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Optimal Control With Integral State Equations

By

M. I. Kamien and E. Muller

Methods of optimal control theory have proved useful in
studying the class of dynamic economic problems that can be posed
as optimization of

1y [T

Lo FlE,x(t),ult))dt

subject to

(2)  x(£) = £(t,x(t),u(t)), x(0) = x,

where t denotes time and x(t), x(t), u(t), the values of the state
variable, its derivative, and the control variable respectively at
time t, see [2] and [431. The differential equation (2), sometimes
referred to as the transition or state equation, links changes in
the state variable x(t) to contemporaneous changes in the control
u(t). The Maximum Principle of Pontryagin and Hestenes has facili-
tated economic interpretation of the necessary conditions for an
optimum of (1) and (2):; see [10]. The Maximum Principle also ap-
plies to problems involving nonnegativity constraints on the state
and control variables as well as other interrelationships among
them, to problems involving several state and control variables,

and to infinite horizon problems; see [2].
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Presented in this paper is a Maximum Principle for optimal
control problems for which the state equation is a nonlinear

Volterra integral equation of the second kind; see [7]:

(3) x(t) = + jt £(t,x(s),u(s),s)ds

x
0 0

The class of state equations defined by (3) includes those of (2)

because (2) can be written as:

(4) x(t) = xq + ft £(s,x(s),u(s))ds

-0

The converse, however, is not true because the integral equation (3)
cannot in general be written as a differential equation. Instead
differentiation of (3) yields the integro-differential equation:

(5) %(t) = £(t,x(e),u(t), &) + ["PE(E,x(s),uls),s)/pt]ds
0

providing f is a smooth function of t; see [11l, p. 65]. Only
in special cases such as 3f/3t = c(t)f(t,x(s),u(s),s) will (5) -
reduce to a pure differential equation.

A Maximum Principle appropriate for an optimal control pro-
blem consisting of (1) and (3), similar to Bakke's [3], is presented
in the first section. An informal proof of this result along the
lines of the variational approach employed by Smith [1l2, pp. 288-
293], is presented. The theorem of Bakke applies to multivariate
problems with inequality constraints involving state and control

variables. A second theorem indicating circumstances under
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which the necessary conditions are also sufficient follows. Ap-
plication of this Maximum Principle to extension of some recent

work in capital replacement theory is then demonstrated.

The Maximum Principle

It is assumed that the requirements for the existence of a
uniqgue continuous solution to the integral equation (3), which
include continuity of the function f over the triangular region
a < s < t <« b together with a Lipschitz condition, are met:; see
(7, pp- 24~-30] or [7, pp. 85-93] for a weaker set of conditions.

In addition it is supposed that the partial derivatives df/3x = fX,
3f/3u = fu exist and are continuous. Lastly let f(t,x,u,s) = O

for t <« s, and F(t,x,u) be a smooth function with partial deriva-

tives denoted 3F/ax = FX and 3F/3u = Fu‘

Theorem 1l: Suppose the assumptions stated above obtain and the func-
tion u*(t), a < t « b, maximizes:
(6) [P F(t,x(t),u(t) at
Ca
subject to
(7) x(t) = x(a) + ['t f(t,x(s),u(s),s)ds
Y a
Then there exists a continuous multiplier function of time, ) (t),

and a Hamiltonian, H(t,x,u,)\) defined by



By

(8) H(t,x(t),u(t),)y(r)) = F(t,x(t) ,u(t))+rbf(s,X(t) ;u(t),t)) (s)ds,
.}t

such that, for each t,

(i) u*(t) maximizes H(t,x,u,)); so that 3H/3u | =0,
u = u*(t)
providing H is differentiable with respect to u.
(ii) »(t) = aH/3x evaluated at the optimal control value

u*(t) and the corresponding state function x(t) and mul-

tiplier ) (t) wvalues.

