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Abstract

We examine whether a two-bidder, second-price auction for a single
good (with private, independent values) is immune to a simple form
of collusion, where one bidder may bribe the other to commit to stay
away from the auction (i.e. submit a bid of zero). First, we consider
a situation in which only a bribe of a fixed size may be offered. There
are precisely two equilibria in this extended game: a “bribing” and a
“no-bribing” equilibrium. While the bribing equilibrium is naturally
stable, the no-bribing equilibrium is shown to fail several standard
refinements on out-of-equilibrium beliefs. Second, we consider the
case in which bribes of any size may be offered. Robust equilibria in
this situation involve low briber-types revealing themselves through
the amount they offer, while high types “pool” by offering the same
bribe. Only one such equilibrium involves a continuous offer strategy.
Bribing equilibria in all cases lead to inefficiency.
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1 Introduction

Our goal is to examine the extent to which an auction mechanism is immune

to a simple form of collusion in which one bidder may bribe another to leave

the auction. Specifically, we consider a second-price or English auction where

two buyers have private information about their valuations for a good. Before

the auction begins, one of the buyers has the opportunity to offer the other

a bribe in exchange for the other’s commitment to remove himself from the

auction (or bid zero). We analyze two versions of this model: one in which

the amount of the bribe is exogenously fixed (e.g. representing a fixed “favor”

whose transfer is undetectable), and one in which the bribe can be chosen

to be any amount (e.g. offering money). With respect to a given equilibrium

concept for this extended game, we examine whether the second-price auction

is “bribe-proof” in the following sense.

We say that the auction is strongly bribe-proof if bribing does not occur

in any equilibrium of the extended game. We show that the second-price

auction fails this requirement under any reasonable equilibrium concept: un-

der both fixed and variable bribes, there exists a robust equilibrium in which

bribing occurs.

We say that the auction is weakly bribe-proof if there exists an equilib-

rium in which bribing does not occur. While there is a sequential equilibrium

in which no bribe is offered, this equilibrium turns out not to be robust. We

provide necessary and sufficient conditions such that the no-bribing equi-

librium does not survive iterated deletion of dominated strategies (or the

Intuitive Criterion) in the fixed bribes model. Furthermore, the no-bribing

equilibrium always fails other common refinements.

The concept of bribe-proofness is a practical and reasonable requirement,

as bribing agreements represent the simplest and crudest form of collusion.

A bribing contract like ours is relatively easy to enforce; participation in the

auction is often verifiable, and the contract does not rely on post-auction

payments.

The bribing contracts we study certainly do not represent all possible
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collusive arrangements. However, the availability of even these can induce

collusion and inefficiencies in the second-price auction. One interpretation

of our results is that, in the private-values auction environment, no efficient

and strategy-proof mechanism is resistant to very simple forms of bidder col-

lusion, even if the buyers have incomplete information regarding each others’

valuations.

1.1 Related literature

Bribing contracts have been analyzed by Schummer (2000) in the context of

dominant strategy implementation. In a general collective decision problem,

he calls a mechanism bribe-proof if, given player i’s type, player j has no

incentive to pay i to commit to misreport his type, even when j reports

truthfully. Schummer (2000) shows that only constant mechanisms are bribe-

proof. In this paper, we extend this type of analysis to a Bayesian setting,

where players do not know each others’ types, and where the decision problem

of allocating an object is being solved with a second-price auction.

Our paper also contributes to a growing literature on collusion in auctions,

including Graham and Marshall (1987), Mailath and Zemsky (1991), McAfee

and McMillan (1992), and Marshall and Marx (2002).1 These authors model

collusion by assuming that a subset of buyers congregates before the auction,

and play some kind of “collusive mechanism” or “knock-off auction.” Graham

and Marshall (1987) show that a group of bidders can collude in an incentive

compatible and ex-ante budget balanced way by simply asking low-valuation

bidders in the group to drop out of the auction. Payments are made to

all group members before determining who should drop out, while after the

auction, the group’s high-valuation member makes a payment back to the

group only if the manipulation produced ex-post gains for him. Mailath and

Zemsky (1991) provide a more sophisticated mechanism that also achieves

ex-post budget balance, and identify the optimal collusive contract subject

1Laffont and Martimort (2000) have a two-agent public goods setup where the mod-
elling of collusion is similar to that of this literature.
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to this constraint.

The main difference between our extended game and the way collusion

is modelled in this literature is that we consider a different (and particular)

bribing stage. Instead of the agents jointly designing a collusive side-contract,

one of our agents is fixed as having the opportunity to offer a contract to

the other agent.2 This is important because in our model the “designer”

of the mechanism, bidder j, has private information, and his goal is not

the maximization of the joint surplus, but rather his own. The result of

this difference is that in our game, signalling is an issue, and the bribing

equilibrium is not efficient.

In previous work on bidding rings, the ring serves as a device to siphon

profits from the seller to the ring members, and overall efficiency is not lost

(under ex-ante symmetry) as a consequence. In our model, though, bribing

leads to a loss in social surplus. We do not assert that our way of modelling

collusion is better, but we think that it is an interesting alternative, especially,

that inefficiencies arising from bribing have not been considered before.

1.2 Outline of Results

In Section 3 we start with a model in which the briber may only offer an

exogenously fixed bribe amount b. We show that in this model, there are

precisely two equilibria in pure strategies: (i) a bribing equilibrium in which

high briber types offer the bribe, and low acceptor types accept it, and (ii) a

no-bribing equilibrium in which the bribe is never offered.

Since the bribing equilibrium has full support on the action space, it is ro-

bust to the usual equilibrium refinements of signalling games. We argue that

the no-bribing equilibrium, however, is not robust. First, we show that it fails

the iterated deletion of dominated strategies if and only if the amount of the

bribe is sufficiently large compared to a certain function of the distribution

2Furthermore, we restrict the set of available contracts to “bribing contracts,” that is,
a transfer from j to i conditional on i bidding zero.
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of types.3

Second, regardless of the distribution of types, the no-bribing equilib-

rium does not survive standard equilibrium refinements (such as D1 or Per-

fect Sequential Equilibrium). It also fails an intuitive restriction on out-of-

equilibrium beliefs that we introduce in Section 3.3. To briefly describe this

refinement, we require that the support of i’s out-of-equilibrium beliefs re-

garding the briber’s type is restricted to a uniquely defined “briber’s club”—a

set of briber-types that is equivalent to the set of types for whom it is prof-

itable to be associated with that set, as long as i’s beliefs are restricted to

that set. We show that beliefs on that support cannot be part of a no-bribing

equilibrium.

In Section 4 we turn to the case of “endogenous bribe amounts,” i.e.,

when the briber may choose to offer any amount b. The equilibrium be-

havior found in the case of a fixed bribe can be supported in this model as

well, though sometimes only with unintuitive out-of-equilibrium beliefs. In

particular, the no-bribing equilibrium is incompatible with standard refine-

ments for signalling games.4 We believe that the most plausible, interesting,

and robust equilibrium is the unique bribing equilibrium in continuous and

weakly monotonic strategies. It is a “mostly-separating” equilibrium, in the

sense that any briber type below a certain threshold offers a unique amount b

as a function of his type, while all types above the threshold offer the same

amount. All bribes are accepted with positive probability, and the highest

bribe is always accepted. The allocation of the good in this equilibrium is

inefficient with positive probability.

Section 5 numerically illustrates our results for the uniform distribution

of types. Proofs are collected in Appendix I, while a discussion of standard

refinements is relegated to Appendix II.

3This necessary and sufficient condition holds if the distribution function is convex.
4In Appendix II, we show that in the variable bribes model, any no-bribing equilibrium

fails Cho and Sobel’s (1990) D1 criterion.
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2 The Bribing Contract

Consider a second-price (Vickrey) auction for a single indivisible good, with

two risk-neutral bidders i and j. The buyers have private valuations, θi, θj ∈
[0, 1], drawn independently according to the same differentiable c.d.f. F . We

assume that 0 < F ′(x) < ∞ for all x ∈ [0, 1]. Everything is commonly

known except the valuations, which are privately known by the buyers who

hold them.

We modify the second-price auction to model bribing in the following

way. After the buyers learn their valuations, but before the auction starts,

bidder j has an opportunity to offer a bribe b to bidder i in exchange for i’s

commitment not to bid. If i accepts the bribe, he is committed to making a

bid of 0 in the auction; we are assuming that the bribing contract is enforce-

able. If i rejects the bribe or if j doesn’t offer a bribe in the first place, then

the game proceeds as a second-price auction.

We provide results for two cases: (Section 3) when b is given exogenously,

so j decides whether to bribe but not how much to offer; and (Section 4)

when j may also choose the amount of the bribe b. One interesting aspect of

this game is that buyer j’s decision whether or not to offer a bribe (and the

amount offered) reveals information regarding his type. This signalling effect

adds much complication to a Bayesian model, and makes out-of-equilibrium

beliefs an important issue.5 In a second-price auction, however, if a bribe is

offered but it is declined, then the players’ beliefs about each other’s type be-

comes irrelevant, since bidders have an incentive to bid truthfully regardless

of their information.

Formally, the game we describe above involves three stages: a stage where

bidder j decides whether to offer a bribe, a stage where i decides whether

to accept an offer (if made), and the second-price auction stage. In order to

simplify the presentation, however, we do not explicitly model the bidders’

behavior in the auction stage. We assume that bidders bid truthfully in

5In our model, out-of-equilibrium beliefs affect what would happen if j offered a bribe
that is not expected.
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the second-price auction, except of course when bidder i accepts a bribe, in

which case he is forced to bid zero.6 If a bribe b is offered and accepted,

then the payoffs to i and j are b and θj − b, respectively. Otherwise, the

payoff to the bidder with the highest type is max(θi, θj) − min(θi, θj), while

the other bidder receives zero. We formalize the definitions of strategies and

equilibrium concepts in each of the following two sections.

3 Fixed Bribe Amount

In this section we assume that the amount that j can offer, b ≤ E(θi), is

exogenously fixed, and that the briber chooses only whether to offer it. One

interpretation of this model is that j has a car, and on the day of the auction

he tells i “Take the keys to my car and leave town.”

