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Abstract. This paper shows how standard arguments supporting the impo-
sition of price caps break down in the presence of demand uncertainty. In
particular, though in the deterministic case the introduction or lowering of a
price cap (above marginal cost) results in increased production, increased total
welfare, decreased prices, and increased consumer welfare, we show that all of
the above comparative statics predictions fail for generic uncertain demand
functions. For example, for price caps su�ciently close to marginal cost, a
decrease in the price cap always leads to a decrease in production and total
welfare under certain mild conditions. Under stronger regularity assumptions,
all of the monotone comparative statics predictions from the deterministic case
also do not hold for a generic uncertain demand if we restrict attention to price
caps in an arbitrary �xed interval (as long as the price caps are binding for
some values in that interval).
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1. Introduction

There is a common economic perception that, in the context of a monopoly
or oligopoly, price ceilings or caps1 can be e�ective in combatting the exercise of
market power. In words of a Federal Energy Regulatory Commissioner (Walsh
(2001)): �If you cap those prices, you eliminate any incentive to withhold . . . you
may as well sell into the market at a capped price as long as you're covering your
running cost and making a reasonable pro�t.�

The classical rationale for the use of price caps is well known. Consider the case
of a monopolist and a standard downward-sloping demand curve. If competition
was perfect, the resulting price ppc would be equal marginal cost, and the produced
quantity qpc would maximize e�ciency and welfare. However, an unconstrained
monopolist will maximize pro�ts by equalizing marginal revenue and marginal cost.
The resulting quantity qm is less than the socially optimal quantity qpc and leads
to a price of pm > ppc. The imposition of a price cap at a level between ppc

and pm results in an increased quantity produced by the monopolist because its
marginal revenue is constant up to a production level where the price cap is no
longer binding. As a result, the imposition of a price cap at a level between ppc and
pm increases quantities produced, increases welfare, and decreases prices. Moreover,
the "optimal" price cap is exactly ppc, the perfectly competitive price. Thus, price
caps and, in particular, price caps close to marginal costs, seem like an attractive
tool to increase consumer welfare and total e�ciency.

A typical criticism of the theory is on practical grounds. For example, it is
di�cult in practice to know what ppc is (See Clarkson and Miller (1982), p. 461
�). Nevertheless, price caps have been imposed in a wide variety of markets as
mentioned above. In the electric power generation industry, for example, price caps
have been used in the context of creating a deregulated market while at the same
time providing a check on the exercise of horizontal market power. Borenstein
(2002) discusses the use of price caps in the California electricity markets. That
policy makers, and not just economists, use and apply price cap theory is shown
by the quote above from a Federal Energy Regulatory Commissioner. Price caps
also show up various forms in the regulation of monopolies. One such area that
relies heavily on the typical theory of price caps is that of performance based rate
making and "price cap regulation." The idea is that rather than using traditional

1The focus here is not on macroeconomic situations in which price controls might be imposed
to control in�ation, but on situations in which price caps are or have been imposed on particular
products such as apartment rents, electricity, gasoline, interest rates on credit card balances, or
college tuition.
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cost-of-service regulation with attendant problems such as lack of productivity im-
provements and disincentives to cost minimize, the regulator sets a price cap which
it adjusts over time to, in theory, marginal costs incurred by a competitive �rm.
The Federal Communications Commission, for example, has indicated a preference
for price cap regulation over cost-of-service methodologies (In the Matter of Policy
and Rules Concerning Rates for Dominant Carriers, Order on Reconsideration, CC
Docket No. 87 � 313, FCC 89 � 91, p. 19.). For an overview of considerations under
price cap regulation see Parker (2002). For application to telecommunications, see
Uri (2001), and to healthcare, see Mougeot and Naegelen (2005). The institutional
details of price caps whether as applied to markets or regulated utilities are, how-
ever, beyond the scope of this paper. The purpose of this paper is to focus on the
theoretical properties of price caps that underlie the justi�cation of the use of price
caps in a variety of contexts. We show that the predictions of the deterministic
theory change drastically if demand is uncertain.

In order to make this point, the paper examines the impact of price caps in the
context of a simple Cournot model.2 We �rst consider a one-stage, deterministic,
Cournot game in which n ∈ N �rms choose production quantities.3 Pro�t of each
�rm depends on the quantity produced by the �rm and the price of the good which
is a function of the total quantity produced by the industry. In addition, each
�rm has a constant marginal cost c. In the context of this model, we examine
the introduction of a price cap p > c. Theorem 1 shows that, if we respectively
restrict attention to the equilibrium with the lowest or highest production quantity,
the following monotone comparative static results hold in the deterministic case:
(i) production is nonincreasing in the price cap; (ii) total welfare is nonincreasing
in the price cap; (iii) as the price cap p approaches marginal cost, total welfare
converges to the e�cient level; (iv) consumer welfare is nonincreasing in the price
cap; (v) average prices are well de�ned (in the sense that �rms produce a positive
quantity) and nondecreasing in the price cap. These results seem to con�rm the
intuition supporting the use of price caps, in particular price caps which are close
to marginal cost.

We show that these results do not extend to environments with stochastic rev-
enues. For this purpose, we consider an extension of the above model where de-
mand is uncertain and risk neutral �rms choose the production quantities before

2Cournot models are widely used in applications, for example, in the analysis of electricity mar-
kets. See Daughety (1988) for an anthology of work on Cournot models and general applications.
Also see Carlton and Perlo� (1994).

3All our results thus apply to the monopoly case n = 1.
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the demand realization (or, equivalently, revenue realization) is known. In this en-
vironment, none of the above �ve predictions is true in general. As a matter of
fact, we show that, under weak assumptions, all of the conditions (i)�(v) fail for a
generic uncertain demand schedule. Theorem 2 shows that if demand is stochastic
and some additional regularity assumptions are satis�ed, (i)�(ii) actually will be
reversed for price caps close to marginal cost. In general, the quantitative e�ect of
price caps close to marginal cost will depend on the exact form of the uncertainty.
Theorem 3 provides a characterization and shows that if low realizations of demand
are possible, although perhaps very improbable, the breakdown of production (and
thus welfare) associated with a low price cap (above but close to marginal cost)
will be severe. However, perverse e�ects are not limited to price caps close to mar-
ginal cost. Theorems 4 and 5 show that, under stronger regularity conditions, for
a generic demand schedule, the above monotonicity properties (points (i)�(ii) and
(iv)�(v)) fail in any interval in which the price cap is binding. Finally, Theorem 6
considers a modi�cation of the model in which �rms do not have to sell the entire
quantity they produced, but rather they choose the optimal amount they want to
sell after the uncertainty has been resolved. The statements of Theorems 1 � 5 are
robust to this modi�cation.

The technical reason why the results of the deterministic case do not immedi-
ately generalize is that with stochastic demand, the single-crossing property that
underpins the deterministic monotone comparative statics results, does not have
to hold. (Of course, the single crossing condition is only su�cient for the mono-
tonicity results, not necessary.) On an intuitive level, the underlying reason for the
di�erence between the results of the stochastic and the deterministic model is the
interplay of two e�ects that result from an increase in the price cap. To gain some
basic intuition consider the case of a monopolist producing a quantity q at a current
price cap p. The payo� of the monopolist is then a weighted average of the payo�
if the price cap is binding and the payo� if it is not. If the monopolist knew that
the price cap would be binding he would like to increase his production. Only the
possibility that the price cap is not binding prevents him from doing so. An increase
in the price cap has now two resulting e�ects. The �rst e�ect is an increase in the
incentive of the monopolist to choose a higher quantity as the bene�ts of producing
a higher quantity increase when the price cap is binding. But the disadvantages of
producing a higher quantity when the price cap is not binding do not change. But
there is a second e�ect that decreases the monopolist's incentive to increase the
quantity. The probability that the price cap is binding will decrease as the price
cap increases. Our theorems establish that, under some regularity assumptions, the
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�rst e�ect dominates the second and the monopolist produces a higher quantity at
the larger price cap. The e�ects of a low price cap can be particularly severe when
price caps are just above marginal costs. If there is a slight possibility that pro-
duction will be ine�cient, then a price cap su�ciently close to marginal cost will
result in a complete stoppage of production.

