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1 Introduction

For situations in which a seller is interested in socially efficient allocation,
the Vickrey sealed-bid auction has received considerable attention (Vick-
rey (1961), Clarke (1971), Groves (1973)). In such an auction, bidders sub-
mit information about their preferences to the auctioneer, who then uses it to
decide how to choose an efficient allocation, and how to charge the bidders.
Since payments are computed in such a way as to align (i) the bidder’s ob-
jective to maximize profits and (ii) the seller’s objective to maximize social
surplus, it is always in each bidder’s best interest to report his preference
information truthfully. Specifically, a bidder’s payment equals the net effect
his presence has on everyone else.

To formalize this in an abstract private-goods setting, consider a set of
agents N , each of whom has a (monetary) value vj(aj) for any bundle aj
received under some “allocation” of goods a ∈ A. The seller’s objective
described earlier is to find the “efficient” allocation a∗ which solves V (N) ≡
maxa∈A

∑
j∈N vj(aj).

Consider a situation in which bidder k ∈ N were not present. The seller’s
objective would be to find V (N \ k) ≡ maxa∈A

∑
j∈N\k vj(aj). In this sense,

the net effect that k’s presence has on the other bidders equals

V (N \ k)−
∑

j∈N\k
vj(a

∗
j)

which is precisely bidder k’s Vickrey payment.
Bidder k’s net payoff in a Vickrey auction is therefore

vk(a
∗
k)−

[
V (N \ k)−

∑
j∈N\k

vj(a
∗
j)

]
= V (N)− V (N \ k). (1)

That is, his net payoff equals his net contribution to attainable social surplus,
which is why this amount is also called bidder k’s marginal product.

The computation of payments in a Vickrey sealed-bid auction can be
found by solving n+1 optimization problems: one to find V (N) (and a∗), and
n more to find each V (N \ j). However, in many environments the problem
of finding V (N) is a linear program. Furthermore, an agent’s presence can
be seen in the choice of constraints (rows) or variables (columns) of the linear
program. Therefore, it is tempting to think that the effect of his presence,
i.e. his marginal product, might be encoded in the optimal dual variables of
the linear program—these variables inform us of the effect of changing the
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right hand side of a constraint. Whenever such a connection would exist,
payments for sealed-bid Vickrey auctions could be computed with a single
linear program (producing V (N) and a∗) and its dual (producing marginal
products). Since each vj(a

∗
j) can be computed from the program, the amounts

of payments follow immediately from (1).
A byproduct of this connection between linear programming variables and

Vickrey payoffs/payments applies to ascending auctions. While the sealed-
bid version of the Vickrey auction has the appeal of the properties discussed
above, there may, in some environments, be practical reasons to prefer a dy-
namic, ascending implementation of this auction outcome.1 For example, the
ascending English auction for a single object duplicates the Vickrey outcome.

The byproduct of which we speak involves the fact that auctions can be
interpreted as decentralized algorithms. Therefore, it is also tempting to
think that an algorithm which solves the above linear programs may be in-
terpreted as an auction for that environment. Since such dynamic auctions
are based on the Vickrey auction, which has the dominant-strategy incentive
property alluded to earlier, it is not surprising that the dynamic versions
also provide nice incentives. In particular, in the Vickrey auctions we discuss
below, “truthful bidding” is an ex-post Nash Equilibrium: even if a bidder
had perfect knowledge about exactly how all other bidders planned to (truth-
fully) behave in the auction, that bidder could do no better than by bidding
truthfully.2

In this paper, we examine this connection between linear programming
variables and Vickrey payoffs for the three polynomially solvable problems:
assignment, matroid optimization, and shortest path problems.

In Section 2 we examine various generalizations of the classic assignment
problem, and show how the choice of a linear programming formulation af-
fects our interpretation of prices in various previous works. In particular, de-
pending on the model, certain “naive” linear programming formulations may
not provide Vickrey payoff information. At the other extreme, Bikhchandani
and Ostroy (2000a) provide a general formulation that applies whenever the
connection exists with Vickrey payoffs, and provide a necessary and suffi-

1Such reasons may include the auctioneer’s credibility, perceptions of fairness, etc; see
Ausubel (2002a).

2For the sake of brevity, we omit a more formal description of this property, since the
formal definition of truthful bidding is dependent on the context of the specific auction.
We believe the idea is clear; one proof of this type of result is given by Bikhchandani and
Ostroy (2000b).
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cient condition for the connection to exist. Other, simpler formulations for
restricted models are provided by Demange, Gale, and Sotomayor (1986) and
by Gul and Stacchetti (1999,2000). The latter formulation does not produce
Vickrey prices. This fact, and its connection to the choice of formulation,
are the emphasis of Section 2, though we also emphasize this point in the
following sections.

In Section 3 we show that the connection between Vickrey payoffs and
linear programming holds for matroid optimization problems. While this
means that one can therefore use Bikhchandani and Ostroy’s formulation
above, we provide a simpler formulation. Furthermore, the primal-dual al-
gorithm for our formulation has a natural auction interpretation, which is
related to Ausubel’s (2002a) auction for homogeneous goods.

Finally, we discuss shortest path problems in Section 4. In general, the
connection between Vickrey payoffs and linear programming may not hold in
that setting (as opposed to the matroid problem). However, there are some
restricted environments where it does. We discuss one which admits a very
simple formulation.

2 A Choice of Formulation

In this section, we use a brief review of the ascending auction literature for
certain matching models to illustrate the way in which the choice of a formu-
lation impacts the resulting interpretation of variables, and the corresponding
construction of an auction.

Consider the case of an auctioneer who must sell a set of distinct, hetero-
geneous, indivisible objects, M , to a set of bidders, N . For any set of objects
S ⊆ M , let vj(S) ≥ 0 be the value that bidder j ∈ N assigns to S. We
assume that valuations are monotonic: for all j ∈ N , S ⊂ T ⊆ M implies
0 ≤ vj(S) ≤ vj(T ).

An allocation is an assignment of objects to the agents. An efficient
allocation maximizes the sum of the agents’ valuations.

The problem of finding an efficient allocation may be formulated as fol-
lows. Let y(S, j) = 1 if bidder j is to be allocated the bundle S ⊆ M , and
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y(S, j) = 0 otherwise. The optimization problem is

(P1) V (N) = max
∑
j∈N

∑
S⊆M

vj(S)y(S, j)

s.t.
∑
S�i

∑
j∈N

y(S, j) ≤ 1 ∀i ∈ M

∑
S⊆M

y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆ M, ∀j ∈ N

The first constraint of (P1) ensures that an object is assigned at most
once, while the second ensures that a bidder receives at most one subset.
The size of this formulation is exponential in the number of objects.

2.1 The Assignment Problem

As a special case of the above problem, consider a model in which bidders
obtain value from at most one object at a time. In this model, it is without
loss of generality to assume that each bidder consumes at most one object,
so we have the classic the assignment problem, where valuation functions vj
are such that vj(S) = maxi∈S vj(i).