Proof: Let u(t) be a fixed continuous control function. Then the

solution to (7), assumed to exist, can be written as:
(9) x = x(t,u)
and substituted into (6) to yield a functional in u,

(10) J(u) = jb F(t,x(t,u),u)dt
a

According to a well known result of the calculus of wvariations,

the variation of J, written

(11) J (u,lu) = d—d J (ute Au) =0
€ =0
o=

at an optimizing u, for all functions Au(t) continuous in t where
¢ is an arbitrary small number, see [12, pp. 33-41]. Computation

of the variation of (10) and combination with (11) yields:



-5-

b
(12) J [F_(t,x(t,u),u) 39 x (t,u+elbu) + F _(t,x(t,u),u)Auldt = 0.
a X € e=0 u

Now from (7):

(13) < x(t,u+ehu) = 2 rt f(t,x(s,u+eclbu) ,u+epu,s)ds
de _ de e=0
e=0 a
= [t
gL X f(t,x(s,u+eAu),u+eAu,s)[ ds
a de
=0
- It 3
T g [fX(t,x(s,u),u,s)-g; x(s,u+ehu) + fu(t,x(s,u),u,S)Au]dS
e=0
Letting

A(t,s) = fx(t,X(s,u),u(S),S)

(14) B(t,s)

fu(t,x(s,u),u(S),S)

y(t) = 3% x (t,utesn)
e =0

and substituting into (13) yields a linear integral equation

(15) y(t) = [F[a(t,s)y(s) + B(t,s)au(s)]ds

According to a basic property of linear integral equations, see

[7, pp. 189-93] the solution to (15) can be written as:

(16) y(t) = [® x(t,s)[[® B(s,T)aulr)dr]ds + jt B (t,s)au(s)ds

" a Ya a
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where the function r(t,s), called the resolvent kernel, satisfies
(17) r(t,s) = A(t,s) + [° x(t,1)A(r,s)dr.

< g

Now on a triangular region a « 1 <« t ¢ T, and function g

(18) [T Ft g(t,m)arat = [T fT g (T,t)drdt

Ya “a “a 't
so (16) can be rewritten as
t t
(19) y(t) = r [B(t,s) + r r(t,T)B(T,s)dT JAu(s)ds
Ya )

Recalling (14) and substituting from (19) into (12) yields:

(20) [P

fF(t,x(t,u),u(t)) [ft[B(t:S) + ft r(t,7)B(r,s)dr]Au(s)ds]
a a

' s
+ F (t,x(t,u),u(t))bu(t)}dt = 0
Application of (18) to (20) yields
(21) rb{ rb Fx(s,x(s,u),u(s))[B(s,t)+ rsr(s,T)B(T,t)dT]dS
‘a "t “t

+ Fu(t,x(t.u),u(t»}Au(t)dt =0

Since (21) must hold for all continuous functions Au(t), it must ob-
tain in the particular case when Au(t) equals the curly bracketed

expression in (21). This implies

(22) [P [P F_(s,x(s,0),u(s))[B(s.t)+ [° r(s,1)B(r,t)dr]ds

Ya *t vt

+ F(t,x(t,u),u(t))}? at = o,

from which it follows that
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(23) [P F_(s,x(s,u),u(s))[B(s,t)+ [Sr(s,m) B(r,t)ar]ds+F_(t.x(t,u),ult)=
ut ’t

Another application of (18), this time to (23), yields an Euler equa-

tion

(24) rb[FX(s.X(s.u).u(s))+ rb FX(T:X(T,U):u(T))r(T,S)dT]B(S,t)dS +
“t v's

F tlx(tlu)’u(t)) =0

q
If we define ) (s) by

(25) A (s) = F_(s,x(s,u),u(s))+ bex(T.X(T,u).u(T))r(T.S)dT
i

and substitute from (25) into (24) we get

(26) F_(t,x(t,u),u(t))+ [° ) (s)B(s,t)ds = 0.
Sl o

Substitution from (14) and recollection of (8) discloses that

(27)  F(t,x(t,u),ult))+ Jb £ (s, xwt)) (s)ds = O = 3H/du.

