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1 Introduction

Consider an irreducible Markov chain (S, q) with finite state space, and

denote its invariant measure by µ = (µs)s∈S . The main purpose of the paper

is to quantify the change in µ when q slightly changes to q̂. This question

has a long history, starting with Schweizer [10]. There, the problem is

analyzed using matrix analysis. It is shown that the modulus of continuity of

q 7→ µ is related to the fundamental matrix of the Markov chain (S, q). This

formalism has later been exploited in numerous studies extending the results

of [10], see e.g. [6], [11], [12]. There has also been some literature dealing

with the numerical analysis aspects of the computation of the fundamental

matrix, see e.g. [4]. There is also a wide literature that quantifies changes

in the eigenvalues of the fundamental matrix as the matrix itself changes,

see e.g. [2].

Our work differs both in the type of results we obtain and in the tech-

niques we use. First, rather than matrix analysis, we use the graph tech-

niques developed by Freidlin and Wenzell [3] and extensively used in the

analysis of Markov chains with rare transitions (see, e.g., Catoni [1]). Next,

we obtain results of the following nature: provided the ratio q(t|s)
q̂(t|s) is close to

one for the most frequent transitions s → t, |µs − µ̂s| is small compared to

µs. In addition, we provide information on other quantities of interest.

Our notion of closeness between q and q̂ is the following. Given ε, β > 0,

we say that q̂ is (ε, β)-close to q if for every two states s, t ∈ S,
∣∣∣1− q̂(t|s)

q(t|s)

∣∣∣ ≤ β

whenever (a) µsq(t|s) ≥ ε or (b) µsq̂(t|s) ≥ ε. Condition (a) holds whenever

the transition from s to t occurs frequently. Condition (b) is not analogous to

(a), since it involves the invariant measure of q, and the transition function

q̂.

Provided ε and β are small enough, we show that q̂ is irreducible, and
µs

µ̂s
close to 1 for each s. In addition, given any proper subset C of S, we

obtain estimates on the exit distribution from C, and on the average length

of visits to C under q and q̂ respectively.

The main motivation for this question is a problem of a statistical nature,
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that arises in the analysis of a class of stochastic games, see Rosenberg

et al, [9]. There, the transition function q is unknown, and an outside

observer wishes to estimate q or its invariant measure, on the basis of the N

first visited states s0, s1, . . . , sN . The observer can calculate the empirical

transition function q̂, defined by

q̂(t | s) = #{n < N | sn = s, sn+1 = t}/#{n < N | sn = s},

and compute the invariant measure µ̂ of µ. If N is large enough, then with

high probability q̂ is (ε, β)-close to q, therefore µ̂ is close to µ.

The paper is organized as follows. Section 2 contains the statements of

the main results. Section 3 briefly recalls standard formulas, and states few

elementary properties. Section 4 is devoted to the proof of the main result.

The last section deals with the variation that is used in [9].

2 Notations and results

Let S be a finite set, fixed through the paper, with at least two elements.

For every subset C ⊆ S, C = S \ C is the complement of C in S, |C| is

its cardinality, and ∆(C) is the set of probability distributions over C. For

s ∈ C ⊆ S, we denote C \ s instead of the more cumbersome C \ {s}.

2.1 Main results

Let q be an irreducible transition function over S, with invariant measure

µ = (µs)s∈S . For every C ⊆ S we denote µC =
∑

s∈C µs. Let q̂ be another

transition function over S. Assuming q̂ is irreducible, we wish to bound the

distance between µ and µ̂.

Our notion of closeness of q̂ to q involves a measure of how mixing q is.

Our measure involves the quantity

ζq = min
∅⊂C⊂S

∑
s∈C

µsq(C | s), (1)

which is a variant of the conductance, see e.g. [5], [7], [8]. Given C ⊂ S,

the quantity
∑

s∈C µsq(C | s) measures the average frequency of transitions
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out of C. Hence, ζq , being the lowest such frequency, is a measure of how

isolated a subset C may be. Formally,

Definition 1 Let ε, β > 0. We say that a transition function q̂ is (ε, β)-

close to q if for every two states s, t ∈ S,
∣∣∣1− q̂(t|s)

q(t|s)

∣∣∣ ≤ β whenever µsq(t|s) ≥

εζq or µsq̂(t|s) ≥ εζq.

Note that this closeness notion is not symmetric, since we use only the

invariant distribution of q.

Denote L =
∑|S|−1

n=1

(|S|
n

)
n|S|. We now state our main result.