In this model, a (pure) strategy for bidder j prescribes for each type θj

a decision of whether to offer the bribe b. Hence it can be represented by

the set B ⊆ [0, 1] of types that offer the bribe. A strategy for bidder i

prescribes for each type θi a decision of whether to accept b if offered; it can

be represented by the set A ⊆ [0, 1] of types that would accept the bribe if

it were offered. We make the innocuous (see Proposition 1) assumption that

these strategy-representing sets are measurable.

A sequential equilibrium is a pair of strategies (A,B) and a posterior belief

distribution, µ, which satisfy the usual consistency and rationality conditions

for each type.7

Some of our results involve equilibria whose description includes a parti-

tion of the set of types. As in many such games with a continuum of types,

a pair of equilibria may exist which differ only in the behavior of a single

6This assumption is innocuous since our most interesting results concern equilibria
in undominated strategies. It does, however, rule out equilibria (in weakly dominated
strategies) in which bidder j threatens to bid the maximum amount in the second-price
auction, forcing i (if he believes this) to accept the bribe regardless of his type. Since our
emphasis is on when bribing equilibria are the only “reasonable” ones, our results are not
weakened by this assumption.

7See Sect. 8.3, Fudenberg and Tirole (2000).
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(borderline) type. In order to describe such equilibria more concisely, we

introduce the following notation. For any 0 ≤ a ≤ 1, we write [0, a〉 to mean

“[0, a] or [0, a).” Similarly, 〈a, 1] means “[a, 1] or (a, 1].” This notation facil-

itates the description of “essentially unique” equilibria, where certain types

on interval boundaries may behave in indeterminate (and irrelevant) ways.

Our first result describes the structure of all sequential equilibria in the

model with a fixed bribe b. Strategies are described by sets which are 2-

partitions of [0, 1].

Proposition 1 In any sequential equilibrium, the set of types that offer a

bribe is of the form 〈B, 1] and the set of types that accept the bribe is of the

form [0, A〉, where B < 1 implies b < B < A ≤ 1.

Proof: For a given equilibrium, denote the set of types that offer the bribe

as B, and the set of types that accept the bribe as A. When B is non-empty,

if player i accepts the bribe then it must exceed the profit he would get in

the auction, given that θj ∈ B. In other words, if θi ∈ A then

b ≥ Eθj
[(θi − θj)1{θj≤θi} | θj ∈ B] (1)

where 1X is the indicator function for event X. If this inequality holds for

some θi then it holds for any θ′i < θi. Therefore A = [0, A〉. If B is empty then

a similar argument (in which the posterior based on F is replaced by the out-

of-equilibrium beliefs) shows that for any beliefs supporting the sequential

equilibrium, A must be an interval.

To show that B is also an interval, define B = inf B. If B = 1 then we

are done. Otherwise, since i can infer θj ≥ B from the fact that the bribe

was offered, he has an incentive to accept the bribe if his type is less than

B + b. This follows because i’s profit in the second-price auction is at most

θi −B ≤ b. Therefore A ≥ min{1, B + b} > B.

For any θj ∈ B, the payoff from offering the bribe must be at least as
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great as his unconditional payoff in the second-price auction, that is,

F (A)(θj − b) + Eθi
[(θj − θi)1(A<θi≤θj)] ≥ Eθi

[(θj − θi)1(θi≤θj)]. (2)

Differentiating both the left and right hand sides,

∂LHS(θj)

∂θj

= max{F (A), F (θj)} ≥ F (θj) =
∂RHS(θj)

∂θj

.

When θj < A, the left hand side increases in θj strictly faster than the right

hand side does. Therefore, for any θj ∈ B for which B ≤ θj < A, and any

θ′j > θj, eqn. (2) holds strictly with respect to θ′j. This implies θ′j ∈ B, and

therefore B is of the form 〈B, 1]. Furthermore, eqn. (2) cannot hold at θj = b,

hence B > b. �

3.1 The Bribing Equilibrium

Our next result states that regardless of the distribution and the amount of

the bribe, an essentially unique bribing equilibrium exists. In it, high types

offer the bribe while low types accept it. Since there is an overlap between

these sets, inefficiency occurs with positive probability.

Proposition 2 For any b ∈ (0,E(θi)], there exists a sequential equilibrium

in which bribing occurs. Moreover, all equilibria in which a bribe is offered

with positive probability are essentially equivalent: there exist Ab, Bb such

that in any equilibrium where bribing occurs, the sets of bribers and acceptors

are 〈Bb, 1] and [0, Ab〉, respectively.

This equilibrium can be shown to be the unique one to satisfy Grossman

and Perry’s (1986) Perfect Sequential Equilibrium. Since both of j’s actions

are used in equilibrium, it clearly satisfies any reasonable refinement. We

discuss refinements in more detail in Section 3.3 and Appendix II.
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3.2 The No-Bribing Equilibrium

An equilibrium in which bribing does not occur (a “no-bribing equilibrium”)

can be supported when bidder i believes that only type θj = 0 would offer a

bribe. In this case, his optimal strategy is to accept the bribe when his type

is such that θi ∈ [0, b〉. Then, bidder j never could benefit from offering the

bribe, hence bribing would not occur. These out-of-equilibrium beliefs are

unreasonable, though, since for types θj < b, offering the bribe is a strictly

dominated strategy (as long as it is accepted with positive probability).

We examine two refinements that rule out such unreasonable beliefs.

First, we consider iteratively deleting weakly dominated strategies. Proposi-

tion 3 provides a necessary and sufficient condition under which this refine-

ment rules out no-bribing equilibria. In Section 3.3, we introduce an intuitive

refinement that is in the spirit of Cho and Kreps’ (1987) Intuitive Criterion,

but slightly stronger. Proposition 4 shows that a no-bribing equilibrium must

fail this refinement.8

To discuss these refinements, it is helpful to define the briber-type who

would be indifferent between offering the bribe and not offering it, given that

every acceptor type θi ∈ [0, 1] would accept the bribe.

Definition 1 For any b ∈ [0,E(θi)] define θb to satisfy

θb − b =
∫ θb

0
(θb − θi) dF (θi). (3)

One can check that θb is unique and well-defined by this equation.

The following result considers the consequences of iteratively eliminat-

ing weakly dominated strategies. Since “order matters” when eliminating

weakly dominated strategies, for simplicity we restrict attention to the case

of eliminating every weakly dominated strategy in each round of deletion.

We call this maximal elimination of weakly dominated strategies.

8In Appendix II, we show that no-bribing equilibria fail Cho and Sobel’s (1990) D1
criterion and Grossman and Perry’s (1986) concept of Perfect Sequential Equilibrium.
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Proposition 3 For all b ∈ (0,E(θi)), there exists a no-bribing sequential

equilibrium that survives the iterated maximal elimination of weakly domi-

nated strategies if and only if

b > E[θi | θi ≤ θb + b] (4)

Condition (4) fails to hold, for example, if the distribution function is

convex, in which case iterated dominance rules out the no-bribing equilib-

rium. On the other hand, for example, if F (x) = xα with 0 < α < 1, then

eqn. (4) holds for small b.

Remark 1 Reasoning similar to that used in the proof of Proposition 3

can be used to show that there is a no-bribing equilibrium satisfying Cho

and Kreps’ (1987) Intuitive Criterion if and only if eqn. (4) is satisfied.

Roughly speaking, the Intuitive Criterion requires the acceptor to form out-

of-equilibrium beliefs that place no probability on any briber type who could

not hope to gain a payoff higher than his equilibrium payoff, as long as the

acceptor plays some best response strategy. Since a best response for the

acceptor must involve an interval [0, A] of accepting types, no briber with

type θj ≤ θb could hope to do better offering the bribe than he does when

not offering it (as in equilibrium). Hence, (out-of-equilibrium) beliefs for

the acceptor must have support only on [θb, 1], and a conclusion similar to

that of Proposition 3 is reached. It may also be noted that in our model,

the Intuitive Criterion is equivalent to the (stronger) iterated version of that

condition, defined by Fudenberg and Tirole (1991, p. 449).

3.3 A Refinement on Out-of-Equilibrium Beliefs

When eqn. (4) holds, we construct a no-bribing equilibrium (in the proof

of Proposition 3) by using out-of-equilibrium beliefs for bidder i that are

“skewed downward” in the following sense. When j unexpectedly offers the

bribe, i believes that j is very likely to have a type close to the lowest one

that could conceivably offer the bribe after iterated deletion of weakly dom-
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inated strategies. Such beliefs run counter to the intuition (established by

differentiating eqn. (2)) that if type θj has an incentive to offer a bribe, then

so does any type θ′j > θj. Although these skewed beliefs are permissible, one

may find a sequential equilibrium whose existence depends on them to be

less appealing than other, more robust equilibria.

Cho and Sobel’s (1990) D1 criterion eliminates such beliefs by requiring

that only types that are “most likely to gain” from deviating be given weight

in i’s posterior beliefs. It turns out (see Appendix II) that in a no-bribing

equilibrium, the types of j that are most likely gain from offering the bribe

are the ones whose expected payment in a second-price auction exceeds the

bribe.9 By inducing such beliefs, it is not hard to see that the no-bribing

equilibrium is ruled out by this refinement.

These considerations motivate us to introduce what we consider to be a

more intuitive refinement on out-of-equilibrium beliefs. It is somewhat in the

spirit of Cho and Kreps’ (1987) Intuitive Criterion. However, it turns out

to have stronger consequence in our model, since a no-bribing equilibrium

cannot satisfy it regardless of the distribution F .

To provide the motivation for our refinement, first consider an equilib-

rium in which a bribe is never offered by j—we generalize and formalize

the definition below. Fix a set of “credible deviating types” C ⊂ [0, 1], and

consider the following speech by bidder j.

“I hereby offer you the bribe, and inform you that my type is a

member of C. You should believe this because my type is in C if

and only if I am better off making this speech (than in equilib-

rium) for any best response you play, consistent with believing

my type is in C. Furthermore, no other set of types C′ can make

a similar speech.”

