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Abstract

Given a sequence (s0, s1, . . . , sN ) of observations from a finite set
S, we construct a process (sn) that satisfies the following properties:
(i) (sn) is a piecewise Markov chain, (ii) the conditional distribution of
sn given s0, . . . , sn−1 is close to the empirical transition given by the
observed sequence, for most n, (iii) under (sn), with high probability
the empirical frequency of the realized sequence is close to the one
given by the observed sequence. We generalize this result to the case
that the conditional distribution of sn given s0, . . . , sn−1 is required to
be in some polyhedron Vsn−1 .
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1 Introduction

In the analysis of stochastic games with partial monitoring, a problem of
a statistical nature arises, whose basic expression can be summarized as
follows. One player, called the adversary, controls a S-valued process (sn),
where S is a finite set. In each of finitely many stages, he chooses the law yn
according to which the next state sn+1 is selected. A second player, called the
statistician, suffers a loss r(sn,yn) where r is concave in y. The statistician
gets only to observe the realized sequence of states, and wishes to estimate
ex-post his total loss L :=

∑N
n=0 r(sn,yn). On the basis of his information,

the natural idea for the statistician is to compute, for each s ∈ S, the
distribution ŷ(s) ∈ ∆(S) that is closest to the empirical transitions out of
state s, and to suggest the quantity L̂ =

∑
s∈S Nsr(s, ŷ(s)) as an estimate

for the loss, where Ns is the number of visits to s.
For a given strategy τ of the adversary (i.e., a rule that dictates for every

stage n, which yn to choose on the basis of the available information), the
expectation Eτ

[
L̂
]

of this estimator1 is typically higher than the expected

loss Eτ [L], due to the concavity of r. In other words, L̂ will fail to be,
even approximately, an unbiased estimator of the loss. For the purpose
of the game-theoretic application, it is enough to show that, with high τ -
probability, L̂ is close to Eτ̃ [L] for some “simple” strategy τ̃ . This is the
basic question we address here in Section 2.

In the actual game-theoretic motivating problem, the player’s strategy
choice is restricted: for each n ∈ N, yn has to belong to a given com-
pact polyhedron V (sn) of probability measures over S. This caveat makes
the analysis in Section 3 of the corresponding problem substantially more
difficult.

We now abstract from the game-theoretic framework, to introduce the
relevant statistical question. Let σ = (s0, s1, . . . , sN ) be a sequence over a
finite set S. For s ∈ S, the number of visits to s is defined to be Nσ

s = |{n <
N, sn = s}| (not counting the last state in the sequence). The empirical
frequency of s in σ is νσs := Nσ

s /N , and the empirical transition (along σ)
out of s is

qσ(t | s) =
|{n < N, (sn, sn+1) = (s, t)}|

Nσ
s

, for t ∈ S.

Does there exist a “simple” process (sn) such that

(i) the conditional law of sn+1 given (s0, ..., sn) is close to qσ(·|sn) a.s. for
most n’s;

1The expectation is taken w.r.t. the law of the process induced by the strategy.
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(ii) with high probability under (sn), the empirical frequency of s ∈ S in
the first N stages is close to the frequency νσs of s along σ ?

The problem may thus be seen as that of approximating a given sequence
by a simple S-valued stochastic process. The naive solution is to define (sn)
as a Markov chain with the empirical transitions qσ as transition function.
As the next example illustrates, this solution fails.

Example 1.1 Let S = {a, b}, and consider the sequence σ = (a, a, . . . , a, b, b, . . . , b, a)
of N a’s followed by N b’s, and one a at the end. The empirical transition
qσ is given by

qσ(a | b) = qσ(b | a) = 1− qσ(b | b) = 1− qσ(a | a) = 1/N.

Let (sn) be the Markov chain with transition qσ, starting from a. With a
probability bounded away from zero, sn = a for every n ≤ 2N + 1. In
particular, condition (ii) is not satisfied. More generally, one can prove that
for this example no Markov chain satisfies both conditions (i) and (ii).

In the sequel we show that, provided N is sufficiently large, there exists
a piecewise Markov chain on S with at most |S| pieces that approximates
σ in the sense of (i) and (ii).

A remark is in order. The statistician is here insisting on one-step tran-
sitions, by asking that the approximating process be a (piecewise) Markov
chain on S. By this insistence, he potentially looses much information on
the structure of the sequence. Indeed, the sequence 001100110011...will be
approximated (for lack of a better term) by the Markov chain on {0, 1} with
transitions (1

2 ,
1
2) in each state. Plainly, a Markov chain of order 2 would

approximate perfectly the given sequence. More generally, letting the statis-
tician choose the order of the Markov chain would allow a tradeoff between
the order of the chain and the quality of the approximation. Our results
indicate that piecewise Markov chains (of order 1) are sufficient to get a
good appromixation, when only one-step transitions matter.

We next discuss the extension of the basic problem motivated in the
introductory paragraph. For every state s ∈ S we are given a non empty
polyhedron Vs of probability distributions over S.2 Denote V = (Vs)s∈S . A
process (sn) is a V -process if for every n the conditional law of sn+1 given
(s0, ..., sn) is in Vsn . The problem is, given a sequence, to approximate it in
the sense of (i) and (ii) by a V -process.

In general, such an approximation needs not exist. Indeed, as the follow-
ing two examples show, if all V -processes are reducible, or if the sequence
is not “typical”, meaning that the empirical transitions are “far” from any

2Since S is finite, we identify a probability measure over S to a point in the unit simplex
of RS .
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V -process, such a construction is not possible. In the following two exam-
ples, Vs is a singleton for each s ∈ S, so there is a unique V -process, which
is a Markov chain.

Example 1.2 (A reducible Markov chain) Consider a problem with three
states {a, b, c}. Assume V is such that for any V -process, states b and c are
absorbing, whereas if the process is in state a, with equal probabilities it
moves to states b and c. When the initial state is a, there are two pos-
sible sequences under the unique V -process, each is realized with probabil-
ity 1/2: (a, b, b, b, . . . , b) and (a, c, c, c, . . . , c). But if the given sequence is
(a, b, b, b, . . . , b) there is no V -process that satisfies both (i) and (ii).

Example 1.3 (A non-typical sequence) Assume there are two states {a, b},
and Va = Vb = {1

2a+ 1
2b}.

Assume the given sequence is (a, a, · · · , a). There is no V -process that
satisfies (i) and (ii), provided N is sufficiently large.

In section 3 we define the notion of typical sequences w.r.t. V = (Vs)s∈S ,
prove that for every V -process, the probability that the realized sequence
is typical is close to 1, and prove that for every typical sequence there is a
hidden piecewise V -Markov chain with at most |S| pieces that approximates
the typical sequence in the sense of (i) and (ii) above.

Thus, our result states that almost any sequence that is generated by
a V -process, as complex as it can be, can be approximated by a simple
V -process.

2 The Basic Problem

For every finite set K, let |K| be the number of elements in K, and let ∆(K)
be the space of probability distributions over K. Throughout the paper we
fix a finite set S.

2.1 Presentation

Let N ∈ N, and let σ = (s0, s1, . . . , sN ) be a finite sequence in S of length
N + 1. For s ∈ S, let Ns = |{n < N |sn = s}| be the number of visits to s in
σ (the last state of the sequence is not counted), and define the empirical
frequency of s in σ as

νσs =
Ns

N
.

The (empirical) transitions out of s along σ are defined by

qσ(t | s) =
|{n < N, (sn, sn+1) = (s, t)}|

Ns
, t ∈ S. (1)
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qσ(t | s) is defined whenever the denominator in (1) does not vanish; that
is, whenever the state s is visited by the sequence. If Ns = 0, we let qσ(·|s)
be arbitrary. Note that qσ is a transition function over S.

A piecewise Markov chain is the concatenation of Markov chains. For-
mally,

Definition 2.1 Let K be a positive integer. A process (sn)n≤N is a piece-
wise Markov chain with K pieces if there exists a non-decreasing sequence
(nk)0≤k≤K of integers with n0 = 0 and nK = N , such that for each k =
1, . . . ,K, the process (sn)nk−1≤n≤nk is a Markov chain.

Given a S-valued process (sn), s ∈ S, and m ∈ N, we denote F sm =
1
m |{0 ≤ n ≤ m− 1 | sn = s}| (resp. F sm) the empirical frequency of s from
stage 0 up to stage m− 1 inclusive (resp. from stage 1 up to stage m). We
also denote by P the law of (sn), and by qn the conditional law of sn+1

given (s1, ..., sn). Our basic theorem is the following.