In this case, formulation (P1) can be rewritten as follows, where xij =
1 signifies that bidder j consumes object i. This standard formulation of
the assignment problem has integral extreme points, so we can use a linear
formulation.

max
∑
j∈N

∑
i∈M

vj(i)xij

s.t.
∑
j∈N

xij ≤ 1 ∀i ∈ M

∑
i∈M

xij ≤ 1 ∀j ∈ N

x � 0
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Its dual is:

min
∑
j∈N

uj +
∑
i∈M

pi

s.t. uj + pi ≥ vj(i) ∀j ∈ N, ∀i ∈ M

u, p � 0

Leonard (1983) shows that among all optimal dual solutions, (u∗, p∗), the
one that maximizes

∑
j∈N uj yields the bidders’ Vickrey payments: Specifi-

cally u∗
j is the marginal product of agent j. Since the value of a dual variable

represents the change in objective function value from a small change in the
right hand side of the relevant constraint, then this should come as no sur-
prise in the unit demand setting. Indeed, changing the right hand side of
the constraint

∑
i∈M xij ≤ 1 to zero effectively removes bidder j from the

auction. As we shall see in Section 2.2, this need not be true in more general
applications of (P1).

Another feature of this model is that if we interpret pi as a price for
object i, we see that Vickrey payments can be supported by Walrasian (or
anonymous) object prices: each agent consumes a demanded object (and
makes payments) with respect to prices that are indexed only by the identity
of the object. This is another result that does not extend to more general
models (Section 2.2).

Of particular interest at present is that a particular implementation of the
primal-dual algorithm for solving the assignment problem—one which finds a
dual solution that maximizes

∑
j∈N uj—produces an ascending auction that

duplicates the outcome of the sealed-bid Vickrey auction. In this auction, it
is an ex-post Nash equilibrium for all players to bid truthfully in each round.

Such an auction was proposed by Demange, Gale, and Sotomayor (1986)
(building on the work of Crawford and Knoer (1981)). To relate it to
a primal-dual algorithm, consider an initial, feasible (but typically non-
optimal) dual solution in which pi = 0 for each object i ∈ M , and uj =
maxi(vij − pi) for each bidder j ∈ N . We interpret pi as the price of ob-
ject i and uj as the potential surplus that bidder j could achieve when facing
prices p. To determine whether (u, p) is optimal, we search for a primal
solution x with which it satisfies the complementary slackness conditions.

There are three types of complementary slackness conditions, which have
interpretations as follows. First (for uj), a bidder who has positive surplus
uj > 0 must be assigned an object. Second (for pi), an object with positive
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price must be assigned. Third (for xij), if object i is assigned to bidder j,
then it must be surplus-maximizing: vj(i)− pi = uj.

Given our initial dual solution, it turns out that the only “important”
complementary slackness conditions are the first and third, together stating
that a bidder with positive surplus must be assigned a surplus-maximizing
object. One restricted primal for the algorithm attempts to find an assign-
ment of objects that maximizes the number of positive-surplus agents who
consume a surplus-maximizing object. Either an assignment exists which
satisfies each such agent, or there exists an overdemanded set of objects,
S ⊂ M : a set whose cardinality is less than the number of agents whose
surplus-maximizing objects are all in S.3 The primal-dual algorithm adjusts
(u, p) by increasing the prices of objects in overdemanded sets (and decreases
u accordingly).

There is one subtlety remaining. Vickrey prices are obtained by finding
an optimal (u, p) which maximizes

∑
uj, or equivalently minimizes

∑
pi.

This choice can be imposed by perturbing the original dual problem, above.
The effect this has on the restricted primal is that prices are adjusted only
on minimal (with respect to set inclusion) overdemanded sets.

With this caveat, we have the auction of Demange, Gale, and Sotomayor.
Denote the round-t price of object i by pti (initially, p

0
i ≡ 0). In each round,

bidders are asked to name their surplus-maximizing (demanded) objects. If
a demand-satisfying assignment exists, the auction ends at current prices.
Otherwise, the price of each object in a (or all) minimally overdemanded
set(s) is incrementally increased for the next round. When bidders report
their demanded objects truthfully in each round, the auction mimics the
primal-dual algorithm described above, yielding the Vickrey outcome.

In summary, for the assignment problem,

• Dual variables for formulation (P1) (or a simplified version) yield Vick-
rey payments.

• A primal-dual algorithm yields the ascending auction of Demange,
Gale, and Sotomayor (1986).

• Object prices can be expressed anonymously, i.e. they are not bidder-
specific.

3The existence of such a set is proven via Hall’s Marriage Theorem. It can also be
derived from the dual of the restricted primal.
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2.2 Consuming Multiple Objects

Now we consider a more general application of formulation (P1), when agents
may receive value from multiple objects. Auctions were proposed for this
setting by Kelso and Crawford (1982) and by Gul and Stacchetti (2000).
While these auctions can be interpreted as primal-dual algorithms, they do
not implement Vickrey pricing; hence it is not surprising that they do not
share the incentives properties of the assignment auction discussed above.

Kelso and Crawford (1982) and Gul and Stacchetti (2000) both impose an
assumption on bidders valuation functions vj, which ensures that the linear
relaxation of (P1) has an optimal integer solution. To describe this property
let p ∈ R

m be a list of individual object prices. Denote bidder j’s demand
set (with respect to p) as follows.

Dj(p) = {S ⊆ M : vj(S)−
∑
i∈S

pi ≥ vj(T )−
∑
i∈T

pi, ∀T ⊆ M}.

The condition introduced by Kelso and Crawford (1982) is the gross sub-
stitutes condition, which, loosely speaking, states that a price increase on a
set of objects should not decrease a bidder’s demand for the other objects.
If a set of objects A is demanded, and the prices of some of those objects
increase, then the remaining objects should still be part of some demanded
set B.

Definition 1 Bidder j’s value function satisfies gross substitutes if for
any two price vectors p′ ≥ p, and all A ∈ Dj(p), there exists B ∈ Dj(p

′) such
that {i ∈ A : pi = p′i} ⊆ B.

With our monotonicity condition assumed earlier, gross substitutes implies
that vj is submodular.

Gul and Stacchetti (2000) and Kelso and Crawford (1982) show that
under gross substitutes, the linear relaxation of (P1) has an optimal integer
solution.4

The dual to the linear relaxation of (P1) is

(D1) min
∑
j∈N

uj +
∑
i∈M

pi

s.t. uj +
∑
i∈S

pi ≥ vj(S) ∀j ∈ N, ∀S ⊂ M

u, p � 0

4A direct proof of this is provided in Theorem 4 of Bikhchandani et al. (2002).
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Analogous to the interpretations in the assignment problem, pi represents
a (bidder-independent) price for object i, and uj represents the profit of
bidder j. The complementary slackness conditions are also analogous to
those of the assignment problem.