This speech, if true, creates a sort of self-fulfilling prophecy. If bidder i

believes θj ∈ C, then he should form posterior beliefs with support restricted

9Such types exist because, for example, the expected payment of type θj = 1 is E(θi),
which is larger than b.
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to C, and play a corresponding best response. In that case, the only briber

types who would profit from making this speech for any such best response

are those in C. Therefore, bidder i would be justified in believing θj ∈ C.

The uniqueness of C merely weakens our requirement, and ensures that

bidder i need not worry about why one speech was made instead of another.

If such a speech can be made truthfully, we say that this set of types C
breaks the no-bribing equilibrium. Our result in the fixed-bribe model is that

a no-bribing equilibrium is always broken by a unique such set of types. For

more general situations and games (e.g. with more than two actions available

to the sender in a signalling game), such a speech is defined with respect to

a given equilibrium, a set of types, and an out-of-equilibrium action.

Remark 2 Our speech states that θj ∈ C whenever θj gains from making

the speech for any corresponding best response by bidder i. The Intuitive

Criterion can be described by a similar speech in which θj ∈ C whenever θj

gains for some corresponding best response by bidder i. Perfect Sequential

Equilibrium also can be described similarly, where θj ∈ C whenever θj gains

when i’s best response is formed only with respect to Bayesian updating on

C, i.e. i’s posteriors are not allowed to vary. Uniqueness of the set C is not

required, however, in the definition of Perfect Sequential Equilibrium (see

van Damme’s (1991) remarks, p. 291).10

To formalize our concept, we first give a loose description in terms of a

general signalling game. Then, we more formally interpret the definition to

our specific model. A similar formal interpretation is given for the variable-

bribe model in Section 4.2.

Consider a 2-agent game in which a Sender has an unknown type and

sends a (possibly costly) message to a Receiver. Suppose an equilibrium ex-

ists in which some message m is never sent. We say that a closed, measurable

set of (Sender’s) types, C, is a set of credible deviating types that breaks the

equilibrium with message m when the following hold.

10It is easy to show, as we do in Appendix II, that the no-bribing equilibrium is not a
Perfect Sequential Equilibrium.
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1. Let D(C,m) be the set of Sender types who are strictly better off than

in the equilibrium whenever the Receiver plays any best response to m

consistent with posterior beliefs restricted to C.

2. We require C = closure(D(C,m)).

3. We require that there exist no other (measurable) set of types C ′ �= C
for which C′ = closure(D(C′,m)).

In the fixed-bribe model of this section, there are only two types of equi-

libria: the essentially unique bribing equilibrium discussed in Section 3.1

and equilibria in which bribing does not occur. Since the former has no

out-of-equilibrium actions on the part of bidder j, for the sake of brevity

we formalize our definition only with respect to the no-bribing equilibrium.

Furthermore, briber j has only two “messages” in this game, and “offer b” is

the one that is not played in this equilibrium.

For any closed set of types C, in order to calculate D(C) ≡ D(C, offer), we

need to determine bidder i’s set of best responses when he believes θj ∈ C.

Analogous to the result in Proposition 1, a best response for i is to accept

the bribe whenever θi ∈ [0, A〉, where A is determined by some beliefs of i

over C. In fact, for such beliefs, G, A is such that

b = G(A)[A− E(θj | θj ≤ A)]

(see eqn. (1)) where the expectation is with respect to G.

Let the set of such best responses be parameterized by

A(C) = {A : b = G(A)[A− E(θj | θj ≤ A)] for some beliefs G over C}

i.e. the set of such best responses is {[0, A〉: A ∈ A(C)}. The set of types

who would want to make the speech described earlier can now be defined as
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follows.11

D(C) = {θj ∈ [0, 1] : inequality (2) holds strictly ∀A ∈ A(C)}

Finally, in the fixed-bribe model of this section, a set of types C is a credible

deviating set if it is the unique set for which C = closure(D(C)).

Lemma 1 With respect to a no-bribing equilibrium, a set of credible devi-

ating types must be of the form C = [c, 1], where type θj = c is indifferent

between offering the bribe and not when i accepts with types θi ∈ [0, c + b〉.
In other words,

F (c + b)(c− b) =

∫ c

0

(c− x) dF (x). (5)

Our result is that a no-bribing equilibrium cannot be robust to the kind

of speech described above, since a (unique) set of credible deviating types

always exists.

Proposition 4 For any b < E(θi) and any distribution F , any no-bribing

sequential equilibrium is broken by a unique set of credible deviating types

who offer the bribe.

Proof: Using the same techniques as in the proof of Proposition 1, eqn. (5)

can be uniquely solved for c. �

Hence, only the bribing equilibrium of Section 3.1 survives.

4 Variable Bribes

In this section, we examine the model in which j may offer any amount b to

bidder i. As a simplification, we equate the act of offering a bribe of b = 0

with the act of offering no bribe.12 Therefore, a strategy for j is simply a

11We omit from the notation the label for the “message” of offering the bribe.
12Under any reasonable equilibrium concept, this assumption changes nothing in the

analysis.
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function mapping types into offers, b : [0, 1] → R+. A strategy for i specifies

a measurable set of accepting types for each offer b ∈ R+, A(b) ⊆ [0, 1]. A

sequential equilibrium is defined analogously to the previous section (with i’s

beliefs over types θj conditional on receiving any offer b ∈ R+).

Certain results from the previous section carry over to this one. In par-

ticular, bidder i’s equilibrium strategies must be such that any offer b ∈ R+

is accepted by sets of the form A(b) = [0, A(b)〉. For bidder j, Proposition 1

generalizes in the following way.

Lemma 2 In any sequential equilibrium, j’s strategy b(θj), is weakly mono-

tonic in θj.

From this, it follows that in any equilibrium, if two amounts b, b′ ∈ R+ are

offered in equilibrium, then b > b′ implies A(b) > A(b′), where A() defines i’s

strategy as above.

The type of equilibrium behavior described in the fixed-bribe model can

be supported in this model with an appropriate specification of (out-of-

equilibrium) beliefs for i. For example, for any given b < E(θi), the bribing

equilibrium described in Proposition 2 can be extended to this model by spec-

ifying that whenever a different bribe b′ �= b is offered, i believes that θj = 0

with probability 1. The no-bribing equilibrium described in Section 3.2 ap-

plies with similar beliefs. Such beliefs are, of course, unappealing, and do

not survive typical refinements used in signalling games with continuous type

spaces.

On the other hand, there may exist an equilibrium in which j’s strat-

egy b() is continuous. Under the assumption that F is log concave, we will

prove that there is such equilibrium, and that it is unique (up to the specifica-

tion of i’s out-of-equilibrium behavior). Furthermore, under our refinement,

any equilibrium bribing function must at least partially agree with this con-

tinuous function.

For the remainder of this section, we make the (widely used) assumption
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that F is log concave: d[F (θj)/F
′(θj)]/dθj ≥ 0.13 Bagnoli and Bergstrom (1989)

provide an extensive list of distributions that are log concave.

4.1 Continuous Equilibrium Bribing Function

In the continuous bribing equilibrium, b() is strictly increasing on some in-

terval [0, θ̄), and is constant on [θ̄, 1]. Therefore, if i receives some offer

b(θj) < b(θ̄), then j’s type θj is perfectly revealed. In this case, i accepts the

offer only if the bribe b(θj) exceeds his (perfectly anticipated) payoff in the

auction, θi − θj, i.e. when θi < θj + b(θj).

In order for j to have the incentive to reveal his type (e.g. not to pretend

to be a slightly higher type), a local incentive compatibility condition must

be satisfied. An increase in the amount of bribe offered must be exactly offset

by the increase in the set of types θi who would accept it. This leads to a

differential equation (6) characterizing the bribing function.

Proposition 5 Suppose F is log concave. In any sequential equilibrium in

which bribing occurs, if j’s bribing strategy function b() is continuous, then

it is the unique equation to satisfy b(0) = 0 and

b′(θj) =




F ′(θj + b(θj))(θj − b(θj))

F (θj + b(θj)) − F ′(θj + b(θj))(θj − b(θj))
if θj + b(θj) < 1

0 otherwise

(6)

Conversely, there exists a sequential equilibrium in which j’s (continuous)

strategy b() is described by eqn. (6), with b(0) = 0.

From eqn. (6), it follows that b() is strictly increasing up to some θ̄, after

which it is constant, where θ̄ + b(θ̄) = 1.

The equilibrium is robust to any reasonable refinement of out-of-equilibrium

beliefs: The only out-of-equilibrium bribe that can occur is b > b(θ̄). Even if

13Fudenberg and Tirole (2000) relate log concavity to a monotone hazard rate condition.
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all types θi accept this offer, no θj could benefit from offering it because all

types θi already accept the smaller (equilibrium) bribe b(θ̄).

When F is not log concave, a continuous bribing function b satisfying (6)

may or may not exist. Tedious difficulties arise when F is such that b′(θj) =

∞ for some θj. Without the log concavity assumption, it may be that any

b() satisfying eqn. (6) is discontinuous, in which case there is no sequential

equilibrium where j has a continuous strategy. Intuitively, some type θj

may see “increasing returns” from increasing the amount of his bribe, if his

increased expenditure is more than offset by the increase in the density of

types θi that accept the higher bribe.

Even without log concavity, the equilibrium payoffs to the bidders must

be continuous. While this is not a surprising result, we state it here formally,

as it is used to prove a later result. To do so, first define j’s payoff from

offering b when his type is θj and i’s strategy is A() as

π(b, θj) = F (A(b))(θj − b) + 1{θj>A(b)}

∫ θj

A(b)

(θj − x)dF (x). (7)

With respect to a given pair of equilibrium strategies for i and j, A() and

b(), denote j’s equilibrium payoff by

πe(θj) ≡ π(b(θj), θj).

Lemma 3 Let b() and A() be defined with respect to given sequential equi-

librium strategies. The briber’s equilibrium profit function πe() is continuous

in θj.