Theorem 2.2 For every ε > 0 ρ ∈ (0, 1/2(4|S| + 1) and ζ ∈ (0, 2ρ), there
exists N0 ∈ N such that the following holds. For every sequence σ of length
N ≥ N0, there is a piecewise Markov chain (sn) with |S| pieces over S such
that, for each s ∈ S,

B1 If νσs ≥ 1
Nρ , then P(|F sN − νσs | ≥ ενσs ) ≤ 1

Nζ .

B2 ‖qn − qσ(· | sn)‖ < ε, a.s. for at least N − |S| values of n < N .

2.2 On Markov chains

In the present section we present some general results on Markov chains,
that have their own interest. We first provide a result on the speed of
convergence of an irreducible Markov chain to its invariant measure. Next,
we collect a few observations on the expected exit time from domains of S.
Let q : S → ∆(S) be a transition rule over S. Given s ∈ S we denote by Ps,q

the law of the Markov chain (S, q) starting from s. We denote by Es,q the
corresponding expectation operator. When there is no risk of confusion, we
may abbreviate Ps,q and Es,q to Ps and Es respectively. The hitting time
of C ⊆ S is denoted TC := inf {n ≥ 0 : sn ∈ C}. For t ∈ S, we abbreviate
T{t} to Tt and we denote by T+

t = inf {n ≥ 1, sn = t} the first return to t.
By convention, the infimum over an empty set is +∞. Finally, for C ⊂ S,
C = S \ C denotes the complement of C in S.
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2.2.1 Convergence to the invariant measure

Definition 2.3 Given k > 0, q : S → ∆(S) over S is k-mixing if Es,q[T+
t ] ≤

k, for every s, t ∈ S.

Note that every mixing transition rule is irreducible.

Theorem 2.4 Assume that q : S → ∆(S) is n-mixing, with invariant mea-
sure µ. Let m ∈ N and ε ∈ (0, 1

4) be such that εm > 4n. Then, for every
s, t ∈ S,

Pt(|F sm − µs| > εµs) <
9(2n+ 1)
mε2

. (2)

Remark 2.5 Inspection of the proof shows that inequality (2) holds more
generally for each state s ∈ S such that supt∈S Et,q [T+

s ] ≤ n.

Remark 2.6 Since
∣∣F sm − F sm

∣∣ ≤ 1
m , one has, under the assumptions of

Theorem 2.4,

Pt(|F
s
m − µs| > εµs +

1
m

) <
9(2n+ 1)
mε2

. (3)

Proof. We first deal with the case s = t. Denote by T+,1
s + ... + T+,p

s

the pth return time to s. Note that the variables T+,k
s are iid , and share

the law of T+
s under Ps. For each m, the event |F sm − µs| ≥ εµs is in-

cluded in the union of the two events
{
T+,1
s + ...+ T

+,dmµs(1−ε)e
s ≥ m

}
and{

T+,1
s + ...+ T

+,bmµs(1+ε)c
s ≤ m

}
. For notational convenience, set mε :=

dmµs(1− ε)e and mε := bmµs(1 + ε)c.
By Chebycheff inequality, since Es [T+

s ] = 1
µs

and the variables are inde-
pendent,

Ps(T+,1
s + ...+ T+,mε

s ≥ m) = Ps

(
T+,1
s + ...+ T+,mε

s − mε

µs
≥ m− mε

µs

)
≤ mεvarsT

+
s(

m− mε
µs

)2 ≤
mεvarsT

+
s(

mε− 1
µs

)2 ,

where the second inequality holds since m− mε
µs

≥ mε− 1
µs

, and

Ps,q(T+,1
s + ...+ T+,mε

s ≤ m) ≤ Ps

(
mε

µs
− (T+,1

s + ...+ T+,mε

s ) ≥ mε

µs
−m

)
≤ mεvarsT

+
s(

mε

µs
−m

)2 ≤
mεvarsT

+
s(

mε− 1
µs

)2 .
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Hence,

Ps,q(|F sm − µs| ≥ εµs) ≤
(mε +mε)varsT+

s(
mε− 1

µs

)2 . (4)

Since q is n-mixing, 1
µs

= Es [T+
s ] ≤ n. Therefore, the denominator in (4) is

at least 9
16m

2ε2. On the other hand, by Aldous and Fill (2002, chapter 2,
page 21, identity (22)

varsT
+
s × µs = 2EµTs + 1− 1

µs
. (5)

Since q is n-mixing, EµTs ≤ EµT
+
s ≤ n, hence varsT+

s ×µs ≤ 2n+ 1. Since
mµs ≥ m/n > 4/ε > 1, mε +mε ≤ 2mµs + 1 ≤ 3mµs, and we obtain

Ps(|F sm − µs| ≥ εµs) ≤
16× 3(2n+ 1)

9mε2
.

This concludes the proof in the case s = t.
Let now s 6= t in S. We estimate Pt(T

+,1
s + ... + T+,mε

s ≥ m) and
Pt(T

+,1
s + ... + T+,mε

s ≤ m) in turn. Since q is n-mixing, we obtain by
Markov inequality

Pt(T+
s ≥ ε2m) ≤ n

mε2
. (6)

On the other hand, by following the steps of the previous computation,

Pt(T+,1
s ≤ ε2m,T+,1

s + ...+ T+,mε
s ≥ m) ≤ Pt(T+,2

s + ...+ T+,mε
s ≥ m(1− ε2))

≤ (mε − 1)varsT+
s

(m(1− ε2)− mε−1
µs

)2
≤ (mε − 1)varsT+

s

(m(ε− ε2))2
(7)

and

Pt(T+,1
s + ...+ T+,mε

s ≤ m) ≤ Pt(T+,2
s + ...+ T+,mε

s ≤ m− 1)

≤ (mε − 1)varsT+
s

(mε−1
µs

+ 1−m)2
≤ (mε − 1)varsT+

s

(mε+ 1− 2
µs

)2
. (8)

In both (7) and (8), the denominator is at least
(

1
2mε

)2. Therefore, sum-
mation of (6), (7) and (8) yields

Pt(|F sm − µs| ≥ εµs) ≤
4varsT+

s (mε +mε − 2) + nm

m2ε2
.

Since mε +mε − 2 ≤ 2mµs, one gets

Pt(|F sm − µs| ≥ εµs) ≤
4× 2(2n+ 1) + n

mε2
,

hence the result.
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2.2.2 Expected exit times

We assume throughout this section that q is irreducible. We use repeatedly
the following inequality

Eu

[
TL
]
≤ Eu

[
TL∪v

]
+ Ev

[
TL
]

(9)

that holds for every L ⊂ S and every u, v ∈ L.

Proposition 2.7 Let C ⊂ S, with |C| > 1. Define ρ1(C) = maxD⊂C mins∈D Es

[
TD
]

and ρ2(C) = maxs∈C Es

[
TC
]
. One has

Es

[
TD
]
≤ |D| ρ1(C) for every D ⊂ C and s ∈ D, and (10)

Es

[
TC
]
≥ ρ2(C)− (|C| − 1)ρ1(C) for every s ∈ C. (11)

Proof. We prove (10) by induction over |D|. Plainly, the inequality
holds for singletons. Assume that the result holds for every subset of size k.
Let D ⊂ C be of size k + 1, and s ∈ D. By the definition of ρ1(C), there is
t ∈ D, such that Et

[
TD
]
≤ ρ1(C). By (9) and the induction hypothesis for

D \ t,

Es

[
TD
]
≤ Es[TD∪t] + Et[TD] ≤ (|D| − 1)ρ1(C) + ρ1(C).

We now prove (11). Let s ∈ C be given. For t 6= s ∈ C, one has, by (9)
and (10)

Es

[
TC
]
≥ Et

[
TC
]
−Et

[
TC∪s

]
≥ Et

[
TC
]
− (|C| − 1)ρ1(C). (12)

The result now follows by taking the maximum over t in (12).

Corollary 2.8 Under the notations of Proposition 2.7, one has

Ps

(
TC < Tt

)
≤ 2 |C| ρ1(C)

ρ2(C)− (|C| − 1)ρ1(C)
for each C ⊂ S, s, t ∈ C.