Gul and Stacchetti’s auction can be compared to a primal-dual algorithm
which finds an optimal solution to (D1), and which is analogous to the one
discussed above for the assignment problem. For any current object-prices
(initialized with pi ≡ 0), determine each bidder’s demand set,

Dj(p) = {S ⊆ M : vj(S)−
∑
i∈S

pi ≥ vj(T )−
∑
i∈T

pi ∀T ⊆ M}.

which is the list of surplus-maximizing subsets of objects. Define the mini-
mum demand requirement of a bidder from a subset of objects, T , as

rj(T, p) = min
S∈Dj(p)

|S ∩ T |.

Gul and Stacchetti (2000) show that this function is the dual rank function
of a matroid.

One primal-dual algorithm for (P1) attempts to assign objects in a demand-
satisfying way. If no such assignment exists, then there must exist an overde-
manded set, T :5 ∑

j∈N
rj(T, p) > |T |

The algorithm adjusts the current dual solution by incrementally increasing
the price of each object in a (minimal) overdemanded set.

Assuming sincere bidding at each round, the auction concludes with a list
of object prices p which equals the minimal Walrasian price6 vector. As noted
by Gul and Stacchetti, the auction is not guaranteed to produce Vickrey
prices. Typically, bidders’ payoffs at (any) Walrasian prices are higher than
their Vickrey payoffs, implying that Vickrey payoffs cannot be implemented
with anonymous, single-object (additive) prices.

In summary, for the heterogeneous objects model under gross substitutes,

• Dual variables for formulation (P1) yield Walrasian (anonymous) prices,
which typically do not coincide with Vickrey payments.

5See Gul and Stacchetti (2000).
6Prices are Walrasian for an allocation of objects if, given those prices, each agent’s

consumption maximizes his payoff (net of prices).
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• A primal-dual algorithm for this type of formulation yields the as-
cending auction of Gul and Stacchetti (2000) and Kelso and Craw-
ford (1982).

2.3 The Bikhchandani and Ostroy formulation

Since the variables of (D1) give anonymous object prices, a primal-dual al-
gorithm for this formulation cannot yield Vickrey payments except in spe-
cial cases such as the assignment game. To obtain Vickrey payments in
the general case, a richer pricing language (i.e. a stronger formulation) is
needed. One way to do this is by using auxiliary variables. Below, we il-
lustrate this with the (exponentially sized) formulation of Bikhchandani and
Ostroy (2000a),7 who identify a necessary and sufficient condition for the
dual variables to correspond to the agents’ marginal products.

Bikhchandani and Ostroy (2000a) introduce a variable for every feasible
integer solution to (P1). Let µ denote both a partition of the set of objects
and an assignment of the elements of the partition to bidders. Thus µ and
µ′ can give rise to the same partition, but to different assignments of the
parts to bidders. Let Γ denote the set of all such partition-assignment pairs.
We will write Sj ∈ µ to mean that under µ, agent j receives the set S. Let
δµ = 1 if the partition-assignment pair µ ∈ Γ is selected, and zero otherwise.
Using these new variables the efficient allocation can be found by solving the
following formulation.

(P2) V (N) = max
∑
j∈N

∑
S⊆M

vj(S)y(S, j)

s.t. y(S, j) ≤
∑
µ�Sj

δµ ∀j ∈ N, ∀S ⊆ M

∑
S⊆M

y(S, j) ≤ 1 ∀j ∈ N

∑
µ∈Γ

δµ ≤ 1

y(S, j), δµ = 0, 1 ∀S ⊆ M, ∀j ∈ N, ∀µ ∈ Γ

A straightforward argument shows that the linear relaxation of this for-
mulation has the integrality property: To each partition-assignment pair µ

7For a formulation with fewer variables—but still exponentially sized—see Section 2.2
of Bikhchandani et al. (2002).
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there is an associated integer solution: yµ(S, j) equals one if S is assigned
to agent j under µ and equals zero otherwise, and δµ = 1. If (y∗, δ∗) is an
optimal, fractional solution with value VLP (N), then consider a solution that,
with probability δ∗µ, selects µ as the partition assignment pair. The expected
cost of this solution is ∑

µ

δ∗µ
∑
j∈N

∑
S⊆M

vj(S)y
µ(S, j)

=
∑
j∈N

∑
S⊆M

vj(S)
∑
µ�Sj

δ∗µ

≥
∑
j∈N

∑
S⊆M

vj(S)y
∗(S, j) = VLP (N)

where the inequality follows from the first constraint. Since the randomly
generated integer solution is at least as good as (y∗, δ∗), at least one of these
integer solutions must have a value at least as large as the optimal LP solu-
tion.

The significance of (P2) is that the dual variable associated with the
second constraint can be interpreted as agent j’s marginal product. For a
bidder j ∈ N , reducing the right hand side of the corresponding constraint
to zero has the effect of removing him from the auction.

The dual is

(D2) min
∑
j∈N

πj + πs

s.t. pj(S) + πj ≥ vj(S) ∀j ∈ N, ∀S ⊆ M

−
∑
Sj∈µ

pj(S) + πs ≥ 0 ∀µ ∈ Γ

πj, πS, pj(S) ≥ 0 ∀j ∈ N, ∀S ⊆ M

Each variable pj(S) can be interpreted as bidder j’s price for subset S,
while πj can be interpreted as j’s surplus. The variable π

s can be interpreted
as the auctioneer’s surplus.

The difficulty is to ensure that a dual solution exists such that, simul-
taneously, each πj equals bidder j’s marginal product. Bikhchandani and
Ostroy (2000a) derive the following necessary and sufficient condition for
this to be realized.
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Definition 2 The agents are substitutes condition holds if

V (N)− V (N \K) ≥
∑
j∈K

[V (N)− V (N \ j)] ∀K ⊆ N. (2)

Bikhchandani et al. (2002, Section 4.1) prove that this condition is implied
by the gross substitutes condition. It is clearly implied by submodularity of
V . This condition formalizes the notion that the contribution (i.e. marginal
product) of a group of agents is more than the sum of the contributions
(marginal products) of the individual members of the group. Such a condition
applies, for example, to situations in which workers are better-off forming a
union rather than bargaining separately with management.

Theorem 1 (Bikhchandani and Ostroy, 2000a) The “agents are sub-
stitutes” condition (2) holds if and only if there exists an optimal solution
(p, π) to (D2) such that πj = V (N) − V (N \ j) for all j ∈ N , i.e. the dual
provides each agent’s marginal product.

To summarize,

• Richer formulations such as (P2) can provide agents’ Vickrey payments
via dual variables.

To implement the Vickrey outcome, Ausubel (2002b) proposes using a col-
lection of ascending auctions that together implement the Vickrey outcome
(under the gross substitutes condition). This auction can be interpreted as
n + 1 simultaneous applications of the Gul–Stacchetti algorithm, where one
application determines the assignment of objects, while the other n help
to determine payments. For more general environments, Ausubel and Mil-
grom (2002) and Parkes and Ungar (2000) have proposed similar ascending
auctions that are subgradient algorithms for (P2). This allows them to drop
the gross substitutes assumption and determine (non-linear, non-anonymous)
non-Vickrey prices that support an efficient allocation. For a discussion of
the connections between these auctions and algorithms for solving (P2) see
deVries, Schummer, and Vohra (2002).

