Discussion Paper No. 135

THE EFFECT OF DIFFERENT GPSS RANDOM

NUMBER GENERATORS ON SIMULATION RESULTS
by

ala Lo ata
bk

Jair M. Babad and Edward A. Stohr

March 1975

* Graduate School of Business, University of Chicago

*% (Graduate School of Management, Northwestern University

THE EFFECT OF DIFFERENT GPSS RANDOM
NUMBER GENERATORS ON SIMULATION RESULTS

by

Jair M. Babad and Edward A. Stohr

1. INTRODUCTION

Many simulation programming lariguages have been developed to facilitate
the translation of simulation models into a simulation program. Of these
GPSS (General Purpose.Simulation System) is the most common. An important
aspect of a simulation language is that it provides the user with a source
of random numbers - a 'random number generator.'" 1In this paper we describe
an experiment carried out using the random number generators from IBM's
GPSS (GPSS/360 and GPSS V) and Control Data's GPSS V. The Control Data
Corporation (CDC) random number generator is of the multiplicative
congruential type which has generally been found to have satisfactory
statistical properties (see e.g. Fishman [3] and Knuth [4]). However the
IBM generator is a multiplicative ''scrambling" generator which produces up
to eight concurrent sequences of random numbers. The purpose of this research
was to examine these generators from the user's point of view by determining
the sensitivity of a simulation model to the choice of random number generator,
random number seed, and "programming strategy' as defined below. The
research follows the approach used in Babad, [1].

The IBM random number generator is described and analyzed in Section 2
and compared with the two CDC random number generators. The queuing models
which were used in our tests, as well as the corresponding theoretical
results, are described in Section 3. 1In Section 4 we compare the experimental
outcomes with the theoretical éxpected values and in Section 5 we conclude

the paper with some recommendations concerning the use of these generators.

-2 -

2, THE GPSS RANDOM NUMBER GENERATORS

The eight sequences of random numbers produced by the IBM random
number generator are identified as RN1 through RN8., Depending on the
context in which it is used a random number may be either a decimal fraction
in the range ,000000 to .999999 (.abcdef) or an integer in the range 000
to 999 (def). Note that the integer is constructed from the last three
digits of the decimal fraction. A fairly complete describtion of this
generator is given in Felder [3], and the reader is referred to that source
for details. However some points need further clarification as has previously
been pointed out by Fishman [4].

Three integer arrays of eight elements each are used by the IBM
generator: the INDEX table, the BASE number array, and the MULTIPLIER
array. The BASE array does not change during the algorithm. It contains
eight numbers: 37,584,381, 1,909,996,635, 1,964,463,183, 1,235,671,459,
1,480,745,561, 442,596,621, 340,029,185 and 2,030,226,625 (the first of
these is called the '"seed"). The contents of the MULTIPLIER array can be
supplied by the user using the RMULT card; if this is not done the array is
set to a default value (1 in GPSS/360 Version 1, and 37 in GPSS 360/Versions
2 and 3 and GPSS V). The effect of choosing 4 multiplier is to start the
corresponding random number sequence at a different point - otherwise the
sequences are identical.

When a random number from RNj is requested, the following steps are
taken:

1. The jth word of the INDEX table which points to one of the eight numbers
in the BASE array is selected, Since the INDEX array is initially zero,

the first BASE number used will be the seed, independent of the RNj used.

2. The jth element of the MULTIPLIER array is multiplied by the BASE
number that was chosen in the first step. The result is a 64 bit
number (as each muitiplicand consists of 32 bits, the first of which
is a sign bit). TFor a clearer description of the following steps, we
will number the bits from right to left by 1 through 64; bit 1 is
then the lowest order bit of the result.

3. The low ordér 32 bits of the result correspond to an integer (as used
on IBM SYS/360 and SYS/37O computers). If this integer is negative,
it is replaced by its two's complement. Note that as a result of this
step, bit 32 is always zero when this step is complete.

4. Bits 1 through 32 are stored in the jth word of the MULTIPLIER array,
to be used the nexf time a number from RNj is needed. Note that the
elements of MULTIPLIER are always positive, due to step 3.

5. Bits 49-51 of the result are stored in the jth word of the INDEX array,
to be used the next time RNj is called.

6. Bits 17-48 of the result are used for the random number. If an integer
random number is requested, the contents of these bits is divided by
thousand, and the remainder becomes the random number; otherwise, the
contents of these bits is divided by 1,000,000, and the remainder is
converted to the desired decimal fraction.