(13)

Proof. Let C ⊂ S, and s, t ∈ C be given. We modify the Markov chain
by collapsing C to a single state, still denoted C, and we set q(t|C) = 1,
so that EC [Tt] = 1. This modification does not affect Ps

(
TC < Tt

)
. By

Aldous and Fill (2002, Chapter 2, Corollary 10),

Ps(TC < Tt) =
Es [Tt] + Et

[
TC
]
−Es

[
TC
]

EC [Tt] + Et

[
TC
] . (14)

Since EC [Tt] = 1, one has Es [Tt] ≤ Es

[
Tt∪C

]
+ 1. By (9), Et

[
TC
]
−

Es

[
TC
]
≤ Et

[
Ts∪C

]
. By (10), the numerator in (14) is at most 1 +

Et[TC∪s] + Es[TC∪t] ≤ 2(|C| − 1)ρ1(C) + 1.
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On the other hand, the denominator is equal to 1 + Et

[
TC
]
, hence, by

(11), at least ρ2(C)− (|C| − 1)ρ1(C).

The next result deals with the transition function qC of the Markov chain
q watched on C (see Aldous and Fill (2001, Chapter 2, Section 7.1)):

qC(t | s) = q(t | s) +
∑
u/∈C

q(u | s)Pu(TC = Tt), for every s, t ∈ C. (15)

By Aldous and Fill, qC is irreducible, and its invariant measure µC coincides
with the invariant measure of q, conditioned on C.

Corollary 2.9 For s, t ∈ C, one has Es,qC [Tt] ≤ (|C|−1)ρ1(C)
minu∈C Pu,q(Tt<TC) .

Proof. Let t ∈ C be given. For convenience, set α := maxs∈C Es,qC [Tt].
Let s ∈ S achieve the maximum in the definition of α. By (10)

α = Es,qC [Tt] ≤ Es,q

[
TC∪t

]
+ Ps,q(TC < Tt)α.

≤ (|C| − 1)ρ1(C) + αPs,q(TC < Tt).

Then, for every s′ ∈ C,

Es′,qC [Tt] ≤ α ≤ (|C| − 1)ρ1(C)
1−Ps,q(TC < Tt)

≤ (|C| − 1)ρ1(C)
minu∈C Pu,q(Tt < TC)

,

as desired.

2.2.3 A structure theorem

Here we prove a structure result which states that for every finite sequence
of states in S there is a partition of S such that the number of times the
sequence exits a given atom of the partition is much smaller than the number
of visits to any strict subset of this atom. The sequence moves around inside
the atom much more quickly than from one atom to another.

For every positive integer N ∈ N, every sequence (s0, s1, . . . , sN ) of
states, and every subset C ⊂ S, define

RC = | {n < N | sn /∈ C, sn+1 ∈ C} |+ 1s0∈C .

RC is the number of C-runs along the sequence (see Feller (1968, II.5)). For
convenience of notations, we omit the dependency of RC on the sequence.
Note that RC\D ≤ RC + RD for every proper subset D of C, and that
|RC −RS\C | ≤ 1. Note also that RC ≥ |{n < N |sn ∈ C, sn+1 /∈ C}|

9



Theorem 2.10 For every positive integer N , every sequence (s0, s1, . . . , sN ),
of states in S, and every a > 0, there is a partition C of S such that the
following holds for every C ∈ C.

P1 RC ≤ (a+ 1)|C|.
P2 For each proper subset D of C, RD > aRC .

Proof. Observe that the trivial partition C = {S} satisfies P1, since
RS = 1.

Among all the partitions that satisfy P1, let C be one with maximal
number of atoms. Denote k = |C|. We prove that C satisfies P2. Otherwise,
there is C ∈ C, and there is a proper subset D of C, such that RD ≤ aRC .

Consider the partition C \{C}∪{D,C \D}; that is, we further partition
the set C into two sets D and C \D. We show that this new partition, that
has k + 1 elements, satisfies P1 as well, contradicting the maximality of C.
Indeed, RD ≤ aRC ≤ (a + 1)k+1, and RC\D ≤ RC + RD ≤ RC(a + 1) ≤
(a+ 1)k+1.

2.3 Proof of Theorem 2.2

To prove Theorem 2.2 it is sufficient to consider only exhaustive sequences;
namely, sequences that visit all states in S (by dropping from S states that
are never visited). However, as the proof of the more general Theorem 3.4
below refers to the proof of Theorem 2.2, it is more convenient not to make
this assumption.

We prove Theorem 2.2 first by considering periodic and exhaustive se-
quences, and then by looking at a general sequence.

Let ε > 0 be small enough and ρ ∈ (0, 1/2(4|S| + 1)) be fixed. Choose
ζ < 2ρ.

2.3.1 The case of periodic exhaustive sequences

We choose N0 ∈ N be such that (N.i) N (4|S|+1)ρ−1
0 ≤ ε/(2|S| + 1), (N.ii)

N4ρ
0 ≥ max{11|S|, 2/ε}, (N.iii) N2ρ−ζ

0 ≥ 4 × 19 |S| /ε2, and (N.iv) Nρ
0 ≥

4 |S|+ 1. Let N ≥ N0 and set a = N4ρ.
We assume here that the sequence σ = (s0, s1, . . . , sN ) is periodic and

exhaustive: sN = s0 and Ns ≥ 1 for every s ∈ S. The proof of the following
lemma is left to the reader.

Lemma 2.11 The empirical transition function qσ is irreducible. Its in-
variant distribution is µs = Ns

N .

Let C = (S1, . . . , SK) be the partition of S obtained when applying
Theorem 2.10 to σ and a. For C ⊂ S, we let nC :=

∑
s∈C Ns denote the

number of stages spent in C along σ. We abbreviate nSk to nk.
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Proposition 2.12 With the notations of Proposition 2.7, one has

ρ1(Sk) ≤ max
D⊂Sk

nD
RD − 1

≤ 2
a
ρ2(Sk) for every k such that |Sk| > 1.

Proof. For D ⊂ S, set

νD(s) :=
∑

t∈D µtq
σ(s|t)∑

t∈D µtq
σ(D|t)

for s ∈ C, and KD :=
∑
s∈C

νD(s)Es,qσ [TD]. (16)

The numerator (resp. the denominator) in (16) is the long run frequency of
transitions from D to s (resp. from D to D). Thus, νD(s) is the probability
that the first encountered state in D is s, while KD is the average length
of a visit to D. We shall use the identity (easily derived from the ergodic
theorem) ∑

s∈D
νD(s)Es,qσ [TD] =

∑
s∈D µs∑

s∈D µsq
σ(D | s)

. (17)

Observe that
∑

s∈D µs = nD
N and

∑
s∈D µsq

σ(D | s) = |{n<N |sn∈D,sn+1 /∈D}|
N .

Therefore,
nD
RD

≤
∑
s∈D

νD(s)Es,qσ [TD] ≤ nD
RD − 1

(18)

Fix k. By (N.ii) a ≥ 2, hence 1
aRSk−1 ≤ 2

a ×
1

RSk
. Hence, for every

D ⊂ Sk, by (18), the definition of C, and (18) again,

min
s∈D

Es,qσ [TD] ≤ nD
RD − 1

≤ nSk
aRSk − 1

≤ 2
a

nk
RSk

≤ 2
a

max
s∈Sk

Es,qσ

[
TSk

]
=

2
a
ρ2(Sk).

The result follows, by taking the supremum over D ⊂ Sk.

We now construct a piecewise Markov chain with K pieces. The kth
piece is used for nk stages, and its goal is to approximate the empirical
transitions on Sk. In those stages, the process will remain in Sk.

Let m1 = 0, and for every positive integer k ≤ K − 1 define mk+1 =
n1 + n2 + · · ·+ nk.

For every k = 1, . . . ,K define a transition rule q′k : S → ∆(S) as follows.
If nk < N1−ρ we define q′k = qσ. Otherwise we define

q′k(t | s) =
{
qk(t | s) s ∈ Sk, t ∈ Sk
µk(t) s 6∈ Sk, t ∈ Sk

where qk is the transition function of the Markov chain qσ watched on Sk
(see Eq. (15)) and µk is the invariant measure of qk. Let (sn)0≤n≤N be the
piecewise Markov chain that starts in S1 and follows the transition rule q′k
from stage mk up to mk+1, for each k. We will show that it satisfies the
requirements of Theorem 2.2.

11



We first show that condition B2 is satisfied. Fix k and let s ∈ Sk. If
nk < N1−ρ then q′k(·|s) = qσ(·|s). Otherwise,

‖q′k(· | s)− qσ(· | s)‖ ≤
∑
u/∈Sk

qσ(u | s) ≤ RSk
Ns

.

If Sk = {s} is a singleton, the right hand side is bounded by (a+1)|S|

N1−ρ < ε,

while if |Sk| ≥ 2, the right hand side is bounded by
RSk
aRSk

< ε. Therefore,
‖qn − qσ(·|sn)‖ < ε holds a.s. whenever n 6= mk, for k = 0, ..,K − 1.