3 Matroids

Here we consider an abstract setting involving the auction of various combi-
natorial entities. A special case is Ausubel’s (2002a) ascending auction for
homogenous goods with diminishing marginal utilities.
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The setting considered involves a ground set E, and for each agent j ∈ N
a set Ej ⊆ E that j has the possibility of acquiring. We assume that (Ej)j∈N
is a partition for E, though this can be relaxed. For each e ∈ E, let ve ∈ Z++

be the integer value of e. The value of a set S ⊆ Ej to agent j is
∑

e∈S ve. Let
I be a family of independent subsets of E and suppose M = (E, I) forms a
matroid with rank function r. The optimization problem we consider is that
of finding a maximum weight basis of M. We derive a primal-dual algorithm
for this problem which will implement the Vickrey outcome.

Before proceeding, it is useful to consider a special case in order to develop
some intuition. Let G = (V,E) be a complete graph with vertex set V and
edge set E. Each edge may be owned by a given agent (and an agent has the
right to own only a single predetermined edge). Therefore we may use the
words edge and agent interchangeably. Let ve be the weight of edge e. Our
goal is to derive an ascending Vickrey auction to sell off a maximum weight
spanning tree.

Though we shall speak in terms of “selling” edges, one interpretation for
this problem involves a procurement setting, where the auctioneer wants to
purchase the right to use an edge and the bidder incurs some cost (−ve) when
it is used (e.g. constructing a complete communications network at minimal
total social cost). In order to be consistent with the rest of the paper, we
avoid procurement examples and say that the auctioneer is selling to bidders
the right to use an edge, incurring a gain of ve ≥ 0.8

An important observation to make is that, instead of selling an edge, the
auctioneer is actually selling the right to “cover” a cut in the graph. A bidder
is competing with all other bidders that can cover the same collection of cuts
that he can. This can be seen when we compute the marginal product of an
edge.

Let T be a maximum weight spanning tree and suppose e ∈ T . To deter-
mine agent (or edge) e’s marginal product we must identify the reduction in
weight of the spanning tree when we remove agent e and replace her with a
(next best) edge. If f �∈ T is the largest weight edge such that T ∪f contains
a cycle through e, then the maximum weight spanning tree that excludes e
is T \ {e} ∪ f . Thus agent e’s marginal product is ve − vf .

There are a number of algorithms for finding a maximum weight spanning

8If instead bidders incur costs (ve < 0), then we can suppose that bidders bid on the
right to supply their edges for some fixed payment M . If M can be chosen sufficiently high
to guarantee M > ve for each e, then this setting is equivalent to the one we describe.

13



tree, but not all lend themselves to an auction interpretation. Furthermore,
not all of them terminate in Vickrey prices. The “greedy out” algorithm
does: starting with the complete set of edges, begin delete edges in order
of increasing weight. An edge is deleted only if the remaining graph is con-
nected. An edge is skipped for deletion when all smaller weight edges that
could cover the same cut have already been deleted.

This algorithm can be interpreted as an auction which begins with a price
p = 0 on each edge. Throughout the auction, this price is increased. At each
point in time, each agent announces whether he is willing to purchase his
edge at the current price.

As the price increases, agents drop out of the auction as the price exceeds
their value ve for the edge, reducing the connectivity of the graph. At some
point, an agent will become critical : removing the agent from the auction
would mean that no spanning tree could be formed from the remaining edges
of the other agents. At this point, the auctioneer immediately sells the edge
to the critical agent at the current price. This edge is to be part of the final
(maximum weight) spanning tree and does not drop out.

The auction then continues, with other agents dropping out or becoming
critical. The auction ends when the last critical agent is awarded an edge,
and the tree is formed.

Notice that a critical agent acquires his edge at the price where another
bidder dropped out of the auction. That price is the second-largest weighted
edge that could have covered the same cut as the critical agent. This is the
price a Vickrey auction dictates he should pay.

In what follows we show how this auction is an instance of a primal-
dual algorithm for an appropriate formulation of the underlying optimization
problem. The analysis will involve some fine points that arise because of tie
breaking issues, but the main thrust is as described above.

3.1 Substitutes Property

Let L denote the weight of a maximum weight basis. For any subset E ′ ⊆ E,
let L−E′

be the weight of the maximum weight basis that does not use any
element of E ′. Set L−E′

= −∞ if the bases of E \ E ′ have fewer elements
than those of E. We assume a no-monopoly condition that ensures finite
Vickrey payments for the agents: r(E) = r(E \ Ej) for all j ∈ N .
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Theorem 2 In the (no-monopoly) matroid problem, the “agents are substi-
tutes” condition (2) holds: For all K ⊆ N ,

L− L−EK ≥
∑
i∈K

[L− L−Ei ].

Proof For A ⊆ E let LA denote the value of a maximum weight basis in A
if it has the same cardinality as a basis of E and −∞ otherwise. The claim
holds, if LA∪B + LA∩B ≤ LA + LB. This follows immediately from a greedy
construction. Construct a maximum weight basis TK for K = A, B, A ∪ B
and A ∩ B simultaneously. By submodularity of the matroid rank function,
|TA∪B|+ |TA∩B| ≤ |TA|+ |TB|. So the jth element added to the left has weight
smaller than or equal to the jth element added to the right hand side.9

This result combined with Theorem 1 implies that (D2) contains the
Vickrey prices for this setting. One could then apply a primal dual algorithm
to that formulation to produce an ascending auction that implements the
Vickrey outcome. Such an auction would result in prices that are both non-
linear and non-anonymous.

Below, however, we provide a more parsimonious formulation that sup-
ports the Vickrey outcome by price functions that are anonymous and “al-
most” linear.

3.2 A Formulation

The standard formulation for identifying a maximum weight basis does not
suffice because the variables in the dual price the wrong entities. By analogy
with the spanning tree case, we need a formulation whose dual will price the
“right” to cover a cut. Before describing this formulation we review some
facts about matroids.

The matroid polytope of a matroid with rank-function r on ground set E
is defined by

P (r) = {x ∈ R
n
+ :
∑
e∈S

xe ≤ r(S) ∀S ⊆ E}

We use the following theorem from Section III of Nemhauser and Wolsey
(1988) concerning matroid polytopes.

9We thank a referee for simplifying our previous proof to this argument.
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Theorem 3 If r is the rank function of a matroid then P (r) is integral.

Thus every extreme point of P (r) corresponds to an independent set and
vice versa.

The closure of a set S ⊆ E is defined as cl(S) = {e ∈ E : r(S) = r(S ∪
{e}). It is called spanning if cl(S) = E (i.e. r(S) = r(E)).