4.2 Refinements under Variable Bribes

Our main result in this section describes the briber’s strategy in any equi-

librium that satisfies the refinement introduced in Section 3.3. Such brib-

ing functions b() must agree with the function described in Proposition 5

(eqn. (6)) on some interval [0, θ̂j〉, and remain constant afterwards. Further-
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more, there is a discontinuity at θ̂j unless b() coincides with the continuous

strategy described in Proposition 5.

Before presenting that result, we formalize the concept of our refinement

for this variable-bribe model. In the fixed-bribe model, there could be at

most one out-of-equilibrium action for bidder j. Here, our refinement not

only rules out no-bribing equilibria, but also rules out some equilibria in

which bribes are offered. In formalizing the requirement, we need to account

for the possible multiplicity of out-of-equilibrium actions (offers) that bidder j

may use.

Fix equilibrium strategies for i and j, defining functions A() and b() as

above. For any measurable (and closed) set of types C, and offer b ∈ R+,

we wish to determine the set of types θj who are better off offering b (than

in equilibrium) whenever i believes θj ∈ C. To determine this set, we need

to determine bidder i’s set of best responses to this offer when he believes

θj ∈ C. As in Section 3.3, we can parameterize this set of i’s best responses

to the offer of b as

A(C, b) = {A : b = G(A)[A− E(θj | θj ≤ A)] for some beliefs G over C}

i.e. “accept b if and only if θi ∈ [0, A〉” is a best response under beliefs

restricted to C if and only if A ∈ A(C, b).
The set of briber types θj who would strictly want to offer b (and make

the speech described earlier) can now be defined as

D(C, b) = {θj ∈ [0, 1] : F (A)(θj − b) + Eθi
((θj − θi)1(A<θi≤θj)) > πe(θj)

∀A ∈ A(C, b)}

A set of types C is a credible deviating set for offer b if it is the unique

set (given b) for which C = closure(D(C, b)).14
Our result is that if an equilibrium is such that no credible deviating set

14We require the uniqueness of C only for some offer b. There may exist another credible
deviating set for some other offer b′.
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θj
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b̄

b̂

β̂

θ̂j θ̄j 10

Figure 1: The structure of an equilibrium bribing function b() under our
refinement. The function described in Proposition 5 is labelled b∗().

exists for any b ∈ R+, then j’s strategy must agree with the one described in

Proposition 5 for low types, and must involve “pooling” for all other types.

See Figure 1.

Proposition 6 Assume F is log concave. Suppose a sequential equilibrium

satisfies our refinement in the variable bribes model: there exists no out-of-

equilibrium offer b ∈ R+ and set of types C such that C is a credible devi-

ating set for offer b. Denote the bribing function described in Proposition 5

(eqn. (6)) by b∗().

Then bidder j’s strategy b() is such that for some θ̂j ≤ θ̄,

b(θj) =

{
b∗(θj) if θj < θ̂j

b̂ ≡ θ̂j − F (θ̂j + β̂)(θ̂j − β̂) if θ̂j < θj

where β̂ = limθj↗θ̂j
b(θj). Furthermore, E[θj | θj ≥ θ̂j] + b̂ ≥ 1, implying both

θ̂j > 0 and that b̂ is accepted by all types θi.

Conversely, any function b() satisfying these conditions is part of a se-

quential equilibrium satisfying our refinement.
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5 Numerical Example: Uniform Distribution

In this section, we illustrate some of our results with a numerical example

in which the valuations are drawn from a uniform distribution. We consider

the case of a fixed bribe amount b.

As a preliminary, we derive θi’s expected payoff in the SPA conditional

on θj ≥ B.

E[πi(θi | θj ≥ B)] =

∫ θi

B
(θi − x) dx

1 −B
=

1

2

(θi −B)2

1 −B
if θi > B, (8)

and 0 if θi ≤ B. Note that the unconditional profit is E[πi(θi | θj ≥ 0)] =∫ θi

0
(θi − x) dx = 1

2
θ2

i .

First, we verify that in the case of uniform distributions the no-bribing

equilibrium is ruled out by iterated dominance. Given b > 0, we define

θb according to eqn. (3) that is, θb − b = 1
2
(θb)2, so b = θb − 1

2
(θb)2. By

Proposition 2, the no-bribing equilibrium is dominated if and only if eqn. (4)

holds, i.e., b < 1
2
(θb + b) for the uniform distribution. Since

b ≡ θb − 1

2
(θb)2 < θb − 1

4
(θb)2 ≡ 1

2
(θb + b),

eqn. (4) holds and the no-bribing equilibrium is dominated.

Second, we calculate the fixed-bribe equilibrium (b, B,A) where A = 1.

From eqns. (10) and (8) at θi = 1,

b =
1

2
(1 −B).

From eqn. (9), using A = 1,

B − b =

∫ B

0

(B − x) dx =
1

2
B2.

Adding these two and rearranging, we get B2 − 3B + 1 = 0, which yields

B = 3−√
5

2
≈ 0.382, and in turn b ≈ 0.309. In the equilibrium where all θi
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b B A
.01 .01036 .15104
.05 .05403 .36160
.15 .17208 .67046
.20 .23505 .78820
.25 .30068 .89200
.30 .36925 .98443

Table 1: Equilibrium values of B and A for various bribe levels b, under
the uniform distribution.

accept, the bribe is b ≈ 0.309, and θj ≥ B ≈ 0.382 offer it.

There is a continuum of other “semi-pooling” equilibria (b, B,A), which

solve the following counterparts of eqns. (10) and (9).

(1 −B)b =
1

2
(A−B)2

A(B − b) =
1

2
B2.

Some solutions are given in Table 1.

Finally, the “mostly-separating” equilibrium of Proposition 5 is even eas-

ier to compute. Since the likelihood-ratio function is L(x) ≡ F ′(x)/F (x) =

1/x, the differential equation for b(θj)—eqn. (6)—simplifies to

b′(θj) =
[θj − b(θj)]/[θj + b(θj)]

1 − [θj − b(θj)]/[θj + b(θj)]
=

θj − b(θj)

2b(θj)
,

which admits a linear solution, b(θj) = 1
2
θj (the initial condition is b(0) = 0).

This bribe function is valid for θj ∈ [0, 2
3
]; b(θj) ≡ 1

3
for all θj ∈ [2

3
, 1]. In the

“separating” equilibrium j uses the bribe function

b(θj) =

{
1
2
θj if θj ∈ [0, 2

3
)

1
3

if θj ∈ [2
3
, 1]

.

Clearly, the briber is better off in the bribing equilibrium than in the no-
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bribing equilibrium because his surplus in the no-bribing equilibrium (ordi-

nary SPA) would be equal to that in a first-price auction where he would bid

θj/2 (instead of bribing with that amount) and win much less often.

6 Conclusion

We have examined a simple, specific form of collusion among two bidders

in a second price auction, where one of the bidders is permitted to pay the

other to commit to leave the auction (bid zero). Regardless of whether the

bribing agent is permitted to offer only an exogenously fixed payment or

is permitted to choose any payment, a robust equilibrium exists in which

bribing occurs. In an equilibrium for the latter case, a bribe is offered with

probability one. In these equilibria, the object is allocated inefficiently with

positive probability.

Equilibria in which bribing does not occur are not robust to intuitive

refinements. Therefore, depending on the solution concept an auctioneer

uses, he may be unable to rationalize the use of this auction even on the

basis of the existence of a collusion-free equilibrium.

Our approach differs from much of the collusion literature in a few ways.

Foremost, we do not model a “collusion design” problem for the agents. In

that literature, it is typical to assume that an uninterested third party designs

and administers a revelation mechanism, making or receiving payments from

bidders based on various information.15 The third-party design assumption

is a way to escape the issue of information transmission in the design stage:

If we make the more-realistic assumption that bidders already have some

idea about their types at the design stage, then when a bidder proposes the

use of a particular collusive mechanism, information about his type could be

inferred from that proposal.16

15See Marshall and Marx (2002) for a case-by-case analysis of the types of post-auction
information that could be used.

16See Jackson and Wilkie (2001) for one approach to modelling this issue, where agents
simultaneously propose and commit to contingent transfer mechanisms, and final payments
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This type of inference is a part of what we model. In our model, there

is common knowledge about whether agent j desired to seek collusion, while

that information exists about i whenever j makes the offer. Analogously

to the way information can be lost in moving from an extensive-form game

to a normal-form game, a collusive revelation mechanism may or may not

“naturally” model the information transmission that occurs when the “un-

interested third party” does not actually exist.

We believe that our approach to modelling collusion can provide useful

insights in more general settings as well. Our game is decidedly simple in

that we consider a dominance-solvable mechanism (a second-price auction),

where informational inferences do not directly affect the strategic behavior

of any given type. We also restricted attention to two players, which greatly

simplifies calculations without losing the essence of the bribing-signalling

game.

Appendix I: Proofs

Proof of Proposition 2: For any b ∈ (0,E(θi)], Proposition 1 implies that

in any bribing equilibrium, briber and acceptor types are of the form 〈B, 1]

and [0, A〉. Since B ≥ b, standard continuity arguments imply that type

θj = B must be indifferent between offering the bribe and not, i.e., by eqn. (2)

and B ≤ A,

F (A)(B − b) =

∫ B

0

(B − x) dF (x). (9)

Note that this holds even if B = 1 since bribing is occurring by assumption.

Also, either A = 1, or type θi = A is indifferent between accepting the

bribe and not. By eqn. (1),

b ≥
∫ A

B
(A− x) dF (x)

1 − F (B)
, (10)

are the sum of those proposals.
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and if A < 1 then eqn. (10) holds with equality. (From Proposition 1, if

B = 1 then A = 1 and eqn. (10) becomes b ≥ 0; if B < 1 then A > B and

the right-hand side is positive.)

It is helpful to define the following functions for A,B ∈ [0, 1], A ≥ B.

b1(A,B) = B −
∫ B

0
(B − x) dF (x)

F (A)
,

b2(A,B) =

∫ A

B
(A− x) dF (x)

1 − F (B)
.

Observe that since B > 0, b1(A,B) < B.

To prove the existence of an equilibrium, we need to find A,B such that

eqns. (9) and (10) hold, that is, b = b1(A,B) ≥ b2(A,B), with equality if

A < 1.

