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Abstract

We characterize ex post incentive compatible public decision rules,
and apply this characterization to (i) bilateral trade and (i) public
good provision.

Introduction

When a planner faces the problem of designing a mechanism to elicit agents’
private information and to make, on the basis of this information, some public

decision which will affect these agents, the planner must confront the issue
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of incentives. The mechanism defines the rules of a game played by agents
and the planner hopes that a solution of this game correpsponds to truthful
revelation of information. The theory of mechanism design explores the types
of public decision rules for which there exists such an “incentive compatible”
mechanism.

The possibilities and impossibilities that result from this theory depend
in turn on the theory of games the planner uses to determine what consti-
tutes a solution to his mechanism. The solution concept most widely used
in mechanism design is Bayesian Nash equilibrium. In environments with in-
dependent private values (IPV), the theory of Bayesian incentive compatible
mechanism design has formalized many economically intuitive concepts, such
as information rent, constrained efficiency, second-best optimality. On the
other hand, when information is correlated, these natural limits on the pos-
sibility of Bayesian incentive compatibile mechanism design disappear (see
Cremer and McLean (1985), Cremer and McLean (1988), McAfee and Reny
(1992)), and the theory loses much of its appeal.

A stronger solution concept is dominant-strategy equilibrium. When the
planner insists on the requirement that participation and truthful revelation
of information is a dominant strategy for agents, the set of admissible mech-
anisms is restricted, and appealing features of the IPV literature are restored
even when information is correlated. The rich and elegant theory of dominant
strategy incentive compatible mechanism design and its connection with IPV
Bayesian incentive compatibility is laid out in papers such as Mookherjee and
Reichelstein (1992), Williams (1999), and Krishna and Perry (2000).

In recent years there has been a renewed focus on mechanism design in
environments with “interdependent valuations.” In these settings, agents
preferences depend not only on their own private information but also the
information of others. In these environments, Bayesian Nash equilibrium re-
mains very weak (see, for example, Cremer and McLean (1985)), but now
dominant strategy equilibrium is too strong: very little can be achieved in
dominant strategies. The literature has therefore focused on ex post equi-
librium, an intermediate solution concept which entails economically inter-
pretable restrictions on mechanism design possibilities, and which preserves
many appealing features of the IPV literature. Ex post equilibrium is equiv-
alent to dominant strategy equilibrium in environments with private values.
Ex post incentive compatibility can therefore be viewed as a generalization
of dominant-strategy incentive compatibility to interdependent value envi-
ronments.



This paper attempts to organize and extend the theory of ex post incen-
tive compatible mechanism design. We contribute to the existing literature
(e.g., Maskin (1992), Dasgupta and Maskin (2000), Es6 and Maskin (2000),
Bergemann and Véliméki (2000), Krishna (2000), Perry and Reny (2002),
Ausubel (2002)) in a number of ways. First, this literature has focused ex-
clusively on the design of efficient mechanisms. We provide a methodology
which can be applied to general design problems, not just those with the
goal of efficiency. Second, with the exception of Bergemann and Valimaki
(2000), this literature has focused on specific problems (e.g. auctions), pre-
sented efficient mechanisms for those environments, and then showed that
these mechanisms were ex post incentive compatible. In this paper we ap-
proach the design problem from the other direction: we characterize incentive
compatibility in general and show how this characterization can be applied
to study different applications. This work extends that of Bergemann and
Vélimaki (2000) who provide a characterization of efficient ex post incentive
compatible mechanisms in some specific environments.*

A second motivation comes from a recent paper by Bergemann and Mor-
ris (2002). They investigate the robustness of Bayesian incentive compatible
mechanism design by enlarging agents’ type spaces. Such an exercise cap-
tures the idea that when a mechanism designer is not sure about agents’
type spaces, he may want to design a mechanism that is Bayesian incentive
compatible not only with respect to the original type spaces, but with re-
spect to some enlarged type spaces as well. Of course, as the type spaces
being entertained get larger and larger, there are more and more restrictions
imposed on the mechanism for it to remain Bayesian incentive compatible.
Bergemann and Morris (2002) prove that such restrictions translate into re-
quiring that the mechanism, when restricted to the original type spaces, is
incentive compatible with respect to a solution concept that is stronger than
Bayesian Nash equilibrium, but yet weaker than dominant strategy equilib-
rium. This intermediate solution concept turns out to be ex post equilibrium.
Given this result, researchers who are interested in, say, whether information
rent (4 14 Myerson and Satterthwaite (1983)) or full surplus extraction (4 14

!Special mention should be made of the paper by Jehiel and Moldovanu (2001). They
study Bayesian incentive compatible mechanism design in environments with interdepen-
dent valuations. When signals are multi-dimensional efficient Bayesisan (and hence ex
post) incentive compatible mechanisms generically do not exist. When signals are one-
dimensional, valuations are linear in the signals and satisfy a version of single crossing,
they construct an efficient ex post incentive compatible mechanism.



Cremer and McLean (1988)) is a more robust feature of Bayesian incentive
compatible mechanism design can readily answer their questions by studying
ex post incentive compatible mechanism design. This paper offers a road
map to such a study, and provides two examples to illustrate how to use this
road map.

A central idea of this paper is that the problem of designing ex post
incentive comaptible mechanisms for a group of agents can be decomposed
into a collection of single-agent design problems. We provide two proposi-
tions (Propositions 4 and 5) formalizing this connection. These propositions
show how well known conditions and results for single-agent mechanism de-
sign translate immediately to corresponding conditions and results for multi-
agent environments for each of the three solution concepts we have discussed.
These immediately yield general characterization results for ex post incentive
compatibility and establish that the well-known payoff (or revenue) equiva-
lence results extend to this concept. We illustrate the power of these results
in applications to bilateral trade and public good provision.

In Section 2 we lay out the framework for the paper and present some
preliminary results. Section 3 contains the main characterization results of
the paper. We begin by relating multi-agent to single-agent incentive com-
patibility. As an application of this relation we present two characterization
results for ex post incentive compatibility (Subsections 3.1 and 3.2). In Sub-
section 3.3 we show how “payoff equivalence” results can be translated from
the single-agent framework as well. In Subsection 3.4 we discuss conditions
under which Bayesian incentive compatibility is equivalent to ex post incen-
tive compatibility. We present two applications in the remaining sections.
Section 4 studies the Myerson-Satterthwaite model of bilateral trade with
interdependent values. Section 5 explores the possibility of ex post incentive
compatible and budget-balanced provision of public goods.