t
verifying part (i) of the theorem.
To establish part (ii) it has to be shown that the 3 (t) de-

fined in (25) is consistent with
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(28) ) (t) =3H/3x = FX(t,x(t,u),u(t))aLJb £ (s,%,u,t)) (s)ds
t

Recollection of (14) yields

(29) A (t) = F_(t,x(t,w),u(t)) + ["A(s,t)1r(s)ds,
“t

a linear integral equation in ). Consistency of (25) and (28) re-
duces to demonstrating that the former is a solution to the latter.

To do this we substitute from (25) into (29) to get

(30) A (t) = Pz A(s,t)[F, (s,x(s,u) ,u(s))+ szX(T,x(T,u),u(T)).r(T,s)dqu

+ F (t,x(t,u) ,u(t))
Application of (18) to the double integral yields

(31) A (E) = rb[A(S.t)+ JSA(T,t)r(S,T)dT] F (s,x(s,u),u(s))ds +
Yt t

Fx(tlx(tlu) lu(t))

Substitution for the bracketed term in (31) from (17) yields

(32) A(t) = F_(t,x(t,u),u(t)) + fb F (s,x(s,u),u(s))r(s,t)ds

vt

which is exactly (25), with s replaced by t, and T by s. This

establishes (ii) of Theorem 1.
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Thus, in place of the two differential equations that are part of
the necessary conditions for the optimal control problem (1) and
(2) are the two integral equations (7) and (25). To show that
this Maximum Principle specializes to the one applicable to (1)
and (2) let u(t) = rb A (s)ds which implies ) (t)= =l (t) =

“t
~du (t)/dt and pu(b) = 0. Then (27) becomes

rb

(27') F_(t,x(t,u),u(t)) -
u S e

fu(s,x,u,t)ﬂ(s)ds =0
and (28) becomes

(28°) 0 (t) = F (t,x(t,w),u(t)) - [P£ (s,x,u,t)(s)ds
Yt
Integration by parts of the last terms in the above expressions

yield, respectively

(27”) F (tlx(tlu)lu(t)) + “(t)f (tlxlult) +rb (af /aS)“(S)dS =0
u u ..‘t u

(28") -L(t) = F (t,x(t,u),u(t)) + u(t)fx(t,x,u,t)+i (fo/aS)U(S)ds
But in accordance with the discussion of (3) and (4), if the state
equations are differential equations, the integrals in (27") and
(28") wvanish or integrate out and the familiar necessary condi-
tions obtain. Likewise, as in the familiar case, concavity of

the maximized Hamiltonian in the state variable assures that the

necessary conditions are also sufficient. This is demonstrated in:



-10-~

Theorem 2: Let u(t,x,)) be the solution to max H(t,x,u,)), where
H is defined by (8), and H(t,x,)\) = H(t,x,ul(t,x,\),)). If B(t,x,\)
is a concave function of the state variable x, then the necessary
conditions (27) and (28) are also sufficient for a maximum of (6)

subject to (7).

Proof: The proof follows that in Kamien and Schwartz [5] for the
familiar case. Let x*(t), u*(t), ) (t) satisfy (7), (27) and (28)
so that u*(t) = u(t,x*,)), and x(t),u(t) satisfy (7), for a <« t ¢ b.