Our results exhibit some duality to those of the papers by Deneckere et al. (1996,
1997) on minimum resale price maintenance. Deneckere et al. (1997) examines a
model of a monopoly manufacturer selling a product with little or no scrap value
through a competitive retail sector to consumers. The retailers must order inven-
tories before the demand uncertainty is resolved. In this environment it may be
optimal for the manufacturer to impose a minimum retail price instead of permit-
ting retail markets to clear. Consumers may also bene�t from the minimum price
because prices are lower and sales are higher when demand is high. In essence,
with a binding minimum price the competitive retailers order more inventory and
so sales and welfare can be higher. Although our model is very di�erent its equi-
libria have dual properties: A price cap may lead to lower production and reduced
welfare.

The paper is organized as follows. The next section introduces the model. Sec-
tion 3 contains the results. In Section 4 we present examples and discuss in detail
the signi�cance of the underlying assumptions. Section 5 concludes. All proofs can
be found in the Appendix.

2. Model

We consider the case of n symmetric �rms, where n = 1, 2, . . . is an arbitrary
natural number. Each �rm produces the same homogeneous good at a constant
marginal cost c which is the same for all �rms.4

Demand is given by a continuous price function P (Q, θ) which depends on Q ∈
R+, the total quantity produced in the industry, and some random variable θ ∈ R
distributed according to a distribution F with bounded support.5 We assume that
a high realization of θ leads to higher prices than a low realization, i.e. that P (Q, θ)

is increasing in θ for any �xed value of Q. We also assume that for each �xed θ the
price function P (Q, θ) is decreasing in Q.

4We consider constant marginal costs because in this case the comparative statics results are
very clear cut and simple to state. It is straightforward to generalize Theorems 2, 4 and 5 to the
case of a convex cost function.

5While F has bounded support, it will be convenient to assume that P (Q, θ) is de�ned for all
θ ∈ R and Q ∈ R+.
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Firms decide on the quantity they wish to produce before the realization of θ

is known. Because �rms are assumed to be risk neutral, they will maximize their
expected pro�ts. This means that in the case of no price caps, �rm i chooses its
production q to maximize its expected pro�ts

π(q, Q−i) = E(q · (P (q + Q−i, θ)− c)),

where Q−i is the quantity produced by all other �rms. Similarly, in the more general
case of a price cap p, �rm i chooses its production q to maximize its expected pro�ts
given by

π(q, Q−i, p) = E(πθ(q, Q−i, p)),

where
πθ(q,Q−i, p) = q · (min(P (q + Q−i, θ), p)− c)

are the pro�ts for a given realization of θ. To guarantee that there exists a pro�t-
maximizing quantity, we assume that limQ→∞ P (Q, θ) < c for all θ ∈ R.

In the following, we say that production is gainful if E(P (0, θ)) > c. Clearly
if E(P (0, θ)) < c, no �rm will ever produce a positive quantity no matter what
the price cap is. As the analysis of the case E(P (0, θ)) = c is straightforward and
without practical interest, we will in the following assume that production is gainful.
While we do not require P to be di�erentiable, we assume there exists L1, L2 > 0

such that |P (Q, θ)−P (Q′, θ)| ≤ L1 · |Q−Q′| and |P (Q, θ)−P (Q, θ′)| ≥ L2 · |θ− θ′|
for all θ, θ′ ∈ R and Q,Q′ ∈ [0, QMax], where QMax = inf{x : E(P (x, θ)) = c}.6

We are interested in pure strategy symmetric Nash Equilibria, i.e. quantities q

that solve q ∈ arg maxq′ π(q′, (n−1) · q, p). For any �xed price cap p, denote the set
of all such equilibria by q∗(p). Since a price cap below c leads to no production, we
restrict ourselves in the following to price caps p which are strictly larger than c.

3. Results

3.1. Existence. We start by establishing the existence of the studied equilibria.

Proposition 1. For any price cap p the set q∗(p) is nonempty.

Existence of symmetric equilibria for similar models in which marginal costs are
equal to zero was proven by Roberts and Sonnenschein (1976).7 The argument
of Roberts and Sonnenschein relies on the nonnegativity of the inverse demand

6If P were continuously di�erentiable, we could replace the above assumption with the re-
quirement that d

dQ
P < 0 and d

dθ
P > 0 on the relevant region. Note that our assumptions are

su�ciently �exible to allow both for nonnegative price functions or the possibility of negative
prices.

7See also Example 1 in Milgrom and Roberts (1994).
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function and therefore does not directly apply in the presence of a positive c if
E(min(P (Q, θ), p)− c)) < 0 for some p and Q. Instead, we use Lemma 1 below to
establish a regularity property of the best response correspondence b(·, p).

Lemma 1. Let b(x, p) = arg maxq π(q, x, p) be the best response of a player if his
opponents together produce x ∈ R+ and the price cap is p.

Fix a price cap p > c and quantity xo ∈ R+. Then limx↑xo b(x, p) and limx↓xo b(x, p)

exist8 and

lim
x↑xo

b(x, p) = min b(xo, p) ≤ max b(xo, p) = lim
x↓xo

b(x, p),

where min b(x, p) and max b(x, p) denote respectively the smallest and largest ele-
ment in b(x, p).9

The existence of equilibria now follows immediately from Lemma 1 along the
same lines as in Roberts and Sonnenschein (1976) or Milgrom and Roberts (1994).

By Proposition 1, the set q∗(p) is nonempty. Note that it is also compact as the
best response correspondence has a closed graph. We will denote the smallest and
largest element in q∗(p) by q∗L(p) and q∗H(p), respectively.

3.2. Deterministic Case. If we refer to total and consumer welfare in the context
of deterministic demand, we mean respectively

∫ Q

0
(P (x, θ)−c)·dx and

∫ Q

0
(P (x, θ)−

min(P (Q, θ), p)) · dx respectively.10 If demand is not deterministic by total and
consumer welfare, we mean respectively the expected values of the above two ex-
pressions.

Theorem 1. Assume deterministic demand and restrict attention to the equilib-
rium with the highest production quantity, q∗H(p), or the lowest production quantity,
q∗L(p). Then in the corresponding equilibrium,

(i) production is nonincreasing in the price cap;
(ii) total welfare is nonincreasing in the price cap;
(iii) as price cap approaches marginal cost, total welfare converges to the e�cient

level;
8When we say that limx↑xo b(x, p) exists, we mean that there exists a real number denoted

by limx↑xo b(x, p) such that for any sequence xm → xo with xm ≤ x0 and for any sequence
qm ∈ b(xm, p) it is the case that qm → limx↑xo b(x, p). The statement for limx↓xo b(x, p) has an
analogous meaning.

9The existence of min b(Q−i, p) and max b(Q−i, p) is guaranteed; the best response correspon-
dence has a closed graph with values that are uniformly bounded. (The existence of a uniform
upper bound follows from limQ→∞ P (Q, θ) < c for all θ ∈ R.)

10Thus, in the case where the price cap is binding, consumer welfare is calculated under e�cient
rationing.
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(iv) consumer welfare is nonincreasing in the price cap;
(v) average prices are well-de�ned11 (i.e. �rms engage in production) and non-

decreasing in the price cap.

The proof of the theorem is based on Lemma 1 and the following observation.