2 Setup

There is a finite set NV of agents, and an arbitrary set Q of feasible social
alternatives. Each agent has a type (or signal) s; which is an element of an
arbitrary set S;. S = X;enS; is the set of states of nature. Each agent
has a utility function u; : QxS —R specifying his utility as a function of
the social alternative and the type profile. If for each agent ¢, his utility u;
does not depend on s_; (i.e., u;(q, s_;, s;) = u;(q, 5_4, ;) for all ¢, s;, s_;, and



5_4), we say that the environment is one of private values. Otherwise, values
are interdependent. We will also suppose that each agent has a reservation
utility level which we normalize to zero.

A social planner designs a mechanism in order to implement a social
choice function. A social choice function f : S — () specifies a social alterna-
tive for each possible state of nature. A mechanism I is a pair (M, g), where
M = (M, ..., My) is a collection of message spaces, one for each agent, and
g x;M; — Q is the outcome function which specifies the social choice g(m)
for each profile, m, of messages.

The mechanism I' determines a strategic game form among the agents,
where first agents simultaneously decide whether to participate and if all
participate, each agent i chooses a reporting strategy o; : S; — M;.

2.1 The Bayesian Framework

Suppose that there exists a common prior p over the set S. Then, given a
mechanism, we could evaluate the payoffs to a type s; of agent ¢ from a strat-
egy profile o by calculating the interim expected utility E, [u;(o(s), s)|si].
Based on this preference relation, a widely used criterion for implementation
is Bayesian incentive compatibility.

Definition 1 A social choice function f 1s Bayesian incentive compatible
if there exists a mechanism I which admits a Bayesian Nash equilibrium

~

strategy profile o such that g(o(s)) = f(s) for all s.

The revelation principle for Bayesian incentive compatibility states that
a social choice function f is Bayesian incentive compatible if and only if the
truthtelling strategy profile o(s) = s is a Bayesian Nash equilibrium of the
direct relvation mechanism (S, f); i.e., the interim incentive compatibility
constraints

E, [ui(f(s),s)\si} >E, [ui(f(gi,s,i),s)|si], V 5,5 €S,

are satisfied. A mechanism should also provide agents with incentives to par-
ticipate in the first place. Such a mechanism is called individually rational.
As a counterpart to Bayesian incentive compatibility, the natural concept of
individual rationality would be interim individual rationality: conditional on
his realized type, each agent expects to get at least his reservation utility
level.



Definition 2 A social choice function f 1s interim individually rational if
Vs; € S5, Ey ui(f(s),s)\si} > 0.

2.2 Ex Post Incentive Compatibility

When the planner does not know agents’ interim beliefs about one anothers’
types, when he does not have confidence in his estimate of those beliefs, or
when he simply does not want to settle for a mechanism which relies critically
on the fine details of these beliefs, the planner may demand a more stringent
incentive compatibility concept. A well-studied solution concept which is
independent of interim beliefs is dominant strategy equilibrium. A social
choice function f is dominant strategy incentive compatible if for each agent
i, truthtelling (i.e., 0;(s;) = s;) is a dominant strategy in the direct revelation
mechanism (.5, f) That is, V s;,m; € S;, Vs_;,m_; € S_;,

~ ~

ui(f(sz-, m_i), Si, S—i) 2 uz(f(m,, m_i), Si, S_z').

The natural individual rationality counterpart to dominant strategy in-
centive compatibility is ex post incentive compatibility.

Definition 3 A social choice function f s ex-post individually rational if

~

Vs e S, ui(f(s),s)>0.

The following straightforward proposition demonstrates why dominant
strategy incentive compatibility, together with ex post individual rationality
are the appropriate concepts for a planner who does not want the implemen-
tation of his social choice function to rest on tenuous conjectures of agents’
higher order beliefs.

Proposition 1 If f is dominant strategy incentive compatible and ez post
individually  rational, then f is Bayesian incentive compatible and interim
indwidually rational for every prior distribution .

However, if we are primarily interested in those social choice functions
which are Bayesian incentive compatible and interim individually rational for
all possible interim beliefs of the agents, we are more interested in the con-
verse of Proposition 1. One special case in which the converse holds is when
agents have private values. This was proven by d’Aspremont and Gerard-
Varet (1979). It means that, in private-value environments, a mechanism

6



designer interested in mechanisms that are Bayesian incentive compatible
regardless of agents’ higher order beliefs can restrict his attention to those
that are dominant strategy incentive compatible.

Unfortunately this result is not true in general. When values are inter-
dependent, dominant strategy incentive compatibility is too strong to char-
acterize belief-independent implementation. This leads us to the incentive
compatibility criterion we study in this paper. Say that a social choice func-
tion f is ex post incentive compatible if Vi, Vs, Vs;,

~ ~

u't(f(s)a S) 2 ui(f(gi’s—i)’s)'

We call this collection of constraints the ex post incentive compatibility con-
straints.

Proposition 2 A social choice function f s Bayesian incentive compatible
and interim individually rational for every prior distribution if and only if
f is ex post incentive compatible and ex post individually rational.

We conclude this section with a version of the revelation principle for
ex post incentive compatibility. Let I' be an arbitrary game. An ez post
equilibrium of I is a strategy profile o such that, for every prior distribution
i, o is a Bayesian Nash equilibrium of I' with respect to p.

Proposition 3 A social choice function f 1S5 ex post incentive compatible
and ex post individually rational if and only if there exists a mechanism T,
and an ez post equilibrium o of ', such that Vs, each agent participates and

9(o(s)) = f(s)-

2.3 Quasi-Linear Environments

Up to this point we have made no assumptions about utilities and the struc-
ture of the set of social alternatives. For the rest of the paper, we will
study environments in which money can be transferred among agents and
the planner, and agents’ utilities are linear in their payments. Formally, we
will assume Q = Q x RY where ¢ € Q is a public decision and ¢t € RY
represents the vector of payments from agents to the planner. The utility
functions take the form:

ui(Qata S) = Ui(CI: S) - ti7

7



where the valuation function v; is assumed to be bounded. A public decision
rule f : S — @ picks out a public decision f(s) for each state s. A payment
rule t : S — RY specifies the associated payments. When we say that a
public decision rule f is incentive compatible according to some criterion, we
mean that there exists a social choice function (f,¢) that is correspondingly
incentive compatible. In the following section we provide a useful and in-
tuitive characterization of the set of all ex post incentive compatible public
decision rules.

