
LARGE ROBUST GAMES
(DRAFT, COMMENTS WELCOME)

EHUD KALAI

Abstract. A major modeling difficulty of non-cooperative game theory is
the sensitivity of Nash equilibria to details that are not defined by the real life
situation they describe. The difficulty is less severe in games with many semi-
anonymous players. All the equilibria of such games are extensively robust,
they are immune to changes in the order of play, information transmission,
cheap talk, commitments, revision possibilities and more. This is illustrated
for normal form games and for one-shot Bayesian games with statistically
independent types, subject to a suitable continuity condition on the payoff
functions.

1. Introduction and Summary

A difficulty with the use of Nash equilibrium as a modeling tool is its sensitivity
to the rules of the game, e.g. the order of players moves and the information they
have when they move. Since these details are often not defined by the real life
situation being modeled, the prediction of the equilibrium is often unreliable. This
paper illustrates that this difficulty is less severe in general classes of games that
involve many semi-anonymous players. In normal form games and in one-shot
Bayesian games with independent types all the equilibria become extensively robust
as the number of players increases, provided that a certain continuity condition
holds.
For this purpose, we define an equilibrium of a game to be extensively robust, if it

remains an equilibrium in all extensive versions of the game. Such versions allow for
wide flexibility in the order of players moves, information leakage, commitment and
revision possibilities, cheap talk, and more. The robustness property is obtained,
uniformly at an exponential rate in the number of players, for all the equilibria in
general classes of one-shot games with the properties mentioned above.
In addition to interest in the phenomenon for its own sake, the robustness prop-

erty may have direct positive implications to areas where game theory is applied.
A mechanism designer, who succeeds in implementing a socially efficient outcome
through a Nash equilibrium of a one-shot simultaneous-move game, does not have
to be concerned that the players may play a different extensive version of his game,
see for example Green and Laffont (1987). So even if players decide to act se-
quentially and to share information prior to making their moves, or to go back and
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revise choices after seeing the outcome of the implementation, the equilibrium that
he constructed remains viable. In various social aggregation methods, extensive
robustness means that the outcome of a vote is immune to institutional changes,
and public poles should not alter the outcome of the equilibrium. And below, we
discuss examples that show how extensively robust equilibrium may be a useful
concept, similar to rational expectations equilibrium, for more robust modelling of
behavior in market games.

Studies of large games is not a new topic in game theory and economics. The
book of Aumann and Shapley (1974) surveys years of research on large coopera-
tive games. The first study of large non-cooperative anonymous games, Schmei-
dler (1973), deals with existence of pure strategy Nash equilibria in such nor-
mal form games. More recently there have been many studies of specific eco-
nomic games, see for example Mailath-Postlewaite (1990) on bargaining, Rustichini-
Satterthwaite-Williams (1994) and Pesendorfer-Swinkels (1997) on auctions, and
Feddersen-Pesendorfer (1997) on voting. Many of these papers concentrate more
on issues of economic efficiency, and less on robustness.
When addressing robustness issues, previous studies imposed a weaker condition,

known as ex-post Nash1. Applications of this idea to specific economic problems in-
clude Cremer-McLean (1985), Green-Laffont (1987) andMinehart-Scotchmer (1999).
A general result illustrating that the ex-post Nash property is obtained for large
Bayesian games is described in Kalai (2000,2002). Indeed, the proof of the main
result of the current paper makes use of this weaker result and, very importantly, of
the fact that it is obtained at an exponential rate as the number of players increases.
A connection of extensively robust equilibrium to rational expectations equilib-

rium is discussed below. We refer the reader to the survey of Jordan-Radner (1982)
for a general discussion, and to Forge-Minelli (1997,1998) andMinelli-Polemarchakis
(1997) for additional earlier studies relating rational expectations to game theory.