Lemma 2. In the case of deterministic demand (the support of θ consists of a single
point), π(q,Q−i, p) satis�es the single crossing property as a function of (q,−p) for
any �xed Q−i.

It is noteworthy that the above result involves all Nash Equilibria. Milgrom
and Roberts (1994, Example 1) illustrate their methods considering the Cournot
model of Roberts and Sonnenschein (1976). They conclude that an increase in costs
leads to a decrease in equilibrium quantities if they restrict themselves to the set
of equilibria in which each �rm chooses the highest quantity consistent with pro�t
maximization. We are able to generate results involving the set of all equilibria
because of the regularity conditions developed in Lemma 1.

3.3. Uncertain Demand. Note that in the case of stochastic demand, the func-
tion π will be still a convex combination of functions which (by Lemma 2) have
the single crossing property. However, unlike the increasing di�erences property,
the single crossing property is not always preserved under convex combinations.
Therefore, in the case of stochastic demand, it is not immediately clear whether π

will satisfy the single crossing property as in Lemma 2. Of course, even if π does not
satisfy the single crossing property, this does not automatically imply that q∗L(p)

and q∗H(p) cannot be monotonically decreasing.
We start our investigation by considering price caps close to marginal costs.12

Theorem 2. Assume F : R→ [0, 1] is continuously di�erentiable.13

Then there exists γ > 0 such that q∗L and q∗H are monotonically non-decreasing in
(c, c + γ).

Assume, in addition, P is continuously di�erentiable. Then there exists γ > 0

such that either both q∗L and q∗H are monotonically increasing in (c, c + γ) or both
are equal to zero on (c, c + γ).

11In the case of deterministic demand there actually will be just a unique price. We use the
term average prices so that it also makes sense to talk about (v) in the context of uncertain
demand.

12Price caps close to marginal costs have received special attention. (See, for example, the
comment of the Federal Energy Regulatory Commissioner cited in the Introduction.)

13The continuous di�erentiability of F is not just a technical requirement. We discuss this
assumption in detail in Section 4.
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Thus, if price caps are su�ciently close to c, then a lowering of the price cap will
actually reduce the production level. Note that for any θ - as long as θ is known -
welfare arbitrary close to the maximal level can be achieved by choosing price caps
su�ciently close to c. It might be surprising that while this holds for any �xed θ,
it is not the case when the exact realization of θ is ex ante uncertain, in which case
the optimal, welfare maximizing price cap is bounded away from c.

To see the most basic intuition behind this result, consider the case of a mo-
nopolist (n = 1). Imagine the current price cap is p1 and the monopolist charges
some quantity q. The payo� of the monopolist is then a weighted average of the
payo� q · p1 if the price cap is binding, and q · P (q, θ) if it is not. Note that if
the monopolist knew that the price cap would be binding he would like to increase
his production. Only the possibility that the price cap is not binding prevents him
from doing so. Now, consider what happens if the price cap goes slightly up to a
level p2 > p1. In this case, if the price cap is binding pro�ts become q · (p2 − c)

while pro�ts remain q · (P (q, θ)− c) if the price cap is not binding. There are two
resulting e�ects. The �rst e�ect of an increase in the price cap is an increase in the
incentive of the monopolist to choose a higher quantity as the bene�ts of producing
a higher quantity increase when the price cap is binding but the disadvantages of
producing a higher quantity when the price cap is not binding do not change. But
there is a second e�ect that decreases the monopolist's incentive to increase the
quantity. The probability that the price cap is binding will decrease as the price
cap increases. Theorem 2 establishes that under the given assumptions, the �rst
e�ect dominates the second.

As a direct corollary of Theorem 2 we can establish that the comparative statics
results of Theorem 1 do not hold for a generic distribution. In the following, when
we refer to the set of all distributions on the reals and its subsets we consider it
equipped with the topology that corresponds to weak convergence (i.e. convergence
in distribution).

Corollary 1. Assume P is continuously di�erentiable. Denote the set of all dis-
tributions with bounded support for which production is gainful by z. Restrict at-
tention to the equilibrium with the highest or lowest production quantity.

Then the set of F ∈ z, for which at least one of the conditions (i), (ii) or (iii)
of Theorem 1 holds, is nowhere dense in z. Indeed, there is an open and dense set
for which neither of those conditions is satis�ed.

While the above results imply that, unlike in the deterministic case, price caps
close to marginal costs are typically not welfare-improving, they leave open the
question whether the e�ect of such price caps are "really bad" or whether, perhaps,
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they still lead to welfare that, for example, is above what would be achieved without
a price cap. The answer to this question, of course, depends on the distribution F .

We denote by θ and θ the minimal and maximal point in the support of F .

Theorem 3. Let q∗∗ be equal to the unique root14 of the equation

P (n · q∗∗, θ) = c.

if there is a nonnegative root or equal to zero if the equation does not have a non-
negative root. Then q∗(p) converges to {q∗∗} as p converges to c, p ↘ c.

Theorem 3 states that as the price cap gets closer and closer to marginal cost, the
�rms produce the equilibrium quantity from a competitive market with the lowest
demand. Building on the intuitive discussion after Theorem 2, we can provide a
basic intuition for this result. A �rm deciding about its production quantity must
consider the implications of its choice on pro�ts for the di�erent demand realiza-
tions, in particular the pro�ts for a binding price cap and also for a price below
the price cap, P (Q, θ) < p̄. Then it chooses a quantity that constitutes a good
compromise between the di�erent quantities which would be produced if demand
were known. As the price cap converges to c, the bene�ts of high production in
anticipation of a high demand state will decrease. Thus, the marginal bene�ts of
production in high demand states become relatively smaller than the marginal dis-
advantages of high production in low demand states. As a result, lower production
quantities are chosen. In the limit the producer will focus only on the state in which
demand is smallest and produce the corresponding quantity.

The theorem immediately allows us to conclude that in certain situations, the
introduction of a price cap close to marginal cost will result in a decreased pro-
duction quantity. In particular, if there is a slight possibility that production will
be ine�cient, the introduction of a price cap su�ciently close to marginal cost will
decrease production to zero.

Corollary 2. Assume that the ex post socially optimal production is equal to zero
with some positive probability. Then a price cap su�ciently close to marginal cost
c will result in a complete stoppage of production.

3.4. Price caps that are not close to marginal cost. Corollary 1 was based
on properties of the equilibrium set for price caps close to marginal costs. This
raises the question whether the monotonicity properties from Theorem 1 remain
true for uncertain demand schedules if we restrict attention to price caps which are

14The equation cannot have multiple roots because P is decreasing in quantities.
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still binding, but not necessarily close to c. To generalize Corollary 1, we make an
extra assumption.15 In this section we assume that marginal pro�ts are decreasing
in other �rms' output, in the sense that d

dq πθ(q,Q−i) is decreasing in Q−1 (the
output of the other �rms) for any θ ∈ R, q ∈ R+ and Q−i ∈ R+.16 Note that this
implies that, for any given price cap p, best responses are nonincreasing and thus
there exists a unique equilibrium for each price cap. Slightly abusing notation, we
denote this equilibrium by q∗(p).

Let (p′, p′′) be an interval. We will say that the price cap is binding for some
p̄ ∈ (p′, p′′) if for some p̄ ∈ [p′, p′′], Pr(P (n · q∗(p), θ) > p̄) > 0. Clearly, if this is not
the case, i.e., if Pr(P (n · q∗(p), θ) < p̄) = 1 for all p̄ ∈ [p′, p′′], it has to be that q∗

is constant on [p′, p′′].

In the following, we will say that production is gainful for a price cap p if
E(min(P (0, θ), p)) > c. Again, if (min(P (0, θ), p)) < c then at a given price cap of
p, no �rm would ever produce a positive quantity.