3 Characterization

Let’s ignore the multi-agent setup in the previous section for a moment To
avoid confusion with our original multi-agent setup, let’s use A to denote the
set of public decisions, and use © to denote that single agent’s type space.
The agent’s quasi-linear utility function is u(a, ) = v(a, ) — t, where the
valuation function v is assumed to be bounded. Let g : © — A be a public
decsion rule. Since there is only one agent, the different versions of incentive
compatibility mentioned in Section 2 are equivalent. We can thus speak of
necessary and sufficient conditions C for g to be incentive compatible (with
no qualification). Since the quadruple (4, ©, v, g) will fully describe the envi-
ronment and the public decision rule in question, any necessary or sufficient
condition for incentive compatibility must take the form of restrictions on
either A (e.g., finiteness), or © (e.g., connectivity), or v (e.g., differentiabil-
ity), or g (e.g., monotonicity), or any combination of these four. In other
words, we can view any condition C' as a subset of admissible quadruples
(A,0,v,9).

Our characterization of ex post incentive compatibility will be based on
the observation that each version of incentive compatibility mentioned in
Section 2 is simply single-agent incentive compatiblity stated with some or-
der of quantifiers. Thus, we can translate characterization results from the
literature on Bayesian and dominant strategy incentive compatibility to cor-
responding characterizations for ex post incentive compatibility after some
changes in the quantifiers.

The above observation is formalized in the following proposition. In part
2 of the proposition, AR denotes the set of probability distributions over @,
f(S_i, )+ S; = AQ denotes the random function generated from the public
decision rule f : S — ) and the common prior x4, and “independent-type”



refers to the case where the common prior y is a product measure. In part 3
of the proposition, “private-value” refers to the case where agent i’s valuation
function v; does not depend on other agents’ signals s_;.?

Proposition 4 For any condition C, the following statements are equiva-
lent:

1. In the single-agent special case, the public decision rule g : © — A is
incentive compatible if (resp. only if) the quadruple (A, ©, v, g) satisfies
condition C.

2. In the independent-type special case, the public decision rule f : S — @
15 Bayesian incentive compatible with respect to the common prior u
if (resp. only if) Vi, the quadruple (AQ,S;,E,v;, f(S_i,-)) satisfies
condition C.

3. In the private-value special case, the public decision rule f : S — @ is
dominant strategy incentive compatible if (resp. only if) Vi, Vs_;, the
quadruple (Q, S;, v;, f(s—i,)) satisfies condition C.

4. In the interdependent-value general case, the public decision rule f :
S — Q is ex post incentive compatible if (resp. only if) Vi, Vs_;, the
quadruple (Q, S;, vi(+, $—i, ), f(5=4,)) satisfies condition C.

From the previous literature, we can draw numerous examples of condi-
tion C' that can be plugged into Propostion 4. Instead of enumerating all
these examples, we shall hightlight two which we will employ throughout the
rest of this paper.

3.1 Example 1: Pseudo Efficiency

In the single-agent special case, when the valuation function v is bounded
(which is a maintained assumption throughout this paper), there exists a
very simple necessary and sufficient condition for incentive compatibility.

2The qualification “private-value” is actually not needed. But since the main pur-
pose of this proposition is to facilitate cross-fertilization across literatures, we insert that
qualification in order to conform to standard assumptions in previous literatures.



Definition 4 In the single-agent special case, a public decision rule g is
pseudo-efficient with respect to the valuation function v if there exists a func-
tion w : A — R such that V0,

g(0) € argmax, 4v(a, ) + w(a).

Lemma 1 In the single-agent special case, a public decision rule g is incen-
tive compatible if and only if it is pseudo-efficient with respect to the valuation
function v.

Proof: For each a € A, define
Ala) ={0 € ©:¢(0) = a}.

If g is incentive compatible, then there exists incentive compatible mechanism
(g,1). Since v is bounded, ¢t must be bounded as well, otherwise (g, t) wouldn’t
have been incentive compatible in the beginning. Let M > supy|v(6)| +
supy [t(6)|. Incentive compatibility implies that, for each 6,68' € A(a),

v(a,0) — t(0) > v(a,d) — t(¢),
and

v(a,0) —t(0') > v(a, ) — t(0),

which together imply ¢(0) = ¢(0') =: t(a). We define

w(a) = {—t(a) if A(a) # 0,

—M  otherwise.

Consider any 6 € ©. Suppose g(f) = a. Then for any o' € A and
0" € A(a'), incentive compatibility implies that

Moreover, for any a' € A such that A(a’) = 0,

v(a,0) +w(a) > v(d,0) — M =v(d,0) +w(a)

10



as well. Therefore, we have a € argmax,,v(a,0) + w(a'). This completes
the proof that g is pseudo-efficient with respect to v.

To prove the converse, suppose g is pseudo-efficient with respect to v. For
any 0 € ©, set t(#) = —w(g(f)). Then V0,60 € O,

v(g(0),0) —t(0) = v(g(6),0) + w(g(0))
> v(g(0),0) +w(g(6"))
=v(g(6),0) — ¢(¢").
Thus, ¢ is incentive compatible. [ |

Using Lemma 1 and Proposition 4, we have the following result.

Theorem 1 The public decision rule f : S — @ is ex post incentive com-
patible if and only if Vi, Vs_;, the function f(s_;,-) is pseudo-efficient with
respect to v;(s_i,-).

Theorem 1 gives us an intuition of why efficient public decision rules are
unlikely to be ex post incentive compatible. Let’s write down the definition
of efficiency and then compare it with that of pseudo-efficiency.

Definition 5 A public decision rule f is efficient if Vi, Vs_;,

Vs, € 5;, f(s) € argmax,cqvi(q, s) + Zvj (g, ). (1)
J#i

However, in order for f(s_;,-) to be pseudo-efficient with respect to
v(+, S_;,), there must be a function w which does not depend on s; such
that

Vs, € S;, f(s) € argmax,yvi(q, 5) + w(q). (2)

Comparing (2) and (1), one can see that since the function ., v;(g, 5, )
in general cannot be replaced by a constant function w(q). Efficient public
decision rules are hence in general not ex post incentive compatible. The well-
known fact that efficient public decision rules are always dominant strategy
(and hence ex post) incentive compatible turns out to be a hairline case: in
the private-value special case, the function ) i Vi (g,5_4,-) does not depend
on s; by assumption.?