Theorem 2 Let β ∈ (0, 1/2|S|) and let ε ∈ (0, β(1−β)
L×|S|4 ). For every irreducible

transition function q on S and every transition function q̂ that is (ε, β)-close

to q:

1. q̂ is irreducible.

2. Its invariant distribution µ̂ satisfies
∣∣∣1− µ̂s

µs

∣∣∣ ≤ 18βL for each s ∈ S.

In Theorem 2, the transition functions are required to be close over the

whole state space S. For the analysis in [9] we need a variation of Theorem

2, where the two transition functions are close in a subset S1 of S, and are

identical outside S1.

Let S1 be a subset of S, with |S1| > 1. Define

ζ1
q = min

∅6=C⊂S1

∑
s∈C

µsq(C | s).

Let (sn) be a Markov chain with transition function q. We denote by Ps,q

the law of (sn) when the initial state is s, and by Es,q the corresponding

expectation.

For every proper subset C of S we let TC = min {n ≥ 0, sn ∈ C} denote

the first hitting time of C and T+
C = min {n ≥ 1, sn ∈ C} the first return to

C . By convention, the minimum over an empty set is +∞.

Definition 3 Let ε, β > 0. We say that a transition function q̂ is (ε, β)-

close to q on S1 if for every two states s, t ∈ S,
∣∣∣1− q̂(t|s)

q(t|s)

∣∣∣ ≤ β whenever

µsq(t|s) ≥ εζ1
q or µsq̂(t|s) ≥ εζ1

q .
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We now state the Theorem that corresponds to Theorem 2.

Theorem 4 Let β ∈ (0, 1/2|S|), a > 0 and ε ∈ (0, 1
2

(
a
L

)|S| × β(1−β)
L×|S|4 ). Let q

be an irreducible transition function such that Ps,q(T+
S1∪{t}

= T+
{t}) ≥ a for

every s, t ∈ S1. Then, for every transition function q̂ that is (ε, β)-close to

q on S1 and that coincides with q on S\S1, we have

1. All states of S1 belong to the same recurrent set R for q̂.

2. The invariant distribution µ̂ of q̂ on R satisfies∣∣∣∣1− µ̂(s|S1)
µ(s|S1)

∣∣∣∣ ≤ 18βL, for each s ∈ S1, (2)

where µ(s | S1) = µs/µS1.

Note that the claims in Theorem 4 differ from those in Theorem 2. It is

no longer claimed that q̂ is irreducible, nor that the unconditional invariant

measures µ and µ̂ are close. The statements in Theorem 4 are optimal in this

respect. This is due to the fact that the quantity ζ1
q contains no information

on the frequency of transitions out of S1. To emphasize this point, consider

the following example.

Assume that S = {a, b, c} and S1 = {a, b}. Let ε, β ∈ (0, 1/2) be given.

Let two additional parameters λ and η be given in (0, 1), and define q as

follows. From state a (resp. b) a chain with transition function q moves to c

with probability η, and otherwise to b (resp. to a). From state c, the chain

remains in c with probability 1−λ, and otherwise moves to a or b with equal

probability 1
2λ.

Plainly, q is irreducible, and the value of µa = µb depends on the ratio

λ/η: this common value may be arbitrary close to 0 (resp. to 1/2) provided

λ/η is close enough to 0 (resp. to +∞). Note that ζ1
q = µaq({b, c} |a) = µa.

Let now q̂ be defined exactly as q, except that the parameter η is replaced

by another parameter η̂ ∈ [0, 1]. As soon as η, η̂ < min(ε, β), q̂ is (ε, β)-close

to q. This is in particular the case if η̂ = 0, in which case q̂ fails to be

irreducible. On the other hand, even if η̂ > 0, the values of η, η̂ and λ can
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be chosen in such a way that the inequalities η, η̂ < min{ε, β} are satisfied,

and η � λ � η̂. Hence, even if q̂ is irreducible, its unconditional invariant

measure µ̂ may be arbitrarily far from µ.

2.2 Other results

Our graph-theoretic approach allows us to obtain information on other quan-

tities of interest. We here present the statements of the corresponding re-

sults. Additional extensions will also be suggested.

We let Qs,q(·|C) denote the law of the exit state from C: Qs,q(t|C) =

Ps,q(TC = Tt) for t /∈ C. Next, we set

νC(s) :=
∑

t∈C µtq(s|t)∑
t∈C µtq(C|t)

for C ⊂ S and s ∈ C, and (3)

KC :=
∑
s∈C

νC(s)Es,q[eC ] for C ⊂ S.

The numerator (resp. the denominator) in (3) is the long run frequency of

transitions from C to s (resp. from C to C). Thus, νC(s) is the probability

that the first stage in C the process visits is s, while KC is the average

length of a visit to C.