We now prove that condition B1 is satisfied. Let k be given. If nk <
N1−ρ, then νσs < 1

Nρ for every s ∈ Sk, hence B1 holds for such states. If
nk ≥ N1−ρ and Sk = {s} is a singleton then F

s
N = νσs , and B1 holds as

well.
We may thus assume that nk ≥ N1−ρ and |Sk| ≥ 2. We establish the

claim by proving first that qk is mixing, and by using Theorem 2.4.

Lemma 2.13 The transition function qk on Sk is N1−3ρ-mixing.

Proof. By Corollary 2.9

Es,qk [Tt] ≤
(|Sk| − 1)ρ1(Sk)

1−maxu∈Sk Pu,qσ(TSk < Tt)
.

Abbreviate ρ1(Sk) and ρ2(Sk) to ρ1 and ρ2 respectively. By Corollary 2.8,
the denominator is at least 1− 2 |Sk| ρ1

ρ2−(|Sk|−1)ρ1
. Therefore,

Es,qk [Tt] ≤ (|Sk| − 1)ρ1 ×
ρ2 − (|Sk| − 1)ρ1

ρ2 − (3 |Sk| − 1)ρ1
≤ 2 |Sk| ρ1 (19)

where the second inequality follows by Proposition 2.12 and (N.ii).
By Proposition 2.12

ρ1 ≤ max
D⊂Sk

nD
RD − 1

≤ N

a− 1
≤ N1−3ρ

2 |Sk|
− 1, (20)

since Nρ ≥ 4 |S|+ 1. The result follows by (19) and (20).

By Section 2.2.2, the invariant measure of qk is νσ(·|Sk), where νσ(t |
Sk)) = Nt/nk for t ∈ Sk. By Remark 2.5, (N.ii), (N.iii),

Ps,qk

(
|F tnk − νσ(t|Sk)| > ενσ(t|Sk)

)
≤ Ps,qk

(
|F tnk − νσ(t|Sk)| >

ε

2
νσ(t|Sk) +

1
nk

)
≤ 4× 19N1−3ρ

nkε2
≤ 4× 19N1−3ρ

ε2N1−ρ ≤ 1
|S|

× 1
N ζ

. (21)

Since the process (sn) does not visit t ∈ Sk except in the kth phase, B1
follows from (21) by summation over t.

12



2.3.2 The sequence σ = (s0, s1, . . . , sN ) is arbitrary

ChooseN0 so that, (N’.i)N2ρ(4|S|+1)−1 ≤ ε−2ε2

2|S|+1
, (N’.ii)N8ρ

0 ≥ max(11|S|, 2/
(
ε− 2ε2

)
),

(N’.iii) N4ρ−ζ
0 ≥ 4 × 19 |S| /

(
ε− 2ε2

)2, (N’.iv) N1−2ρ
0 ≥ |S|

ε2
, (N’.v) Nρ

0 ≥
1

1−ε2 , (N’vi) N2ρ
0 ≥ 4 |S|+ 1

Let N ≥ N0 and σ = (s0, ..., sN ) be an arbitrary sequence. We will
add few states to σ, so as to get a periodic and exhaustive sequence. We
next apply the results of Case 1 to the new sequence, and then prove that
similar estimates hold for the original sequence.

Let S∗ = ∪Nn=0{sn} ⊆ S be the set of states visited by σ. Consider
the sequence σ∗ = (s0, s1, . . . , sN , s∗1, . . . , s

∗
r , s0), where r = |S| − |S∗| is the

number of states not visited by σ, and S\S∗ = {s∗1, . . . , s∗r}. By construction,
this new sequence is periodic and exhaustive. The length N∗ + 1 of this
sequence is N + r + 2 < N + |S|+ 2.

One can verify that N∗ satisfies (N.i-iv) with ρ′ := 2ρ and ε′ := ε− 2ε2.
Therefore there is a piecewise Markov chain3 (sn)n≤N∗ such that B1 and B2
hold w.r.t. νσ

∗
. Observe that each state s∗j ∈ S \ S∗ constitutes a singleton

in the partition C associated with σ∗. We assume that the last r stages
are devoted to these elements of the partition, and we now check that the
restriction (sn)n≤N of the process to the first N stages satisfies B1 and B2.

We start with B1. Let s ∈ S with νσs ≥ 1
Nρ . By (N’.iv),∣∣∣νσs − νσ

∗
s

∣∣∣ ≤ r + 1
N

≤ νσs
r + 1
N1−2ρ

≤ ε2νσs . (22)

By (N’.v),

νσs ≥
1
Nρ

=⇒ νσ
∗

s ≥ 1
N2ρ

⇒ P
(∣∣∣F sN∗ − νσ

∗
s

∣∣∣ ≥ ε′νσ
∗

s

)
≤ 1
N ζ

. (23)

In such a case, by (N’.iv)∣∣F sN∗ − F
s
N

∣∣ ≤ r + 1
N

≤ ε2νσs .

hence, by (22),
∣∣F sN − νσs

∣∣ ≤ ∣∣F sN∗ − νσ
∗

s

∣∣ + 2ε2νσs . Condition B1 follows
using (23).

We now prove B2. By construction, except for at most |S| stages,

qn = qσ(·|sn) or both
∣∣∣qn − qσ

∗
(·|sn)

∣∣∣ ≤ ε′ and N∗
sn ≥ N1−2ρ

∗ hold.

In the latter case, by (N’.iii),
∣∣qσ∗(·|sn)− qσ(·|sn)

∣∣ ≤ 1/N ≤ ε′, which con-
cludes the proof.

3In Case 1, we set q′k = qσ whenever nk < N1−ρ.We still set here q′k to be qσ and not
qσ
∗
. This does not affect conclusions B1 and B2 for σ∗.
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3 The General Problem

3.1 Presentation

For every state s ∈ S let Vs ⊆ ∆(S) be a non-empty polyhedron, and set
V = (Vs)s∈S . The set Vs should be thought of as the set of conceivable
transitions from s.

Throughout this section, V is fixed.

Definition 3.1 A V -process is a S-valued process (Xn) such that for every
n ≥ 1, the conditional distribution of sn given s1, s2, . . . , sn−1 is in Vsn−1.

We here generalize the question addressed in the previous section. Given
a sequence σ, does there exist a simple V -process that approximates σ, in
the sense of Section 2. As suggested in the Introduction, there are several
obstructions to the existence of such an approximation:

• The sequence σ may be completely atypical of any V -process.

• Transitions out of states that are transient under any V -process may
not be approximated.

Therefore, we will assume that some transition function b = (bs)s ∈ V is
irreducible, and limit our analysis to sequences that are typical, in the sense
defined below.

Definition 3.2 Let N ∈ N, and δ, ε > 0. A sequence (s0, s1, . . . , sN ) is
(N, δ, ε)-typical if there exists v ∈ V such that

∣∣∣1− v(t|s)
q(t|s)

∣∣∣ < ε for every

s, t ∈ S that satisfy Nsq(t | s) ≥ N δ or Nsv(t | s) ≥ N δ. The set of
(N, δ, ε)-typical sequences is denoted by TNδ,ε.

As we prove in the sequel, under some constraints on the parameters the
probability of the typical sequences is close to 1, under any V -process.

Definition 3.3 A process (sn)n is a (piecewise) hidden Markov chain over
S if there exists an auxiliary finite set T and a (piecewise) Markov chain
(zn) over S × T such that (sn) coincides with the marginal of (zn) over S.

Following the notations of Definition 3.3, let p(·|(s, t)) be the transition
function of (zn). If the marginal over S of p(·|(s, t)) belongs to Vs for each
(s, t) ∈ S×T , the process (sn) is a V -process, due to the convexity of Vs. It
is typically not a Markov chain. In such a case, we say that (sn) is a hidden
(piecewise) V -Markov chain.
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Theorem 3.4 Assume that b is irreducible, and set B := maxs,t∈S Es,b [Tt].
Let ψ, η ∈ (0, 1) be given. There exist ζ, ρ, δ, ε > 0 and N1 ∈ N such that
the following holds. For every N ≥ N1 and every (N, δ, ε)-typical sequence
(s0, s1, . . . , sN ), there exists a hidden piecewise V -Markov chain with at most
|S| pieces such that

G1 If νσs ≥ 1
Nρ , then P(|F sN − νσs | ≥ ηνσs ) ≤ 1

Nζ .

G2 Let N0 = |{n < N : ‖qn − qσ(· | sn)‖ > η }|. Then E [N0] ≤ NψB.