The following result shows that, for stochastic demand distributions, neither
produced quantities nor total welfare will typically be nonincreasing functions of
the price cap almost everywhere. That is, it does not matter what distribution of
θ one chooses, one can always �nd a perturbation of that distribution in which the
desirable properties of price caps (i) or (ii) of Theorem 1 fail.

Theorem 4. Assume P is twice continuously di�erentiable and marginal pro�ts
are decreasing in other �rms output. Let (p′, p′′) be an arbitrary nonempty interval.
Let z be the set of all distributions with bounded support such that production is
gainful for price caps in (p′, p′′) and the price cap is binding for some p̄ ∈ (p′, p′′).

Recall points (i)-(v) in Theorem 1. Then the set of distributions F ∈ z for
which at least one of the conditions (i) or (ii) holds for price caps in (p′, p′′) is
nowhere dense in z. Indeed, there is an open and dense set for which neither of
those conditions is satis�ed.

As a decrease in the price cap has a direct e�ect on average prices and consumer
welfare, an additional assumption is needed to guarantee that (iii) and (iv) do not

15The assumption that marginal pro�ts are decreasing in other �rms output is convenient in
the proof of Theorem 4 as it stops alternative equilibria from appearing but it does not appear to
be essential for the result.

16Actually, for any �xed n ∈ N, the following results also hold under the slightly weaker
alternative assumption that q · d2

dQ2 P (n · q, θ) + (1 + 1
n

) · d
dQ

P (n · q, θ) ≤ 0 for all q ∈ R+ and
q ∈ R+.
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hold for a generic demand structure. Let

CSθ(Q) =
∫ Q

0

(P (x, θ)− P (Q, θ)) · dx

be consumer surplus for a �xed θ if industry wide output is Q and if there is no
price cap or if the price cap is so high it never binds. We will say that CS is
twice continuously di�erentiable and CS′′ < 0 if, for all θ ∈ R, CSθ(·) is twice
di�erentiable, CS′′θ (Q) is continuous in both parameters, and CS′′θ (Q) < 0 for all
Q ∈ R+ and θ ∈ R.

Theorem 5. Assume CS is twice continuously di�erentiable with CS′′ < 0 and
marginal pro�ts are decreasing in other �rms output. Let (p′, p′′) be an arbitrary
nonempty interval. Let z be the set of all distributions with bounded support such
that production is gainful for price caps in (p′, p′′) and the price cap is binding for
some p̄ ∈ (p′, p′′).

Recall points (i)-(v) in Theorem 1. Then the set of distributions F ∈ z for which
at least one of the conditions (i), (ii), (iv), and (v) holds for price caps in (p′, p′′)

is nowhere dense in z. Indeed, there is an open and dense set for which neither of
those conditions is satis�ed.

Our result that lowering a price cap can result in higher average prices is some-
what surprising and means that a regulator trying to lower prices with a price cap
can have his e�ort back�re. There appear to be empirical examples where lower
price caps coincided with higher average prices, see, for example, California Power
Exchange (2000). (However, the question whether in this case the price increase was
related to uncertainty about future demands or driven by other factors is beyond
this paper.)

3.5. Disposal. The model we introduced in Section 2 corresponds to a situation
where �rms must sell the entire quantity they produced, that is, a situation where
disposal is in�nitely costly or where �rms do not learn anything about the realiza-
tion of demand before they have to make a decision on the sold quantity. Alter-
natively, one could consider situations where the uncertainty is resolved after the
�rms' production decisions but before the �rms decide on the quantity they want
to sell. Then, especially when demand turns out to be very low, �rms might bene�t
from disposal as this allows them to a�ect prices. In the following we describe a
variation of our model that allows for disposal.

Firms are now permitted to withhold some amount of their production quantity
from the market and can dispose of the unsold units. We assume that there is
a �xed per unit cost of disposal equal to a constant η > −c. The case η > 0
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corresponds to a situation where disposal is costly, η = 0 corresponds to the case of
free disposal, and a parameter η ∈ (−c, 0) corresponds to a situation where �rms
can recover some, but not all of the production costs.17 For example, one could
imagine that �rms can recover some of the inputs used in the product or that the
product has some scrap value and can be sold elsewhere.

In the presence of disposal our model becomes a two-stage game. In the �rst
stage each �rm decides on a production quantity q. Subsequently the �rms learn
the true state of the world, θ. Once they know the state each �rm decides on the
quantity q′ that it wants to sell. The second-stage optimization problem for �rm i

is to maximize

max
q′∈[0,q]

(q′ ·min(P (q′ + Q′−i, θ), p)− η · (q − q′)− c · q)

given that the �rm knows that Q′−i is the total quantity sold by all other �rms. In
general, depending on the form of P , the quantity q, and the value θ the second
stage game might have many symmetric equilibria. To avoid technicalities related
to this fact we assume that for any �xed q and θ the above function is strictly
concave and marginal revenue is decreasing in Q′−i. Then de�ne q′(q, p̄) to be the
unique optimal solution to the second-stage maximization problem in the symmetric
second-stage equilibrium where all other �rms happen to also sell q′. Let

πθ(q,Q−i, p) = q′(q, p̄) ·min(P (q′(q, p̄) + Q′−i, θ), p)− η · (q − q′(q, p̄))− c · q.

De�ne the set of symmetric equilibria q∗(p̄) again to be the set of quantities q such
that q maximizes

π(q, Q−i, p) = E(πθ(q, Q−i, p)).

Theorem 6. Consider the modi�ed model with disposal. The statements of The-
orems 1-5 remain valid for the equilibria with the production quantities q∗L(p̄) and
q∗H(p̄).

4. Discussion

In this section we illustrate our results and the driving forces behind them using
two numerical examples. Recall from our model description the assumption that
there exists a constant L2 > 0 such that |P (Q, θ) − P (Q, θ′)| ≥ L2 · |θ − θ′| for
all θ, θ′ ∈ R and Q ∈ [0, QMax]. This assumption can be seen as a regularity re-
quirement as it is automatically satis�ed whenever P is continuously di�erentiable

17Note that the case η = −c would render this model equivalent to a deterministic model.
Firms could produce su�ciently large quantities, then choose the optimal deterministic quantity
after uncertainty is resolved, and �nally dispose without a loss of any leftover production quantity.
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and d
dθP > 0 on the relevant region. Together with the assumption that the dis-

tribution of θ is continuously di�erentiable it implies that for any quantity in the
relevant range the distribution of market clearing prices is Lipschitz continuous.
This Lipschitz continuity is central to our analysis since this property introduces a
su�cient degree of uncertainty into our model.

We present two numerical examples. The �rst example satis�es the regularity
assumption and exhibits the properties of Theorems 2 and 3. The second example
does not satisfy the regularity assumption and as a result does not exhibit the
properties. We explain how this failure can be traced back to the kind of uncertainty
we require. We then conclude the discussion with an argument why the regularity
assumption is economically sensible.

Example 1. Let demand be given by P (Q, θ) = max{0, θ −Q} where θ ∈ [10, 20]

has the triangular distribution with support [10, 20] and mode 15. There is a single
�rm with constant marginal cost of c = 10. For a su�ciently low price cap p̄ the
�rm's objective function is as follows.

π(Q, p̄) = Q ·
(∫ p̄+Q

10

(θ −Q) · 1
25

(θ − 10)dθ +
∫ 15

p̄+Q

p̄ · 1
25

(θ − 10)dθ

+
∫ 20

15

p̄ · (1
5
− 1

25
(θ − 15))dθ

)

Figure 1 shows the production quantity of the monopolist for price caps p̄ ∈
(10, 10.4]. Just as Theorems 2 and 3 predict, the production quantity converges
monotonically to 0 as p̄ ↘ c = 10 since at θ = 10 it holds that P (0, θ) = c.