Define

H = {(A,B) : A ≥ B, b1(A,B) − b2(A,B) ≥ 0, with equality if A < 1}.

We claim that (i) for all B, there exists A such that (A,B) ∈ H, and (ii) for

all A < 1, there exists a unique B such that (A,B) ∈ H.

To see (i), first note that (0, 0) ∈ H. For B > 0, b1(B,B) − b2(B,B) =

E[θi | θi ≤ B] − 0 > 0 so either (1, B) ∈ H or by continuity, (A,B) ∈
H for some A ∈ (B, 1). To see (ii) for A ∈ (0, 1), note that b1(A, 0) −
b2(A, 0) = 0−∫ A

0
(A−x) dF (x) < 0, while b1(A,A)−b2(A,A) > 0. Continuity

implies that b1(A,B) − b2(A,B) = 0 for some B ∈ (0, A), hence (A,B) ∈
H. Furthermore, this B is unique because b1(A,B) − b2(A,B) is strictly

decreasing in B (see eqns. (12) and (14) below).

Define the correspondence h : [0, 1] � [0, 1] such that h(A) = {B :

(A,B) ∈ H}. By (ii), h is non-empty and if A < 1 then h is single-valued. It

can be shown (e.g., by an application of the Maximum Theorem) that h is

upper hemi-continuous. Therefore, for A < 1, h(A) is a continuous function,

and its graph, H, is connected. Define B̂ = limA↑1 h(A) ∈ h(1). An example
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A

B

(1, B̂)

1

1

0
0

H

Figure 2: The set H in the proof of Proposition 2.

of h appears in Figure 2.

By differentiating b1 and b2, we find that for 0 < B < A ≤ 1,

∂b1

∂A
=

F ′(A)

F (A)2

∫ B

0

(B − x) dF (x) > 0, (11)

∂b1

∂B
= 1 − F (B)

F (A)
> 0, (12)

∂b2

∂A
=

F (A) − F (B)

1 − F (B)
> 0, (13)

∂b2

∂B
=

{∫ A

B
(A− x) dF (x) − (A−B)(1 − F (B))

}
F ′(B)

(1 − F (B))2
< 0 (14)

where the last inequality follows by
∫ A

B
(A− x) dF (x) <

∫ A

B
(A−B) dF (x) =

(A−B)(F (A) − F (B)) ≤ (A−B)(1 − F (B)).

Consider any A′ > A. If h(A′) > h(A) then by eqns. (11) and (12)

we have b1(A
′, h(A′)) > b1(A, h(A)). If h(A′) < h(A) then by eqns. (13)

and (14) we have b2(A
′, h(A′)) > b2(A, h(A)), which implies b1(A

′, h(A′)) ≥
b2(A

′, h(A′)) > b2(A, h(A)) = b1(A, h(A)). Therefore, on A ∈ [0, 1), b1(A, h(A))

is strictly increasing in A.

By continuity, b1(1, B̂) = b2(1, B̂). Therefore, eqns. (12) and (14) imply

that h(1) = [B̂, 1], and b1(1, B) is strictly increasing in B.

Therefore, b1(A,B) is strictly increasing on H in the sense that if A < 1

then b1(A,B) is strictly increasing in A, and if A = 1 then b1(A,B) is strictly
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increasing in B. Since b1(0, h(0)) = 0 (by h(0) = 0) and b1(1, 1) = E(θi),

the strict monotonicity and continuity of b ≡ b1(A,B) along H implies that

there exists a one-to-one mapping between b ∈ [0,E(θi)] and (A,B) ∈ H, i.e.

for all b ∈ [0,E(θi)], there exist unique A, B solving eqns. (9) and (10). �

Proof of Proposition 3: Recall that we assume that players bid their val-

uations in the second-price auction, if it is ever reached (which is consis-

tent with deleting dominated strategies). We begin the process of iteratively

deleting maximal sets of weakly dominated strategies whether or not eqn. (4)

holds.

Round 1. In the first round of elimination, we delete any of j’s strate-

gies that prescribe type θj ≤ b to offer the bribe. This is clear because by

offering the bribe, such a type can only obtain a negative payoff if the bribe

is accepted. For bidder i, we delete any strategy that prescribes type θi ≤ b

to reject the bribe because such a type cannot obtain a payoff higher than

b in the second-price auction. It is straightforward to check that no other

strategies can be eliminated in the first round.

Round 2. Subject to the first round of elimination, we delete any strat-

egy for the briber that prescribes θj ≤ θb to offer the bribe. To see this,

denote any set of acceptors by A ⊆ [0, 1]. From the first round, we must

have [0, b] ⊆ A. If θj ≤ θb offers the bribe then his profit would be

Eθi
[(θj − b)1{θi∈A} + (θj − θi)1{θi∈[0,θj ]\A}] ≤ θj − b

where the inequality holds because θi > b for all θi /∈ A. Since the LHS

of eqn. (3) increases faster in θb than the RHS does, we have θj − b ≤∫ θj

0
(θj − θi) dF (θi) for all θj ≤ θb. Furthermore, for some admissible A, the

inequality is strict. Therefore for θj ≤ θb not offering the bribe dominates

offering the bribe.

Continuing the second round of elimination, we delete any acceptor strat-

egy that prescribes θi ≤ 2b to reject the bribe. This follows because for any

admissible briber strategy, the bribe is offered only by types θj > b, limiting
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the acceptor’s SPA-payoff to no more than θi − b. It is again straightforward

to check that no other strategies can be eliminated in the second round.

Round 3. Similarly, the acceptor’s strategies that we delete in the third

round of elimination are precisely those that prescribe θi ≤ θb + b to reject

the bribe, because the briber’s type is greater than θb if the bribe is offered.

Non-existence. As the first of two cases, suppose that eqn. (4) does not

hold. Let θj = min{1, θb + b}. If θj = 1 then his payoff is 1 − b from offering

the bribe and is 1−E(θi) from not offering the bribe, so θj strictly prefers to

bribe. If θj = θb +b < 1, then his payoff is at least F (θj)(θj −b) from offering

the bribe (because each θi ≤ θb + b accepts the bribe according to previous

rounds of strategy deletion), and his payoff is F (θj)(θj − E[θi | θi ≤ θj])

from not offering the bribe. Since eqn. (4) does not hold, for any admissible

acceptor strategy, type θj’s payoff from offering the bribe is weakly greater

than that from not offering the bribe. Furthermore, since θb + b < 1, this

inequality is strict when i’s strategy is to accept the bribe with any type. We

conclude that for θj = min{1, θb + b}, offering the bribe weakly dominates

not offering the bribe, therefore the no-bribing equilibrium does not survive

the iterated maximal elimination of weakly dominated strategies.

Existence. Second, suppose that eqn. (4) holds. We show that no briber

strategies can be eliminated in the third round of deletion and that the no-

bribing equilibrium can be supported. If the set of acceptors is exactly [0, 1]

then for all θj > θb, offering the bribe is strictly better than not offering it

(because θb is indifferent and the LHS of eqn. (3) increases faster in θb than

the RHS does).

On the other hand, if the set of acceptors is exactly [0, θb + b], which is

also admissible even after the third round of deletion, then, for all θj > θb,

offering the bribe is strictly worse than not offering it. To see this, consider

the payoff difference between not offering and offering the bribe,

E[(θj − θi)1{θi≤θj}] − F (θb + b)(θj − b) − E[(θj − θi)1{θb+b≤θi≤θj}],
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which has a derivative equal to

F (θj) − F (θb + b) − max{0, F (θj) − F (θb + b)}.

This derivative is negative for θj < θb + b and zero otherwise, so the payoff

difference is minimized at θj = θb + b, where it equals

F (θb + b)(E[θi | θi ≤ θb + b] − b) > 0. (15)

Hence for type θj > θb not offering the bribe is strictly better than offering

it. Therefore, we can delete no more briber strategies: For any θj > θb,

either bribing or not bribing may be strictly better, depending on the set of

accepting types (and we already established that any θj ≤ θb must not offer

the bribe).

To support the no-bribing equilibrium in which j never offers the bribe

we specify i’s out-of-equilibrium beliefs as follows. If the bribe is offered then

i believes that θj = θb + ε with probability 1. His best response is to accept

if and only if θi ≤ θb + ε + b. For small ε > 0, no θj wants to offer the bribe.

This can be seen by perturbing eqn. (15) with ε. �

Proof of Lemma 1: From the monotonicity established in the proof of

Proposition 1 (eqn. (2)), C must be of the form [c, 1]; if type c gains from

offering the bribe so does any type θj > c. It should also be clear that re-

gardless of the value of θj > b, the “worst” of i’s best responses (for j) occurs

when i believes Pr(θj = c) = 1, in which case his best response is to accept

when θi ∈ [0, c + b〉 (in fact, the reader may check that c + b = min A). The

usual continuity arguments imply that type c is indifferent between offering

the bribe and not offering it, in this worst case (the reader may also check

that D(C) = (c, 1]). �

Proof of Lemma 2: Suppose two bribe amounts b and b′ < b are offered in

equilibrium. From the arguments of Proposition 1, the set of types θi that

accept b and b′ are [0, A〉 and [0, A′〉 respectively. Clearly A′ < A, otherwise
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no type would offer b.

Let the infimum type who offers b be denoted θ̃j = inf{θj : b(θj) = b}.

We show that θj > θ̃j implies that θj strictly prefers offering b to offering b′,

implying monotonicity.

If θ̃j = 1, we are done. If θ̃j < 1, denote the expected payoff to some

type θj from offering b as

π(b, θj) = F (A)(θj − b) + 1{θj>A}

∫ θj

A

(θj − x) dF (x).

As with eqn. (2), we have ∂π(b, θj)/∂θj = max{F (A), F (θj)}. Therefore,

∂[π(b, θj) − π(b′, θj)]/∂θj = max{F (A), F (θj)} − max{F (A′), F (θj)}.

Incentive compatibility (and continuity) imply π(b, θ̃j) − π(b′, θ̃j) ≥ 0.