Several points are of interest. First, the used of the INDEX table
produces a scrambling effect which is intended to reduce the non-randomness
that may otherwise enter the sequence of generated numbers., Second, in
contrast to the congruential generators, the generated random number is not
used directly in subsequent calls to RNj but rather a separate, although
overlapping, segment of the 64 bit product is used. Finally, ghe effects of

step 3 should be considered. When step 6 is reached, bit 32 is always zero.

-4 -

This bit does not affect the generation of a random integer, since the
remainder after division by one thousand is contained in bits 17—26.A A
random decimal fraction, on the other hand, is contained in bits 17-36, and
is therefore affected by the zero in bit 32; in particular, some values are
excluded from the first 3 decimal digits of the fraction.

The CDC GPSS V random number generator is of the multiplicative

congruential type in which random numbers, Xl, X +eses. are produced by

2)
successive application of the formula: X = AXn‘modulo M where the

, M = 248 and the 'multiplier', A = 16777451. The 'seeds',

n+1

'modulo’
Xo’ for each of the eight sequences R1 to R8 which can be produced by the
generator are constructed from the values specified by the user on the RMULT
card, This is done by a succession of arithmetic, Boolean and shifting
operations which transform the user supplied number to a seed which is odd
and in the range, .5< XO«< 1. For an RMULT value of l,X.o = ,5000152590
while for an RMULT value of 37,XO = .5005645838. The default value for
RMULT is 37 which gives the generator the same external appearance as the
IBM GPSS.generator described above. The integer random numbers for the CDC
generator are obtained from the higher order three digits of the floating
point numbers rather than the lower order three digits as is the case with
the IBM generator.
3. THE STIMULATED MODEL

The queuing models chosen for the simulation are the M/M/c Delay and
the M/M/c Loss queuing systems. These systems are characterized by Poisson
arrivals, Exponential service times and the availability of c¢ servers. In
both systems, when an arriving user finds a free server, he is immediately
put into service. Thé systems differ with respect to a user who arrives

when all the servers are busy: in a Loss system such a user balks, while in

a Delay system he is put into a queue that is served in a First-In-First-Out
order.
Let). be the mean of the Poisson arrival stream, 144 be the mean

service time and p =) /cp be the traffic intensity of the system, Ifp < 1,
the Delay system will eventually reach a steady state, Let Pn denote the steady
state probability that there are n users in the system, either being served
or waiting. Pn might also be interpreted as the proportion of the time, in
the steady state, in which there are n users in the system. The distribution
of the Pn's is well known (see, e.g. Saaty [6]). Specifically, for a Loss
system we have

i=c .

Py= G 2 O/ for 0< ng ¢
1= .

while for a Delay system

J’PO(X/}.,L)H/ nt for 1< n< ¢

"
C n

LPO-C p /el = P, A 7 M el for e< n

g
I

i=c~1 .
N A YIS LR VAR L oS cr] :
- i=0 .

Other characteristics of such systems, such as the expected number of users
in the system,rthe probability distribution of the waiting time in the queue
and the expected queue size for a Delay system, can easily be computed once
the Pn's are known,

In the simulation experiments we used c = 10 servers and tested the
systems for various traffic intensities, ranging from a light intensity of
p = .1 to a moderate intensity of p = ..5.(for higher intensities the execution
time -required to achieve steady state was too high and the storage for the

queues was excessive) .

-6 -

As mentioned earlier, our point of departure was the user of the GPSS
random number generator., Accordingly, we compared several strategies that
might be used by various users. Specifically, we ran one group of tests
(Group A) in which the same sequence of random numbers was used both for
the interarrival times and the service times, and another group of tests
(Group B) in which different sequences were used for the interarrival times
and the service times. 1In the latter case, allowing for unsophisticated
users, both sequences used the same RMULT values, and produced exactly the
same sequence of random numbers. A-priori, we expect to get poor results
for Group B due to the high correlation that this strategy introduces
between the service and interarrival times. We also tested different
strategies for the determination of the service times. 1In the first
strategy, 'S', the service time for a user was determined together with
his interarrival time; in the second strategy, 'A', the service time was
determined on arrival of the user to the system, while in the third strategy,
'N', the service time was computed only when needed ~ i.e. when the user
had to be served. A-priori, we expect to get similar results from the three
strategies, assuming that the service times are based on a sequence of
perfectly random numbers.