10.1 10.2 10.3 10.4

0.5

1

1.5

2

Figure 4.1. Production Quantity as Function of Price Cap



ON PRICE CAPS UNDER UNCERTAINTY 15

To gain some intuition why the production decreases as the price cap decreases
we compare the �rm's problem for two price caps, p̄1 = 10.3 and p̄2 = 10.2. At
p̄1 the optimal production quantity is Q1 = 2.0183, at p̄2 the optimal production
quantity is Q2 = 1.8087. Observe that Q1 is the unique solution to d

dQπ(·, p̄1) = 0.
If the price cap is now lowered to p̄2 then the expected marginal pro�t becomes
negative, d

dQπ(Q1, p̄2) = −0.0714. Therefore, the �rm must reduce its quantity in
order to produce optimally. In order to see why expected marginal pro�t becomes
negative we need to analyze the pro�t function in more detail.

The expected pro�t function is a weighted average of two components. For
θ > 12.3183 (= p̄1 + Q1), the price cap is binding and pro�ts are given by Rθ,p̄1 =

Q · (p̄1 − c). Note that, for θ in this region, the marginal pro�t MRθ,p̄1 = p̄1 − c

is always positive. In particular, if the monopolist knew in advance that the price
cap is binding, then he would like to increase Q. For θ < 12.3183, the price cap
is not binding and pro�t is given by Rθ = Q · ((θ − Q) − c). For θ in this region,
because of the monopolist's market power, marginal pro�t will be typically negative
(as long as Q is larger then the quantity an unconstraint monopolist would choose
if he knew θ). Here, at p̄1 and Q1 the marginal revenues from the two components
are respectively -0.2116 and 0.2116.

What happens if production is kept constant at Q1 but the price cap is reduced
to p̄2 = 10.2? Note that for realizations of θ for which the price cap was previously
binding (θ > 12.3183) the new lower price cap will still be binding. However, for θ

in this region marginal pro�t decreases from MRθ,p̄1 = p̄1 − c to MRθ,p̄2 = p̄2 − c.
In other words, the monopolist's earlier incentive to produce a higher quantity
is weakened. This explains why the monopolist might want to produce a lower
quantity.

However, there is a second e�ect. As the price cap decreases slightly to p̄2 = 10.2

the new price cap will become binding for θ ∈ [12.2183, 12.3183] where it was not
binding previously. While for θ < 12.2183 (= p̄2 + Q1) the price cap is still not
binding and marginal pro�t remains unchanged, for θ ∈ [12.2183, 12.3183] marginal
pro�t �jumps upwards� from P (Q, θ)− c−Q to p̄2 − c as the term −Q that comes
from the monopolist's market power disappears. The change in marginal pro�t
after the decrease in the price cap thus is the sum of two e�ects: a decrease coming
from the case of θ > 12.3183 for which the price cap was previously binding and
an increase coming from the case of θ ∈ [12.2183, 12.3183] for which the price cap
is binding at p̄2 but was not at p̄1.

In this example, the probability of a θ such that the price cap is binding at p̄1 is
89.2513%. The corresponding probability for p̄2 is 90.1586%. Thus, the probability
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of a θ such that the price cap is binding at p̄2 but not binding at p̄1 is only 0.9073%.
This last probability is very small and so it is not surprising that overall the �rst
e�ect dominates and total marginal pro�t decreases. Indeed, numerically, the two
e�ects correspond respectively to −0.0892 and 0.0178 giving the total expected
marginal pro�t of −0.0714.

In summary, there are two driving forces needed for the �rst e�ect to dominate
the second:

(1) For su�ciently small price caps there is always a positive probability that
the price cap is binding. (Here, as before we use �binding� in the sense that
the market clearing price without a cap would be strictly larger then the
price cap).

(2) The probability that the price cap is binding changes only �very little� in a
response to a small change in the price cap.

We contrast this example to a second example18 with discrete uncertainty.

Example 2. Let demand be given by P (Q, θ) = max{0, θ −Q} where θ ∈ {1, 2},
with each value having probability 1

2 . There is a single �rm with constant marginal
cost of c = 0. Then the �rm's objective function for a given price cap p̄ is

π(Q, p̄) = Q

(
1
2

min {p̄, max{0, 1−Q}}+
1
2

min {p̄, max{0, 2−Q}}
)

.

For any price cap p̄ ≤ 1
3 the optimal solution to this optimization problem is

Q = 2 − p̄, that is, the optimal quantity is decreasing in the price cap. This fact
contradicts the results of Theorems 2 and 3.

Observe �rst that neither of the two important properties (1) and (2) of the �rst
example are satis�ed. Consider again a su�ciently low price cap p̄1 > c = 0 and
the corresponding optimal quantity Q1. Then at p̄1 there is a zero probability that
the price cap is binding in the sense that P (Q, θ) is strictly larger than p̄1. On the
other hand, if the price cap is slightly decreased to a level p̄2 (and production held
constant) the price cap will become binding (in the above sense) with probability
50%. As a result, in the example the second of the two e�ects highlighted in the
discussion of Example 1 dominates.

The basic idea of Example 2 is that for su�ciently low price caps the quantities Q

chosen by the monopolist are in a region such that P (Q, θ) is constant and equal to
zero for θ < M where M is some constant which is larger then θlow = 1. Therefore,
the maximization problem of the monopolist for those price caps looks essentially
as if the monopolist would ignore low demand realizations and condition on θ > M .

18We are grateful to an anonymous referee for suggesting this example.



ON PRICE CAPS UNDER UNCERTAINTY 17

But the distribution of θ conditional on θ > M is deterministic. As a result the
same monotone comparative statics results hold as if there was no uncertainty and
the monopolist e�ectively knew that the state will be θhigh = 2. It is exactly this
�lack of uncertainty� that drives the discrepancy between the above example and
Theorem 2. To challenge the predictions of the deterministic model we therefore
need to impose a regularity condition, which ensures that the distribution of prices
for any given production quantity cannot be deterministic even after conditioning
on any event that has positive probability. Such a condition is the assumption that
the distribution of θ is continuously di�erentiable and that there exists a constant
L2 > 0 such that |P (Q, θ)−P (Q, θ′)| ≥ L2·|θ−θ′| for all θ, θ′ ∈ R and Q ∈ [0, QMax].
This assumption guarantees that, for production levels in the relevant range, the
distribution of market clearing prices will be well behaved, in particular Lipschitz
continuous.

A natural question to ask now is whether the assumption that the distribution
of market clearing prices is well behaved is economically interesting. Or, whether
models in which prices are uncertain but take only �nitely many values might
provide a better descriptive model. We think there is something unappealing and
unnatural in a model with only �nitely many possible prices and where all prices
in the neighborhood of any given price have zero probability. It seems that most
natural perturbations introducing some small randomness would invalidate this
structure. In addition, recall that in the studied model, the demand side is captured
by a classic demand function. We see this as a reduced model for a situation
where the number of customers is large enough to induce essentially price taking
behavior. However the regularity of the distribution of market clearing prices seems
a natural requirement, if the number of customers is large and each customer has a
valuation v that does not just take �nitely many values but is distributed in some
interval according to a continuous distribution that is allowed to depend on some
fundamental uncertainty θ.