3The canonical efficient mechanism in the private value environment, the VCG mech-
anism, is constructed by defining i’s payment to be identical to this function.
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3.2 Example 2: Separable Environment

For the private-value special case, Mookherjee and Reichelstein (1992) look
at a specialized environment and provide the necessary and sufficient condi-
tion for dominant strategy incentive compatibility. In particular, they look
at the environment where, from every agent i’s point of view, () can be
condensed into a single dimension, and agents’ valuation functions satisfy a
supermodularity condition. More formally, they assume that Vi, S; = [0, 1],
and there exist h; : Q — R and twice continuously differentiable functions
di(-,+) : R x S; = R such that v;(q,s;) = d;(hi(q), s;) (one-dimension con-
densation). Moreover, (0?d;/0h;0s;) > 0 (supermodularity condition). Many
classical mechanism design problems belong to this environment. For exam-
ple, in single-unit auctions, from every bidder #’s point of view, the set of
different allocations can be condensed into a single dimension, namely the
probability p; that he gets the object. The supermodularity condition also
follows from the fact that, when his valuation of the object is v;, his valuation
of probabiliy p; is simply p;v;, which has positive cross partial derivatives.

Lemma 2 (Proposition 4 of Mookherjee and Reichelstein (1992)) In
the private-value special case, when one-dimension condensation and the su-
permodularity condition hold, a public decision rule f : S — @ is dominant
strategy incentive compatible if and only if Vi, Vs_;, hi(f(s_i, s;)) is non-
decreasing in s;.

In Sections 4 and 5, we will deal with similar applications in the interde-
pendent valuation framework (with some additional structure.) We will refer
to this as the separable environment.

Definition 6 A separable environment is one in which for all i, S; = [0, 1]
and there exists function h; : Q@ — [0, 1] such that agent i’s valuation function
takes the form of h;(q)vi(s—;, s;), where v; is strictly increasing in s;.

Using Lemma 2 and Proposition 4, we have the following necessary and
sufficient condition, namely monotonicity, for ex post incentive compatibility
in the separable environment.

Theorem 2 In the separable environment, a public decision rule f : S — Q
is ex post incentive compatible if and only if it is monotone; i.e., Vi, Vs_;,
hi(f(s_i,8;)) is non-decreasing in s;.

12



3.3 Payoff Equivalence

Similar to the case of characterizing incentive compatibility, all the results
regarding payoff equivalence in the Bayesian and dominant strategy incentive
compatible mechanism design literature can be translated into corresponding
results for ex post incentive compatible mechanism design.

In the single-agent special case, we say that an incentive compatible public
decision rule g satisfies the payoff equivalence property if for any two incentive
compatible mechanisms, (g(-),#(-)) and (g(-),#'(-)), that differ only in the
payment rule, we must have ¢(-) equal to #(-) up to a constant. In the
independent-type special case, we say that a Bayesian incentive compatible
(with respect to common prior u) public decision rule f satisfies interim
payoff equivalence if for any two Bayesian incentive compatible mechanisms,
(f(-),t(-)) and (f(-),?(-)), that differ only in the payment rule, we must
have Vi, E,t;(s_;,-) equal to E,t/(s_;,-) up to a constant. In the private-
value special case (resp. interdependent-value general case), we say that a
dominant strategy (resp. ex post) incentive compatible public decision rule
f satisfies ex post payoff equivalence if for any two dominant strategy (resp.
ex post) incentive compatible mechanisms, (f(-),¢(-)) and (f(-),#(-)), that
differ only in the payment rule, we must have Vi, Vs_;, t;(s_;, ) equal to
t/(s—i,-) up to a constant.

A proposition that parallels Proposition 4 is as follows.

Proposition 5 For any condition C, the following are equivalent:

1. In the single-agent special case, an incentive compatible public decision
rule g : © — A satisfies the payoff equivalence property if (resp. only
if) the quadruple (A, ©,v, g) satisfies condition C.

2. In the independent-type special case, a Bayesian incentive compatible
(with respect to common prior u) public decision rule f : S — Q sat-
isfies the interim payoff equivalence property if (resp. only if ) Vi, the
quadruple (AQ, S;, E v, f(S_i,-)) satisfies condition C.

3. In the private-value special case, a dominant strategqy incentive compati-
ble public decision rule f : S — @ satisfies the ex post payoff equivalence
property if (resp. only if) Vi, Vs_;, the quadruple (Q, S, vi, f(s_i, "))
satisfies condition C.

13



4. In the interdependent-value general case, an ex post incentive compati-
ble public decision rule f : S — Q) satisfies the ex post payoff equivalence
property if (resp. only if ) Vi, Vs_;, the quadruple (@, Si, vi(+, s_i, ), f($—i,+))
satisfies condition C.

Incidentally, most examples of condition C' that can be plugged into the
above proposition come from the Bayesian incentive compatible mechanism
design literature.* Once again, we shall not enumerate all these examples, but
instead simply hightlight one which is especially relevant for our applications
in Sections 4 and 5.

Lemma 3 In the single-agent special case, if A is a finite set, © is a con-
nected topological space, and v is continuous in 6, then any incentive com-
patible public decision rule g satisfies the payoff equivalence property.

Proof: Define A(a) and #(a) as in the proof of Lemma 1. For any subset
E C 0, let E denote the closure of E. Let Qdenote the image of g; i.e.,
Q = ¢(0©). For any subset R C Q, we claim that

U AGe) n [ Ala) #90, (3)

a€ER a¢R

otherwise © is the union of disjoint closed sets and hence disconnected, a
contradiction.
We will use this fact to construct a tree 7 whose vertices are the elements

of @ with the property that for any two adjacent vertices, a and o', A(a) N

(a') # 0. The construction is inductive. Start with an arbitrary a € Q. By
(3), there exists an o’ € Q such that A(a) N A(a’) # 0. Include an edge
between a and a’. Now suppose we have constructed a tree over some subset
R C Q. Then by (3), there exists an element a € R and an element a' ¢ R
such that A(a) N A(a’) # 0. If we add an edge between a and a' we obtain
a new tree over the set RU {a’'}. Obviously the tree 7 over Q we eventually
obtain by this procedure will have the desired property.