1.1. Example: a Game of Evolving Standards. Simultaneously, each of n
players has to choose computer I or computer M, and, independently of the oppo-
nents, each is equally likely be a type who likes I or a type who likes M. Most of a
player’s payoff comes from matching the choice of the opponents but there is also
a small payoff in choosing the computer he likes. Specifically, each player’s payoff
function is: 0.1 if he chooses his favorite computer (zero otherwise) plus 0.9 times
the proportion of opponents his choice matches. Assuming that each player knows
only his own realized type before making the choice, the following three strategy
profiles are Nash equilibria of the simultaneous move game: the constant strategies,
with all the players choosing I or with all the players choosing M, and the one with
all the players choosing their favorite computers
The constant strategies are robust, no matter what the size of the population is.

For example, if the choices are made sequentially in a known order, with every player
knowing the choices of his predecessors, then everybody choosing I regardless of the
observed history is a Nash (even if not subgame perfect) equilibrium of the extensive
game. This is not the case for the choosing-your-favorite-computer strategies. For
example if the population consists of only two players, there are positive probability

1We ignore other economic and (cooperative) game theoretic notions of robustness, see for
example Hansen and Sargent (2001) and Kovalenkov and Wooders (2001).
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histories after which the follower is better off matching his predecessor rather than
choosing his favorite computer.
As users of game theory know, this sensitivity to the order of moves creates

modelling difficulties, since we do not know in what order players buy (or rent)
computers. Also the real life situation may allow for other possibilities, for example
the players may repeatedly revise earlier choices after observing opponents choices,
players may make binding commitments, may make announcements etc., and every
such version may drastically change the equilibria of the game.
But the modeling difficulty becomes less severe if the number of players is large.

Now, even choosing-their-favorite-computers is a highly robust equilibrium, it re-
mains an approximate Nash equilibrium in the sequential game and in all other
extensive versions of the game. These versions accommodate modifications of the
following types.
The order of moves may be decided, deterministically or stochastically, based

on the history of play, and information about earlier choices may be partially and
differentially revealed as the game progresses. Multiple opportunities to revise
choices may be available to players. Player may commit to choices and reveal such
commitments to selected opponents. Players may commit to not observe earlier
choices. Cheap talk may take place during the play of the game. Regardless
of all such modifications, if the number of players is large, choosing-their-favorite-
computers remains an approximate Nash equilibrium in the extensive version of the
game.
Moreover, the above robustness property is not restricted to the equilibrium of

choosing-their-favorite-computers. Every Nash equilibrium of the one shot game
is extensively robust, and this is true even if the original computer selection game
that we start with is more complex and highly non symmetric. There may be any
finite number of computer choices and player types, and different players may have
different (arbitrary) payoff functions and different prior probability distributions
by which their types are drawn. Players’ payoffs may take into consideration
opponent types, and not just opponent actions (e.g., a player may have some utility
in impressing some opponent types with his chosen computer). Regardless of such
specifications, all the equilibria of the one shot game are approximately robust when
n is large.

The robustness of all one shot equilibria described above is not restricted to
computer choice or other market games. Any game with payoff functions that
depend on aggregate data of the opponents in a continuous fashion has this property.
So various social aggregation games, games of joining clubs, political parties or
other groups, location games, transportation and congestion games, may all fit the
description. And for a given collection that consists of many such games, all the
equilibria of all the games becomes extensively robust, uniformly at an exponential
rate, as the number of players increases.
We should emphasize, however, that the equilibria obtained in the extensive

versions above are approximately Nash, and not approximately subgame perfect
Nash. This is unavoidable. It is interesting to note though, as done by an
example later in the paper, that the level of violating subgame perfection decreases
as the number of players increases. We should also note that the equilibrium in
the extensive versions is approximately Nash in a strong sense. There is a high
probability of following a complete play path along which none of the many players,
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no matter how long the play path is, ever has a significant incentive to deviate from
the equilibrium strategy.