Assuming q̂ is irreducible, the corresponding quantities for q̂ will be

denoted by Qs,q̂, ν̂C(s) and K̂C . We now state the results on Qs,q̂ and K̂C

that hold in the framework of Theorems 2 and 4 respectively.

Theorem 5 Set c = 2 |S|2. Under the assumptions of Theorem 2, the fol-

lowing holds: for each C ⊂ S,

1.
∥∥Qs,q(· | C)−Qs,q̂(· | C)

∥∥ < 12βL for every s ∈ C

2. 1
cKC ≤ K̂C ≤ cKC .

Theorem 6 Set c = 2 |S|2. Under the assumptions of Theorem 4, the fol-

lowing holds: for each C ⊂ S1,

1.
∥∥Qs,q(· | C)−Qs,q̂(· | C)

∥∥ < 12βL for every s ∈ C
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2. 1
cKC ≤ K̂C ≤ cKC

3. 1
cKS1 ≤ K̂S1 ≤ cKS1 or KS1 , K̂S1 ≥ 1

2ε|S| ×
µS1
ζ1
q

.

We let q be an irreducible transition function over S. It is fixed through-

out the paper.

3 Preliminaries

Our computations are based on formulas due to Freidlin and Wenzell [3],

that express invariant measure, exit distributions and expected hitting times

in graph-theoretic terms. For a discussion of some applications, we refer to

Catoni [1]. These tools have also been used in the context of stochastic

games in [14] and [13].

The weight of a graph is obtained from the transition probabilities cor-

responding to the different edges of the graph. We recall these formulas

in section 3.1. Next, we compare the weights of a given graph under a

transition function q̂ that is close to q.

3.1 Reminder

Given C ⊂ S, a C-graph is a directed graph without cycle g over S such

that:1

• For s ∈ C, there is exactly one edge starting at s, denoted by (s, g(s)).

• For s ∈ C, there is no edge starting at s.

Thus, given s ∈ C, there is a unique path starting at s and ending at

some t ∈ C. We say that s leads to t along g. We denote by G(C) the set

of C-graphs; for s ∈ C, t ∈ C, Gs,t(C) is the subset of graphs g ∈ G(C)

such that s leads to t along g. Note that G(C) depends only on C, and not

on the transition function. Note also that L bounds the number of graphs:

L ≥
∑

∅⊂C⊂S |G(C)|.
1Our C-graphs correspond to C-graphs in [3], [1].
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We identify each C-graph g with the collection of its edges: g = ∪s∈C{(s, g(s))}.

Given D ⊆ C, and g ∈ G(C), the restriction of g to D is defined to be

the subgraph of g that contains exactly those edges of g that start in D.

Thus, it is the D-graph g′ = ∪s∈D {(s, g(s))}.

For every g ∈ G(C), we define the weight of g under q by

p(g) :=
∏

(s,t)∈g

q(t|s).

Proposition 7 (Freidlin-Wenzell, 1984) Let (S, q) be a Markov chain.

• If q is irreducible then for every s ∈ S

µs =

∑
G(S\{s}) p(g)∑

y∈S

∑
G(S\{y}) p(g)

. (4)

• For every proper subset C of S and every s ∈ C,

Es,q

[
TC

]
=

∑
G(C\{s}) p(g) +

∑
t∈C,t6=s

∑
Gs,t(C\{t}) p(g)∑

G(C) p(g)
, (5)

and

Qs,q(t|C) =

∑
G(C) p(g)∑

Gs,t(C) p(g)
for each t /∈ C. (6)

3.2 Basic properties

In this section we provide basic properties of weights of graphs. The transi-

tion function q is here arbitrary.

Definition 8 Let C be a proper subset of S, and let η > 0. A graph g ∈

G(C) is η-maximal if

p(g) ≥ η max
g′∈G(C)

p(g′).

We denote by Gη(C) the set of η-maximal C-graphs. For simplicity of

notations, we do not emphasize the dependency of Gη(C) on the transition

function. Clearly, Gη(C) is non-empty, for every η ≤ 1 and C ⊂ S. It is

worth listing a few basic properties of graphs that we use repeatedly.
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Proposition 9 P0 Let C1 ∩ C2 = ∅, and gi ∈ G(Ci), for i = 1, 2. If all

paths of g1 lead to C1 ∪ C2, then g1 ∪ g2 is a C1 ∪ C2-graph.

P1 Let C1 ∩C2 = ∅, g ∈ Gη(C1 ∪C2), and gi the restriction of g to Ci. If

all paths of g2 lead to C1 ∪ C2, then g1 ∈ Gη(C1).