Since θ̃j < 1, we have θ̃j < A (as in the second paragraph of the proof

of Proposition 1). Therefore, ∂[π(b, θ̃j) − π(b′, θ̃j)]/∂θj > 0, and so for all

θj > θ̃j, π(b, θj) − π(b′, θj) > 0. �

Proof of Lemma 3: Observe that πe is strictly increasing: For all θ′j < θj,

πe(θ′j) < π(b(θ′j), θj) ≤ πe(θj)

where the first inequality follows from the definition of π and the fact that

θj > b(θj). The second inequality follows from incentive compatibility.

We first show continuity approaching from the right. Suppose towards

contradiction that for some θj ∈ [0, 1), there exists δ > 0 such that for all
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ε > 0, πe(θj) + δ ≤ πe(θj + ε). Observe that

πe(θj + ε) − π(b(θj + ε), θj | A)

= F (A(b(θj + ε))) ε + 1{θj+ε>A(b(θj+ε))}
∫ θj+ε

A(b(θj+ε))
(θj + ε− x) dF (x)

−1{θj>A(b(θj+ε))}
∫ θj

A(b(θj+ε))
(θj − x) dF (x)

= F (A(b(θj + ε))) ε + 1{θj>A(b(θj+ε))}
∫ θj

A(b(θj+ε))
ε dF (x)

+1{θj>A(b(θj+ε))}
∫ θj+ε

θj
(θj + ε− x) dF (x)

+1{θj+ε>A(b(θj+ε))>θj}
∫ θj+ε

A(b(θj+ε))
(θj + ε− x) dF (x)

< 4ε

where the inequality follows because each of the four terms is no greater than

ε and the last one is strictly less than ε. Therefore,

lim
ε↓0

[πe(θj + ε) − π(b(θj + ε), θj | A)] = 0.

But then for ε > 0 sufficiently small, π(b(θj + ε), θj | A) > πe(θj + ε) − δ ≥
πe(θj), contradicting incentive compatibility. Therefore πe is continuous from

the right.

To see continuity from the left, suppose towards contradiction that we

have limθ′j↑θj
πe(θ′j) < πe(θj). Since π(b(θj), θ

′
j) is continuous in θ′j, we have

limθ′j↑θj
π(b(θj), θ

′
j) = π(b(θj), θj) = πe(θj). But then for θ′j sufficiently close

to θj, π(b(θ′j), θ
′
j) < π(b(θj), θ

′
j), contradicting incentive compatibility. �

Proof of Proposition 5: Uniqueness. Consider a sequential equilibrium

in which j’s offer strategy, b(θj), is continuous and where a positive bribe is

offered by some type θj.

Since any positive bribe would be accepted with positive probability (à

la Proposition 1), it is clear that b(0) = 0. Let θ′j = max{θj : b(θj) = 0}.

For any δ > 0 the set of acceptors of a bribe bδ ≡ b(θ′j + δ) > 0 includes

the interval [0, θ′j + bδ]. Hence the payoff for θ′j from offering bδ is at least

F (θ′j + bδ)(θ
′
j − bδ) while his payoff in equilibrium is F (θ′j)(θ

′
j −E[x | x ≤ θ′j]).
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For δ sufficiently small, bδ < E[x | x ≤ θ′j], therefore incentive compatibility

requires θ′j = 0. Therefore b(θj) is strictly increasing at θj = 0.

We extend this argument to prove that b() can be constant only on some

interval whose maximum is 1. For this, suppose that there exists a bribe

b such that {θj : b(θj) = b} = [θ′′j , θ
′
j] where θ′′j < θ′j < 1. This bribe is

accepted by θi ∈ [0, A〉 where A < θ′j + b because θ′′j < θ′j. Define c =

θ′j + b − A > 0.17 For any δ > 0 (and θ′j + δ ≤ 1), the set of types that

accept a bribe bδ = b(θ′j + δ) is an interval [0, Aδ〉, where Aδ ≥ min{θ′j + b, 1}.

Hence Aδ ≥ A + c. If θ′j offers bδ then his payoff is F (Aδ)(θ
′
j − bδ). His

equilibrium payoff is F (A)(θ′j − b) when A ≥ θ′j, and is at most F (θ′j)(θ
′
j − b)

when A < θ′j. As δ → 0, we have bδ → b. However, Aδ − A ≥ c > 0 and

Aδ − θ′j ≥ min{b, 1 − θ′j} > 0, therefore type θ′j has a strict incentive to offer

bδ instead of b for δ sufficiently close to 0. We conclude that if b() is constant

on a non-degenerate interval [θ′′j , θ
′
j] then it is constant on [θ′′j , 1] also.

We have established that the equilibrium bribe-function, b(), is strictly

increasing on an interval [0, θ̂] and constant on [θ̂, 1]. For any θj ∈ [0, θ̂],

if j offers bribe b(θj), then it is accepted by types θi ∈ [0, θj + b(θj)]. His

equilibrium payoff is

πe(θj) = π(b(θj), θj) = F (θj + b(θj))(θj − b(θj))

Furthermore, the Envelope Theorem implies

d

dθj

π(b(θj), θj) = F (θj + b(θj))

Therefore,

F ′(θj + b(θj))(1 + b′(θj))(θj − b(θj)) = F (θj + b(θj))b
′(θj).

Therefore b′() is defined by eqn. 6.

17Note that A = 1 would require θ′j = 1, otherwise any θj > θ′j should not offer any
bribe greater than b. Therefore A < 1 also.
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Finally, we show that θ̂ = θ̄ where θ̄ is defined to be the lowest type

such that β(θj) + θj = 1. Suppose that θ̂ < θ̄. For δ ≥ 0 denote the set of

types that accept b(θ̂− δ) by [0, aδ]. Notice that aδ is discontinuous at δ = 0

because θ̂ + b(θ̂) < 1. Therefore, for sufficiently small δ > 0, type θ̂− δ has a

strict incentive to offer b(θ̂), which is a contradiction. On the other hand, if

θ̂ > θ̄ then type θ̄ + ε could strictly gain by offering b(θ̄), which is accepted

by all types θi ∈ [0, 1], also a contradiction.

Existence. When F is log concave, eqn. 6 (and the requirement b(0) = 0)

uniquely defines a continuous function. To see that, note that b′(0) = 1/2 by

l’Hôpital’s rule. Therefore, 0 < b′(θj) < ∞ on some interval [0, ε).

Using local arguments, consider (locally) the inverse of b(θj), denoted

Θ(b), defined by Θ(0) = 0 and

Θ′(b) =
F (Θ(b) + b)

F ′(Θ(b) + b)(θj(b) − b)
− 1

when Θ(b) + b ≤ 1.

We claim that Θ(b) is a well-defined, (weakly) increasing and continuous

function, and Θ′(b) > 0 almost everywhere. To see this, note that Θ′(0) = 2.

If for some b > 0, Θ′(b) = 0, then Θ(b) > b. Furthermore,

Θ′′(b) =

(
F (Θ(b) + b)

F ′(Θ(b) + b)

)′
1

Θ(b) − b
+

F (Θ(b) + b)

F ′(Θ(b) + b)

1

(Θ(b) − b)2 ,

which is strictly positive because (F/F ′)′ ≥ 0 by log concavity, and Θ(b) > b.

Therefore, Θ(b) is strictly increasing in a right-hand side neighborhood of b.

That is, whenever b′(θj) becomes infinite, θj is only an inflexion point of b(),

and b() continues with a positive and finite derivative in the right-hand side

neighborhood of θj. This demonstrates the existence of a unique continuous

b() from eqn. 6.

To finish the proof, we construct a strategy (and beliefs) for i, and show

that it and b() form a sequential equilibrium.

We show that θj > 0 implies b(θj) < θj to establish that it is rational
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for θj to offer b(θj). Since b′(0) = 1/2, b(θj) < θj holds sufficiently close to

θj = 0. Let θ′j = min{θj : b(θj) ≥ θj} (assuming by contradiction that the

set is nonempty). By continuity, b(θ′j) = θ′j > 0. This implies b′(θ′j) = 0.

Since b′ is also continuous, this implies b(θ′j − ε) ≥ θj − ε, a contradiction.

This implies that b′(θj) is positive whenever θj + b(θj) < 1 (i.e. whenever

b′ is not explicitly defined to be zero). Therefore, b() is invertible on [0, b(θ̄j)).

To construct the equilibrium, the acceptor i believes that an offer b̂ < b(θ̄)

comes from type θj = b−1(b̂); an offer of b(θ̄) comes from some type in [θ̄, 1],

where i’s beliefs are a Bayesian update of F over that interval. Let i’s beliefs

for any out-of-equilibrium offer b̂ > b(θ̄) be the same posterior over [θ̄, 1]. An

(obvious) best response for i is to accept an offer b̂ if and only if θi ≤ A(b̂)

where

A(b̂) =

{
b−1(b̂) + b̂ if b̂ < b(θ̄j)

1 if b̂ ≥ b(θ̄j)

Note that A() is continuous and differentiable everywhere except b̂ = b(θ̄).

For j, offering b̂ > b(θ̄) is strictly dominated by offering b(θ̄j). Therefore

to check incentive compatibility, it suffices to check that no type θj prefers

to offer b̂ ≤ b(θ̄), i.e. where b̂ = b(θ̂j) for some θ̂j.

To prove this, first consider the quantity

π(b(θ̂j), θj)− π(b(θ̂j), θ̂j) = F (θ̂j + b̂)(θj − θ̂j) + 1{θj>θ̂j+b̂}

∫ θj

θ̂j+b̂

(θj − x)dF (x)

(see eqn. (7)) which can be written as




∫ θ̂j+b(θ̂j)

θ̂j
F (θ̂j + b(θ̂j))dx +

∫ θj

θ̂j+b(θ̂j)
(θj − x)F (x)dx if θ̂j + b(θ̂j) ≤ θj∫ θj

θ̂j
F (θ̂j + b(θ̂j))dx if θ̂j ≤ θj < θ̂j + b(θ̂j)

− ∫ θ̂j

θj
F (x + b(x))dx if θj < θ̂j.
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Second, consider the quantity π(b(θj), θj) − π(b(θ̂j), θ̂j). Since

d

dθj

π(b(θj), θj) =

{
F (θj + b(θj)) if θj < θ̄

1 if θj ≥ θ̄

(which can be verified either directly or via the Envelope Theorem), we have

π(b(θj), θj) − π(b(θ̂j), θ̂j) =




∫ θj

θ̂j
F (min{x + b(x), 1})dx if θ̂j ≤ θj

− ∫ θ̂j

θj
F (x + b(x) ∧ 1)dx if θj < θ̂j.