1.2. Connection to Rational Expectations Equilibria. Their strong robust-
ness property implies that the equilibria of the large games above may play a role
similar to rational expectations equilibria. Consider the example of the equilib-
rium above, where players buy their favorite computers. Assume that the real
game of buying computers, which may not be played simultaneously, will be played
in a relatively short period of time, so that players do no time discounting for their
forthcoming expenses and payoffs.
At a rational expectations equilibrium, the players strategies, in addition to de-

pending on their private information, depend on the market prices of the comput-
ers, which in turn depend on the players computer choices. From a game theoretic
perspective, it seems that such a rational expectations equilibrium mixes together
ex-ante information (players’ types) with ex-post results (prices, which depend on
players choices). Or put differently, it is a fixed point of a ”bigger system” in which
ex-ante and ex-post information is considered simultaneously
Game theory, on the other hand, differentiates between ex-ante information, ex-

pressed as variables in the domain of individual strategies, and ex-post information,
which is available at too late a stage for any player to respond to. For example, if
in the above one-shot game of buying computers we introduced prices, as a func-
tion of total demand for the two computers, the prices will be available only as
ex-post information, and players could not react them. This would make the game
theoretic Bayesian equilibrium less attractive as a tool for modeling the buying of
computers.
But in the case of the large games described in this paper such discrepencies

disappear. The extensive robustness property implies that partial information,
such as evolving computer prices revealed at any stage of the game (even if not
played simultaneously), gives no player an incentive to change his computer choice.
So the equilibrium possesses the properties of rational expectations equilibrium,
even in a strong extensive sense.
This is an attractive property, because the game theoretic model, unlike the ra-

tional expectations equilibrium that is only looking for a fixed point, allows us to
make explicite what is ex-post and ex-ante at every stage of the game and allows
for all the extensive modifications described earlier. The fact that we obtain an
extensively robust generation of rational expectations equilibrium can therefore be
viewed as non-cooperative game theoretic foundation for rational expectations equi-
librium2 (in a parallel way to cooperative equivalence theorems, where the core and
Shapley value are used as cooperative game-theoretic foundations for competitive
equilibrium).
Looking more directly at the phenomenon, due to laws of large numbers, at the

above equilibrium prices are anticipated correctly by the players, who know the
prior probability over types. (this would also be true for the sellers, if we add them
to the model). And more explicitly than at rational expectations equilibria, in the
Nash equilibria above players have no incentives to deviate from their strategy even
during the formation of the equilibria, as computer purchases and other information
is being observed.

2The author thanks Avinash Dixit for making this observation.
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As the last example shows, the assumption of known priors is strong, as it leads to
correct anticipation of prices in equilibria of games with many players. Interesting
questions about learning with many players in games with unknown priors are left
for future research.

2. General Definitions and Notations

2.1. The Bayesian Game. A Bayesian game is described by a five-tuple (N,T, τ , A, u)
as follows.
N = {1, 2, ..., n} is the set of players.
T = ×iTi is the set of type profiles (or vectors), with each set Ti describing the

feasible types of player i .
τ = (τ1, τ2, ..., τn) is the vector of prior probability distributions, with τ i(ti)

denoting the probability of player i being of type ti (τ i(ti) ≥ 0 and
P
ti
τ i(ti) = 1).

A = ×iAi is the set of action profiles, with each set Ai describing the feasible
actions of player i.
Let Ci ≡ Ti × Ai describe the feasible (type-action) compositions of player i,

and C = ×iCi denote the set of feasible composition profiles.
The players’ utility functions described by the vector u = (u1, u2, ..., un), assum-

ing a suitable normalization, are of the form ui : C → [0, 1].
In addition, standard game theoretic conventions will be used. For example, for

a vector x = (x1, x2, ..., xn) and an element x0i, x−i = (x1, ..., xi−1, xi+1, ..., xn) and
(xi−1 : x0i) = (x1, ..., xi−1, x

0
i, xi+1, ..., xn).

The Bayesian game is played as follows. In an initial stage, independently of
each other, every player is selected to be of a certain type according to his prior
probability distribution. After being privately informed of his own type, every
player proceeds to select an action, possibly with the aid of a randomization devise.
Following this, the players are paid, according to their individual utility functions,
the payoffs computed at the realized profile of (type-action) compositions.
Accordingly, a strategy for player i is defined by a vector σi = (σi(ai | ti))

where σi(ai | ti) describes the probability of player i choosing the action ai when
he is of type ti. Together with the prior distribution over his types, a strategy of
player i determines an individual distribution over player i’s compositions, γi(ci) =
τ i(ti) × σi(ai | ti). The profile of these distributions, γ = (γ1, γ2, ..., γn), under
the independence assumption, determines the overall probability distribution over
outcomes of the game, namely composition profiles, by Pr(c) =

Q
i γi(ci).