Now let a and a' be adjacent vertices in 7. By construction there is a
type 6 € © and sequences 6% € A(a) and 8% € A(a') such that 8 — § and

B* — 6. Suppose (g, t) is incentive compatible. Then
U(aa 9/9) - t(a) > U(ala ek) - t(a,)

4See, for example, Krishna and Maenner (2001).
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and

v(d, %) = t(a') > v(a, B%) — t(a)

for each k. Taking limits and using the continuity of v in 6, we conclude

t(a) —t(a') = v(a,8) —v(d, ). (4)

Now let a” and " be an aribitrary pair of vertices. Since 7 is a tree, it
includes a path aq,...,a, with ag = o” and a, = a". Moreover, for every
pair of adjacent vertices, a; and a;1, there is a corresponding type 0_j as
above. Applying (4) to each adjacent pair along this path, we find

m

—

n— n—

1
t(a")=t(a") = ) _[t(aj) = tajr)] = D [v(a,0;) — v(aj11,6;)] = v(ao, bh)—v

:0

<.

<.
Il
o

Suppose (g, ') is also incentive compatible, then ¢ must satisfy the same
relationships, and hence

t,(a,”) _ t,( III) — t( ) _ t(a”,)
for every pair a”, a"” € Q. This proves that t' equal to ¢ up to a constant. B

Using Lemma 3 and Proposition 5, we have the following result.

Theorem 3 Suppose Q) is a finite set, each S; is a connected topological
space, and each v; is continuous in s;. Then any ex post incentive compatible
public decision rule satisfies the ex post payoff equivalence property.

In the single-agent special case, whenever an incentive compatible pub-
lic decision rule ¢ satisfies the payoff equivalence property there exists a
mechanism that pointwise maximizes revenue within the set of all incentive
compatible and individually rational mechanisms implementing g. To see
this, let (g,t) be any incentive compatible mechanism. By payoff equiv-
alence, the set of all incentive compatible mechanisms implementing g is
{(g9(-),t(-) + 2) : z € R}. Let Z C R be the set of z such that (g, + %)
is also individually rational. Since v is bounded (which is a maintained as-
sumption throughout this paper), Z is nonempty,”> and takes the form of a

5Since v is bounded, ¢t must be bounded as well, otherwise (g,t) wouldn’t have been
incentive compatible in the beginning. So for small enough z, (g,t+ z) will be individually
rational.
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closed interval, Z = (—o0,z]. Now (g,t+ Z) will be the pointwise revenue
maximizing mechanism we mentioned above.

The same logic extends to the interdependent-value general case: When-
ever an ex post incentive compatible public decision rule f satisfies the ex
post payoff equivalence property, there exists a mechanism that pointwise
maximizes revenue within the set of all ex post incentive compatible and ex
post individually rational mechanisms implementing f. If f also happens
to be an efficient public decision rule, we shall call that revenue maximizing
mechanism the generalized VCG mechanism.

3.4 Connection with Bayesian Incentive Compatible
Mechanism Design

Suppose f is a Bayesian incentive compatible (with respect to common prior
1) public decision rule that satisfies the interim payoff equivalence property.
Suppose we start with one implementing mechanism (f, %), and ask first the
question of whether we can construct an ex post incentive compatible mech-
anism (f,t') which is interim-payoff-equivalent to (f,t) (i.e., every agent gets
the same interim expected payoffs). If the answer is affirmative, then for
robustness reason we definitely would prefer the equivalent mechanism (f, ")
to the original mechanism (f,1).

This first question turns out to have a simple answer. If f also happens
to be ex post incentive compatible, then there will be ex post incentive com-
patible mechanism (f, '), which by definition will also be Bayesian incentive
compatible. By the interim payoff equivalence property, ' will give every
agent the same interim expected payoffs as ¢t does (up to some constants
which can be readily adjusted to zero). The converse is true as well. If
we can find an interim-payoff-equivalent ex post incentive compatible mech-
anism (f,t'), then of course f must also be ex post incentive compatible.
So the answer to our first question will be affirmative if and only if f also
happens to be ex post incentive compatible.®

If our original Bayesian incentive compatible mechanism (f,t) is interim
individually rational, then our interim-payoff-equivalent ex post incentive

6Mookherjee and Reichelstein (1992) ask the same question for the private-value special
case, with ex post incentive compatibility replaced by dominant strategy incentive compat-
ibility. Since the specific environment they look at guarantees interim payoff equivalence,
their paper can be read as characterizing dominant strategy incentive compatibility.
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compatible mechanism (f,¢) by definition is also interim individually ra-
tional, but possibly not ex post individually rational. So a natural second
question is the following. Start with any ex post incentive compatible, in-
terim individually rational mechanism (f,¢'), can it be further reduced to
yet another interim-payoff-equivalent ex post incentive compatible mecha-
nism (f,t") that is also ex post individually rational?

The following is an easy sufficient condition for an affirmative answer.
Suppose f also happens to satisfy the ex post payoff equivalence prop-
erty. Then for any ex post incentive compatible mechanism (f,#") imple-
menting f, t” is equal to ¢ up to some constants. Assume for simplic-
ity that Vi, mingcs, E, [vi(f(s-i, 8i), 5—4, 8i) — ti(s_s, 5i)] is attained. Then
argming . ¢ By [vi(f (54, 5:), 5—i, 8i) — tj(5_4, 5;)] will be the same regardless of
whether we use payment rule ¢’ or ¢ (for they are the same up to some con-
stants). Consider any s; that minimizes E,, [v;(f (s, $:), 5—i, i) — ti(5_s, si)]-
If s, also minimizes v;(f(s_s, ), S—i, ) —ti(s—i, ) for p-almost all s_;, then we
are done. Construct a payment rule ¢” from ¢’ by adjusting all those con-
stants such that Vi, t/(-,s;) = E,ti(s_;,s;), and the resulting mechanism
(f,t") will be ex post incentive compatible, ex post individually rational,
and gives every agent the same interim expected payoffs.

The “converse” is also true in the following sense. Suppose s; does not
minimize v;(f(s—i,-),s—,-) — ti(s—i,-) for p-almost all s_;. Suppose, say,
E, [vi(f(s-i,8;), 5-i,8;) — ti(s—i,5;)] = 0 (the interim individual rationality
constraint is binding). Then for any interim-payoff-equivalent ex post in-
centive compatible mechanism (f,¢”) to be ex post individually rational, ¢”
must be such that v;(f(-,s;),,s;) — t/(-,s;) = 0 p-almost everywhere. But
then there will be some s_; and s; # s; such that v;(f(s),s) —t/(s) < 0, and
hence f” cannot be ex post individually rational.”