During the simulation experiments with both the IBM and CDC random
number generators we tested the two default values that are used by GPSS
for the MULTIPLIER table, namely the value 1 that was used by GPSS/360
Version 1, and the value 37 that is used by later versions of IBM's GPSS
and by the CDC GPSS.

The tests were carried out for each random number generator (IBM and
CDC), for each group of tests (Group A and Group B), for each type of system
(L and D), for each value of p (.1, .3 and .5), for each strategy (S, A, and N),

for each of the two default values for RMULT (1 and 37) and for both the

integer ('I') and decimal ('D') sequences. TFor each of these cases we ran
the simulation for five thousand arrivals and collected cumulative statistics
after 1000, 2000, 3000, 4000 and 5000 arrivals. The statistics collected
were for the distributions of the Pr;s which were derived from the proportion
of the time that each system contained a given number of users. We then
computed the Chi-Square goodness-of-fit statistics which measure the
deviations of the observed Pn's from their theoretical values. 1In addition
we compared the first three moments of the observed Pn's with those of the
theoretical Pn probability distributions.

In addition to the implicit tests of the generator as expressed by
the queuing models we also carried out Chi-Square goodness of fit tests on
the integer and decimal fraction random number sequences from the generators.

As is evident from the former discussion, many tests were conducted
and many computations were required during the experiments. Due to the
inherent inefficiencies of the GPSS simulator which result from ité inter-
pretive nature and from the manipulation of the Chains these experiments
would have cost too much if they had been done in GPSS. TFurthermore it was
preferable for our experiﬁents to generate the interarrival and service
times from the exact exponential distributions rather than from a GPSS
function which would have resulted in the use only of the decimal fraction
random number sequence (unless a special FVARIABLE had been used with
resultant increase in overhead). We therefore linked the GPSS random number
generators to a FORTRAN program which simulated the queuing models and
accumulated the needed sequences., The same program was used for the tests
using the IBM generator (on an IBM 370 Model 168 computer) and for the tests

using the CDC generator (on a CDC 6400 Computer),

4. EXPERIMENTAL RESULTS

The discussion of our results is divided into two parts. First, we
present the outcomes of the tests of the random sequences and then we dis-
cuss the results of the queueing models. 1In each case we display the 'close-
ness' of the observed and theoretical distributions as measured by the Chi-
Square statistics.

The tests of the random number sequences used in the experiments are
summarized in Table 1. Specifically, we record the probability of achieving
the observed (or higher) values of the NORMAL approximation to the attained
Chi-Square statistics. NUMBER is the count of the random numbers tested.

This couat is cumulative so that our results reflect the behavior of the com-
plete sequence rather than the behavior of the various subsequences. CELLS
isrthe number of partitions of the range of the random numbers used to
accumulate the frequency counts. The attained probabilities are displayed in
the NORMAL columns where the suffices correspoﬁd to the user supplied value

on the RMULT card; NORMALL corresponds to the value 1 and NORMAL37 to the value
37.

For the IBM generator the INTEGER columns refer to the sequence of random
integers while the DECIMAL columns displéy the results for the sequence of
the first three decimal digits of each fraction. It is seen that the integer
results for NORMALL tend to become less and less reliable for higher values
of NUMBER and it seems improbable that the sequence is (sufficiently) random.
However this trend later reverses itself; we tested the first 100,000
numbers of this sequence at intervals of 10,000 numbers and found that the
“vyalues of NORMALL for INTEGER fluctuated between .137 and .750 which are
probable values for a random sequence. Similar probable behavior was observed

for the DECIMAL of NORMALl, which had values between .199 and .860. 1In other

TABLE 1

THE GPSS RANDOM SEQUENCES

IBM
INTEGER DECIMAL CDC
NUMBER | CELLS NORMALL | NORMAL37 NORMAL1 | NORMAL37 NORMAL1 | NORMAL37
1000 200 .236 .867 .671 467 .674 044
2000 334 .618 .327 .575 .608 <.001 .<.001
3000 500 .628 .769 .190 C.874 <.001 <.001
4000 500 . 740 .747 .074 .576 <.001 <,001
5000 1000 .976 .653 .070 .991 <.001 <.001
6000 1000 .967 .691 244 >.995 <.001 <,001

words, the value 1 for the MULTIPLIER table generates a sequence that passes
(in general) the test for one-dimensional randomness (uniformity). However
the user should be aware that the number of generated values might result
in a (probably) nonrandom sequence, as is the case for NUMBER=5000 or
NUMBER=6000. Similar observations pertain to the sequence of NORMAL37 for
the IBM generator. In addition to the Chi-Square test, we also compared
the first three moments of the attained random number sequences with those
of the theoretical uniform distribution. Again, only minor deviations