Using expectation and with abuse of notations, the utility functions of the players
are extended to vectors of strategies by defining ui(σ) = E(ui(c)). As usual, a
vector of strategies σ is a (Bayesian) Nash equilibrium if for every player i and every
one of his strategies σ0i, ui(σ) ≥ ui(σ−i : σ0i).

2.2. Extensive Versions of the Game and Strategies. In the sequel, we define
an equilibrium of a Bayesian game G to be robust, if it remains an equilibrium in
all extensive versions of the game. A simple example of an extensive version of a
game G is one with one round of revisions. In the first round of this two round
game, the original game G is played. In a second, the information about the
realized types and selected pure actions of all players becomes common knowledge,
and then, simultaneously, every player has the one time opportunity to revise his
first-round choice. Naturally, one can imagine situations where the pre-revision
information is only partial, and differentially so across players.
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A second example of an extensive version is when the game is played sequentially,
rather than simultaneously, with later movers receiving full or partial information
about the history of the game. The order may depend on the history of the game.
Combining changes in the order of play and multiple rounds of revisions al-

ready permits the construction of many interesting extensive versions of a game.
But many more modifications are possible. For example, players may determine
whether their choices become known and to what other players, various commit-
ment possibilities may be available, cheap talk announcements may be made and
players may have control over the rules of the game that follows. Basically, we
would like an extensive version of a simultaneous-move game G to be any extensive
game in which every play path ends up generating a composition profile for the
simultaneous move game.

The following abstract definition of an extensive version of a game accommo-
dates the modifications discussed above and many more. Starting with the given
simultaneous move Bayesian game G = (N,T, τ , A, u) and any auxiliary finite set
of moves M , define a version of the game G to be a finite perfect-recall Kuhn type
extensive form game G with the following structure and payoffs.
The initial node in the game tree belongs to nature with the outgoing arcs

being labeled by the elements of T × M . Thus, at the initial stage as in the
original game, nature chooses a type for each player. But in addition, it chooses
an abstract move that may have different consequences to different players during
the play of the game. Any probabilities may be assigned to these arcs as long as
the marginal distribution over the set of type profiles T coincides with the prior
probability distribution τ of the underlying game G.
Every other node in the game tree belongs to one of the players i, and the

arcs coming out of it are labeled by the elements of Ai ×M 0, for some non-empty
subset of the set of moves M 0. The interpretation is that when a player is called
upon to act he has to make an initial choice, or a revision earlier choices, from his
set of feasible actions in the underlying game, as well as a move that may affect the
continuation of the game.
At every information set the active player i has, at a minimum, complete

knowledge of his own type ti (all the paths that visit this information set start with
nature selecting t’s with the same type ti).
Every play path in the tree visits at least once one of the information sets of

every player. This guarantees that a player in the game chooses an action, possibly
without any revisions, at least once.
The resulting composition profile associated with a complete path in the

game tree is c = (t, a) with t being the profile of initial types selected by nature,
and with each ai being the last action, in the play path, taken by player i. The
last action is the one that matters because multiple choices by the same player
represent revisions of earlier choices.
The players’ payoffs at a complete play path are defined to be their payoffs,

from the underlying game G , at the resulting composition profile of the path.

Remark 1. The inclusion of abstract moves by nature at the beginning of the tree
significantly extends the set of possible versions. For one thing, it means that
excluding nature from having additional nodes later in the tree involves no loss of
generality (one can move all the random choices to the beginning, to be included
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as a part of a large initial nature’s move that will be partially and differentially
revealed to the players at the appropriate places in the tree). But it also means
that the version that is being played may be random, reflecting, for example, possible
uncertainty about the real life version in the mind of the modeler.
Similarly, a greater generality is obtained by including abstract moves, in addi-

tion to selected action, at the nodes of the players. For example, using these we
can model a player’s choice to reveal information, to seek information, to make
announcements, affect the rules regarding the future progression of the game, etc.