5. Conclusion

This paper has shown that the simple monotone comparative statics results
which are usually used to justify price caps in the context of deterministic demand
cease to hold if we consider �rms facing an uncertain demand function. In the
presence of such uncertainty, imposing a price cap or lowering its level can result
in a reduced production and total welfare. In addition, it can lead to an increase
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in average prices and a decrease in consumer welfare.19 In the case of price caps
close to marginal costs, we obtained a characterization of equilibrium production
thus making it possible to quantitatively assess the e�ects of imposing such a cap.
Unlike in the case where the future realization of demand is known, price caps
close to marginal cost are never welfare maximizing. In the case of price caps �far
away� from marginal costs, we showed that all of the standard comparative statics
predictions fail for a generic uncertain demand schedule suggesting that also in this
case, price caps should be used only with great caution.

Mathematical Appendix

In the following, we sometimes want to underline the dependence of functions or
variables on the underlying distribution F . In this case, we write πF , q∗F (p), etc.
Slightly abusing notation, we continue to write πθ′ where θ′ ∈ R to denote pro�ts
if F is such that θ = θ′ with probability one, i.e.,

πθ′(q, Q−i) = q · (P (q + Q−i, θ
′)− c).

A.1. Proof of Proposition 1 and related results.

Proof of Lemma 1. The statement of the lemma consists of two parts, one involving
limx↓xo b(x, p), the other involving limx↑xo b(x, p). We will prove the former; the
proof of the latter is analogous.

Assume the �rst part of the lemma is not true, thus there exists a sequence
xk ↓ xo and a sequence qk ∈ b(xk, p) such that qk converges to some point qA which
is not equal to the point max b(q, p) which we will denote by qB .

As the best response correspondence has a closed graph, it must be the case that
qA is itself a best response. The de�nition of qB therefore implies that qB ≥ qA.
As we assumed that qA is not equal to qB , it follows that 0 ≤ qA < qB .

For the sake of notation, it will be convenient to denote xk − xo by hk. Also,
let φ(x) = E(min(P (x, θ), p) − c)) for all x ∈ R+. The remainder of the proof is
organized in several steps.

(1) We already saw that both qA and qB must be best responses against xo, in
particular it must be that

qA · φ(xo + qA) = qB · φ(xo + qB).

19Of course, even if average prices increase in response to a decrease in price caps, such price
caps could still be justi�ed if the objective is to decrease price volatility rather than improve
consumer welfare. (See Verleger (1993) for a discussion of this issue.)
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and thus (as 0 ≤ qA < qB implies 0 < qB)

qA

qB
· φ(xo + qA) = φ(xo + qB).

Note that 0 < qB and qB ·φ(xo + qB) ≥ 0 implies that φ(xo + qB) ≥ 0. But
then qA < qB implies that φ(xo + qA) > 0. Hence,

φ(xo + qA) > φ(xo + qB).

(2) Since qA is a best response against xo, it must be that

qk · φ(xk + qk) = (qk + hk) · φ(xo + qk + hk)− hk · φ(xo + qk + hk)

≤ qA · φ(xo + qA)− hk · φ(xo + qk + hk).

(3) Since qk is a best response against xk, it must be that

(qB − hk) · φ(xk + (qB − hk)) ≤ qk · φ(xk + qk).

(4) Combining the inequalities of the two previous steps, we get that

(qB − hk) · φ(xk + (qB − hk)) ≤ qA · φ(xo + qA)− hk · φ(xo + qk + hk).

Note that xk + (qB − hk) = xo + qB and apply the �rst equation of Step 1
to conclude that

hk · φ(xo + qk + hk) ≤ hk · φ(xo + qB).

As hk > 0 and xo + hk = xk this means that

φ(xk + qk) ≤ φ(xo + qB).

(5) Our assumptions on P guarantee that Φ is continuous. Thus, as xk → x0

and qk → qA, the last step implies that

φ(xo + qA) ≤ φ(xo + qB).

The last inequality in Step 5 contradicts the last inequality of Step 1. The
contradiction shows that the statement of the lemma must be correct. ¤

Proof of Proposition 1. Lemma 1 implies that the function max b(·, p) is continuous
but for upwards jumps. Thus, by Theorem 1 in Milgrom and Roberts (1994), the
equation

q = max b((n− 1) · q, p)

has a solution. The conclusion follows. ¤

A.2. Proof of Theorem 1 and related results.
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Proof of Lemma 2. Consider two quantities q′ > q′′ and two price caps p′ < p′′.
Assume that, for a �xed Q−i, πθ(q′, Q−i, p

′′) > πθ(q′′, Q−i, p
′′). We will show that

πθ(q′, Q−i, p
′) > πθ(q′′, Q−i, p

′). We will compare the change in pro�ts as the price
cap changes from p′′ to p′. It will be convenient to distinguish three cases:

(1) the price cap p′ is binding for both quantities q′ and q′′. As p′ > c, this
implies that producing the higher quantity is better after the price cap was
decreased to p′.

(2) the price cap p′ is binding if production has the lower level q′′ but is not
binding if production is q′. As p′ < p′′, this means that after the decrease
of the price cap to p′ production at a level q′′ became less attractive while
production at a level of q′ yields the same pro�ts as before. As producing
the higher quantity was better before, it also must be better now, after the
decrease in the price cap.

(3) the price cap p′ is not binding for both quantities q′ and q′′. In this case
pro�ts are the same both after and before a decrease in the price cap. The
claim follows.

The second part of the proof which involves weak inequalities is analogous. ¤

Lemma 3. If π satis�es the single crossing property then q∗L(p) and q∗H(p) are both
nonincreasing functions of p.20

Proof of Lemma 3. De�ne φ(Q) = E(min(P (Q, θ), p) − c). Using Lemma 1, we
already showed in the proof of Theorem 1 that max b(·, p) is continuous but for
upward jumps. Similarly, Lemma 1 implies that min b(·, p) is also continuous but
for upward jumps.

As π satis�es the single crossing property, the Monotonicity Theorem of Mil-
grom and Shannon (1994, p. 162, Theorem 4) implies that for any �xed Q−i the
functions min b(Q−i, ·) and max b(Q−i, ·) are nonincreasing. Note that q∗L(p) and
q∗H(p) are respectively equal to the lowest and highest intersection of min b(Q−i, ·)
and max b(Q−i, ·) with the diagonal. Theorem 1 in Milgrom and Roberts (1994)
implies that q∗L(p) and q∗H(p) are nonincreasing. ¤

Proof of Theorem 1. The theorem states that (i)-(v) hold if we restrict attention
to the equilibrium with the highest or lowest production quantity. Lemmas 2 and
3 immediately imply that (i) holds. Note that total welfare

∫ Q

0

(P (x, θ)− c)) · dx

20As always in this paper, we only consider price caps p which lie above marginal cost c.
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is a monotonic function of total production Q as long as P (Q, θ) ≥ c. However,
independently of the price cap, equilibrium total production will always satisfy
P (Q, θ) ≥ c as otherwise �rms could decrease production. Point (ii) follows.

If demand is deterministic, then in equilibrium demand is equal to supply, i.e. for
all q ∈ q∗, P (n · q, θ) ≤ p. Indeed, P (n · q, θ) > p in connection with the continuity
of P (·, θ) and p > c would mean that �rms could increase their pro�ts by slightly
increasing production. Therefore (i) together with the observation made above and
the monotonicity assumptions on the inverse demand function P implies (iii) and
(iv). Property (v) now follows directly from (i) and (iv). ¤

A.3. Proofs for Section 3.3.

Proof of Theorem 2. We will prove the statement of the theorem for q∗L, the ar-
gument for q∗H is analogous. Consider �rst the case where P is twice continuously
di�erentiable in both of its parameters. Note that if q∗L(p′) = 0 for some p′ > c then
q∗L(p′′) = 0 for all p′′ ∈ (c, p′) and the theorem holds. Assume therefore, without
loss of generality, that q∗L(p′) > 0 for all p′ > c.