(of less than two percent) were recorded. These observations conform with
the aforementioned results. We also counted the percentagé of use of each
of the BASE array elements, as a check for the additional randomness that
is introduced by Step 5 of the GPSS algorithm; the results fit very well
with the expected percentage of 12.5. Thus the element of a '"'second

randomization," which is recommended by Knuth [5], seems to work pretty

well.

For the CDC random number generator the Chi-Square statistics are the
same for both the integer and decimal seqdences (since the integer
sequence is constructed from the high order three digits of the decimal
numbers). Table 1 shows a relatively poor performance of the CDC gen-
erator when compared with IBM generator for sequences in the range 1000 to
6000 in length.A Tﬁe tests of the first three moments for these sequences
show some deviations in excess of two percent from the theoretical values
for a uniform distribution which were again inferior to the corresponding

outcomes for the IBM random number generator.

The.éiscussion concerniﬂé fhe IBM and CDC generatorg sééms to indi-
cate fhat the IBM generator is satisfactory while the CDC generator is
suspect over the range of random numbers tested. The outcomes of the
simulation experiments tend to confirm this observation. As
originally guessed the experiments in Group B which used two different
but identical sequences of random numbers gave very poor results. In all but
six1 of the cases tested the attained Chi-Square probabilities were either
smaller than ,01 or larger than .99. Since such outcomes should be re-
jected, this illustrates the dangers inherent in failing to specify different
multiplier values for the RMULT instruction when more than one random sequence
is being used.

We now discuss the outcomes of the experiments in Group A in which the
same sequence of random numbers was used for both the interarrival and service
times. The results for the IBM and CDC generators are summarized in Tables
2 and 3 respectively. 1In these tables the various cases tested are identified
by a 3-character code. The first character is the type of system (L or D);
The second character indicates whether an integer or decimal sequence was
used (I or D), while the last character identifies the kind of strategy used
for the determination of the service times (I, D or N). Thus, DIN, for
example, is the model of the Delay system in which the interarrival and ser-
vice times were dréwn from the INTEGER sequence and service times were deter~-
mined when needed, while LDS denotes the Loss model in which both interarrival
and service times were scheduled at the same time using the DECIMAL sequence.
when;Loss systems are considered, we note that each arrival who ‘does not balk

=1is served immediately; as a result, for such systems the "service upon arrival"

The six exceptions occurred for the CDC random number generator.

- 12 ~

and the "service when needed" strategies are identical. We also found that
for Delay systems both strategies resulted with almost identical outcomes;
therefore we display in Tables 2 and 3 only the outcomes for 'service when
needed" as well as the outcomes for the strategy of concurrent allocation of
interarrival and service times.

For 1000, 3000 and 5000 arrivals we present in Tables 2 and 3 the probab-
ilities'of achieving the attained (or higher) values of the Chi-Square statistics.
These are heahed PROB1 and PROB37 respectively for the RMULT values of 1 and
37. 1In our experiments we ran all models concurrently and were limited in
the available storage; as a result some outcomes are missing as the queue
"escaped too early'.

Generally, outcomes with probabilities exceeding 0.99 or smaller than
0.01 should be rejected, and outcomes with probabilities exceeding 0.95 or
less than 0.05 are highly suspect. 1In Table 2, for the IBM generator, it is
clearly seen that such outcomes are much more common for an RMULT value of 1.
than for 37; this is in agreement with Felder [3], who rejected the value 1.
Further, the use of the DECIMAL sequence results in many rejected or highly
suspect outcomes, in contrast to the INTEGER sequence. Even the acceptable
outcomes of the DECIMAL sequence usually involve more extreme probabilities
than their INTEGER counterparts. This outcome corresponds well with our
initial guess about the poor behavior of the DECIMAL sequence. It is inter-
esting to note that, with respect to the DECIMAL sequence, an RMULT value

of 37 was worse than an RMULT value of 1.