Definition 1. Extensive Versions of a Strategy. Given an individual strategy
σi in a Bayesian game G and a version G, an extensive version of σi is any strategy
σi in G that initially chooses actions with the same probabilities as σi and does not
modify earlier choices in all subsequent information sets. Formally, at any initial
information set of player i the marginal probability that σi selects the action ai is
σi(ai | ti), where ti is the type of player i at the information set. In every non
initial information set of player i σi selects, with certainty, the same action that
was selected by player i in his previous information set (this is well defined under
the perfect recall assumption).
An extensive version of a profile of strategies σ = (σ1, ...,σn) is a profile σ =

(σ1, ...,σn) with all the individual strategies σi being defined in the same extensive
version G of the game G.

2.3. Extensively Robust Equilibrium. A Nash equilibrium σ in a Bayesian
game G is extensively robust if every profile of its extensive versions σ = (σ1, ...,σ2)
is a Nash equilibrium in the extensive game G in which they are defined. But we
need to define a notion of being approximately robust, where σ is only required
to be an ε Nash equilibrium in G with high probability. This notion assures
that the incentives of any player to unilaterally deviate at any positive probability
information set are small, even when such a deviation is coordinated with further
deviations in his later information sets.
Fix a version G, a vector of behavioral strategies η = (η1, ..., η2) and a player i.

The payoff of player i is defined to be the usual expected value, Eη(ui), computed
according to the distribution on play paths (outcomes) induced by η.
Given an information set of player i, A, a modification of player i strategy at

A is any strategy η0i with the property that at every information set of player i,
B, which is not a follower3 of the information set A, η0i coincides with ηi. Player
i can unilaterally improve his payoff by more than ε at the information set A if
Eη0|A(ui)−Eη|A(ui) > ε, where η0 = (η1, η2, ..., η

0
i, ..., ηn) for some η

0
i that modifies

ηi at A.
Note that such ε unilateral improvements are only defined at positive probability

information sets, and that the event player i has a better than ε improvement at
some information set is well defined, by simply considering the play paths that visit
such information sets. Similarly, the event that some player has a better than ε
improvement at some information set is well defined, since it is the union of all such
individual events.

3Recall that by Kuhn’s perfect recall condition, every node in B follows some node in A or no
node in B follows some node in A.
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Definition 2. approximate Nash equilibrium. A strategy profile η of G is
an (ε, ρ) Nash equilibrium, if the probability that some player has a better than ε
improvement at some information set is not greater than ρ.

Definition 3. approximate robustness. An equilibrium of G, σ, is (ε, ρ) robust,
if in every extensive version G every profile of extensive versions σ is an (ε, ρ) Nash
equilibrium.
An equilibrium is (ε, ρ) ex-post Nash if it is an (ε, ρ) Nash equilibrium in the

version with one round of revisions discussed above.

Clearly being ex-post Nash is a weak form of being robust, yet it is the ”strongest”4

form of being ex-post Nash, since the players know everything, types and selected
pure actions, before deciding on revisions.

Remark 2. One can check that in any complete information normal form game
every pure strategy Nash equilibrium is ex-post Nash and even robust. This is no
longer the case for incomplete information games, as can be seen by the example in
the introduction. In the two player game of choosing computers, the pure strategy
of choosing-your-favorite-computer is clearly not robust.
The notion of being (ε, ρ) ex-post Nash is not monotone in the information that

is revealed prior to the possible revision. Even in a single person decision making,
a player strategy may be, with high probability, ε optimal after receiving complete
information about the state of the world, but may no longer be so under partial
information. Consider a parent who decides not to insure the car of his child. His
probability of having serious regret, due to learning that there was an accident, is
small. But the probability of having (somewhat less but still) serious regret due to
partial information, e.g., the child is late coming home at night, is high.