The sufficient condition above may look complicated. But it actually
amounts to nothing more than saying that every agent has an unambiguous
“lowest type” (which necessarily depends on the public decision rule f in
question). Since many classical mechanism design problems belong to the
separable environment, and since unambiguous “lowest types” trivially exist
in the separable environment,® one can say that the existence of unambiguous

"For example, the Cremer and McLean (1985) surplus extraction mechanism, while ex
post incentive compatible, is not ex post individually rational. In fact surplus extraction
would not be consistent with this additional constraint due to the same reason outlined
in the text.

8The “lowest type” is s; = 0.
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“lowest types” is a hidden assumption in most of the mechanism design
literature.

We conclude this section with a sample theorem illustrating how one
can capitalize on the above informal discussion. The theorem identifies a
sufficient condition for Bayesian incentive compatible mechanism design to
be “equivalent” to ex post incentive compatible mechanism design. Such
an “equivalence” was previously developed in the private-value special case
by Mookherjee and Reichelstein (1992) and Williams (1999). To state the
theorem, we need the following definition.

Definition 7 In the separable environment, the valuations satisfy the strong
single crossing condition if each v;(-) is differentiable, and whenever q,q €
argmax, Zj vj(s)hi(q) and hi(q) > hi(¢") we have Zj %éﬂ(h‘j (q) —h;(q")) >
0.

Theorem 4 Suppose the environment is separable, the valuations satisfy the
strong single crossing condition, Q is a finite set,’ and signals are indepen-
dently distributed. Then for any efficient, Bayesian incentive compatible,
and interim individually rational mechanism (f,t), there exists an interim-
payoff-equivalent ex post incentive compatible and ex post individually rational
mechanism (f,t").

In the theorem above, the strong single crossing condition!? ensure that
efficient public decision rules are monotone (and hence ex post incentive
compatible): when there is a “tie” for the efficient alternative, an increase
in ¢’s signal breaks the tie in favor of ¢’s preferred alternative and hence
hi(f(s—i,-)) is locally increasing. The finiteness of () is to ensure that f(s_;,-)
is locally constant at all other points.

Proof: By the strong single crossing condition and the finiteness of @), f
is efficient implies f is monotone. By Theorem 2, f is monotone implies
f is ex post incentive compatible. By Theorem 3, f also satisfies the ex
post (and hence interim) payoff equivalence property. So there exists ex post
incentive compatible and interim individually rational mechanism (f,t') that
is interim-payoff-equivalent to (f,¢). Since unambiguous “lowest types” exist

9A version of this result holds for a continuum of alternatives at the expense of some
additional notations.

10This is a generalized version of the (strong) single crossing condition in, for example,
Dasgupta and Maskin (2000) and Perry and Reny (2002).
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in the separable environment, there exists ex post incentive compatible and ex
post individually rational mechanism (f,t") that is interim-payoff-equivalent
to (f,t'). [ |

4 Bilateral Trade

The bilateral trading environment is described as follows. There are two
agents, the seller ¢ and the buyer 5. The seller has one indivisible unit of
a good. Each observes a private signal from the unit interval s,,ss € [0, 1].
Each i = 3, 0 has a valuation function v; : [0, 1]> — R which we assume to be
continuous. For the seller, we can interpret v,(s) as the opportunity cost to
the seller of transferring the object to the buyer. This could be a production
cost, or simply the seller’s own value for an object already produced. Under
either interpretation, the seller’s ex post individually rational utility level
is v,(s). The buyer’s is normalized to zero. We assume that each agent’s
valuation function is weakly increasing and strictly increasing in his own
signal, and that there is at least one s such that vg(s) > v,(s) and one §
such that v5(3) < v,(8) so that the problem is not trivial. The latter can be
restated as the assumption that there is neither common knowledge of gains
from trade, nor common knowledge of no gains from trade.

A public decision rule in this context is simply a mapping f : S — [0, 1],
where f(s) is the probability that the object will be transferred from the
seller to the buyer when the reported type profile is s. We shall call a public
decision rule in this bilateral-trade setting a trading rule. If f takes values in
{0,1}, we call f a deterministic trading rule. If (f,¢) is an ex post incentive
compatible trading mechanism, then the net payoff to the agents in state s
are as follows:

Vi (s) == f(s)vg(s) — ta(s),
Vi(s) := = f(s)vs(s) — ts(s).

Definition 8 A trading rule is monotone if it is monotone non-decreasing
in ¢z and monotone non-increasing in @,.

By Theorem 2, a trading rule is ex post incentive compatible if and only
if it is monotone.

19



An efficient trading rule in this bilateral-trade setting is a trading rule
f such that f(s) = 1 whenever vg(s) > v,(s), and f(s) = 0 whenever
vp(s) < vg(s).

There can be multiple efficient trading rules, but they differ only in their
ways of breaking ties. Among these efficient trading rules, we will be able to
select one that is monotone (and hence ex post incentive compatible) if and
only if the following single crossing condition holds.

Definition 9 The valuation functions satisfy the single crossing property if
for any s,s" € S such that sy > s5 and s, < s,

[va(s) > vo(s)] == [vs(s') > vs(s")]-

If the valuations further satisfy the strong single crossing condition (see
Subsection 3.4), then all efficient trading rules will be monotone (and hence
ex post incentive compatible). These results are standard and hence we shall
omit the proofs

4.1 Budget-Balanced Trading Mechanisms

Suppose the strong single crossing condition holds and hence efficient trading
rules are ex post incentive compatible. The next question is whether efficient
trading rules are ex post implementable with budget-balanced trading mech-
anisms.

Consider an efficient, ex post incentive compatible trading mechanism
(f,t). If tg(s) +t,(s) <0 for all s (with at least one strict inequality), then
we say that the mechanism runs a deficit, and a surplus is defined analogously.
If f is a deterministic trading rule, then by Theorem 3 f satisfies the ex post
payoff equivalence property, and the generalized VCG mechanism is well
defined (see Subsection 3.3). The generalized VCG payment rule ¢ can be
constructed as follows: t,(s) =tz(s) =0forall s ¢ T :={s: f(s) =1}, and
forall s e T,

ta(s) = va(9s(s), 50), (5)
to(s) = —vs (s, 95(55)), (6)
where gs(s,) = inf{35 : (53,5,) € T} and g,(sg) = sup{3, : (s5,5,) € T}.