The matroidM∗ dual to (E, I) is defined by the collection of bases {E\S :
S a basis of (E, I)}. The rank-function r∗ of the matroid dual to (E, I)
is given by r∗(S) = |S| + r(E \ S) − r(E). If S is spanning in M and
x is its characteristic vector, then using the dual matroid, x must satisfy∑

e∈T (1 − xe) ≤ r∗(T ) for all T ⊆ E, because Sc is independent in M∗.
Since P (r∗) is integral, it follows that this polytope is integral. We can
rewrite the inequalities that describe the polytope of spanning sets to read
r(E)− r(E \ T ) ≤∑e∈T xe for all T .

Theorem 4 Suppose each e ∈ E has a value ve. Then a maximum weight
basis of the matroid can be found by solving the linear program

(M) max
∑
e∈E

vexe

s.t.
∑
e∈T

xe ≥ r(E)− r(E \ T ) ∀T ⊆ E

∑
e∈E

xe ≤ r(E)

0 ≤ xe ≤ 1 ∀e ∈ E.

All of its extreme points are integral.

Proof Since the polytope of spanning sets is integral and the inequality
r(E)−r(∅) ≤∑e∈E xe (T = E) induces a face, it follows that the intersection
of the polytope of spanning sets with the inequality r(E)− r(∅) ≥∑e∈E xe

is integral. In fact this polytope is the polytope of bases of the matroid.

For each T ⊆ E define

rT (S) = r(S ∪ (E \ T ))− r(E \ T ) ∀S ⊆ E.

The function rT is the rank function of the matroid with ground set T ,
obtained by contracting the elements of E \ T . To interpret it, consider the
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tree case, where T is a set of edges. When we remove the set of edges T
and shrink each remaining connected components of the graph into pseudo-
vertex, rT is the rank function of the matroid defined by the tree defined
over T and the set of pseudo-vertices.

The problem of finding the maximum weight bases can be formulated as
follows (where variables in parenthesis represent dual variables). For each
F ⊆ Ej, set vj(F ) =

∑
e∈F ve. For each j ∈ N and F ⊆ Ej, interpret

yj(F ) = 1 to mean F is selected to be in a maximum weight basis.

(MP) max
∑
j∈N

∑
F⊆Ej

vj(F )yj(F )

s.t.
∑
j∈N

∑
F⊆Ej

rT (F )yj(F ) ≥ r(E)− r(E \ T ) ∀T ⊆ E (µT )

∑
j∈N

∑
F⊆Ej

|F |yj(F ) ≤ r(E) (µ)

∑
F⊆Ej

yj(F ) ≤ 1 ∀j ∈ N (λj)

yj(F ) ≥ 0 ∀j ∈ N, ∀F ⊆ Ej.

Theorem 5 Formulation (MP) has an optimal integral solution.

Proof Let y denote an optimal extreme solution (possibly fractional) to
(MP). For each agent j and element e ∈ Ej, set ze =

∑
F�e yj(F ). We show

that z is a feasible solution to (M).
Furthermore, since we prove below that each vertex of (M) has an integral

preimage in (MP), we conclude that (M) is a projection of (MP). Given an
integral solution x∗ to (M), we can construct an integral solution y∗ to (MP).
Let Mj = {e ∈ Ej : x

∗
e = 1}. For all j ∈ N , set y∗j (Mj) = 1 and y∗j (F ) = 0 for

F �= Mj. Observe that
∑

e∈E vex
∗
e =

∑
j∈N vj(Mj)yj(Mj), i.e. both solutions

have the same objective function value.
Returning to ze, notice that ze ≥ 0. Also,∑

e∈E
ze =

∑
j∈N

∑
e∈Ej

∑
F⊆Ej :e∈F

yj(F ) =
∑
j∈N

∑
F⊆Ej

|F |yj(F ) ≤ r(E).
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Next, for T ⊆ E∑
e∈T

ze =
∑
j∈N

∑
e∈Ej∩T

∑
F⊆Ej :e∈F

yj(F )

=
∑
j∈N

∑
F⊆Ej

|F ∩ T |yj(F ) ≥
∑
j∈N

∑
F⊆Ej

rT (F )yj(F ) ≥ r(E)− r(E \ T ).

Notice also that
∑

j∈N
∑

F⊆Ej
vj(F )yj(F ) =

∑
e veze. Hence, if ze is integral

then we are done. If not, we can express ze as a convex combination of
integral points of (M). Each of these, however, corresponds to an integral
point of (MP). Thus, y can be expressed as a convex combination of integral
points of (MP), which is a contradiction.

The dual to (MP) is

(DMP) min−
∑
T⊆E

(r(E)− r(E \ T ))µT + r(E)µ+
∑
j∈N

λj

s.t. −
∑
T⊆E

rT (F )µT + |F |µ+ λj ≥ vj(F ) ∀j ∈ N, ∀F ⊆ Ej

µ, µT ≥ 0 ∀T ⊆ E

λj ≥ 0 ∀j ∈ N.

Here, λj can be interpreted as agent j’s surplus; µ represents a price of
any element e ∈ E; the interpretation of µT may not be obvious, a priori.
However, the description of the primal-dual algorithm in Section 3.3 leads
to an interpretation where µT represents a discount to agents who are sold
elements that cover T . This leads to an interpretation of prices analogous
to one regarding (D2): the total price that agent j faces for F ⊂ Ej is
−∑T⊆E rT (F )µT + |F |µ (see the first constraint).

If B is a maximum weight basis, let Bj = Ej∩B for each j ∈ N . Observe
that each Bj is an independent set. For each k let Gk be the largest weight
set in ∪j 
=kEj such that B−k = (B \ Bk) ∪ Gk is a basis. By the property
of matroids this is well defined. Furthermore, B−k is the maximum weight
basis that excludes all elements of Ek. Thus, agent k’s marginal product is
vk(B

k)−∑j 
=k vj(Ej ∩Gk).

Theorem 6 There is an optimal solution to (DMP) such that

λk = vk(B
k)−

∑
j 
=k

vj(Ej ∩Gk) ∀k ∈ N.
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Proof In (DMP) we set λk = vk(B
k)−∑j 
=k vj(Ej ∩Gk) for all k ∈ N and

show how to choose µ and {µT}T⊆E to maintain dual feasibility.
First, for each e ∈ Bj we can find e′ ∈ Gj such that B ∪ e′ contains a

unique circuit through e and ve′ ≤ ve. In this way we can, for each e ∈ Bj

pair it with a unique element e′ of Gj such that ve ≥ ve′ . Hence λj ≥ 0.
Modify the weight of all elements by decreasing the weight of each ve to ve′
for all e ∈ B. The weights of elements outside B remain unchanged. Call
the new weight vector w. Hence wj(F ) = vj(F \ Bj) +

∑
e∈F∩Bj vj(e

′). The
set B is still a maximum weight basis with respect to the weight vector w.