3. Extensive Robustness in Large Games

3.1. The Main Result. Two finite universal sets, T and A, describe respectively
all possible player types and all possible player actions that may appear in the games
discussed in this sections. The set C ≡ T × A denotes all possible player (type-
action) compositions. A set of possible payoff functions U consists of functions
of the form g : C × ∆(C) −→ [0, 1], where the first argument describes a player’s
own composition and the second argument describes the empirical distribution of
opponents’ compositions.

Definition 4. Empirical distribution: For every composition profile c define
the empirical distribution induced by c on the universal set of compositions C by
empc(κ) =

(the number of coordinates i with ci = κ) /(the number of coordinates of c).

Definition 5. The family of semi-anonymous Bayesian games Γ = Γ(A,T ,U)
consists of all the Bayesian games (N,×Ti, τ ,×Ai, (ui)) satisfying Ti ⊆ T and
Ai ⊆ A, and where every ui can be imbedded in some function g ∈ U . More
specifically, let Ci = Ti ×Ai and C = ×Ci, then for every payoff function ui there
is a function g ∈ U such that for every c ∈ C, ui(c) = g(ci, empc−i).
Recall that a collection of common-domain functions is uniformly equicontinuous

if for every positive ε there is a positive δ such that for every two points x, y in

4See remark below about the non monotonicity of the ex-post Nash property in the information
received.
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the common domain and for every function f in the collection, |f(x)− f(y)| <
ε whenever the distance between x and y is less then δ. For example, every
finite collection of continuous functions defined on a common compact domain is
uniformly equicontinuous.
Theorem 1. Robust Large Games: Consider a family of semi-anonymous
games Γ(A,T ,U) with uniformly equicontinuous U as above, and a positive number
ε. There are positive constants A and B, B < 1, such that (simultaneously) all
the equilibria of all the games in Γ with m or more players are (ε, ρm) robust with
ρm = AB

m.

3.2. Proof of the Main Result. The proof of the above theorem follows two
steps: (1) all the equilibria above become ex-post Nash at an exponential rate as
the number of players increases, and (2), that this implies that they become robust.
The first step is the following result from Kalai (2002).

Lemma 1. For every positive ε there are positive constants A and B, B < 1, such
that (simultaneously) in all the games in Γ(A, T ,U) with m or more players all the
equilibria are (ε, ρm) ex-post Nash with ρm = AB

m.
The above, together with the next lemma, yield directly the proof of the theorem

but with ρm = mABm. This, however, is sufficient for completing the proof,
since we can replace A and B by bigger positive A0 and B0, B0 < 1, for which
mABm < A0B0mfor m = 1, 2, ... .
Lemma 2. If σ is an (ε, ρ) ex-post Nash equilibrium of an n player game G, then
for any ζ > 0, σ is an (ε+ ζ, nρ/ζ) robust.

Proof. Suffices to show that for any versions G and σ and for any player i, Pr(V ) ≤
ρ/ζ, where V is the ”violation” event, that player i has a better than ε+ζ improve-
ment at some information set. Let W be the set of composition profiles c with the
property that player i has a better than ε improvement at c, i.e., by a unilateral
change of his action he can improve his payoff by more than ε. By assumption,
Pr(W ) ≤ ρ.
We claim and argue below that for any positive probability information set of

player i, A, if player i has better than ε+ ζ improvement at A, then Pr(W |A) > ζ.
Notice that we can write V = ∪Aj as a disjoint union of such information sets Aj .
So that using this claim in the following set of inequalities, ρ ≥ Pr(W ) ≥

P
Pr(W ∩

Aj) =
P
Pr(W |Aj) Pr(Aj) > ζpr(V ), establishes the proof of the lemma.