Comparing these two quantities reveals

π(b(θj), θj) − π(b(θ̂j), θ̂j) ≥ π(b(θ̂j), θj) − π(b(θ̂j), θ̂j)

implying incentive compatibility. �

Proof of Proposition 6: The proof involves demonstrating various prop-

erties of b() under our refinement. Suppose that b() is discontinuous at some

point θ̂j, so by monotonicity (Lemma 2),

b′ = lim
θj↑θ̂j

b(θj) < lim
θj↓θ̂j

b(θj) = b′′.

We show (Step 1) that there cannot be pooling to the left of θ̂j, i.e. b−1(b′) is

either empty or a singleton. In Step 2 we show that there has to be pooling to

the right of θ̂j, i.e. b−1(b′′) is a nondegenerate interval. In Step 3 we combine

these arguments to demonstrate the first direction of the proof. We prove

the converse statement Step 4.

Step 1 (no pooling on the left). With b(), θj, b, b
′ defined as above,

suppose towards contradiction that b−1(b′) is a non-degenerate interval 〈θ′j, θ̂j〉.
We first prove that there exists a briber type who could improve upon his

equilibrium payoff by offering b′ + ε (for ε > 0 sufficiently small) if this offer

revealed his type. For an appropriate ε, denote the set of such types by Bε.
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Then, we prove that briber types near (above) inf Bε strictly prefer to offer

b′ + ε if, as a result of this deviation, the acceptor believes that their type

is inf Bε. These types form the credible deviating set whose uniqueness is

obvious.

Claim 1: For any ε > 0 sufficiently small, briber type θ̂j strictly prefers

to offer b′ + ε (versus his equilibrium action) if this act reveals his type, i.e.

if A(b′ + ε) = θ̂j + b′ + ε.

Proof of Claim 1: The equilibrium payoff of a type θj ∈ b−1(b′) who offers

b′ can be written

πe(θj) = F (A(b′))(θj − b′) +

∫ max{A(b′),θj}

A(b′)
(θj − x) dF (x).

By Lemma 3, the equilibrium payoff of type θj = θ̂j can also be expressed

with this equation, regardless of whether he actually offers b′ in equilibrium.

Furthermore, since b′ < A(b′), πe(θ̂j) ≤ max{F (A(b′)), F (θ̂j)}(θ̂j − b′).

Suppose that type θ̂j offered b′ + ε and that this act perfectly revealed

his type to bidder i. Then his payoff would be

πε(θj) ≡ F (θj + b′ + ε)(θj − b′ − ε).

Since b−1(b′) is a non-degenerate interval with θ̂j = sup b−1(b′), we must

have A(b′) < θ̂j + b′. Therefore for all sufficiently small ε > 0,

πe(θ̂j) ≤ max{F (A(b′)), F (θ̂j)}(θ̂j − b′)

< F (θ̂j + b′)(θ̂j − b′) − ε

< F (θ̂j + b′ + ε)(θ̂j − b′) − εF (θ̂j + b′ + ε)

= F (θ̂j + b′ + ε)(θ̂j − b′ − ε) = πε(θ̂j)

proving Claim 1.

Since b−1(b′) is a non-degenerate interval with θ′j = inf b−1(b′), we must

have θ′j < A(b′) + b′. Fix ε > 0 as in Claim 1 so that ε < A(b′) + b′ − θ′j.
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Denote as follows the lowest type who would receive a (weakly) higher

payoff if, by offering b′ + ε, he would reveal his type to bidder i.

θ∗j = inf{θj : πε(θj) ≥ πe(θj)}.

Following Claim 1, this type is clearly well-defined. Furthermore, continuity

implies θ∗j < θ̂j, while the choice of small ε implies θ′j < θ∗j .

We establish that a credible deviating set (offering b′+ε) exists by showing

the following claim—the set of types who are strictly better off (than in

equilibrium) offering b′ + ε and being (mis-)identified as type θ∗j has positive

measure, and has an infimum of θ∗j . The credible deviating set is then simply

defined as the set of all such types, including θ∗j .

Denote the deviation payoff to type θj from offering b′ + ε and being

(mis-)identified as type θ∗j as

πd(θj) = F (θ∗j + b′ + ε)(θj − b′ − ε).

Claim 2: For sufficiently small δ > 0, we have πd(θ∗j + δ) > πe(θ∗j + δ),

while θj < θ∗j implies πd(θj) < πe(θj).

Proof of Claim 2: First, on the range θj ∈ (θ′j, θ̂j), we have

d

dθj

(πd(θj) − πe(θj)) = F (θ∗j + b′ + ε) − max{F (A(b′)), F (θj)}.

For θj ∈ (θ′j, θ
∗
j + δ) (δ sufficiently small), this difference is positive. That

follows from the fact that A(b′) < θ∗j + b′ + ε (otherwise θ∗j would be strictly

better off in equilibrium than by identifying himself with the more-expensive

bribe b′ + ε). Therefore, we have proven the first part of the claim, and that

θj ∈ (θ′j, θ
∗
j ) implies πd(θj) < πe(θj).

A similar argument applies to θj ≤ θ′j, because such types receive an

equilibrium payoff that is at least as great as the payoff they could receive by

behaving as a θ′j-type, so πe(θj) > πd(θj). Hence θ∗j is the lowest type who

can (weakly) gain by offering b′ +ε and having his type revealed, proving the
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claim and establishing the existence of a unique credible deviating set.

Step 2 (pooling on the right). Suppose towards contradiction that

b() is strictly increasing on a nondegenerate interval Θ = (θ̂j, θ
′
j). Then for

all θj ∈ Θ, A(b(θj)) = θj + b(θj), implying πe(θj) = F (θj + b(θj))(θj − b(θj)).

Continuity implies πe(θ̂j) = F (θ̂j +b′′)(θ̂j −b′′), regardless of whether b(θ̂j) =

b′′.

We first claim that for ε > 0 sufficiently small, briber type θ̂j would

strictly prefer to deviate to offering b′′ − ε if that act would reveal his type.

As established in eqn. (17), πe() is differentiable from the right at θ̂j, with
dπe(θ̂j)

dθj
= F (θ̂j + b′′). Also,

lim
δ↓0

b(θ̂j + δ) − b′′

δ
=

F ′(θ̂j + b′′)(θ̂j − b′′)

F (θ̂j + b′′) − F ′(θ̂j + b′′)(θ̂j − b′′)
.

That is, b() must satisfy the usual differential equation from the right due to

(local) incentive compatibility. Furthermore,

0 < F (θ̂j + b′′) − F ′(θ̂j + b′′)(θ̂j − b′′) = − d
db

[F (θ̂j + b)(θ̂j − b)]
∣∣∣
b=b′′

.

where the inequality follows from the strict monotonicity of b(). Therefore,

for ε > 0 sufficiently small, briber type θ̂j strictly prefers to deviate to b′′− ε

if this act reveals his type:

πd(θ̂j) ≡ F (θ̂j + b′′ − ε)(θ̂j − b′′ + ε) > F (θ̂j + b′′)(θ̂j − b′′) = πe(θ̂j).

By continuity, the same πd(θj) > πe(θj) holds for some θj < θ̂j. Let the

smallest such type be denoted θ∗j = inf{θj : F (θj+b′′−ε)(θj−b′′+ε) ≥ πe(θj)},

and b∗ = limθj↓θ∗j b(θj). Consider the (deviation) payoff of any type θj from

offering b′′ − ε if he were perceived to be type θ∗j , denoted

π−ε(θj) = F (θ∗j + b′′ − ε)(θj − b′′ + ε).

Using differentiability arguments similar to previous ones, one can show that
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(from the right) d
dθj

πe(θ∗j ) < d
dθj

π−ε(θ
∗
j ). Therefore, there exists a nondegen-

erate set of types C, with infimum θ∗j , who strictly gain by offering b′′−ε when

the offer is accepted by types θi ≥ θ∗j + b′′. This establishes the existence of

a credible deviating set, which is a contradiction. We conclude that if b() is

discontinuous at some θ̂j, then it is constant on some nondegenerate interval

(θ̂j, θ
′
j).

Step 3. In the proof of Proposition 5, we established that in any sequen-

tial equilibrium, if b() is constant on some nondegenerate interval (X, θj),

then it is either constant or discontinuous at θj; Step 1 rules out a discon-

tinuity in that situation, under our refinement. Therefore, if b() is constant

on (X, θj), then it is constant on (X, 1]. Step 2 implies that if b() is discon-

tinuous at some θ̂j, then it is constant on some (θ̂j, X), hence it is constant

on (θ̂j, 1].

We conclude that if an equilibrium satisfies our refinement, then there

can be at most one discontinuity point in b(), hereafter denoted θ̂j (if it

exists), so that θj > θ̂j implies b(θj) = b′′, hereafter denoted b̂ = b′′. Since b()

is continuous on [0, θ̂j), it follows from the proof of Proposition 5 (or local

incentive compatibility) that b() = b∗() on that range. Furthermore, it is

clear that θ̂j ≤ θ̄.

It remains to be shown that the bribe offered by “high” types, b̂, is always

accepted: A(b̂) = 1. Suppose towards contradiction that A(b̂) = E[θj | θj ≥
θ̂j] + b̂ < 1.

Since θj = 1 is pooled with lower types when offering b̂, he would strictly

gain if he could offer b̂ + ε and, in doing so, reveal his type to bidder i.

Formally,

F (A(b̂))(1 − b̂) +
∫ 1

A(b̂)
(1 − x) dF (x) = πe(1) < 1 − b̂− ε

for small ε because A(b̂) > b̂.