P2 Let C1 ∩C2 = ∅, and gi ∈ Gηi(Ci) for i = 1, 2. If g1 ∪ g2 is a C1 ∪C2-

graph, then it is η1η2-maximal.

Proof. P0 and P2 follow from the definitions. We now show that P1

holds. Otherwise, there is g′1 ∈ G(C1) such that p(g1) < ηp(g′1). By P0,

g′ = g′1 ∪ g2 is in G(C1 ∪ C2), but p(g) < ηp(g′), a contradiction.

Note that P1 needs not hold without the condition that all paths of g2

lead to C1 ∪ C2. Indeed, take S = {1, 2, 3, 4}, C1 = {1}, C2 = {2}, and

q(2 | 1) = q(1 | 2) = 1 − q(3 | 1) = 1 − q(4 | 2) = 2/3. The C2-graph

g1 = (2 → 4) is 1/2-maximal, and the C1 ∪ C2-graph (1 → 2, 2 → 4) is

1-maximal.

Lemma 10 Let C be a proper subset of S, let η > 0, and let H be a set of

graphs such that Gη(C) ⊆ H ⊆ G(C). Then

0 ≤
∑

g∈G(C) p(g)∑
g∈H p(g)

− 1 < ηL.

In particular,

0 ≤ 1−
∑

g∈H p(g)∑
g∈G(C) p(g)

< ηL.

Proof. Since H ⊆ G(C), and by the definition of Gη(C),

0 ≤
∑

g∈G(C) p(g)∑
g∈H p(g)

− 1 =

∑
g∈G(C)\H p(g)∑

g∈H p(g)
≤

∑
g∈G(C)\Gη(C) p(g)∑

g∈G1(C) p(g)
< ηL,

as desired.

4 Proof of the main results

We here prove Theorems 2 and 5. We let ε, β ∈ (0, 1) satisfy the assumptions

of Theorem 2, and q̂ be another transition function over S. We assume that

q̂ is (ε, β)-close to q.
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4.1 On graphs

For every proper subset C of S and every η > 0, we denote by Ĝη(C) the set

of η-maximal graphs under q̂. For every C-graph g, p̂(g) =
∏

s∈C q̂(g(s) | s)

is the weight of g under q̂.

Lemma 11 For every proper subset C of S,

1− β

|S|2
∑
s∈C

µsq(C|s) ≤
∑
s∈C

µsq̂(C|s) ≤ (1 + β)|S|2
∑
s∈C

µsq(C|s). (7)

Proof. Let s0 ∈ C and t0 ∈ C maximize the quantity µsq(t | s) amongst

s ∈ C and t ∈ C. Then µs0q(t0 | s0) ≥
∑

s∈C µsq(C|s)/|S|2 ≥ ζq/|S|2 > εζq.

Since q̂ is (ε, β)-close to q, q̂(t0 | s0) ≥ (1− β)q(t0 | s0). In particular,∑
s∈C

µsq̂(C | s) ≥ µs0 q̂(t0 | s0) ≥ (1− β)µs0q(t0 | s0) ≥
1− β

|S|2
∑
s∈C

µsq(C|s),

(8)

and the left hand side inequality in (7) holds.

Let s1 ∈ C and t1 ∈ C maximize the quantity µsq̂(t | s) amongst s ∈ C

and t ∈ C. By (8), µs1 q̂(t1 | s1) ≥
∑

s∈C µsq̂(C | s)/|S|2 ≥ (1− β)ζq/|S|4 >

ε. Since q̂ is (ε, β)-close to q, q(t1 | s1) ≥ q̂(t1 | s1)/(1 + β). Therefore∑
s∈C

µsq(C | s) ≥ µs1q(t1 | s1) ≥
1

1 + β
µs1 q̂(t1 | s1) ≥

1
(1 + β)|S|2

∑
s∈C

µsq̂(C | s),

and the right hand side inequality holds as well.

Lemma 12 Let C ⊂ S and s ∈ C be given. For every g ∈ Gβ(C) (resp.

g ∈ Ĝβ(C)) µsq(g(s) | s) ≥ εζq (resp. µsq̂(g(s) | s) ≥ εζq).

Note that the second claim is not symmetric to the first, since in both

we use the invariant distribution of q.

Proof. The proof is quite similar for g ∈ Gβ(C) and g ∈ Ĝβ(C). We

prove the lemma for the former, and mention where the proof for the latter

differs.