Before arguing the validity of the claim above, we first note that at any positive
probability information set A, any modification of player i strategy at A, does not
affect the probability distribution over the profile of opponent compositions. This
assertion can be checked node by node. At every node, the opponents that played
earlier in the game tree will not revise (by the definition of σ) and their compositions
are fixed regardless of the modification. The opponents that did not play prior to
reaching the node, will randomize according to σ when their turn to play comes,
disregarding what other players, including player i, did before them.
The assertion just stated implies that without loss of generality we can check

the validity of the claim at information sets A where player i can improve by more
than ε+ ζ through the use of a modification of σi that uses a pure strategy b at A
and never revises it later on.
Now we can put a bound on possible level of such improvement as follows. For

composition profiles in W , the largest possible improvement by player i using a
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different pure action is 1 (due to the normalization of the utility functions), and
for composition profiles in W c, the largest possible improvement is ε. This means
that the highest possible improvement in the information set A is 1Pr(W |A) +
εPr(W c|A). So if the possible improvement at A is greater than ε + ζ, we have
Pr(W |A) + ε > 1Pr(W |A) + εPr(W c|A)̇ > ε+ ζ, which validates the claim made
above. ¤

4. Further Elaboration

4.1. On the level of anonymity. The condition of anonymity imposed above is
less restrictive than may appear, since it only imposes anonymity within the payoff
functions but without further restrictions of symmetry on the players. Consider for
example a complete information normal form game with n sellers, labeled 1,2,...,n,
and n buyers, labeled n+1,n+2,...,2n. Suppose that the payoff function of a seller
depends on his own strategy and on the empirical distribution of the strategies of
the buyers. In violation of the assumption of our model, the payoff function of
this seller does not treat all the opponents anonymously, since the buyers, i.e., the
players called n+1,...,2n, play a role different from the other players. But if we
assume that within the buyer group all the players are anonymous for this seller,
then we can overcome this problem by describing the situation by a semi-anonymous
Bayesian game as follows.
Allow every player to be one of two possible types, a seller or a buyers. Assign

every player 1,...,n a prior probability one of being a seller type, and every player
n+1,...,2n a prior probability one of being a buyer type. Now we can write the
payoff function of the above seller in the obvious way to depend on the empirical
distribution of types and actions, without dependence on player labels. Clearly,
this description is possible because the model imposes no symmetry restriction on
the prior distributions by which types are drawn.
Similar to the above, our model can accommodate many non symmetric games.

In addition to playing different roles, as above, players may be identified as belong-
ing to different geographical locations and to different social or professional groups.
The assumption of finitely many types, however, does restrict the generality of such
descriptions.

4.2. On the continuity assumption. The continuity assumption, when com-
bined with the assumption of semi anonymity, may be more imposing than appears.
Consider for example a game with n players, each having to choose computer I or
M. Player 1 is an expert, who is equally likely to be a type that prefers I, or a type
that prefers M. This player’s payoff is 1 when he chooses the computer that he
prefers and 0 otherwise. All other players are of one possible type that prefers to
match the choice of player 1, i.e., they are paid 1 when they match and 0 otherwise.
As done above, we can describe this game as a semi-anonymous Bayesian game with
three types: an expert who prefers I, an expert who prefers M, and a non expert.
(Assign player 1 equal probability of being one of the first two types and every other
player probability one of being of the third type.) In this game, player 1 choosing
the computer he prefers and every other player randomizing with equal probability
between the two computers is an equilibrium of the one shot simultaneous move
game.
It is easy to see, however, that the above equilibrium is not approximately robust,

no matter how large the number of buyers is. For example, in the version where
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player 1 chooses first and the other players observe him before making their own
choices, the above equilibrium no longer holds. The difficulty is that the players
payoff functions cannot be imbedded in a collection of uniformly equicontinuous
payoff functions g as required by the theorem. In the games described above, the
percentage of expert types goes to zero as the number of players increases. So if
the game is large, a player’s payoff must be close to what one of these functions g
pays at a composition profile with zero proportion of experts. But arbitrarily close
to such a profile there are profiles with payoff 1 and profiles with payoff 0.
We should also note that one needs less than full continuity to obtain robustness

of an equilibrium. The proof of the theorem used two parts: (1) that under the
assumptions made all equilibria are shown to be (², ρ) ex-post Nash, with ρ going
down to zero at an exponential rate, and (2) that such an equilibrium must be
(², nρ) robust. The assumptions of anonymity and continuity were used for the
first part. So if we can weaken them and still obtain the conclusion of the first
part, we would have a stronger overall result.
Indeed, in Kalai (2000, 2002), where the first part is proven, there are two such

possibilities. First, it is shown that the continuity assumption does not have to
hold globally, but only near the expected play of an equilibrium, in order to make
it nearly ex-post Nash. Moreover, less than local continuity is needed. All that
one needs is that the strategic dependence of a player on his opponents goes to zero
as the possible variations in opponents’ types and actions goes to zero.