Denote by (wMP) and (wDMP) the primal and dual formulations re-
spectively of the matroid optimization problem with weight vector w. Let
(µ∗, µ∗

T , λ
∗) be an optimal solution to (wDMP).

We know that under weight vector w, B is an optimal weight basis. There-
fore there is an optimal solution to (wMP), such that yj(F ) = 0 for all j and
F �= Bj. In addition, B−k is also an optimal basis under weight vector w.
That is, there is an optimal solution to (wMP) where yk(B

k) = 0. Invok-
ing complementary slackness we deduce that λ∗

k = 0 for all k ∈ N . Thus
−∑T⊆E rT (F )µ∗

T + |F |µ∗ ≥ wj(F ) for all j ∈ N , F ⊆ Ej.
We now show that

−
∑
T⊆E

rT (F )µ∗
T + |F |µ∗ + λj ≥ vj(F ) ∀j ∈ N, ∀F ⊆ Ej,

by proving that wj(F ) ≥ vj(F ) − λj. This shows that (µ
∗, µ∗

T , λ) is feasible
for (DMP). Now

vk(F )− λk = vk(F \Bk) + vk(F ∩Bk)− vk(B
k) +

∑
j 
=k

vj(Ej ∩Gk)

= wk(F \Bk) + wk(B
k) + vk(F ∩Bk)− vk(B

k) ≤ wk(F ).

To conclude we show that (µ∗, µ∗
T , λ) is optimal for (DMP). Observe that

−
∑
T⊆E

(r(E)− r(E \ T ))µ∗
T + r(E)µ∗ +

∑
j∈N

λj

=
∑
k∈N

wk(B
k) +

∑
k∈N

(
vk(B

k)−
∑
j 
=k

vj(Ej ∩Gk)

)
=
∑
k∈N

vk(B
k).

completing the proof.
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3.3 Primal-Dual Algorithm

An initial dual feasible solution can be had by setting µ = 0, µT = 0 for all
T ⊆ E, and λj = maxF⊆Ej

vj(F ) for all j ∈ N . This step can be interpreted
as the auctioneer initially setting a price of zero for each subset of E. For
subsequent iterations of the algorithm,

λj = max{0,max
F⊆Ej

vj(F ) +
∑
T⊆E

rT (F )µT − |F |µ}. (3)

Denote agent j’s demand correspondence, i.e. collection of surplus maxi-
mizing subsets of elements, as

∆j = {F ⊆ Ej : −
∑
T⊆E

rT (F )µT + |F |µ+ λj = vj(F )}.

Notice that λj = 0 implies ∅ ∈ ∆j.
Given a current feasible dual solution we seek a primal solution with

which it satisfies complementary slackness. One complementary slackness
condition is that if F ∈ Ej \∆j, then yj(F ) = 0.10 Therefore, the remaining
conditions (based on primal constraints) can be written as follows.

1. If λj > 0 then
∑

F∈∆j yj(F ) = 1.

2. If µ > 0 then
∑

j∈N
∑

F∈∆j |F |yj(F ) = r(E).

3. If µT > 0 then
∑

j∈N
∑

F∈∆j rT (F )yj(F ) = r(E)− r(E \ T ).
A restricted primal is formed by appending these four conditions to the

constraints of (MP).
For the rest of the section, we make an assumption on the feasibility of

a system related to this restricted primal. This assumption corresponds to
situations in which prices are “lower” than the final Vickrey prices, i.e. to
situations in which prices are such that agents demand “too much.”

10This is interpreted as saying that a non-demanded set F cannot be used.
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Consider the following system.

(OD)
∑
j∈N

∑
F∈∆j

rT (F )yj(F ) ≥ r(E)− r(E \ T ) ∀T ⊆ E

∑
j∈N

∑
F∈∆j

rT (F )yj(F ) = r(E)− r(E \ T ) ∀T ⊆ E with µ̂T > 0

∑
j∈N

∑
F∈∆j

|F |yj(F ) ≥ r(E)

∑
F∈∆j

yj(F ) = 1 ∀j ∈ N

yj(F ) = 0 ∀F �∈ ∆j

yj(F ) ≥ 0 ∀j ∈ N, ∀F ∈ ∆j.

We say that the overdemand condition holds if (OD) has a feasible so-
lution, and every such solution satisfies the third constraint with strict in-
equality:

∑
j∈N

∑
F∈∆j |F |yj(F ) > r(E).

Under the initial choice of dual variables (µ’s equal zero, λj = max vj(F )),
the overdemand condition holds because ∆j = {Ej} for all j ∈ N .

Below (Theorem 7) we show that the overdemand condition holds at each
subsequent iteration of the algorithm except at termination. The economic
interpretation of this condition is that at current prices, the demand from
the agents in {j ∈ N : λj > 0} exceeds the supply of available elements to
form a basis of E. Given the overdemand condition, we can reformulate the
restricted primal as follows.
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(RP) min
∑

j∈N :λj>0

|Ej|zj + z

s.t.
∑
j∈N

∑
F∈∆j

rT (F )yj(F ) ≥ r(E)− r(E \ T ) ∀T ⊆ E

∑
j∈N

∑
F∈∆j

|F |yj(F )− z ≤ r(E)

∑
F∈∆j

yj(F ) + zj = 1 ∀j ∈ N : λj > 0

∑
F∈∆j

yj(F ) ≤ 1 ∀j ∈ N : λj = 0

yj(F ) ≥ 0 ∀j ∈ N, ∀F ∈ ∆j

z, zj ≥ 0 ∀j ∈ N : λj > 0

Observe that (RP) is integral.
The dual to the restricted primal is

(DRP) min−
∑
T⊆E

(r(E)− r(E \ T ))µ̂T + r(E)µ̂+
∑
j∈N

λ̂j

s.t. −
∑
T⊆E

rT (F )µ̂T + |F |µ̂+ λ̂j ≥ 0 ∀j ∈ N, ∀F ⊆ ∆j

µ̂T ≥ 0 ∀T ⊆ E

λ̂j ≥ −|Ej| ∀j ∈ N : λj > 0

λ̂j ≥ 0 ∀j ∈ N : λj = 0

0 ≤ µ̂ ≤ 1

We describe one iteration of the primal-dual algorithm. So as not to
confound the main idea with tie breaking issues we suppose that no agent
is exactly indifferent between purchasing a single element and purchasing
nothing, i.e. that for all j ∈ N ,

Zj ≡ {e ∈ Ej : ve +
∑
T⊆Ej

rT ({e})µT − |{e}|µ = 0} = ∅.

We also assume that U j ≡ Ej \ ∪F∈∆j = ∅. Subadditivity of rT implies that
ve +

∑
T⊆Ej

rT ({e})µT − |{e}|µ < 0 if and only if e ∈ U j. Subsequently, we

amend the description to account for Zj, U j �= ∅.
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If, in every optimal solution to the restricted primal, zk = 0, it is because
some element of ∆k is required to satisfy one of the constraints∑

j∈N

∑
F∈∆j

rT (F )yj(F ) ≥ r(E)− r(E \ T ).

