z s

−∞
u2 (x (θ

0, z) , θ0 + z) dz
¸
+p (θ0)+C1(θ0)+Es

"Z s+θ−θ0

s

u2 (x (θ
0, z) , θ0 + z) dz

#

= U (θ0) +Es

"Z s+θ−θ0

s

u2 (x (θ
0, z) , θ0 + z) dz

#
.

Hence, type-estimate θ has no incentive to deviate to θ0, θ0 < θ, if

U (θ)− U (θ0) ≥ Es
"Z s+θ−θ0

s

u2 (x (θ
0, z) , θ0 + z) dz

#
,

which, using (19), is equivalent to

Es

·Z θ

θ0
u2 (x (z, s) , z + s) dz

¸
≥ Es

"Z s+θ−θ0

s

u2 (x (θ
0, z) , θ0 + z) dz

#
.

After rewriting the right-hand side

Es

·Z θ

θ0
u2 (x (z, s) , z + s) dz

¸
≥ Es

·Z θ

θ0
u2 (x (θ

0, s+ z − θ0) , z + s) dz
¸
.

But this is indeed satisfied, since for all z ≥ θ0, x (z, s) ≥ x (θ0, s+ z − θ0) by (17) and
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the single-crossing property.

For θ0 > θ, rewrite (20) as

Es

·Z s

−∞
u2 (x (θ

0, z) , θ0 + z) dz
¸
+p (θ0)+C1(θ0)−Es

·Z s

s+θ−θ0
u2 (x (θ

0, z) , θ0 + z) dz
¸

= U (θ0)−Es
·Z s

s+θ−θ0
u2 (x (θ

0, z) , θ0 + z) dz
¸
.

Hence, type-estimate θ has no incentive to deviate to θ0, θ0 > θ, if

U (θ)− U (θ0) ≥ −Es
·Z s

s+θ−θ0
u2 (x (θ

0, z) , θ0 + z) dz
¸
,

which, using (19) and multiplying both sides by -1, is equivalent to

Es

"Z θ0

θ

u2 (x (z, s) , z + s) dz

#
≤ Es

·Z s

s+θ−θ0
u2 (x (θ

0, z) , θ0 + z) dz
¸
.

After rewriting the right-hand side

Es

"Z θ0

θ

u2 (x (z, s) , z + s) dz

#
≤ Es

"Z θ0

θ

u2 (x (θ
0, s+ z − θ0) , z + s) dz

#
.

But this is indeed satisfied, since for all z ≤ θ0, x (z, s) ≤ x (θ0, s+ z − θ0) by (17) and

the single-crossing property.

Finally, we are ready to state the main result of the paper. Using an incentive

compatible two-stage direct mechanism, the Principal can attain the same outcome as

in the benchmark case.

Theorem 2 Assume that the Principal cannot observe the shock. In the optimal mech-

anism, the decision rule and the utility of the Principal are the same as in the optimal

mechanism when she could observe the shocks (as in Theorem 1). The transfers are

defined by (8) and (18) with C1 ≡ 0 and C2 = 0.
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Proof. The decision rule x(θ, s) that maximizes (6) clearly satisfies the assumptions

of the previous lemmas: it is differentiable and weakly increasing in both arguments

(Theorem 1), and for all θ, s and all z ∈ [−θ, 1− θ], it satisfies (17) (Corollary 1). Use

this decision rule to define the transfer functions, q and p, by (8) and (18), with C1 ≡ 0
and C2 = 0,

q(θ, s) =

Z s

−∞
u2(x(θ, z), θ + z)dz,

p(θ) = Es

·Z θ

0

u2(x(z, s), z + s)dz −
Z s

−∞
u2(x(θ, z), θ + z)dz

¸
.

By Lemmas 2—4, this two-stage mechanism is sequentially incentive compatible.

From (18), the Agent’s expected payoff after observing θ is

U(θ) = Es

·Z θ

0

u2 (x (z, s) , z + s) dz

¸
.

This payoff is identical to the one in the optimal mechanism of the previous subsection,

(2) with U(0) = 0. Furthermore, note that the Agent prefers to participate in the

mechanism. Since the decision rule is the same, the total surplus is also the same,

therefore the Principal’s payoff must also be the same as in the benchmark case.

The Agent faces the following trade-off in the first stage of the optimal contract.

He can choose between contracts that come with a larger up-front transfer (from the

Principal to the Agent, the sign of which may differ across applications) but reward

higher ex-post types less in the second period, and contracts that carry a less attractive

up-front transfer, but will be more generous for higher ex-post types in the second

period. The Principal, by exposing the Agent to this type of trade-off, can effectively

discriminate between Agents with higher and lower type-estimates. An Agent with a

low type-estimate will choose a contract with a higher up-front transfer, because he

thinks it is unlikely that he will have a high ex-post type in the second round. In
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contrast, an Agent with a high type-estimate stays away from this type of contract

and instead chooses one that is less attractive in the first stage, but, for high ex-post

types, is more rewarding in the second stage.

4 Conclusions

In this paper, we analyzed a Principal-Agent relationship with adverse selection and

transferable utilities, where the Principal can influence the precision of the Agent’s pri-

vate information. In particular, we assumed that the Agent only had an initial estimate

of his productivity parameter, however, the Principal could disclose to him, without

observing, the difference between the his actual productivity and his initial estimate.

We characterized the mechanism maximizing the Principal’s utility. Interestingly, in

this contract, the Principal always and fully reveals the information that she controls

(but cannot directly observe); moreover, her utility and the implemented decision will

be the same as if she could observe the signals released by her.

The optimal contract consists of two stages. In the first stage, the Agent, who only

has an estimate of his type, is asked to pick a transfer and a corresponding second-

period contract (consisting of an allocation rule and an additional transfer depending

on his reported ex-post type) from a menu offered by the Principal. In the second

stage, the Agent is asked to report his actual type. What is interesting in the optimal

two-stage contract is that the first-period menu is chosen by the Principal so that

the Agent will truthfully reveal his type-estimate and commit to reveal the additional

signal (released but not observed by the Principal), and yet the Agent will only enjoy

information rents for his original private information, the type-estimate. The Principal

who controls the flow of information appropriates its rents.
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