- 13 -

TABLE 2

CHI-SQUARE OUTCOMES FOR QUEUEING MODELS USING THE IBM RANDOM NUMBER GENERATOR

e T e e
INTENS ITY

0.1 DIS 440 .202 .549 404 .235 .884
DDS .809 .750 .995 .936 .991 .919

LIS 440 .202 .549 404 .235 .884

L.DS .809 .750. .995 .936 .991 .919

DIN 244 719 .907 .931 .968 .573

DDN 847 .580 .784 458 .855 .323

LIN 244 .719 .907 .931 .968 .573

LDN 847 .580 .784 458 .855 .323

0.3 DIS .798 491 .218 .281 .200 521
DDS .693 .758 .995 .952 941 <.001

LIS .801 486 .223 452 .209 .593

LDS .694 .754 .995 .958 .946 .899

DIN 777 571 .001 .256 <.001 .099

DDN .971 .838 .975 .920 .939 <.001

LIN 794 .581 | .661 .902 047 .843

LDN .957 .841 314 .985 .500 .907

0.5 DIS 645 <.001 L001%% | <, 001%* Kok
DDS <.001 <.001 .001 <.001 <.001* <.001%
LIS .943 .368 .493 .605 <.001% ooL*

LDS 732 .895 911 .957 .937 Ak

DIN 217 .906 LOOL** | <, 001%% sk ok

. DDN <.001 <,001 .001 <.001 <.001* ok
LIN L1949 469 4427 .336 <.001

LDN .924 >.995 .978 >.9§5** .980 sk

* OQutcomes based on 4000 observations
*% Qutcomes based on 2000 observations

*%% Missing outcomes

<

- 14 -

In Table 3, for the CDC generator, it can be seen that more extreme
probability values occur for an RMULT value of 37 than for an RMULT value
of 1. 1In addition, for most of the models, and for all values of the traffic
intensity, there is a pronounced tendency for the Chi-Square probabilities
to become more extreme as the number of observations are increased. Since
the opposite tendency might be expected these results suggest that something
other than just random and/or non-steady state behavior might be affecting
the results. It seems likely that the extreme probability values in Table 3
are caused by the poor performance of the CDC random number sequences in
excess of 1000 observations as evidenced by the poor Chi-Square statistics
shown in Table 1. Another indication of the sensitivity of the results to
the properties of the random sequence is shown by the differences between
the results for the DECIMAL and INTEGER sequences of the CDC generator.

This difference is surprising since the integer random numbers are taken
from the high order three digits of the decimal fractions in the CDC generator.

It seems clear from Tables 2 and 3 that the three strategies, S, A and
N, for determining the service times are equally valid. However the outcomes
of the strategies differ, sometimes quite markedly. This implies different
Pn distributions for the strategies and is probably a result of an under-
lying serial correlation in the random number sequence. More experiments
@ith the random number generators are required to judge the importance of this
result and for the determination of the superior strategy.

During the conduct of the experiments we also compared the moments of
the theoretical distributions with those of the observed distributions. As
might be expected the means of the observed distributions are essentially
unbiased. The differences between the observed and theoretical means were

(usually) less than 3 percent for the experiments with the IBM generator

- 15 -

TABLE 3

CHI-SQUARE OUTCOMES FOR QUEUEING MODELS USING THE CDC RANDOM NUMBER GENERATOR

TRAFFIC | oo 1000 OBSERVATIONS 3000 OBSERVATIONS 5000 OBSERVATIONS
INTENSITY PROB1 PROB37 PROB1 PROB37 PROB1 PROB37
0.1 DIS .668 FATA .019 .019 .002 <.001
DDS .281 .418 .002 .015 <.001 <,001
LIS .668 WATA .019 .019 <.001 <.001
LDS .280 418 .002 .015 <.001 <.001
DIN .889 727 .797 .085 A .327
DDN .139 .364 .001 . 168 <.001 .580
LIN .889 727 .797 .085 474 .327
LDN .139 .364 .001 .168 <.001 .580
0.3 DIS .964 .095 .348 <.001 .068 <,001
DDS .664 .115 .046 <.001 <.001 <,001
LIS .967 141 .377 <.001 .069 <.001
LDS .671 .119 .050 <.001 <.001 <.001
DIN .963 .750 211 .700 .008 <.,001
DDN .523 .619 .004 .285 <.001 <.001
LIN .964 .761 .727 .791 .008 <.001
LDN 527 632 404 286 <.001 | <.o01
0.5 DIS <.001 404 <.001 e <.001
DDS X .430 % <,001 *% <,001
LIS .985 .510 dedok <.001 Hodek <.001
LDS X%k 462 Sk <.,001 ke <.001
DIN <.001 .001 .001 <.001 ok ek
DDN <.001 .001 Tkk HRH s ek
) LIN <.995 .891 .939%% 544 .728 ok
LDN .992 937 L9037 ok e *k