For every agent j ∈ N , consider the matroid obtained by contracting the
elements of

⋃
k 
=j

⋃
F∈∆k F \ Ej and removing all of its loops;11 call this ma-

troid Mj, its ground set T j, and its rank function rj. If T j �= ∅, we call
agent j and/or T j critical.

We make two observations about this choice of T j. The first is that for all
F ∈ ∆k, k �= j we have rTj(F ) = r(F∪(E\T j))−r(E\T j) = 0, as F∩Tj = ∅.
Second, there exists F ∈ ∆j with rTj(F ) = r(E)− r(E \ T j). If not, the set
T j would not be covered, contrary to the overdemand requirement.

Given an optimal solution to (RP) we construct a solution to the (DRP)
as follows, where θ is a step-size to be specified later.

1. If z > 0 set µ̂ = θ.

2. If z = 0 but at least one zk = 1, set µ̂ = θ.

3. If zk = 0 in every optimal solution, find T k and set µ̂Tk = µ̂.

4. Set λ̂k = maxF∈∆k{−|F |µ̂+
∑

T⊆E rT (F )µ̂T}.
It is easy to check that this solution is feasible in (DRP).

To show that it represents a valid direction along which to change the
current dual solution we must verify that it has a negative objective function
value. For each k ∈ N let F k ∈ argmaxF∈∆k(−|F |µ̂+

∑
T⊆E rT (F )µ̂T ).

By complementary slackness these F k’s can be chosen to span E. Then

λ̂k = −|F k|µ̂+
∑
T⊆E

rT (F k)µ̂T = −|F k|µ̂+ rT
k

(F k)µ̂Tk .

Thus

−
∑
T⊆E

(r(E)− r(E \ T ))µ̂T + r(E)µ̂+
∑
j∈N

λ̂j

= −
∑
j∈N

(r(E)− r(E \ T j))µ̂T j + r(E)µ̂− µ̂
∑
j∈N

|F j|+
∑
j∈N

µ̂T jrT
j

(F j)

≤ r(E)µ̂− µ̂
∑
j∈N

|F j| < 0,

11Loops are elements that do not belong to any independent set.
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where the last inequality follows from the overdemand hypothesis.
To adjust the current dual feasible solution (µ, {µT}T⊆E, (λj)j∈N), in-

crease µ by µ̂, increase µT j by µ̂T j , and recalculate λj according to eqn. 3.

For any critical agent j, the price on F ⊆ Ej rises by (|F | − rT
j
(F ))θ. For

all non-critical agents, the price of F rises by |F |θ.
To deal with the case when Zj, U j �= {∅} for one or more j ∈ N , a

modification is needed. At each iteration we delete all elements in
⋃

j∈N Zj ∪⋃
j∈N U j and amend the restricted primal to find a basis not ofM but ofM\

(
⋃

j∈N Zj∪⋃j∈N U j). Essentially, we freeze prices on elements of (
⋃

j∈N Zj∪⋃
j∈N U j) but do not assign them until the end of the algorithm. The absence

of these elements does not affect the surplus of the agents. To see why,
observe that at any iteration, we cannot have F ∈ ∆j, e ∈ Zj ∩ F and
F \ e �∈ ∆j (a similar argument applies with Zj replaced with U j). This is
because

vj(F )− |F |µ+
∑
T⊆E

rT (F )µT = vj(F )− |F |µ+
∑
T⊆E

rT ((F \ e) ∪ e)µT

≤ vj(F \ e)− (|F | − 1)µ+
∑
T⊆E

rT (F \ e)µT + ve − µ+
∑
T⊆E

rT (e)µT

= vj(F \ e)− (|F | − 1)µ+
∑
T⊆E

rT (F \ e)µT .

When the algorithm terminates, we have a maximum weight basis, B′, of
a subset E ′ of E. However, a subset of the elements in E \ E ′ can be added
to B′ to form a basis B of E. These elements all have zero surplus and are
added (provided they do not form a circuit) to B′ in the reverse order in
which they are deleted.

Theorem 7 For sufficiently small step size θ, if overdemand held before
an iteration then either it holds after the iteration, or the algorithm has
terminated.

Proof Denote agent j’s demand correspondence at the start of iteration t
by ∆j(t). Let sjt(F ) be the surplus that agent j enjoys on set F at the start
of iteration t. By complementary slackness it suffices to prove that

arg max
F∈∆j(t)

(−|F |µ̂+
∑
T⊆E

rT (F )µ̂T ) ⊆ ∆j(t+ 1).
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Let A ∈ argmaxF∈∆j(t)(−|F |µ̂+
∑

T⊆E rT (F )µ̂T ) and B ∈ ∆j(t). Then

sjt(A)− |A|µ̂+
∑
T⊆E

rT (A)µ̂T ≥ stj(B)− |B|µ̂+
∑
T⊆E

rT (B)µ̂T .

Now suppose B �∈ ∆j(t). Then sjt(A) > sjt(B). By choosing the step size, θ
sufficiently small we can ensure that

sjt(A)− |A|µ̂+
∑
T⊆E

rT (A)µ̂T ≥ stj(B)− |B|µ̂+
∑
T⊆E

rT (B)µ̂T .

completing the proof.

A simple but tedious argument shows that for integer valuations, a step
size of 1 suffices. To conclude our description of the primal-dual algorithm,
we must show that it terminates in the optimal dual variables that correspond
to the Vickrey prices.

Theorem 8 The algorithm terminates in the optimal dual solution that max-
imizes

∑
j∈N λj.

Proof If we choose ε > 0 sufficiently small, the optimal solution to (DMP)
that maximizes

∑
j∈N λj is the optimal solution to a perturbed version of

(DMP): Let (DMPε) denote the program with objective

min −
∑
T⊆E

(r(E)− r(E \ T ))µT + r(E)µ+ (1− ε)
∑
j∈N

λj

and with the same constraints as (DMP). A primal-dual algorithm applied
to (DMPε) would terminate in the desired optimal dual solution. Call the
corresponding primal problem (MPε).

The dual to the restricted primal of (MPε) would be a perturbed version
of (DRP), i.e. with objective

min−
∑
T⊆E

(r(E)− r(E \ T ))µ̂T + r(E)µ̂+ (1− ε)
∑
j∈N

λ̂j

It is easy to see that the solution we construct to (DRP) is feasible for
this problem. The objective function value of this dual solution with respect
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to the perturbed objective function is bounded above by

−
∑
j∈N

(r(E)− r(E \ T j))µ̂T j + r(E)µ̂− (1− ε)µ̂
∑
j∈N

|F j|+ (1− ε)
∑
j∈N

µ̂T jrT
j

(F j)

≤ r(E)µ̂− (1− ε)µ̂
∑
j∈N

|F j| ≤ µ̂[r(E)− (1− ε)
∑
j∈N

min
F∈∆j

|F |] < 0.