Note for future reference that f(0,s,)vs(0, ss) — t5(0,s,) = 0 for all s,, and
—f(s8,1)vs(sp, 1) — ts(s5,1) = 0 for all sg.
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For the private-value independent-type special case, Myerson and Sat-
terthwaite (1983) prove that efficiency together with Bayesian incentive com-
patibility and interim individual rationality is inconsistent with budget bal-
ance. On the other hand, when types are correlated, McAfee and Reny
(1992) show that budget balance can be achieved. The following result ex-
plains why the former result is more robust (in the sense of Bergemann and
Morris (2002)) than the latter.

Theorem 5 There does not exist an efficient, ex post incentive compatible,
ez post indiwidually rational, and budget-balanced trading mechanism.

We prove this theorem in two steps. First in Lemma 4 we show the
impossibility result for the special case of deterministic mechanisms. Then,
in Lemma 5 we show that the restriction to deterministic mechanisms is
without loss of generality.

Lemma 4 FEvery deterministic, efficient, ex post incentive compatible, and
ex post individually rational trading mechanism runs a deficit.

Proof: Let f be deterministic, efficient, ex post incentive compatible, and ex
post individually rational. By Theorem 3, it suffices to show that (f,¢) runs
a deficit when ¢ is the generalized VCG payment rule. Let s € 7. Consider
the profile v = (gs(s,), 95(s5)). We claim that v,(y) > vg(y). To show this
we consider two cases.

First, suppose v = (0,1). If vg(y) > v,(7), then by the efficiency of f,
we must have f(y) = 1. Because f is ex post incentive compatible, it is
monotone (Theorem 2), and hence f(3g, 9,(s3)) = f(9s(s+),5,) = 1 for any
Sp and 5,. Applying monotonicity again, we conclude that f(53,35,) =1 for
any 5g and 5,. But this is a contradiction because there is at least one 5 such
that v,(5) > vg(8) and hence by efficiency, f(5) = 0.

Second, suppose (say) gs(s,) > 0 (the case of g,(sg) < 1 is treated in
an analogous fashion.) If vg(y) > v,(7), then by continuity of the valua-
tion functions there exists € > 0 such that gg(s,) —e > 0 and vg(gs(s,) —
£,95(58)) > v,(98(ss) — €, 95(s3))- By efficiency of f, f(gs(ss) —€,9-(58)) =
1, and by monotonicity of f, f(gs(ss) — €, S») = 1. But this contradicts the
definition of gs(sy)-

Thus we have

ta(s) = v(9s(s0), 50) < va(7) < vs(7) < vo(sp,9o(55)) = —to(s)
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so that the deficit is non-negative in every state in which there is trade. We
now use the assumption that valuations are strictly increasing in own signal
to show that the deficit is strictly positive in some states in which the gains
from trade are strictly positive.

Let Av(s) denote vg(s) —v,(s). By assumption, there exist s, § such that
Av(s) > 0 and Av(5) < 0. Without loss of generality we can pick s such that
Se < 1 (by continuity such an s must exist). Since f is efficient, Av(§) < 0
implies that f(5) = 0. Since f is monotone, f(53,1) = 0, and finally applying
efficiency again, we have Av(53,1) < 0. Write s’ = (53,1). By the continuity
of the valuation functions, the set R = {r : Av(rs+ (1 —r)s’) = 0} is not
empty. Let 7 = sup R, and 7 = s+ (1 — 7)s’. Note that 7, > s,. Continuity
implies vg(T) = v, (7).

Consider any sequence r | 7. Then, writing s(rg) = (res + (1 — 7x)s),
we have s(ry) — 7 and s(rg) € T for all k. By monotonicity, (sg(rx), so) € T
for all £ and thus

=l > inf >
75 = lim sp(r) > infs5(rk) > g5(so)
Suppose that the inequality is strict. Then

ts(7s, 50) = v(9p(S0)s o) < vp(7g, 85) < V(T) = V6(T) < V6(75, 95(75)) = —t4 (75, S0)

yielding a strict deficit. On the other hand, if gs(s,) = 75, then we must have
vg(T8, So) = Vs (T3, ) otherwise by continuity, there would be a ¢ > 0 such
that Av(rg—e¢,s,) > 0 and hence (753 —¢,s,) € T, contradicting 75 = gg(s,).
Thus

tp(s) = vp(95(80), S0) = v5(78, S0) = Vo (78, 85) < Vo (8) < v5(88, 9o (5p))

where the final inequality follows because Av(s) > 0 and continuity imply
So < go(Sp)- [ |

Lemma 5 For every efficient, ex post incentive compatible, and ex post in-
dividually rational trading mechanism, there is a deterministic, efficient,
ex post incentive compatible, and ex post individually rational trading mech-
anism which yields a smaller deficit in every state.

Proof: Let (f,t) be an efficient trading mechanism. Construct a determin-
istic rule f by setting 7 = f'(1). The rule f is efficient and monotone
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because f is. Let ¢ be the generalized VCG payment rule for f. We will
show that the deficit under ( 1, t) is smaller than under (f,t) in every state
s.

First suppose f(s) = 1. Then by ex post individual rationality, vs(s) >
tg(s). Furthermore, since tg(s) is the payment paid by every type of buyer
in the set S* = {55 : f(33,s,) = 1}, these individual rationality constraints
together imply

tg(s) < inf vs(Sp,55) = gs(so)
Sg€ES
Similarly we can argue —t,(s) > g,(sg). Thus, tg(s)+t,(s) < g5(ss) — 9o (5)
and the former is the deficit under (f,?), while the latter is the deficit under
(f, ).

Now suppose f(s) = p < 1. By ex post individual rationality, pvg(s) >
tg(s) and —t,(s) > pv,(s). Since f is efficient and p < 1, it must be that
v,(s) > vg(s) and hence —t,(s) > pv,(s) > pvg(s) > tz(s). This shows that
under (f,t) there is a deficit in every such state s. Since f(s) < 1 implies
f(s) = 0 and hence #(s) = (0, 0) there is budget balance at each such s under

. |

(f,9)

As a corollary, we have the following result which was obtained via in-
dependent means by Fieseler, Kittsteiner, and Moldovanu (2001)*!. We say
that a mechanism satisfies ex ante budget balance if the expected value of
the deficit is zero.

Corollary 1 When signals are distributed independently, there does not ez-
ist any deterministic,'? efficient, Bayesian incentive compatible, and interim
individually rational trading mechanism which satisfies ex ante budget bal-
ance.