3.2 Typical sequences

Theorem 3.5 below states that most sequences are typical, provided the
parameters are chosen properly. Its proof uses the following large deviation
estimate for Bernouilli variables. Let (Xn)n be an infinite sequence of i.i.d.
Bernouilli r.v.s with parameter p, and denote for every positive integer n,
Xn =

∑n
k=1Xi/n. By Alon et al (2000, Corollary A.14),

P(| Xn − p |> εp) ≤ 2 exp(−cεpn),

where cε = min{ε2,−ε + (1 + ε) ln(1 + ε)} is independent of n and p. In
particular, for every positive integer k,

P

(
sup
pn≥k

| Xn − p |> εp

)
≤ 2

∞∑
n=dk/pe

exp(−cεpn) ≤ 2 exp(−cεk)
1− exp(−cεp)

. (24)

Observe that for every ε sufficiently small, ε2/3 < cε ≤ ε2/2.

Theorem 3.5 Let δ, ε > 0 be given. For each ξ ∈ (0, δ/4), there exists
N0 ∈ N such that, for every N ≥ N0 and every V -process π,

P(TNδ,ε) ≥ 1− 1
N ξ

.

Proof. Let δ, ε ∈ (0, 1) and ξ ∈ (0, δ/4) be given. For each s ∈ S, let
V ∗
s be the (finite) set of the extreme points of Vs. Choose ξ′ ∈ (ξ, δ/4) and
ε′ ∈ (0, 1) such that ε′

1−ε′ ≤ ε. Let N0 be large enough so that the following

conditions are satisfied for each N ≥ N0: (i) 2 exp(−cε′Nδ/4)

1−exp(−cε′Nδ/4−1)
≤ 1/N ξ′ , (ii)

N ξ′−ξ ≥ 3 |S|
∑

s∈S |V ∗
s | and (iii) N δ/2 ≥ 1/ε. Let N ≥ N0 and (sn) be any

V -process.
We first present the V -process (sn) in an alternative way, by writing the

conditional distribution of sn+1 given s0, . . . , sn as a convex combination∑
v∈V ∗

sn
bn(v)v of the extreme points of Vsn (the weights bn(v) being random

themselves).
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Next, consider the following process π′ = (sn,vn)n. Given the past,
vn ∈ V ∗

sn is selected according to bn, then sn+1 is selected according to vn.
Plainly, the law of the sequence of states is the same under both processes.
We shall deal with the latter process.

Define ns,v = |{n < N, (sn,vn) = (s, v)}| to be the number of times the
extreme point v was chosen at s, and q(t | s, v) = |{n < N, (sn,vn, sn+1) =
(s, v, t)}| /ns,v. Note that the empirical transitions out of s are given by
q(t | s) =

∑
v∈V ∗ ns,vq(t|s,v)

ns
, and define v∗s =

∑
v∈V ∗ ns,vv

ns
. As Vs is convex,

v∗s ∈ Vs. We will show that with high probability, v∗= (v∗s) is close to q in
the sense of Definition 3.2.

Fix for a moment s, t ∈ S and v ∈ V ∗
s . Plainly, ns,vv(t) < N δ/4 if

v(t) < N δ/4−1. We now assume that v(t) ≥ N δ/4−1. Let (Xn)n be a sequence
of i.i.d. Bernouilli r.v.s with parameter v(t). By (24) and (i)

P
(
ns,vv(t) ≥ N δ/4 and | q(t | s, v)− v(t) |> ε′v(t)

)
≤ 2 exp(−cε′N δ/4)

1− exp(−cε′N δ/4−1)
≤ 1
N ξ′

.

(25)
We now claim that

P
(
ns,vv(t) < N δ/4 and ns,vq(t | s, v) ≥ N δ/2

)
≤ 2/N δ/4. (26)

Indeed, the left hand side in (26) is at most

P
(
sup

{
X1 + · · ·+Xk, kv(t) < N δ/4

}
≥ N δ/2

)
≤ P

(
X1 + · · ·+Xn ≥ N δ/2

)
, where n =

⌈
N δ/4/v(t)

⌉
.

By Markov inequality, this quantity is at most nv(t)/N δ/2 ≤ 2/N δ/4.
Eqs. (25) and (26) yield together

P
(
ns,v max{v(t),q(t | s, v)} ≥ N δ/4 ⇒| q(t | s, v)− v(t) |≤ ε′v(t)

)
≥ 1− 3

N ξ′
.

(27)
Let T be the set of all sequences (s1, v1, s2, v2, . . . , sN ) that satisfy the

implication in (27) for every s, t ∈ S and every v ∈ V ∗
s . By (ii), P(T ) ≥

1− 1
Nξ . We will show that every sequence in T is (N, δ, ε)-typical.
Let us be given a sequence in T , and let s, t ∈ S satisfy Nsq(t | s) ≥ N δ

(the same argument is valid also in the case Nsv(t) ≥ N δ). We prove that
|q(t | s)− v(t)| ≤ εq(t | s). We first claim that for every v ∈ V ∗

s ,

ns,v|q(t | s, v)− v(t)| ≤ ε′

1− ε′
Nsq(t|s). (28)

Indeed, if ns,v max({q(t | s, v), v(t)} ≥ N δ/2 then by (27) v(t) ≤ 1
1−ε′ q(t |

s, v), and therefore

ns,v|q(t | s, v)− v(t)| ≤ ε′ns,vv(t) ≤
ε′

1− ε′
ns,vq(t | s, v) ≤

ε′

1− ε′
Nssq(t | s),
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where the last inequality holds since Nssq(t | s) =
∑

v∈V ∗
s
ns,vq(t | s, v). If,

on the other hand ns,v max{q(t | s, v), v(t)} < N δ/2 then

ns,v|q(t | s, v)− v(t)| ≤ N δ/2 ≤ Nsq(t | s)/N δ/2,

and (28) holds by (iii).
By summing (28) over all v ∈ V ∗

s we get,

|q(t | s)− v∗s(t)| ≤
∑
v∈V ∗

s

ns,v
Ns

|q(t | s, v)− v(t)| ≤ ε′

1− ε′
q(t | s).

Thus
|q(t | s)− v∗s(t)| ≤ εv∗s(t),

as desired.

The requirement ξ < δ/4 arises from the use of Markov inequality. A
slight modification of the argument would improve the bound to δ/2. It is
not clear whether this latter bound is optimal.

3.3 Approximation of typical sequences

We here prove Theorem 3.4. The proof mostly follows the proof of Theorem
2.2. The main complication is the following. Each piece qk of the Markovian
approximation that was constructed in Section 2 was obtained by watching
the empirical transition function q on a specific subset Sk. Characteristics
of the corresponding chain qk (invariant measure, mixing time) were then
easily derived from the properties of q and of the partition of S. By constrast,
each piece of the approximation is here required to be a V -process. Thus,
the former choice for qk may no longer be admissible, and one is led to
choose the V -process that is closest (in a yet-to-be-defined sense) to qk on
Sk. Properties of this process are obtained from results on perturbations of
Markov chains to be found in Solan and Vieille (2002).

Step 0: Fixing parameters

Let ψ and η be given. Choose ε small enough so as to satisfy the following
conditions, with L = max{

∑|S|−1
n=1

(|S|
n

)
n|S|, 220}.

E1) ε < η/55L < η

E2) ε <
1

8L2 |S|2

E3) ε <
1

4 |S|L2(5 |S| − 1)

E4) ε < 1/2|S|

17



Note that that E3) implies E2) and E4). Fix β ∈ (0, 1
2

(
A
L

)|S| × ε(1−ε)
L×|S|4 )

where A=1/2. Set α = 1
2β|S|L2 , α′ = α/2−|S|

2|S| . By (E3), β < 1/20|S|2L2, so
that α′ ≥ 2.

Fix ξ ∈ (0, ψ/(|S| + 1)). Choose δ < min( ψ
|S|+1 ,

ξ
4 ,

1−ψ
2 ), and δ′, ψ′ such

that δ < δ′ < ψ′ < ψ. Set a = N ξ.
We assume thatN is large enough so as to satisfy the following conditions

DP1) N δ′ ≥ N δ + 1,

DP2) N δ ≥ 3
ε(1− 3ε)

,

DP3) 2 + 16L |S| (N + S + 2)ψ
′
< Nψ/ |S| ,

RZ1) B ≤ 1
144

N1−δ

N3δ
,

RZ2) ηN1−2δ ≥ 1,

RZ3) 4BL |S|N δ+ψ′−1 ≤ N−δ ≤ 1/2,

RZ4) 1/N δ < ε,

RZ5) N1−2δ−ψ ≥ 2B/ε,

A1) β(a− 1) ≥ (N + S + 2)δ
′
,

A2) a− 1 ≥ 1
2β |S|

,

A3) a ≥ 3,
A4) 2a ≤ N,

A5) (a+ 1)|S| ≤ Nψ ≤ N,

A6)
72

N1−δ

(
|S|L N

a− 1
+B + 1

)
≤ N−δ,

S1)
1

2N δ
N1−δ ≥ 4(B + 1),

S2) B(1 + 3ε)
(a+ 1)|S|

N1−ρ ≤ 1
2N ζ

,

S3)
36(2B + 3)
N1−ρ ≤ 1

2|S|N ζ
, and

S4) Nψ/|S| ≥ 1 + 2B(1 + 3ε)Nρ(a+ 1)|S|.