De�ne qmax to be the solution to

P (qmax, θ) = c,

where θ is the maximal point in the closure of the support of F . Let b(x, p) =

arg maxq π(q, x, p) be the best response of a player if her opponents together produce
x and the price cap is p.

Note that
d2

dq · dp
π(q,Q−i, p) =

d

dq

∫ ∞

eθ q · dF (θ)

= (1− F (θ̃)) +
δ

δQP (q + Q−i, θ̃)
δ
δθ P (q + Q−i, θ̃)

· q · f(θ̃)

≥ (1− F (θ̃))− L1

L2
· qmax · f(θ̃)

where θ̃ is equal to θ if P (q +Q−i, θ) > p, equal to θ if P (q +Q−i, θ) < p and given
by P (q + Q−i, θ̃) = p otherwise. If, in addition, q ∈ b(Q−i, p) then,

0 ≤ (1− F (θ̃)) · q · (p− c) +
∫ eθ
−∞

(P (q + Q−i, θ)− c) · q · dF (θ)

≤ (1− F (θ̃)) · q · (p− c) +
∫ eθ
−∞

(p− c− (θ̃ − θ) · L2) · q · dF (θ)

= q · ((p− c) +
∫ eθ
−∞

(θ − θ̃) · L2 · dF (θ))
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and thus either q = 0 or
∫ eθ
−∞(θ̃ − θ) · dF (θ) ≤ (p−c)

L2
.

Note that
∫ eθ
−∞(θ̃ − θ) · dF (θ) is monotonically increasing in θ̃. Choose γ > 0

such that if
∫ eθ
−∞(θ̃ − θ) · dF (θ) ≤ γ

L2
then θ̃ is small enough so that

(1− F (θ̃))− L1

L2
· qmax · f(θ̃) ≥ 1

2
.

Putting the above observations together conclude that if q, x ∈ R+ and p > c satisfy
p− c < γ, q ≤ max b(x, p), and q > 0 then d2

dq·dpπ(q, x, p) ≥ 1
2 .

Assume q∗L is not monotonically nondecreasing in (c, c + γ). Then there exist
sequences rn, sn ∈ (c, c + γ) such that sn − rn → 0, rn < sn, and q∗L(rn) > q∗L(sn).
Without loss of generality, assume there exists t ∈ (c, c + γ) such that sn, rn → t

as n → ∞. Note that γ was chosen so that d2

dq·dpπ(q, x, p) > 1
4 for all (q, x, p) in

some neighborhood of {(q′, (n − 1) · q, t) : q ∈ q∗(t), q′ ≤ max b((n − 1) · q, t)}.
Then, however, Theorem 1 from Edlin and Shannon (1996) implies that b(x, p) is
monotonically increasing (as a function of p) in some neighborhood of {(n − 1) ·
q, t) : q ∈ q∗(t)} which means that q∗L has to be monotonically increasing in some
neighborhood of t. Contradiction!

Now consider the case where P does not satisfy the di�erentiability assumptions
made above. Choose γ > 0 such that if

∫ eθ
−∞(θ̃ − θ) · dF (θ) ≤ 2 γ

L2
then θ̃ is small

enough so that
(1− F (θ̃))− L1

L2
· 8 · qmax · f(θ̃) ≥ 1

2
.

If q∗L is not monotonic on (c, c + γ), then there are points r, s ∈ (c, c + γ) such that
r < s and q∗L(r) > q∗L(s).

Choose a sequence of demand schedules P k such that
• qmax

k : P k(qmax, θ) = c satisfy qmax
k < 2 · qmax where qmax : P k(qmax, θ) = c;

• |P k(q, θ)−P k(q′, θ)| ≤ 2·L1 ·|q−q′| and |P k(q, θ)−P k(q, θ′)| ≥ 2·L2 ·|θ−θ′|
for all θ, θ′ ∈ R, q, q′ ∈ R_+ and k ∈ N;

• P k → P uniformly on Support(F )× [0, 2 · qmax]

• P k is twice continuously di�erentiable in both parameters
• the lowest equilibrium for a price cap s is the same for each demand schedule

P k as in P .
As in the limit the equilibrium set for price cap r and demand schedule P k has

to converge to a subset of q∗(r), the established result for the di�erentiable demand
schedules P k implies the result for the nondi�erentiable case. ¤

Proof of Corollary 1. Let F ∈ z be an arbitrary distribution. Note that we can
always �nd a continuously di�erentiable distribution F̂ ∈ z arbitrary close to F .
Theorem 2 together with standard continuity arguments implies that (i) does not
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hold for F̂ .21 If (i) does not hold for F̂ , there is an open neighborhood of F̂ for
which (i) does not hold. We showed that for any F ∈ z, there exists an open set
on which (i) does not hold and which is arbitrary close to F. This fact implies that
there is an open and dense set on which (i) does not hold. Analogous arguments
imply that there are open and dense sets on which respectively (2) and (3) do not
hold. Taking the intersection of those three sets we obtain an open and dense set
on which none of the properties (i)-(iii) holds. This fact implies that the sets of
F ∈ z for which at least one of the three statements holds is nowhere dense. ¤

Proof of Theorem 3. Let pm > c be a sequence of numbers such that limm→∞ pm =

c and qm be a sequence of quantities such that qm ∈ q∗(pm). Our aim is to show
that qm → q∗∗. For this purpose we examine the sequence P (n · qm, θ).

Assume that

lim inf
m→∞

P (n · qm, θ) < c

Then there exists a subsequence qmk such that limk→∞ P (n · qmk , θ) < c. As θ lies
in the support of θ, this means that with positive probability the �rms will make
a per unit loss which is bounded away from zero. Note that on the other hand,
the potential per unit gains converge to zero as p approaches c. Thus it must be
that qmk is equal to zero for large enough k. In this case,

k→∞
limP (n · qmk , θ) < c

implies P (0, θ) < c, i.e. the equation from the proposition does not have a solution.
Assume now that

lim sup
m→∞

P (n · qm, θ) > c.

Then there exists a subsequence qmk such that limk→∞ P (n · qmk , θ) > c. This
means that limk→∞ P (n · qmk , θ) is uniformly bounded away from c for all θ. Thus,
for large enough k the price cap will be always binding. As P (Q, θ) is assumed to
be continuous in Q, this means that �rms would like to increase their production
in equilibrium � contradiction. Hence lim sup

m→∞
P (n · qm, θ) ≤ c. ¤

A.4. Proofs of Theorems 4, 5, and 6.

21Indeed, either q∗L and q∗H are monotonically increasing on some interval (c, c + γ) or equal
to zero in that interval. In the former case (i) clearly does not hold. In the latter case, (i) would
imply that q∗L and q∗H are equal to zero for all price caps. This, however, can not be, the fact
that production is gainful implies that producing zero cannot be an equilibrium if the price cap is
chosen high enough so that it is not binding if total production is zero. The contradiction shows
that (i) also in this case cannot be true.
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Proof of Theorem 4. Note that it is su�cient to show that for any continuously
di�erentiable F ∈ z with convex support, there is a F̃ ∈ z arbitrary close to F

such that q∗ is nonmonotonic on (p′, p′′). Indeed, if this is the case, there will be a
neighborhood of F̃ for which q∗ is nonmonotonic.

Assume the price cap is binding at some point in (p′, p′′). If q∗ is not monoton-
ically nonincreasing in (p′, p′′) then we can choose F̃ = F and are done. Assume
therefore q∗ is monotonically nonincreasing in (p′, p′′). This fact combined with
the assumption that the price cap is binding at some point in (p′, p′′) implies that
the price cap is binding in some proper subinterval of (p′, p′′). Without loss of
generality assume the price cap is binding on (p,′ p′′).