*% Qutcomes based on 2000 observations

Kok

Denotes missing values

- 16 -

and less than 6 percent for the experiments with the CDC random number
generator.

On the other hand, the second moments are substantially underestimated;
the underestimation fluctuated between 5 and 10 percent of the theoretical
values for the expériments using the IBM random number generator and between
19 and 30 percent for the experiments using the CDC random number generator.
The third moments were also severely underestimated--for the experiments
with the IBM generator underestimation of between 25 and 30 percent was a
common result while for the CDC generator the range was between 5 and 38 per-
cent. These results strongly suggest an underlying positive correlation in
the generated sequences which is a common phenomenon in queueing simulations
(Fishman [41). Since classical statistical analyses cannot be applied to
the analysis of such results it would be useful if GPSS could supply the
analyst with the means to estimate the autocovariances of the generalized
sequences thereby allowing the precision of simulation results to be esti-

mated with more precision.

It is evident from Tables 2 and 3 that‘the variability of the results
increases with the traffic intensity. This sensitivity may be partly due
to the transitional behavior of the simulated systems indicating that more
observations are required to achieve a steady state. However, the inherent
costs in longer runs are very high and many users would therefore be satisfied
with shorter runs of the same order of magnitude as' our experiments. If
alternative policies are to be compared, it would be advisable to start
all the simulation runs in a state approximating the steady state condition.
As GPSS does not automatically provide for the restoration of the initial
state unless 1t is an empty system, special measures to this end should
be taken by the user even though this complicates the simulation and increases

its cost.

-17-

5. CONCLUSION

In this paper we presented some results of tests using different GPSS
random number generators. These results illustrate the sensitivity of the out-
come of simulation experiments to the random number generator used and to
the values chosen by the analyst for the RMULT instruction. They also show
that the strategy chosen by the analyst for assigning random numbers to
events can substantially effect the experimental results. In addition, the
experiment with the CDC random number sequences suggests that the quality of
the generated random number sequences (as measured by standard statistical
tests) can have a significant effect both on the results and on the speed
with which the simulation attains a steady state. These conclusions seem
important enough to warrant much more extensive investigation and attention.
by simulation practitioners. 1In particular, much attention should be paid to
choosing good random rumber generators and to avoiding the subsequences of
a givén generator which have poor statistical properties.

0f the two GPSS random number generators tested the IBM generator appears
to give the more satisfactory performance. However the DECIMAL sequences
in the IBM generator may not be as good as the INTEGER sequences. For this
reason we would recommend a change in the random number generator algorithm:
specifically, to precede Steps 3 and 4 by Step 6 and thus eliminate the
effects of Step 3 (and the zero in bit 32) on the generated random decimal
fraction. 1In addition, we would recommend that additional statistics, and

in particular autocovariances, be incorporated (possibly as an option) into

~18-

GPSS. It would also be useful if GPSS were extended to include SYSTEMSAVE
and SYSTEMRESTORE blocks, which would enable the user to save and restore
a (steady state) initial status of the simulated system, its queues and
its Chaing. TFinally, our results indicate that additional tests of the

GPSS generator, which would supplement Felder's [3] tests, are required.

ACKNOWLEDGEMENT

We would like to thank Dr. Samuel Gorenstein and Ms. Mary Sortet of IBM,
as well as Dr. Thomas Schriber and Mr. James Henriksen, who gave us the
assembly code of IBM's GPSS random number generator. We also wish to thank
Mr. Walter Gazdick and Mr. Ba?ry Robinson of the Vogelback Computing Center,

Northwestern University, for supplying us with the CDC GPSS random number

generator.