Step 1: The periodized sequence

Let σ be an (N, δ, ε)-typical sequence. For every s ∈ S choose v(·|s) ∈ Vs
such that, for every t,

Ns max{qσ(t|s), v(t|s)} ≥ N δ ⇒
∣∣∣∣1− v(t|s)

qσ(t | s)

∣∣∣∣ ≤ ε. (29)
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Let σ∗ = (s∗0, . . . , s
∗
N∗

) be the periodic and exhaustive sequence that is gen-
erated from σ as in the proof of Theorem 2.2. Following the notations used
in Section 2, we let q := qσ

∗
denote the empirical transitions along σ∗, and

n∗C :=
∑

s∈C N
∗
s denote the number of stages spent in C ⊂ S along σ∗. By

(DP1),

N∗
s max{q(t|s), v(t|s)} ≥ N δ′

∗ ⇒ Ns max{qσ(t|s), v(t|s)} ≥ N δ
∗ .

In that case, by (DP2),
∣∣∣1− Ns→t

N∗
s→t

∣∣∣ ≤ ε
3 , where Ns→t and N∗

s→t are the

number of transitions from s to t along σ and σ∗ respectively, and
∣∣∣1− Ns

N∗
s

∣∣∣ ≤
ε
3 . Hence

∣∣∣1− q(t|s)
qσ(t|s)

∣∣∣ ≤ ε (see Lemma 15 in Solan and Vieille (2002)).
Therefore,

N∗
s max{q(t|s), v(t|s)} ≥ N δ′

∗ ⇒
∣∣∣∣1− v(t|s)

q(t | s)

∣∣∣∣ ≤ 3ε. (30)

In other words, σ∗ is (N∗, δ
′, 3ε)-typical.

Lemma 3.6 Let s ∈ S such that Ns ≥ N1−δ. One has ‖v(·|s)− qσ(·|s)‖ ≤
η.

Proof. Let t ∈ S be given. If max{v(t|s), qσ(t|s)} ≤ η, one has

|v(t|s)− qσ(t|s)| ≤ η. Otherwise, by (RZ2),

Ns max{v(t|s), qσ(t|s)} ≥ ηN1−δ ≥ N δ.

Therefore, by (29) and (E1), |v(t|s)− qσ(t|s)| ≤ εqσ(t|s) < η.

Step 2 : The approximating process.

Let (S1, S2, . . . , SK) be the partition of S that is given by Theorem 2.10
w.r.t. σ∗ and a. We abbreviate n∗Sk to n∗k. Note that every state that is not
visited by σ constitutes a singleton in this partition.

Let m∗
1 = 0, and for every k = 0, . . . ,K − 1 define m∗

k+1 = n∗1 + n∗2 +
· · · + n∗k. As in the proof of Theorem 2.2, the approximating process π
has K pieces. It follows a hidden V -Markov chain pk from stage m∗

k up to
m∗
k+1. All auxiliary Markov chains are defined on the same set S × T , with

T = S ∪ {�}, where � is an additional symbol. The initial state of the
process is irrelevant. Unless otherwise stated, E stands for the expectations
wrt the law of π.

If n∗k < N1−δ
∗ , we let pk := qσ . Let now k be such that n∗k ≥ N1−δ

∗ .
We define a transition function pk over S × T as follows:
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• From state (s,�), where s ∈ Sk: s′ ∈ S is first drawn according to
v(·|s); if s′ ∈ Sk, pk moves to (s′,�); if s′ /∈ Sk, t ∈ Sk is drawn with
probability Ps′,qk(TSk = Tt) and pk moves to (s′, t).

• From state (s, t), where s 6= t and t ∈ Sk: s′ ∈ S is first drawn
according to b(·|s); if s′ = t, pk moves to (s′,�); if s′ 6= t, pk moves to
(s′, t).

• From state (s, t), where s /∈ Sk and t ∈ Sk ∪{�}: (s′, t′) is drawn with
probability b(s′|s) × Ps,qk(TSk = Tt′). If s′ = t′, pk moves to (s′,�).
Otherwise, pk moves to (s′, t′).

All other transitions from these states receive probability zero. Tran-
sitions in other states are irrelevant. Note that the marginal over S of
pk(·|(s, t)) belongs to Vs.

We now loosely describe the behavior of the S-coordinate. Starting from
Sk, this coordinate evolves according to v until exit from Sk occurs. Then,
the entry state in Sk is chosen at random, and the S-coordinate evolves
according to the barycenter b until that particular state is reached. The
behavior resumes from the beginning. The T -coordinate of the auxiliary
chain serves as an indicator of whether b or v is currently used and, if
relevant, specifies which entry state in Sk has been selected.

The third item in the definition of pk is introduced to take care of the
initial stage in phase k, where the current state is inherited from the previous
phase. Observe that it is used only at stage m∗

k.
Note that qn = v(·|sn) holds whenever tn = � and n 6= m∗

k, for k =
1, ..,K. Observe that there is an ergodic set for pk that contains Sk × {�}.
Let νk be the invariant measure of pk this ergodic set.

For the sake of the proof, it is convenient to introduce the auxiliary
transition function qk defined by

qk(· | s) =
{

v(·|s) s ∈ Sk
q(· | s) s /∈ Sk

. (31)

Thus, qk coincides with v on Sk and with q on Sk.
We proceed by proving several properties of the hidden Markov chain

pk.
The case where Sk is a singleton is albeit simpler, but also has some

specific features. Therefore we shall postpone it and assume first in Steps
3-6 that |Sk| > 1.

Step 3: Perturbation of Markov chains: reminder
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We here introduce a result due to Solan and Vieille (2002). Given C ⊆ S
and an irreducible transition rule q1 over S with invariant measure µ1, set

ζCq1 = min
∅⊂D⊂C

∑
s∈D

µ1
sq

1(C | s).

This is a variation of the conductance of a Markov chain, that was originally
defined by Jerrum and Sinclair (1989), and was used in the study of the rate
of convergence to the invariant measure (see also Lovasz and Kannan (1999),
Lovasz and Simonovits (1990)).

Definition 3.7 Let q1 be an irreducible transition function on S, with in-
variant measure µ1, and C ⊆ S. Let β, ε > 0. A transition rule q2 is (β, ε)-
close to q on C if (i) q2(· | s) = q1(· | s) for every s 6∈ C; (ii)

∣∣∣1− q2(t|s)
q1(t|s)

∣∣∣ < ε

for every s, t ∈ C such that µ1
s max{q1(t | s), q2(t|s)} ≥ βζCq1.

Given a transition function q over S, i = 1, 2, we set

νqC(s) =
∑

t∈C µtq(s|t)∑
t∈C µtq(C|t)

for C ⊂ S and s ∈ C, and (32)

Kq
C =

∑
s∈C

νC(s)Es,q[eC ] for C ⊂ S.

The numerator (resp. the denominator) in (32) is the long run frequency of
transitions from C to s (resp. from C to C). Thus, νqC(s) is the probability
that the first stage in C the process visits is s, while Kq

C is the average
length of a visit to C.

The next result summarizes Theorems 4 and 6 in Solan and Vieille
(2002). Recall that L = max{

∑|S|−1
n=1

(|S|
n

)
n|S|, 220}.

Proposition 3.8 Let ε ∈ (0, 1/2|S|), A > 0 and β ∈ (0, 1
2

(
A
L

)|S| × ε(1−ε)
L×|S|4 ).

Let q1 be an irreducible transition function on S. Assume that |C| > 1 and
that Ps,q1(T

+
t < T+

C
) ≥ A, for every s, t ∈ C. Let q2 be (β, ε)-close to q1 on

C. Then all states of C belong to the same ergodic set E for q2. Moreover,
for every s ∈ C and D ⊂ C ,

|µ2(s|C)− µ1(s|C)| < 18εLµ1(s|C), (33)

L−1 ≤
Es,q2

[
TD
]

Es,q1
[
TD
] ≤ L and L−1 ≤

Kq2
D

Kq1
D

≤ L. (34)

In addition, let χ ∈ (0, βζCq1 ] be any number such that, for every s, t ∈ C,

µ1
s max{q1(t | s), q2(t|s)} ≥ χ⇒

∣∣∣∣1− q2(t | s)
q1(t | s)

∣∣∣∣ < ε. (35)

21



Then at least one of the following hold.