Moreover, denote:

F*(t) = F(t,x*,u*) , f*(t,s) = f(t,x*(s),u*(s),s)
F(t) = F(t,x,ul(t,x,)\)) , T (t,s) = £(t,x(s),u(s,x,)),s)
F(t) = F(t,X,U) ’ £ (tls) = f(t;X(S)iu(s)IS)

The proof consists of showing that
b

(33) D= j (F*(t)-F(t)dt » 0
a

Adding and subtracting

Ft) + [P (s.t)n(s)ds + [P E(s,t)n(s)ds
va v a :

under the integral of
D = rbfﬁ(t)+ Ib F(s,t)y(s)ds - rb f*(s,t)) (s)ds +
'a a “a

Fr(t) + [0 £x(s,t)) (s)ds - F(t) - [° E(s,t)a(s)ds - F(t)}dt
' I
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Using the concavity of H, hypothesized in the theorem, yields

(39 D= [PrFe) + [P Es,0(0)as - [P

a “a a

fx(s,t)) (s)ds +

b
(x*-x)[ 3F* (t) /3% + r L (s)QE*(s,t)Rx)ds +(3F*(t) /3u) (u*/3x) +
Y a N

b
[ % (s)E* (s, t) /du)u*/px)ds] - F(t)}dt

- a

Rearrangement of terms and substitution from (27) and (28) into

(34) yields

(35) D> [rF(t) + [° E(s,t)n(s)ds - [Pex(s,£)r (s)ds +(x=x*)y (t)-F(£)]dt

“a “a a

Recollection of (7) implies

(36) [P [x(t)-x*(0)]n ()dt = [° [P(e*(s,t)=£(s,t)) (s)dsdt
" a , Ya +t

where the last line follows from reversing the order of integration

in accordance with (18). Recollection that f(s,t) = 0 if s <« t
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implies:

rb f(s,t)ds = fbf(s,t)ds
i a

and substitution from (36) into (35) gives

(37) D = [P F()+ [P E(s,t)y(s)ds
a “a

-F(t) - rbf(s,t)x(s)dsjdt > 0
“a

since u(t,x,)) maximizes H(t,x,u,)) by assumption.

Application:

The Maximum Principle of Theorem 1 can be employed to analyze
a capital replacement problem studied by Arrow [1l]. The problem
posed is selection of an investment plan through time, I(t), that
maximizes the present value of future cash flow, where current
operating profit depends on current capital stock, and current
capital stock depends on the history of previous investments.

Analytically, the problem is to

(38)  Max J'T o (£)[P (K (t),t)~I(t)]dt
0

s.t.
(39)  k(t) = I(t)- jt m(t-s)I(s)ds
0]
k(0) = kO

where
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P(k,t) = operating profit from stock of capital k at time t
k (t) = stock of capital at time t

o (t) = discount factor at time t

o (t) = -y (t) /o (t) = instantaneous rate of interest
m(t-s) = mortality density, the fraction of gross investment

made at time s, that disappears about time t.

Expression (39) indicates that net capital formation at time t,
ﬁ(t) is the difference between contemporaneous gross investment
I(t) and disappearance (deterioration) of capital. This equation

of capital formation specializes to the more familiar

k(t) = I(t)=-6k(t)

when the mortality density has the form m(t-s) = ée—é(t_s)

Arrow employs algebraic ingenuity to convert the problem posed
in (38) and (39) into one suitable for analysis by calculus of vari-
ations methods and thereby derives the necessary conditions for a
maximum. To apply Theorem 1, we convert (39) into an integral equa-
tion.

(40)  k(t) =k _ + Jt I(s)ds- [ [*m(u-s)duiz(s)ds
© 0 0 Vs

Expressions (38) and (40) constitute a control problem with invest-
ment I (s) the control variable and capital stock k(t), the state vari-
able. The state equation for the infinite horizon version of this

problem analyzed by Arrow can be written as:



-14~

(40') K(t) = Y M(t-s)I(s)ds

-0

where M(t) is the mortality rate and M(t)= -m(t). The necessary
conditions for this version of the problem are identical to those

that are developed below.