The last inequality follows from the overdemand assumption and the fact
that [r(E)−∑j∈N minF∈∆j |F |] is integral.

3.4 An Auction Interpretation

The primal-dual algorithm reinterpreted as an auction takes the following
form. Start with a price of zero for all elements. Agents announce which
elements they are prepared to buy at the current price. These are called
active elements. Now raise the price. As the price rises, agents withdraw
some elements. Meanwhile, the auctioneer checks that for any agent, a basis
is contained in the set of active elements not belonging to that agent.

Suppose this condition is first violated at current price p by agent j, and
let Ea

j be the currently active set of elements belonging to agent j. Let M be
any minimal subset of Ea

j whose removal from the set of all active elements
would eliminate the existence of a basis. From the matroid property, all
such sets have the same cardinality. The auctioneer permits each agent j to
purchase any |M | elements from Ea

j at a price of p|M |. The auction then
continues.

3.5 Ausubel’s “Clinching” Auction

Consider now an auction where K identical units must be auctioned off to
n bidders. Denote the (marginal) value that bidder j assigns to consuming
his ith unit by vij. Ausubel (2002a) concerns himself with the case in which

bidders have decreasing marginal valuations: vij ≥ vi+1
j for each i ≤ K.

Under this assumption, the problem of finding an efficient allocation can be
formulated as the problem of finding a maximum weight basis.

To do this, for each bidder j we introduce K elements, j1, j2, . . . , jK with
weights v1

j , v
2
j , . . . , v

K
j . Let E be the collection of these elements, and let I

be the collection of all subsets of size at most K. It is easy to see that (E, I)
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is a matroid. In this case the ascending auction described above coincides
with Ausubel’s (2002a) auction.

If bidders do not have decreasing marginal valuations, then the efficient
allocation problem is not equivalent to the basic problem of finding a maxi-
mum weight basis. For example, suppose that bidder 1 has a higher marginal
value for his second object than for his first: v1

1 < v2
1. In this case, (depend-

ing on the other bidders’ valuations), a maximum weight basis may include
the element for v2

1, but not the one for v
1
1. However, it is not feasible to give

bidder 1 his marginal valuation for a second object without giving him a first
object! The allocation problem in this case requires an additional constraint;
an agent cannot receive an i+1st object without receiving an ith object. This
side constraint destroys the matroid structure.

4 Shortest Paths

In this section, we consider the shortest path problem which, after the as-
signment and matroid problems, is the remaining member of the basic class
of polynomially solvable optimization problems.

Let G = (V,E) be a directed graph with vertex set V and edge set E.
We denote a source node s ∈ V and a sink node t ∈ V . Each edge e ∈ E
has a cost ce. In what follows, we sometimes refer to an edge e as a pair of
vertices (i, j) where e is directed from i to j. An efficient allocation in this
setting is an s–t path of minimal total cost, i.e., the shortest path.

To be precise about the ownership structure, each agent j owns a (dis-
tinct) set of edges Ej, so (Ej)j∈N is a partition of E. Vickrey payments are
well-defined only when no agent owns a cut that disconnects s from t; hence
we assume this, analogously to the no-monopoly assumption of the previous
section.

In this general model, the agents are substitutes condition (2) need not
hold. This complementarity can be illustrated even when each s–t path uses
at most one edge belonging to any particular agent. The example involves
three agents N = {α, β, γ}, each of whom own a single different edge. Each
directed edge in Figure 1 is given a cost, and is labelled with the agent who
owns it.

To illustrate our point, denote the shortest s–t path by P ∗ and its length
by L(P ∗). Let P−S be the shortest s–t path that does not use any edge be-
longing to an agent in S ⊆ N , and let L(P−S) be its length. The substitutes
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Figure 1: A shortest path problem.

condition (2) is12

L(P−S)− L(P ∗) ≥
∑
j∈S

[L(P−j)− L(P ∗)] ∀S ⊆ N.

In our example, the shortest path has length L(P ∗) = 2. The marginal
product of agent α (or β) is 5− 2 = 3, but this is the same as the marginal
product of the coalition S = {α, β}. Since 3 < 3+3, the substitutes condition
does not hold. In this example, agents α and β are complements; neither can
be on an s–t path without the other.

While the substitutes condition need not hold in general in this environ-
ment, there are special cases where it does. For example, Schummer and
Vohra (2001) describe a class of shortest-path problems which model the op-
timization problem for options-based electricity procurement with capacity
constrained suppliers.

When the agents are substitutes condition does hold, there can be more
than one formulation that captures Vickrey payments. We discuss two of
them for the case in which each agent owns at most one edge on any s–t
path.13

To get one formulation, one can reinterpret the variables of (P2) in order
to formulate the shortest path problem. Specifically, interpret µ ∈ Γ as a
feasible s–t path, and interpret S as an edge. (Values are negative lengths.)
Then when the agents are substitutes condition holds, the previous results
apply; the dual variables for the second constraint provide the marginal prod-
ucts.

12“Length” is the opposite of “value,” which is why the terms appear to be reversed
from (2).

13Hershberger and Suri (2001) provide an algorithm for finding Vickrey payments when
valuations are given, even when the substitutes condition does not hold, assuming each
agent owns a single edge.

28



A second, more succinct formulation eliminates the variables for paths.

min
∑
e∈E

cexe

s.t. Y x = b∑
e∈Ej

xe ≤ 1 ∀j ∈ N

x � 0

Here, Y is the node-arc incidence matrix, so the first constraint is the stan-
dard one for path problems, where b is a column vector defined as bs = −1,
bt = 1, and bv = 0 for any other vertex. The second constraint is redundant.

Under our assumption that agents own at most one edge on any path,
the dual variables for the second constraint correspond to marginal products.
Since this formulation is more succinct than (P2), this fact is not trivial for
the same reason that (P1)—a formulation more succinct than (P2)—does
not provide Vickrey payments. The proof of the result, omitted for brevity,
is given in Section 6.1 of Bikhchandani et al. (2002).

5 Summary

This paper surveys the connections between sealed bid Vickrey auctions and
duality in linear programming. By example, we have shown how this relation
can be exploited to produce iterative auctions that implement the Vickrey
outcome in various scenarios. The approach can be summarized by the fol-
lowing steps.

1. Verify that the agents are substitutes condition holds.

2. Formulate a linear program where appropriate dual variables corre-
spond to the marginal products of the agents. Under the substitutes
condition, an optimal dual solution exists in which, simultaneously,
each appropriate variable takes the value of the corresponding agent’s
marginal product.

3. Construct a primal-dual algorithm for the linear program. The algo-
rithm must choose an improving direction in the dual that will cause
the algorithm to terminate in the dual solution described above. This
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is the one that, among all optimal dual solutions, is the one that max-
imizes the combined surplus of the bidders.

If the substitutes condition does not hold, it is shown in de Vries et
al. (2002) that an ascending (suitably defined) auction (in which bidding
sincerely is an equilibrium) yielding the Vickrey outcome cannot exist.
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