Note that since marginal pro�ts decrease in other �rms output and prices are
decreasing, πθ(·, Q−i) is concave for any θ ∈ R, Q−i ∈ R+. As πθ(·, Q−i, p) is equal
to min(πθ(·, Q−i), (p− c) · q), it is also concave for any θ ∈ R, Q−i ∈ R+, and p > c.
The equilibrium q∗ is thus equal to the unique root of the �rst order condition22

∫ ∞

−∞
D1πθ(q, (n− 1) · q, p) · dF = 0.

For a given distribution F, price cap p, and quantity q ∈ R+, denote the left hand
of the above expression by ΓF (q, p). It is straightforward to check that, as marginal
pro�ts decrease in other �rms' output, ΓF (·, p) is a decreasing function for any
distribution F and price cap p.

Choose a point p ∈ (p′, p′′). De�ne θ̃ : P (n · q∗(p), θ̃) = p. Fix a ε > 0 and
consider the distribution F̃ given by

F̃ (x) =





F (x) x < θ̃ − ε

F (θ̃ − ε) + α · (F (θ̃ + ε)− F (θ̃ − ε)) xε[θ̃ − ε, θ̃ + ε)

F (x) if x ≥ θ̃ + ε

where α is chosen so that
∫ eθ+εeθ−ε

D1πθ(q∗(p), (n− 1) · q∗(p), p) · dF

(F (θ̃ + ε)− F (θ̃ − ε))

is equal to
α ·D1πeθ−ε(q

∗(p), (n− 1) · q∗(p)) + (1− α) · p.

Note that this de�nition implies that
∫ ∞

−∞
D1πθ(q∗(p), (n− 1) · q∗(p), p) · dF̃ = 0

and thus q∗(p) is also the unique equilibrium if θ is distributed according to F̂ .

22D1πθ, the derivative with respect to the �rst parameter exists a.e. As F is assumed contin-
uously di�erentiable and D1P is bounded it is clear that the integral is well de�ned.
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Finally observe that in some neighborhood of p, the Implicit Function Theorem
yields

dq∗

dp
= −

∫∞eθ 1 · dF̃
∫ eθ
−∞((n + 1) · d

dQP (n · q, θ) + n · q · d2

dQ2 P (n · q, θ)) · dF̃

As q· d2

dQ2 P (n·q, θ)+ d
dQP (n·q, θ) ≤ 0 (by the decreasing marginal pro�t assumption)

and d
dQP (n · q, θ) < 0 it follows that dq∗

dp > 0. ¤

Proof of Theorem 5. The argument follows the same line as the proof of Theorem
4. After choosing F̃ , observe that in some su�ciently small neighborhood of p,

average prices are equal to
∫ ∞

eθ p · dF̃ +
∫ eθ
−∞

P (n · q∗(p), θ) · dF̃

where θ̃ is �xed and de�ned as in the proof of Theorem 4. Using the equality for
dq∗

dp at the very end of the proof of Theorem 4 note that

d

dp
(
∫ ∞

eθ p · dF̃ +
∫ eθ
−∞

P (n · q∗(p), θ) · dF̃ ) =

=
∫ ∞

eθ 1 · dF̃ +
dq∗

dp
·
∫ eθ
−∞

n · d

dQ
P (n · q∗(p), θ) · dF̃

=
∫ ∞

eθ 1 · dF̃ · (1−
∫ eθ
−∞ n · d

dQP (n · q, θ) · dF̃
∫ eθ
−∞((n + 1) · d

dQP (n · q, θ) + n · q · d2

dQ2 P (n · q, θ)) · dF̃
)

It is therefore enough to show that23
∫ eθ
−∞ n · d

dQP (n · q, θ) · dF̃
∫ eθ
−∞((n + 1) · d

dQP (n · q, θ) + n · q · d2

dQ2 P (n · q, θ)) · dF̃
> 1.

Note that CS′′ < 0 implies that d
dQP (n · q, θ) + n · q · d2

dQ2 P (n · q, θ) > 0 for all
θ. But then clearly
∫ eθ
−∞

((n+1) · d

dQ
P (n · q, θ)+n · q · d2

dQ2
P (n · q, θ)) ·dF̃ >

∫ eθ
−∞

n · d

dQ
P (n · q, θ) ·dF̃ .

But then (as the left hand side is negative)
∫ eθ
−∞ n · d

dQP (n · q, θ) · dF̃
∫ eθ
−∞((n + 1) · d

dQP (n · q, θ) + n · q · d2

dQ2 P (n · q, θ)) · dF̃
> 1

follows. ¤
23If average prices are decreasing in the price cap and quantity is increasing in the price cap

the implication about consumer and total welfare follow immediately.
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Sketch of proof of Theorem 6. We sketch how the arguments used in the proofs of
Theorems 1-5 change in the modi�ed model with disposal.

First note that the proof of the analog to Theorem 1 follows immediately from
Theorem 1 since �rms will never dispose of production in the deterministic case.

We sketch the argument to prove the analog of Theorem 3 before we discuss the
proof of the analog of Theorem 2. To see that the analog of Theorem 3 is true
assume - as in the proof of Theorem 3 - there exists a subsequence qmk such that
limk→∞ P (n · qmk , θ) < c. Consider �rst the case where limk→∞ qmk > 0. In this
case, let qo > 0 be a quantity such that limk→∞ P (n · qmk , θ) < P (n · qo, θ) < c.
Then if θ = θ and each �rm sells less than qo a �rm's pro�t can be at most

−1
2
(qmk − qo) · (c− η) + qmax · (pmk − c).

On the other hand, if θ = θ and each �rm sells more than qo a �rm's pro�t can be
at most

(P (n · qo, θ)− c) · qo.

Note that as k → ∞ both expressions are smaller than and bounded away from
zero. This is a contradiction as it would imply that �rms make negative pro�ts that
are bounded away from zero for θ su�ciently close to θ and su�ciently large k. As
total revenue is bounded by qmax · (pmk − c) which converges to zero this would
mean that for su�ciently large k a �rms expected equilibrium pro�t is negative - a
contradiction!

It therefore must be the case that limk→∞ n · qmk = 0. But then limk→∞ P (n ·
qmk , θ) < c together with the continuity of the price function implies P (0, θ) < c,
which means the equation in the theorem does not have a solution. The remainder
of the argument is analogous to the proof of Theorem 3.

To prove the analog of Theorem 2 follow the argument in the theorem's proof
and note that it is still the case that

d2

dq · dp
π(q,Q−i, p) =

d

dq

∫ ∞

eθ q · dF (θ)

= (1− F (θ̃)) +
δ

δQP (q + Q−i, θ̃)
δ
δθ P (q + Q−i, θ̃)

· q · f(θ̃)

≥ (1− F (θ̃))− L1

L2
· qmax · f(θ̃)

where θ̃ is equal to θ if P (q + Q−i, θ) > p, equal to θ if P (q + Q−i, θ) < p and
given by P (q + Q−i, θ̃) = p otherwise. Indeed, this fact follows directly from the
observation that the optimal amount a �rm will dispose o� depends only on θ and
the produced quantity q, but does not depend directly on the price cap p. Now,
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as in the proof of Theorem 2, consider the case where, in addition, q ∈ b(Q−i, p).
Then the bound on pro�ts we used in the proof of the analog of Theorem 3 yields
that θ̃ can be required to be arbitrary close to θ if γ is su�ciently close to zero or
the produced quantity is zero. The remainder of the argument is along the same
lines as the proof of Theorem 2.

The analog of Theorems 4 and 5 are proven along the same lines as those theo-
rems. The major di�erence is that the marginal revenue D1πθ(q∗(p), (n−1)·q∗(p), p)

appearing repeatedly in the proof has to be substituted with max(D1πθ(q∗(p), (n−
1) · q∗(p), p),−c− η).
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