4.3. Subgame Perfection with many players. As mentioned in the introduc-
tion, an extensively robust equilibrium is required to remain a Nash equilibrium,
without subgame perfection, in every extensive version of the game. Consider
for example the 2 person complete information computer choice game with both
players preferring to match, but with Player 1 preferring to match on computer I
and with Player 2 preferring to match on computer M, i.e., a ”battle of the sexes”
instead of a coordination game.
If Player 1 moves first the only subgame perfect equilibrium results in both

choosing I, and if Player 2 moves first the only subgame perfect equilibrium results
in both choosing M. So we cannot have an extensively robust equilibrium, an
equilibrium that is sustained simultaneously in all extensive versions, that is also
subgame perfect.
On the other hand, both choosing I and both choosing M are each a simultaneous

Nash equilibrium of both extensive games above. The following example shows
that while these are not fully subgame perfect, they are highly subgame perfect
when the number of players is large.

Example 1. n-Person Battle of the sexes: Simultaneously, each of n male
players and n female players have to choose computer I or computer M. A male’s
payoff equals the proportion of the total population that he matches if he chooses
I, but only 0.9 times the proportion he matches if he chooses M. For a female the
opposite is true, she is paid the full proportion that she matches when she chooses
M and 0.9 of the proportion she matches when she chooses I.

Consider the above game played sequentially in a predetermined known order in
which the females choose first and the males follow. Every player is informed of
the choices made by all earlier players.
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We first verify that for any n the only outcome of a subgame perfect equilibrium
is for all players to choose M. Clearly, assuming that all his predecessors chose M,
the last male’s optimal choice is M. Given that, in the move just before this, the
n− 1st male’s optimal choice is M. Following this standard backwards reasoning,
we conclude that all players choosing M is the only subgame-perfect-equilibrium
play path.
So what is wrong with the Nash equilibrium in which all players choose I? Lets

start first with the case of only two players, n = 1, and follow the standard objection
to non subgame perfect equilibrium. Despite the prevailing equilibrium of both
players choosing I, if the female, who moves first deviates, the best response of the
following male is to also defect from the equilibrium and choose M. The female
knowing this, should therefore deviate, counting on his rationality, and improve her
overall payoff.
But let us imagine the same senario, an equilibrium with all players choosing I,

but with one million females moving first and one million males following. It is
true that if all players except for the last males deviated to play M, his rationality
would force him to also play M. But let us view the situation from the point of
view of the first female.
In order to make her deviation worth while, she must believe that substantially

more than n followers will deviate too. Otherwise deviating on her part may be
quite costly and highly suboptimal. Moreover, her immediate follower has similar
concerns that may prevent her from deviating to M. Players no longer count just
on the rationality of their followers, they must count on followers counting on
the counting on the counting... of the rationality of followers. So, unlike in the
case of the 2 player game above, where a deviation by the first deviator induces
direct immediate incentives to deviate by her follower, the incentives here are much
weaker. The idea of deviating itself, is almost a move to another equilibrium that
has to be taken on with simultaneous beliefs by more than n players.
We refer the reader to Kalai and Neme (1992) for a general measure of subgame

perfection that formalizes this idea. The constant I equilibrium, while not fully (or
infinitely in the Kalai and Neme measure) subgame perfect, is n-subgame perfect.
In the example with two million players at least one million deviations from the
equilibrium path are required before we can get to a node where a player’s choice
is not optimal, given the history and the equilibrium strategies of his followers.
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