Let g ∈ Gβ(C) be arbitrary. The proof is by induction over the number

of states in C.
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If |C| = 1, then C = {s} for some s ∈ S. Since g is β-maximal, µsq(g(s) |

s) ≥ β/|S|µsq(C|s) ≥ ζq

|S|β (for g ∈ Ĝβ(C), by Lemma 11, µsq̂(g(s) | s) ≥
β
|S|µsq̂(C|s) ≥ β 1−β

|S|3 µsq(C|s) ≥ β 1−β

|S|3 ζq).

Consider now the case |C| > 1.

We first assume that there are at least two edges of g whose endpoints

do not belong to C. Let s1 6= s2 ∈ C Let gi be the restriction of g to C \{si},

i = 1, 2. By P1, gi ∈ Gβ(C \ {si}). Since any edge of g is an edge of g1 or

g2 (or both), the induction hypothesis applied to C \ {si} and gi, i = 1, 2,

implies that the claim holds for g.

Assume now that there is a unique state s1 ∈ C such that g(s1) 6∈ C.

Let g1 be the restriction of g to C \ {s1}. By P1, g1 ∈ Gβ(C \ {s1}). By

the induction hypothesis applied to C \ {s1} and g1, µsq(g(s) | s) ≥ εζq for

every s ∈ C \ {s1}. Thus, it remains to show that µs1q(g(s1) | s1) ≥ εζq.

Let s2 ∈ C maximize the quantity µsq(C | s) amongst s ∈ C (for g ∈

Ĝβ(C), it is chosen to maximize µsq̂(C | s)). By the definition of ζq, µs2q(C |

s2) ≥ ζq/|S| (for g ∈ Ĝβ(C), by Lemma 11, µs2 q̂(C | s2) ≥ (1− β)ζq/|S|3).

Let ĝ ∈ G1(S \C) (for g ∈ Ĝβ(C), one also chooses ĝ ∈ G1(S \C)) . By P0

and P2, ĝ ∪ g1 ∈ G(S \ {s1}).

Let g ∈ G1(S \ {s2}). Since g|S\C is a S \ C-graph, we have p(ĝ) ≥

p(g|S\C). Since for every t ∈ C, g|C\{s2} ∪ (s2, t) is a C-graph, p(g) ≥

p(g|C\{s2})q(t | s2). In particular, p(ĝ)p(g) ≥ βp(g)q(t | s2) for every t ∈ C,

and therefore p(ĝ)p(g) ≥ β
|S|p(g)q(C | s2).
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Denote
∑

=
∑

y∈S

∑
g∈G(S\{y}) p(g). By (4), µs = 1∑ ∑

g∈G(S\{s}) p(g).

In particular,

ζq

|S|
≤ µs2q(C | s2) ≤

∑
g∈G(S\{s2}) p(g)∑ × q(C | s2)

≤ Lp(g)q(C | s2)∑ ≤ L× |S|∑
β

p(ĝ)p(g)

=
L× |S|∑

β
p(ĝ ∪ g \ (s1, g(s1)))q(g(s1) | s1)

≤ L× |S|∑
β

∑
g∈G(S\{s1})

p(g)× q(g(s1) | s1)

=
L× |S|

β
µs1q(g(s1) | s1).

But then µs1q(g(s1) | s1) ≥ εζq, as desired. The calculation for g ∈ Ĝβ(C)

is analogous.

Corollary 13 For every proper subset C of S,∣∣∣∣1− p̂(g)
p(g)

∣∣∣∣ ≤ (|S|+ 1)β, for every g ∈ Gβ(C) ∪ Ĝβ(C) (9)

and ∣∣∣∣∣
∑

g∈H p̂(g)∑
g∈H p(g)

− 1

∣∣∣∣∣ < (|S|+ 1)β, where H = Gβ(C) ∪ Ĝβ(C).

Thus, the weights of β-maximal graphs under q and q̂ are close.

Proof. Note first that the second inequality follows immediately from

the first one. Let us prove (9). Let g ∈ Gβ(C). By Lemma 12, µsq(g(s) |

s) ≥ εζq for every s ∈ C. Since q̂ is (ε, β)-close to q, (1 − β)q(g(s) | s) ≤

q̂(g(s) | s) ≤ (1+β)q(g(s) | s). Multiplying this inequality over s ∈ C yields

(1− β)|C|p(g) ≤ p̂(g) ≤ (1 + β)|C|p(g), and (9) follows.

The proof for g ∈ Ĝβ(C) is similar.

4.2 Proof of Theorem 2

Proposition 14 The transition function q̂ is irreducible.
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Proof. It is enough to prove that for every non-empty subset C ⊂ S,

there exists s ∈ C, and t 6∈ C such that q̂(t | s) > 0.