(i)L−1Kq1
C ≤ Kq2

C ≤ LKq1
C or (ii)Kq1

C ≥ 1
2 |S|

×
µ1
C

χ
and Kq2

C ≥ 1
L
× 1

2 |S|
×
µ1
C

χ
.

(36)

Step 4 : Perturbation of Markov chains: application
We here apply Proposition 3.8 to the transition functions q and qk (de-

fined in (31)) and to C = Sk.

Lemma 3.9 If |Sk| ≥ 2 then the transition function qk is (β, 3ε)-close to q
on Sk.

Proof. Using (30) it now suffices to prove that Nδ′
∗
N∗

≤ βζSkq .
Let C be an arbitrary non-empty subset of Sk. One has∑

s∈C
µsq(C | s) =

RC − 1s0∈C
N∗

≥ RC − 1
N∗

≥ a− 1
N∗

. (37)

By taking the minimum over C, this yields ζSkq ≥ a−1
N∗

. The result follows
by (A1).

We denote below by ρ̂i, i = 1, 2, the value of the mixing constant ρi
(defined in Proposition 2.7) for the transition function qk. We abbreviate K
for Kq, and K̂ for Kqk .

Lemma 3.10 If |Sk| ≥ 2 then ρ̂1(Sk) ≤ 2
α ρ̂2(Sk), where α = 1/(2β |S|L2).

Proof. By (34), ρ̂1(Sk) ≤ Lρ1(Sk). We argue now that KSk ≥ 1
2β|S| ×

µSk

ζ
Sk
q

. For C ⊂ Sk,

KSk

µSk
=

1∑
s∈Sk µsq(Sk|s)

≥ N∗
RSk

≥ a
N∗
RC

≥ (a− 1)
1∑

s∈C µsq(C|s)
,

where the last inequality follows by (37) and since RC ≥ aRSk ≥ a. The
claim follows by optimizing over C, using (A2). By (36) and the definition
of ζSkq ,

ρ̂2(Sk) ≥ K̂Sk ≥
1
L
× 1

2β |S|
× µSk

ζSkq
. (38)

Fix C ⊂ Sk. By (38),

ρ̂2(Sk) ≥
1
L
× 1

2β |S|
× µC∑

s∈C µsq(C|s)
≥ 1
L
× 1

2β |S|
×KC

≥ 1
L2

× 1
2β |S|

× K̂C ≥ 1
L2

× 1
2β |S|

× inf
s∈C

Es,qk

[
TC
]
.
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The result follows by taking the maximum over C.

It is convenient to let F̃ snk denote the frequency of visits to (s,�) during
phase k, and Nk

0 =
∣∣{m∗

k ≤ n < m∗
k+1 : ‖qn − qσ(·|sn)‖ > η

}∣∣.
Step 5: E

[
Nk

0

]
≤ 1

|S|BN
ψ.

Denote by E1 the ergodic set for pk that contains Sk ×{�}. Recall that
νk is the invariant measure of pk on E1.

Lemma 3.11 If |Sk| ≥ 2 then νk(Sk × {�}) ≥ 1− 2B
ρ̂2(Sk)

.

Proof. We shall use the following fact. Let q be an irreducible transition
function over a finite set Ω, with invariant measure µ. Let C ⊂ Ω, and
C = Ω\C. One has

µ(C)
µ(C)

≥
infs∈C Es,q

[
TC
]

sups∈C Es,q [TC ] .
(39)

We apply this observation to pk and E1, with C = Sk × {�}. Plainly,
E(s,t),pk

[
TSk×{�}

]
= Es,b [Tt] ≤ B for each (s, t) with t 6= �, s, while by

(11), Lemma 3.10, and (E2),

inf
s∈Sk

E(s,�),pk

[
T
Sk×{�}

]
= inf

s∈Sk
Es,v

[
TSk

]
≥ ρ̂2(Sk)− (|Sk| − 1)ρ̂1(Sk) ≥ ρ̂2(Sk)

(
1− 4βL2(|S| − 1)|S|

)
≥ 1

2
ρ̂2(Sk).

By (39), one gets
νk(Sk × {�})
νk(Sk × {�})

≤ 2B
ρ̂2(Sk)

,

hence νk(Sk × {�}) ≤ 2B
ρ̂2(Sk)

.

Lemma 3.12 If |Sk| ≥ 2 then

ρ̂2(Sk) ≥
1

2L |S|
n∗k

Nψ′
∗

.

Proof. We will use the fact that KSk ≥ n∗k/RSk (see Eq. (12) in Solan
and Vieille (2002)).

By (30), and since δ′ < ψ′, (35) holds with χ = Nψ′−1
∗ . We distinguish

two cases. If KSk ≥ 1
2|S|

nk
Nχ , then by (36)

ρ̂2(Sk) ≥ K̂Sk ≥
1
L
× 1

2 |S|
× nk
Nχ

=
1
L
× 1

2 |S|
× nk

Nψ′
∗

.
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If on the other hand KSk <
1

2|S|
nk
Nχ , then

ρ̂2(Sk) ≥ K̂Sk ≥
1
L
KSk ≥

1
L
×

n∗k
RSk

≥ 1
L
×

n∗k
(a+ 1)|S|

≥ 1
L

n∗k
(a+ 1)|S|

,

which gives also the result by (A5).

In particular, by (RZ3), νk(Sk × {�}) ≥ 1/2.

Lemma 3.13 For each ω ∈ E1 and s ∈ Sk, one has

Eω,pk

[
T+

(s,�)

]
≤ (|Sk| − 1)ρ̂1(Sk) + 2B

minu∈Sk Pu,v(T+
s < TSk)

+ 1.

Proof. It is a simple adaptation of the proof of Corollary 2.9. We repeat
it, with few modifications. Let s ∈ Sk be given. Note that

Eω,pk

[
T+

(s,�)

]
≤ 1 + sup

ω′∈E1

Eω′,pk

[
T(s,�)

]
. (40)

For convenience, set α := maxt∈Sk E(t,�),pk

[
T(s,�)

]
. Let t ∈ Sk achieve the

maximum in the definition of α. By (10)

α = E(t,�),pk

[
T(s,�)

]
≤ Et,v [TSk∪s] + Pt,v(TSk < T+

s )(α+B)

≤ (|Sk| − 1)ρ̂1(Sk) + (α+B)Pt,v(TSk < T+
s )

≤ (|Sk| − 1)ρ̂1(Sk) +B + α× sup
u∈Sk

Pu,v(TSk < T+
s )

Therefore,

α ≤ (|Sk| − 1)ρ̂1(Sk) +B

minu∈Sk Pu,v(T+
s < TSk)

. (41)

For ω ∈ E1\(Sk ×�),

Eω,pk

[
T(s,�)

]
≤ B + α. (42)

The result follows from (40), (41) and (42).

Lemma 3.14 If |Sk| ≥ 2 then for every ω ∈ S × T one has

Eω,pk

[
Nk

0

]
≤ 1
|S|

BNψ.
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Proof. Plainly, Eνk,pk

[
Nk

0

]
= n∗kνk(E1\(Sk × {�})) ≤ 2B × n∗k

ρ̂2(Sk)
: the

equality holds since νk is invariant; the inequality holds by Lemma 3.11.
Therefore,

inf
ω∈Sk×{�}

Eω,pk

[
Nk

0

]
νk(Sk × {�}) ≤

∑
ω∈Sk×{�}

Eω,pk

[
Nk

0

]
νk(ω)

≤ Eνk,pk

[
Nk

0

]
≤ 2B ×

n∗k
ρ̂2(Sk)

.

Since νk(Sk × {�}) ≥ 1/2, this yields

inf
ω∈Sk×{�}

Eω,pk

[
Nk

0

]
≤ 2× 2B ×

n∗k
ρ̂2(Sk)

. (43)

Next, let γ = supω∈Sk×{�} Eω,pk

[
Nk

0

]
and let ω1 ∈ Sk×{�} be a state that

achieves the supremum. Since pk follows b once the process leaves Sk×{�} ,
one has, for each ω2 ∈ Sk × {�},

γ = Eω1,pk

[
Nk

0

]
≤ Eω2,pk

[
Nk

0

]
+ Pω1(TE1\(Sk×{�}) < Tω2)(B + γ).