On the other hand, no type in (θ̂j, A(b̂)−b̂−ε] would want to offer b̂+ε and

reveal his type, since that would involve paying a higher bribe to a smaller
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set of acceptors. For small ε, this interval is nonempty, so by continuity of

πe, the argument extends to type θ̂j.

Similarly, letting 0 < ε < A(b̂) − θ̂j − b̂ (which is possible because

inf b−1(b̂) = θ̂j < sup b−1(b̂)), type θj < θ̂j would not gain by deviating

to b̂+ ε and reveal his type. To see this, observe that incentive compatibility

and the choice of small ε imply the following.

πe(θj) = F (θj + β(θj))(θj − β(θj)) ≥ F (A(b̂))(θj − b̂)

> F (θj + b̂ + ε)(θj − b̂− ε)

Therefore, the lowest type, θ∗j , who is willing to offer b̂ + ε and reveal his

type, exists, and θ∗j > θ̂j. Using an argument identical to one in the previous

step, a unique credible deviating set exists in which θ∗j is the smallest type,

contradicting the supposition that A(b̂) < 1 and proving E[θj | θj ≥ θ̂j]+ b̂ ≥
1.

Finally, the continuity of πe implies

b̂ = θ̂j − F (θ̂j + β(θ̂j))(θ̂j − β(θ̂j))

which proves the first direction of the Proposition.

Step 4 (Converse).

We show that for any b() satisfying the conditions of the Proposition, a

sequential equilibrium exists in which j uses that strategy. Bidder i’s strategy

in response to equilibrium actions is obvious; it can be completely specified as

follows. (Without loss of generality, assume b(θ̂j) = β at the discontinuity.)

A(b) =




b−1(b) + b if b ≤ βb̂

θ̂j + β if b ∈ (β, b̂)

1 if b ≥ b̂)

Out-of-equilibrium beliefs which justify this strategy can be constructed so

that upon receiving an offer b ∈ (β, b̂), i believes θj = θ̂j, and upon receiving
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an offer b > b̂, i believes θj = 1.

The non-trivial question remains whether there exists a credible deviating

set that breaks our mostly-separating equilibrium. A deviation to b′ > b̂

is clearly unprofitable for all types, no matter what the receiver’s (best)

response is, because b̂ is already accepted with probability 1, and is cheaper

than b′.

No type θj ≤ θ̂j would want to offer b′ ∈ (β(θ̂j), b̂) and reveal his type. To

see this, let θ′j satisfy b′ = β(θ′j); the deviation payoff is strictly worse than

the equilibrium payoff,

F (θj + b′)(θj − b′) < F (θ′j + b′)(θj − b′) ≤ F (θj + β(θj))(θj − β(θj))

where the latter follows from incentive compatibility. Therefore, a credible

deviating set offering b′, denoted B, must satisfy θC
j ≡ inf B > θ̂j by continu-

ity. Furthermore, continuity implies that θC
j is indifferent between deviating

and not: F (θC
j + b′)(θC

j − b′) = θC
j − b̂. But then for θj ∈ [θ̂j, θ

C
j ), we have

F (θC
j + b′)(θj − b′) > θj − b̂, implying θj ∈ B, which is a contradiction. Hence

the equilibrium satisfies our refinement. �

Appendix II: Supplemental Material on Refinements

Perfect Sequential Equilibrium

At the end of Section 3.1 we claim that the bribing equilibrium is the unique

PSE of the extended game under fixed bribes. Here we put forward a formal

argument.

In a sender-receiver game, for a given equilibrium and out-of-equilibrium

message m, Grossman and Perry (1986) call the beliefs of the receiver (re-

garding the sender’s type, upon seeing m) consistent with the equilibrium

and the prior distribution of the sender’s type, if there exists a mixed strategy

α of the receiver that is a best response given these beliefs, and the beliefs

are generated from the prior applying Bayes’ rule conditional on the sender’s
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type being in the set of types that benefit from sending m when the re-

ceiver’s response to m is α. A Perfect Sequential Equilibrium is a sequential

equilibrium that satisfies this additional consistency requirement.

Clearly, the bribing equilibrium of the extended game (under fixed bribes)

satisfies this requirement, as there are no out-of-equilibrium moves for the

briber. In light of Propositions 1–3 (in the text), the only other candidate for

PSE is the no-bribing equilibrium. We now show that any beliefs supporting

the no-bribing equilibrium have to fail the consistency requirement.

In the no-bribing equilibrium of our extended game, Grossman and Perry’s

consistency implies the following regarding the acceptor’s beliefs when he is

unexpectedly offered b. His beliefs must come from the prior distribution

applying Bayes rule conditional on θj ∈ B for some B ⊆ [0, 1]. By Proposi-

tion 1, his best response is to accept if and only if θi ∈ [0, A〉, where A ≤ 1.

Given this response, player j will be better off deviating from the no-bribing

equilibrium with type θj if and only if

F (A)(θj − b) + Eθi
[(θj − θi)1{A<θi≤θj}] ≥ Eθi

[(θj − θi)1{θi≤θj}].

Again, from Proposition 1, we know that this inequality will be satisfied

by types θj belonging to an interval 〈B, 1], and therefore by consistency,

B =〈B, 1]. From Proposition 2, we know that for a given b > 0 there ex-

ist unique A and B satisfying the consistency requirement. In fact, we can

conclude that in the no-bribing equilibrium of our game, but off the equilib-

rium path (i.e., if b is offered), Grossman and Perry’s consistency requires

the acceptor to behave as in the (unique) bribing equilibrium. Since briber

types θj > B are strictly better off in the bribing equilibrium than in the

no-bribing equilibrium, they would deviate and bribe if they had consistent

beliefs in the no-bribing equilibrium. Therefore the no-bribing equilibrium is

not a PSE.
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Cho and Sobel’s D1

Here we explain in more detail the consequences of D1 on no-bribing equi-

libria. This refinement restricts the acceptor’s beliefs regarding the briber’s

type when a bribe is offered out of equilibrium. In the discussion, we focus

attention on the case of a fixed bribe, since the results are even easier to

show in the case of variable bribes. We show that a no-bribing equilibrium

cannot satisfy D1 regardless of the value of b < E(θ).

Recall from eqn. (3) that θb is the type of bidder j who would be indifferent

between offering the bribe and not offering it, given that it is accepted by

every type of bidder i. Whether or not i will accept the bribe depends on

his beliefs regarding j’s type. For example, if i believes that θj is sufficiently

high (given the bribe is offered), then i’s best response is to accept the bribe

regardless of his type.

Clearly, if j’s type is θj ≥ θb, then for some best responses of the bribee

(i.e., for i’s beliefs about the briber’s θj that are distributed sufficiently close

to 1), j would be better off offering the bribe and so deviating from the

no-bribing equilibrium. Cho and Sobel’s D1 is based on the idea that a

sender type that is “more likely” to benefit from a deviation than another

type—that is, a type that benefits from a deviation for “more best responses”

than another one does—should get “more weight” in the receiver’s updating,

conditional on observing that deviation.

To make this concept precise in our setting, we will say that θ′j is more

likely to benefit from bribing than θj is when the following is true:

For all A ∈ [0, 1], if θj is better off bribing when exactly θi ∈ [0, A]

accept, then θ′j is also better off bribing when exactly θi ∈ [0, A]

accept.

In other words, the set of i’s best responses that would induce θj to offer a

bribe is a subset of the best responses that would induce θ′j to do so. We will

say that θ′j is strictly more likely to benefit from bribing than θj if θ′j is more

likely to benefit from bribing than θj but the converse is not true.
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Let D(θj) be the acceptor type such that θj is indifferent between offering

the bribe and not offering it when the bribe is accepted by exactly the types

θi ∈ [0, D(θj)], that is,

F (D(θj))(θj − b) + Eθi
[(θj − θi)1{D(θi)<θi≤θj}] = Eθi

[(θj − θi)1{θi≤θj}].

Note that D(θj) is undefined on [0, θb), but is unique on [θb, 1], e.g., D(θb) = 1.

It is easy to see that θ′j is strictly more likely to benefit from bribing

than θj if and only if D(θ′j) < D(θj). Furthermore, one may check that

the following are true: D has a unique fixed point, which we label θDiv;

θb < θDiv; D is strictly decreasing on [θb, θDiv] and constant on [θDiv, 1];

finally, b = E[θi | θi ≤ θDiv]. Note that there is no type strictly more likely to

benefit from deviation in the no-bribing equilibrium than any θj ∈ [θDiv, 1].

After these preliminaries we can formally describe the concepts D1 in our

setting. Here, the acceptor’s updating after a deviation must put “infinitely

more weight” on sender types that are strictly more likely to benefit from

the deviation. Therefore, under D1, i’s beliefs regarding θj after a deviation

must have support on briber types that are the most likely to benefit from

deviation, i.e., θj ∈ [θDiv, 1]. However, any distribution on this support (or a

subset of it) is permissible.

Proposition 7 For any b < E(θi), there does not exist a no-bribing equilib-

rium that satisfies D1.

Proof: Recall that by the definition of θDiv = D(θDiv), b = Eθi
[θi | θi ≤

θDiv]. Note also that for all θj > θDiv, b < Eθi
[θi | θi ≤ θj].

Suppose that in a no-bribing equilibrium the acceptor’s strategy is to

accept the bribe if and only if θi ∈ [0, a〉. If the equilibrium satisfies Cho

and Sobel’s D1 criterion, then a ≥ min{1, θDiv + b}. This is so because the

acceptor believes θj ≥ θDiv conditional on being offered the bribe, hence he

must accept when θi < θDiv + b. The payoff to briber type θj = a from

offering the bribe is F (a)(a− b), while his payoff from going directly to the

second price auction is F (a)(a − Eθi
[θi | θi ≤ a]). Since b < E(θi), we have
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θDiv < 1. Therefore a > θDiv, implying b < E[θi | θi ≤ a]. Hence type θj = a

strictly prefers offering the bribe to not offering it. Therefore condition D1

rules out the no-bribing equilibrium. �
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