Let s1 ∈ C and t1 6∈ C be such that µs1q(t1 | s1) ≥ ζq/|S|2 > εζq. Since

q̂ is (ε, β)-close to q, q̂(t1 | s1) > (1− β)q(t | s) > 0.

We need the following technical Lemma.

Lemma 15 1. Let (ai)I
i=1 and (bi)I

i=1 be positive numbers, and let ε >

0. If
∣∣∣ai
bi
− 1

∣∣∣ < ε for every i = 1, . . . , I then
∣∣∣∑I

i=1 ai∑I
i=1 bi

− 1
∣∣∣ < ε and∣∣∣min{a1,a2,...,aI}

min{b1,b2,...,bI} − 1
∣∣∣ < ε.

2. Let ε ∈ (0, 1/3), and let a,A, b,B > 0. If
∣∣a
b − 1

∣∣ < ε and
∣∣ b
B − 1

∣∣ < ε

then
∣∣∣ a/b
A/B − 1

∣∣∣ < 3ε.

Proof. The proof of the first part is left to the reader. For the second

part, note that 1/(1 + ε) < B/b < 1/(1− ε), which implies that B/b− 1 <

ε/(1− ε). In particular,∣∣∣∣ a/b

A/B
− 1

∣∣∣∣ ≤ (∣∣∣ a

A
− 1

∣∣∣ + 1
) ∣∣∣∣Bb − 1

∣∣∣∣ +
∣∣∣ a

A
− 1

∣∣∣ < (1 + ε)
ε

1− ε
+ ε < 3ε.

Proposition 16 For each s ∈ S,

|1− µ̂s

µs
| < 18βL.

Proof. Fix s ∈ S. By (4),

µs =

∑
G(S\{s}) p(g)∑

y∈S

∑
G(S\{y}) p(g)

and µ̂s =

∑
G(S\{s}) p̂(g)∑

y∈S

∑
G(S\{y}) p̂(g)

.

For every y ∈ S, define Hy = Gβ(S\ {y}) ∪ Ĝβ(S\ {y}). Define

µ′s =

∑
Hs

p(g)∑
y∈S

∑
Hy

p(g)
and µ̂′s =

∑
Hs

p̂(g)∑
y∈S

∑
Hy

p̂(g)
.

By Lemma 10 and Lemma 15,
∣∣∣µs

µ′s
− 1

∣∣∣ < 3βL and
∣∣∣ µ̂s

µ̂′s
− 1

∣∣∣ < 3βL. By

Lemmas 10 and 15,
∣∣∣ µ̂′s
µ′s
− 1

∣∣∣ < 3(|S| + 1)β. Since L ≥ |S| ≥ 2, the result

follows by Lemma 15(2).
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4.3 Proof of Theorem 5

Proposition 17 For every proper subset C of S, every s ∈ C and t 6∈ C,

∣∣Qs,q(t | C)−Qs,q̂(t | C)
∣∣ < 12βL.

Proof. Denote H = Gβ(C) ∪ Ĝβ(C), and Hs,t = H ∩Gs,t(C).

Assume first that Hs,t 6= ∅. By (6), one has∣∣∣∣∣Qs,q(t|C)−
∑

H∩Gs,t(C) p(g)∑
G(C) p(g)

∣∣∣∣∣ ≤ βL.

Since
∣∣∣ ∑

H p(g)∑
G(C) p(g) − 1

∣∣∣ ≤ βL, this yields, by Lemma 15(2),∣∣∣∣∣Qs,q(t|C)−
∑

H∩Gs,t(C) p(g)∑
H p(g)

∣∣∣∣∣ ≤ βL + 3βL ≤ 4βL, (10)

and a similar inequality holds with q replaced by q̂.

By Corollary 13 and Lemma 15(1),∣∣∣∣∣
∑

H∩Gs,t(C) p̂(g)∑
H∩Gs,t(C) p(g)

− 1

∣∣∣∣∣ ≤ β(|S|+ 1) and
∣∣∣∣∑H p̂(g)∑

H p(g)

∣∣∣∣ ≤ β(|S|+ 1). (11)

By Lemma 15(2), (11) implies∣∣∣∣∣
∑

H∩Gs,t(C) p(g)∑
H p(g)

−
∑

H∩Gs,t(C) p̂(g)∑
H p̂(g)

∣∣∣∣∣ ≤ 3β(|S|+ 1),

which implies, using (10),

∣∣Qs,q(t|C)−Qs,q̂(t|C)
∣∣ ≤ β(8L + 3(|S|+ 1)).

If, on the other hand, Hs,t = ∅, then by (6) and the definition of Hs,t,

Qs,q(t | C),Qs,q̂(t | C) ≤ βL.