By Corollary 2.8 and Lemma 3.10, Pω1,pk(TE1\Sk×{�} < Tω2) ≤
2|S|

α/2−|S| =
1/α′. Since α′ ≥ 2, one gets by letting ω2 vary

γ ≤ α′

α′ − 1
inf

ω∈Sk×{�}
Eω,pk

[
Nk

0

]
+

B

α′ − 1
≤ 2 inf

ω∈Sk×{�}
Eω,pk

[
Nk

0

]
+B (44)

Finally, for each ω′ ∈ S × T , by (44), (43), Lemma 3.12 and (DP3),

Eω′,pk

[
Nk

0

]
≤ Eω,pk

[
TSk×{�}

]
+ sup
ω∈Sk×{�}

Eω,pk

[
Nk

0

]
≤ B +B + 2 inf

ω∈Sk×{�}
Eω,pk

[
Nk

0

]
≤ 2B + 2× 2× 2B ×

n∗k
ρ̂2(Sk)

≤ 2B + 16L |S|BNψ′
∗ ≤ BNψ/ |S| .

Step 6: estimates on F̃ snk .

The lemma below is a mixing-type result. It is very close to Lemma 2.13.

Lemma 3.15 If |Sk| ≥ 2 then for every ω ∈ E1 and every s ∈ Sk,

Eω,pk

[
T+

(s,�)

]
≤ 2|S|L N

a− 1
+ 4B + 1
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Proof. We repeat the proof of Lemma 2.13 with minor adjustments.
By Lemma 3.13,

Eω,pk [T
+
(s,�)] ≤

(|Sk| − 1)ρ̂1(Sk) + 2B
minu∈Sk Pu,v(T+

s < TSk)
+ 1.

Abbreviate ρ̂1(Sk) and ρ̂2(Sk) to ρ̂1 and ρ̂2 respectively. By Corollary 2.8,
the denominator is at least 1− 2 |Sk| ρ̂1

ρ̂2−(|Sk|−1)ρ̂1
. Therefore,

Eω,pk [T
+
(s,�)] ≤ ((|Sk| − 1)ρ̂1 + 2B)× ρ̂2 − (|Sk| − 1)ρ̂1

ρ̂2 − (3 |Sk| − 1)ρ̂1
+1 ≤ 2 |Sk| ρ̂1+4B+1,

where the second inequality follows by Lemma 3.10 and (E3).
Eq. (34) implies that ρ̂1 < Lρ1(Sk), and by Proposition 2.12, ρ1(Sk) ≤

maxD⊂Sk
nD

RD−1 ≤
N
a−1 . The result follows.

Define ν�
k (s) = νk((s,�))/νk(Sk × {�}). This is the invariant measure

of pk conditioned on Sk × {�}.

Proposition 3.16 If |Sk| ≥ 2 then P
(∣∣∣F̃ snk − ν�

k (s))
∣∣∣ > 2ε(1 + ε)ν�

k (s))
)
≤

1
2|S| ×

1
Nδ .

Proof. By Remarks 2.5, 2.6 Corollary 3.15, (A4), (A6) and (E2), for
each ω ∈ E1,

Pω,pk

(
|F (s,�)

nk
− νk((s,�))| > ενk((s,�))

)
≤ 2× 9

ε2

nk

(
2
(

2|S|L N

a− 1
+ 4B + 1

)
+ 1
)

≤ 2× 72
ε2

nk
(|S|L N

a− 1
+B) ≤ 1

2|S|
× 1
N δ

. (45)

By Lemma 3.11, (RZ3), and since νk(Sk × {�}) ≥ 1/2,∣∣∣νk((s,�))− ν�
k (s)

∣∣∣ ≤ 2νk(E1\(Sk × {�}))× νk((s,�)) ≤ ενk((s,�)).

Therefore∣∣∣F̃ snk − νk((s,�))
∣∣∣ ≤ ενk((s,�)) ⇒

∣∣∣F̃ snk − ν�
k (s))

∣∣∣ ≤ 2ε(1 + ε)ν�
k (s)).

The result thus follows by (45).

Corollary 3.17 If |Sk| ≥ 2 then

P
(∣∣∣F̃ snk − νσ

∗
(s|Sk))

∣∣∣ > 55εLνσ
∗
(s|Sk)

)
≤ 1

2 |S|
× 1
N δ

.
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Proof. Recall that qk is the invariant measure of qk conditioned on Sk.
On the other hand, the invariant measure of q conditioned on Sk is simply
νσ

∗
(·|Sk). By Lemma 3.9 and Proposition 3.8,∣∣∣ν�

k (s)− νσ
∗
(·|Sk)

∣∣∣ ≤ 18× 3εLνσ
∗
(·|Sk),

The claim follows by Proposition 3.16 and since L ≥ 220.

Step 7: The singleton case: Sk = {s}.
If Ns < N1−δ, then the first item in Theorem holds trivially. In addition,

qn = qσ(·|sn) for each m∗
k ≤ n < m∗

k+1. We now assume Ns ≥ N1−δ.
By Lemma 3.6, Nk

0 is at most |{n : (sn, tn) 6= (s,�)}|. The next lemma
is an analog of Lemma 3.11. Its proof is however significantly different.

Lemma 3.18 One has νk((s,�)) ≥ 1−B(1 + 3ε) (a+1)|S|

N1−δ .

Proof. We first provide a lower bound for v(s | s). By Theorem 2.10

q(S\{s} | s) ≤
RS\{s}

N∗
s

≤ (a+ 1)|S|

N1−δ .

Using (30), this yields

v(S\{s} | s) ≤ (1 + 3ε)
(a+ 1)|S|

N1−δ .

Let E1 be the ergodic set for pk that contains (s,�). We apply (39) to
q = pk, Ω = E1 and C = {(s,�)} to get

νk(E1\(s,�))
νk((s,�))

≤ Bv(S\s|s) ≤ B(1 + 3ε)
(a+ 1)|S|

N1−δ .

The rest of the proof for the singleton case follows closely the proof for
|Sk| > 1.

Corollary 3.19 One has P(
∣∣∣F̃ snk − 1

∣∣∣ > 2ε) ≤ 1
2K × 1

Nδ .

Proof. By Definition of pk, supt∈E1
Et,pk

[
T+

(s,�)

]
≤ B + 1. Therefore,

using Remark 2.5 to pk, ε and s = (s,�),

P
(∣∣∣F̃ snk − νk((s,�))

∣∣∣ > ενk((s,�))
)
≤ 4× 9(2B + 3)

nk
.
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Observe that by (S2)∣∣∣F̃ sk − νk((s,�))
∣∣∣ ≤ 1

N2δ
⇒
∣∣∣F̃ sk − 1

∣∣∣ ≤ 1
N δ

.

By Lemma 3.18, (S2) and (RZ4), |νk((s,�))− 1| ≤ ε. The result follows.

Lemma 3.20 One has E
[
Nk

0

]
≤ BNψ

K .

Proof. We follow the proof of Lemma 3.14. For each ω ∈ E1 one has,
by Lemma 3.18 and (S4)

Eω

[
Nk

0

]
≤ Eω

[
T(s,�)

]
+ E(s,�)

[
Nk

0

]
≤ B + E(s,�)

[
Nk

0

]
≤ B + 2Eνk

[
Nk

0

]
≤ B + 2n∗kνk(E1\(s,�))

≤ B + 2NB(1 + 3ε)
(a+ 1)|S|

N1−δ

≤ BNψ/K.

Step 8: Conclusion

We here conclude the proof of Theorem 3.4. Note first that N0 =
∑

k Nk
0.

Therefore, G2 follows from Lemmas 3.14 and 3.20. Let now s ∈ Sk with
νσs ≥ 1

Nδ . Plainly, NF sN − n∗kF̃
s
nk

is the total number of visits to s that are
not counted in F̃ snk : there are at most

∑
k Nk

0 many of them.
Since E

[∑
k Nk

0

]
≤ BNψ one has by Markov inequality and (RZ5)

P

(∑
k

Nk
0 > ε

N

N δ

)
≤ BN δ+ψ−1

ε
≤ 1

2N δ
.

Therefore, using Corollaries 3.17 and 3.19, the probability that both in-
equalities

∑
k Nk

0 ≤ εN1−δ and
∣∣∣F̃ snk − νσ

∗
(s|Sk))

∣∣∣ ≤ 55εLνσ
∗
(s|Sk) hold for

every k and every s ∈ Sk, is at least 1− 1
Nδ . On this event, by (E1),∣∣∣F sN − νσ

∗
s

∣∣∣ ≤ 55εLνσ
∗

s ≤ ηνσ
∗

s .

This proves G1.
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