(41) H = o (£)[P((£),8)=I(t) 1+ [T [(T(t) - [Sm(u-t)I(t)au]y (s)ds
“t “t

and the necessary conditions are

(42) dHAI = ~o (t) + [T1-T% m(u-t)auja (s)ds = 0
<t dE
(43) yH/3k = ) (t) = a(t)Pk[k(t).t]

Differentiation of (42) yields a linear integral equation of the

convolution type in ) (t)

(44) x (B)

Il

_fs dm (u-t)
St dt

=6 (£) + [T m(s-t)x (s)ds
" O

- (t) + [T[m(t-t) du] A (s)ds
be

by observation that dm(u-t)/dt= =-dm(u-t)/du, integration of the
inner integral and since m(s-t) = 0 for s « t. The solution of

(44) can be written as

(45) A (t) = =@ (t)=[" r(s)a(s-t)ds
. "0

where r(s) denotes the resolvent kernel, see [7, p. 13-21], that can be

shown to be identical to the replacement density r(r) defined by Arrow.
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Substitution into (43) and division of both sides by o (t)

yields

(46) P [k (£),t] = -a(t)/a (t)- rT_ELE)_

) Q./ (Sft)ds
-0

Recollection of the definition of p(t) gives rise to a finite hori-

zon version of Arrow's myopic rule for optimal capital investment

(47) P Ik(E),£] = p(£)+ [T[r(s)p(s-t)a (s=t) /a (t)1ds
.,‘0

o (t)+r (t)

where r, implicitly defined by (47) may be interpreted as the aver-
age number of replacements from t forward. While the above analysis
only demonstrates that results obtained by more traditional methods
can be duplicated by application of Theorem 1, it also provides a
vehicle for generalizations that could not be as conveniently treated
by those techniques. For example, a mortality density that is depen-
dent on the contemporaneous level of the capital stock m(t-s,k(s))
could be accomodated by the Maximum Principle, as could other gener-
alizations recently suggested by Malcomson [ 6] and Nickell [ 9].
Before concluding we indicate an extention of the Nerlove-Arrow
[8] result regarding the optimal ratio -of advertising goodwill to
sales. In the Nerlove-Arrow paper revenue P(k(t),t) is replaced by
pq(p,k)-c(q), where p denotes product price, product demand q(p,k)

is a function of both price and advertising goodwill k, and c(q)
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denotes production cost. We assume that advertising goodwill is
accumulated through current expenditure, I(t), in accordance with
'(39), rather than in accordance with the special case of Nerlove-
Arrow in which the mortality follows an exponential law. The maxi-
mization problem has the same form as (38) and (39) except for

the addition of product price as a control variable. Necessary

conditions for this problem are
. T
(48) A (t) =—a () + [ m(s-t)y(s)ds
J
0

(49) o (t) [g+(p-c’)3a/ap] = O

(50) A (t) = o (t) (p-c’)3a/ak

If ¢(t) # O then (49) implies (p-c’) = —q/%% which upon substitution
into (50), multiplication of both sides by k/pq, and rearrangement of

terms yields.

(51) g a(t)/nr(t) = k/pq

where g= k_&_g&]_{_ n =‘-La_géa_2

’

are the elasticity of demand with respect to goodwill and price, re-
spectively. Recollection of (43), (46), and (47) and substitution

for ) (t)/y (t) in (51) yields the desired result:

(52) k/pa = B/n [ (£)+X(t)].
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Expression (52) specializes to the marginal condition obtained by
Nerlove-Arrow under the supposition of exponential decay of good
will at rate §, for then r = §. According to (52) the ratio of
goodwill to sales revenue along an optimal policy is directly
related to the elasticity of demand with respect to goodwill and
inversely to the price elasticity of demand, the instantaneous
rate of interest, and the average anticipated decay rate from the

present forward.

Summary

A simplified version of a theorem of Bakke for optimal con-
trol with an integral state equation has been presented. Usual
concavity conditions have been shown to render the necessary con-
ditions for an optimum sufficient as well as in this problem.
Finally, application of this Maximum Principle to some capital re-
placement problems has demonstrated how they might be treated in

a uniform fashion.