Proposition 18 For every proper subset C of S,

1
2 |S|2

KC ≤ K̂C ≤ 2 |S|2 KC .

14



Proof. We first argue that

KC =
∑

s∈C µs∑
s∈C µsq(C | s)

. (12)

Indeed, define the r.v. ρn as the average length of visits to C that end before

stage n + 1:

ρn =

∑n
p=1 1sp∈C∑n

p=1 1sp∈C1sp+1 /∈C
. (13)

By the ergodic theorem, the sequence (ρn) converges, Ps1,q-a.s. to KC , while

the right hand side in (13) converges Ps1,q-a.s. to
∑

s∈C µs∑
s∈C µsq(C|s) . The identity

(12) follows.

By Proposition 16, for every s ∈ C,

(1− 18βL)µs < µ̂s < (1 + 18βL)µs. (14)

By Lemma 11,

1− β

|S|2
∑
s∈C

µsq(C|s) ≤
∑
s∈C

µsq̂(C|s) ≤ (1 + β)|S|2
∑
s∈C

µsq(C|s). (15)

Eqs. (14) and (15) yield

(1− 18βL)(1− β)
|S|2

∑
s∈C

µsq(C|s) ≤
∑
s∈C

µ̂sq̂(C|s) ≤ (1+β)(1+18βL)|S|2
∑
s∈C

µsq(C|s).

(16)

Summing up Eq. (14) over s ∈ C gives

(1− 18βL)
∑
s∈C

µs <
∑
s∈C

µ̂s < (1 + 18βL)
∑
s∈C

µs. (17)

The Proposition follows by dividing (17) by (16).

5 Proof of the variations

We here prove Theorems 4 and 6. We shall follow the previous proofs,

and will point out which changes are needed. We let a, ε, β be given, that

satisfy the assumptions of Theorem 4. The result of Section 4.1 still hold for

every proper subset C of S1, namely Lemmas 11, 12 and Corollary 13 are

still valid, provided the assumption C ⊂ S is replaced by the assumption

C ⊂ S1.

15



5.1 Proof of Theorem 4

We need the following observation.

Lemma 19 For every y ∈ S1, there exists a (a/L)|S|-maximal graph g ∈

G(S1\y) such that all paths of g lead to y.

Proof. By P2, for every s ∈ S1\y there is a a
L -maximal S1\y-graph

gs in which s leads to a state in y. Let hs be the path in gs that connects

s to y (this is a set of edges). Let g be a S1\y-graph that is contained in

∪s∈S1\yhs. Then g satisfies the conditions.

We next prove the two assertions of Theorem 4.

Lemma 20 All states of S1 belong to the same recurrent set for q̂.

Proof. It is enough to prove that for each C ⊂ S1, there exists s ∈ C

and t ∈ C such that q̂(t|s) > 0. The proof of Proposition 14 still applies,

provided ζq is replaced by ζ1
q .

Lemma 21 For each s ∈ S1,∣∣∣∣1− µ̂(s|S1)
µ(s|S1)

∣∣∣∣ ≤ 18βL.

Proof. The proof goes essentially as in Proposition 16. Set η = β/(a/L)|S| <

(a/L)S , and fix s ∈ S1. By (4),

µ(s|S1) =

∑
G(S\{s}) p(g)∑

y∈S1

∑
G(S\{y}) p(g)

and µ̂(s|S1) =

∑
G(S\{s}) p̂(g)∑

y∈S1

∑
G(S\{y}) p̂(g)

.

For every y ∈ S1, define Hy = Gη(S\ {y}) ∪ Ĝη(S\ {y}). Define

µ′(s|S1) =

∑
Hs

p(g)∑
y∈S1

∑
Hy

p(g)
and µ̂′(s|S1) =

∑
Hs

p̂(g)∑
y∈S1

∑
Hy

p̂(g)
.

Fix for a moment y ∈ S1. By Lemma 19 there is a (a/L)|S|-maximal S1\{y}-

graph g such that all its paths lead to y. Let g ∈ Gη(S\ {y}), and gS1\{y},

gS\S1
its restrictions to S1\ {y} and S\S1. Using the above remark, the

16



graph g ∪ gS\S1
is a S\ {y}-graph. Therefore, gS1\{y} is η(a/L)|S|-maximal

(= β-maximal). By Corollary 13 one has
∣∣∣1− p̂(gS1\{y})

p(gS1\{y})

∣∣∣ < (|S| + 1)β.

Since q and q̂ coincide outside S1, p(gS\S1
) = p̂(gS\S1

). Thus,
∣∣∣1− p̂(g)

p(g)

∣∣∣ <

(|S|+ 1)β. Lemma 10 and Lemma 15 implies that
∣∣∣ µ(s|S1)
µ′(s|S1) − 1

∣∣∣ < 3βL and∣∣∣ µ̂(s|S1)
µ̂′(s|S1) − 1

∣∣∣ < 3βL. By Lemmas 10 and 15,
∣∣∣ µ̂′(s|S1)
µ′(s|S1) − 1

∣∣∣ < 3(|S| + 1)β.

Since L ≥ |S| ≥ 2, the Lemma follows by Lemma 15(2).

5.2 Proof of Theorem 6

The proof of the first two assertions in Theorem 6 is identical to the proof

of the two assertions in Theorem 5 (see Propositions 17 and 18). We omit

it. We now prove a slightly strengthened version of the last assertion.

Proposition 22 Let η ≤ εζ1
q be such that

∣∣∣1− q̂(t|s)
q(t|s)

∣∣∣ ≤ β whenever µs max(q(t|s), q̂(t|s)) ≥

η. One has
1
c
KS1 ≤ K̂S1 ≤ cKS1 or KS1 , K̂S1 ≥

1
2 |S|

× µS1

η
.

The last statement in Theorem 6 corresponds to the case η = εζ1
q .

Proof. Fix s ∈ S1. By (12),

KS1 =
1∑

t∈S1
µ(t|S1)q(S1 | t)

,

and a similar equality holds for K̂S1 , involving µ̂ and q̂. By Theorem 4(2)

and Lemma 15, the ratio between K̂S1 and 1∑
t∈S1

µ(t|S1)q̂(S1|t)
is between

1− 54βL and 1 + 54βL.

If for every t ∈ S1 and u 6∈ S1, µtq(u | t) < η and µtq̂(u | t) < η, then

KS1 ≥
µS1
|S|2η

and K̂S1 ≥ (1− 54βL)× µS1
|S|2η

, as desired.

If, on the other hand, there exist t ∈ S1 and u 6∈ S1 such that µtq(u | t) ≥

η or µtq̂(u | t) ≥ η then |1− q̂(u|t)
q(u|t) | ≤ β, and therefore µtq(u | t) ≥ (1−β)η and

µtq̂(u | t) ≥ (1− β)η. For every t ∈ S1 and u 6∈ S1 such that µtq(u | t) < η

and µtq̂(u | t) < η we have µtq(u | t) ≤
∑

t∈S1
µtq(S1 | t) and µtq̂(u | t) ≤∑

t∈S1
µtq̂(S1 | t). It follows that the ratio between

∑
t∈S1

µtq(S1 | t) and∑
t∈S1

µtq̂(S1 | t) is at most |S|2. The result follows.
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de Probabilités XXXIII, pages 69–119. Springer, 1999.

[2] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible

Markov chains. The Annals of Applied Probability, 3:696–730, 1993.

[3] M. Freidlin and A. Wentzell. Random Perturbations of Dynamical Sys-

tems. Springer, Berlin, 1984.

[4] J.J. Hunter. Stationary distributions of perturbed Markov chains. Linear

Algebra and its applications, 82:201–214, 1986.

[5] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Jour-

nal on Computing, 18:1149–1178, 1989.

[6] J.B. Lasserre. Formula for singular perturbations of Markov chains.

Journal of Applied Probability, 31:829–833, 1994.

[7] L. Lovasz and R. Kannan. Faster mixing via average conductance. An-

nual ACM Symposium on Theory of Computing, 282–287, 1999.

[8] L. Lovasz and M. Simonovits. The mixing rate of Markov chains, an

isoperimetric inequality, and computing the volume. 31st Annual Sym-

posium on Foundations of Computer Science, Vol. I, II, 346–354.

[9] D. Rosenberg, E. Solan and N. Vieille. Stochastic games with imperfect

monitoring. mimeo, 2002.

[10] P.J. Schweizer. Perturbation theory and finite Markov chains. Journal

of Applied Probability, 5:401–413, 1968.

[11] E. Seneta. Perturbation of the stationary distribution measured by er-

godicity coefficients. Advances in Applied Probability, 20:228–230, 1988.

18



[12] E. Seneta. Sensitivity of finite Markov chains under perturbations.

Statistics and Probability Letters, 17:163–168, 1993.

[13] E. Solan and N. Vieille. Correlated equilibrium in stochastic games.

Games and Economic Behavior, 38:362–399, 2002.

[14] N. Vieille. Small perturbations and stochastic games. Israel Journal of

Mathematics, 119:127–142, 2000.

19