Proof: By Theorem 4 such a mechanism could be reduced to an interim-
payoft-equivalent efficient, ex post incentive compatible, and ex post individ-
ually rational trading mechanism. Since total welfare is fixed by efficiency,
interim-payoff-equivalence implies equal expected surplus. Thus, the new

" These authors explore the possibilities of Bayesian incentive compatible efficient trade
in a broad class of models which includes bilateral trade, lemons models, and dissolution
of partnerships.

12This is to keep the set of alternatives finite so that Theorem 4 can be applied directly.
The result extends to the random case with some additional work. See Fieseler, Kittsteiner,
and Moldovanu (2001).
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mechanism would satisfy ex ante budget balance. But this would contradict
Lemma 4. [ |

4.2 Deficit-Minimizing Efficient Mechanism

Given the above results, it is natural to investigate the existence of an efficient
mechanism that minimizes the deficit among all efficient, ex post incentive
compatible, and ex post individually rational mechanisms. Such a mechanism
exists, and in fact the minimization is pointwise. Note that this is a different
result than the existence of the generalized VCG mechanism (Subsection
3.3). There we fixed f and found the deficit-minimizing payments, whereas
here we look for the pair (f, ) which minimizes the deficit among all efficient
(f,1).

The optimal efficient trading rule f* is defined as follows. Any efficient,
deterministic (which is without loss of generality in light of Lemma 5), and
ex post incentive compatible can be described by a monotone cutoff func-
tion g : [0,1] — [0,1] such that f(s) = 1 if sg > g(s,), and f(s) = 0 if
s < g(ss). Since g is monotone, it has an “inverse” ¢g~' in the following
sense: g '(sg) = sup{s, : 55 > g(s,)}. Let G be the set of all monotone cut-
off functions obtained in this way from efficient, deterministic, and ex post
incentive compatible mechanisms, and let g, be the pointwise supremum of
G. We claim that g, € G. Because the pointwise supremum of monotone
functions is monotone, g, is monotone as well. Hence, if we set f*(s) = 1 iff
sg > g«(s,) (and otherwise f*(s) = 0), we obtain a monotone and hence ex
post incentive compatible trading rule. To show that it is efficient, note that
vp(s) > (resp: <) v,(s) implies sz > (resp: <) g(s,) for all g € G and hence
sg > (resp: <) g+(Ss)-

Thus f* is an efficient, deterministic, and ex post incentive compatible
trading rule. Let t* be the associated generalized VCG payment rule. We
now show that (f*, ¢*) achieves the smallest deficit at each state among all
mechanisms (f,¢) “in” G. Clearly the deficit is no greater under (f*,t*) at
states s where f*(s) = 0 since there the deficit is exactly zero under (f*,t*)
and by Theorem 5, the deficit is non-negative under (f,¢). Consider s at
which there is trade in f*. The payment from the buyer is v5(g.(ss), s5)
which by definition of g, is no smaller than vg(g(ss), s,), the payment from
the buyer in (f,t). The payment to the seller is v, (ss, g, *(s5)) which is no
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greater than v,(sg, g(ss)) because

9;1(8[3) = SUP{SU 18 > g*(sa)} < SUP{SU 18 > 9(80)}

because the first set is a subset of the second. We have now established the
following theorem.

Theorem 6 Whenver there exists an efficient and ex post incentive compati-
ble trading rule, there exists a deficit minimizing, efficient, ex post incentive
compatible, and ex post individually rational trading rule. Moreover, this
trading rule is deterministic.

4.3 Detail-Free Implementation

It is worth pointing out that, when the valuation functions satisfy the strong
single crossing property, not only that all efficient trading rules are ex post
incentive compatible, one can pick an efficient mechanism that is ex post
dominance solvable as well (so a stronger solution concept comes for free).
Since this result is analogous to our paper on interdependent-value auctions
(Chung and Ely (2000)), we shall provide only a sketch here.

Consider the following trading game: the buyer announces a price offer
and the seller a price demand. These announcemnts are simulataneous. If
(and only if) the buyer’s price offer exceeds the seller’s demand, the object
will be transferred to the buyer, the buyer will pay the seller’s demand and
the seller will receive the buyer’s offer. It can be proved that this game can
be solved by iterative elimination of ex post weakly dominated strategies,
and the ex post dominance solution (which by definition is also an ex post
equilibrium) implements efficient outcomes (see Chung and Ely (2000)).

Following Dasgupta and Maskin (2000), one can also call the above trad-
ing game a detail-free mechanism, in the sense that it, instead of using ab-
stract message spaces, uses message spaces that are simpler and have an
intrinsic meaning, more like bids in an auction. Moreover, it does not re-
quire its designer to know the valuation functions.

4.4 An Example With a Surplus

It was important for Theorem 5 that the valuation functions were weakly
increasing. In this section we provide an example in which balanced bud-
get is possible when this assumption is lifted. For some parameter values
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the budget is balanced in every state, and for other parameter values the
mechanism actually runs a surplus.

Suppose v;(s) = s; + as_; for i = (3,0, where the parameter a € R
measures the sign and extent of interdependency. Whenever a < 1 there is
a (essentially) unique efficient and ex post incentive compatible trading rule
f in which f(s) = 1if sg > s,. The VCG payments in the event of trade
are tg(s) = s, + as, and t,(s) = —(sp + asg). Notice that when a = —1,
we have t5(s) = t,(s) = 0 so that there is a balanced budget in every state.
And when a < —1, we have t3(s) +t,(s) > 0 in every state s where there is
trade. Thus, the generalized VCG mechanism runs a surplus.

5 Provision of Public Goods

In this section we study ex post incentive compatible mechanisms for the
provision of a public good when agents’ values are possibly interdependent.
For simplicity we study the case of two agents who must decide whether or
not to proceed with a public project of fixed size and given cost. They will
design a mechanism in order to elicit the preferences of each agent, and on
the basis of the revealed preferences decide whether or not to proceed with
the project, and if so, how to distribute the costs.

Each agent ¢ = 1,2 has a signal s; € S; = [0,1]. Agent i’s value for the
public project is determined by his valuation function v; : S — R, which
we assume is weakly increasing, and strictly increasing in own signal. We
normalize the value from not producing the public good to zero. The cost of
producing the public good is c. The restriction to two agents is for illustrative
purposes, the generalization to an arbitrary number is straightforward.

We will study deterministic public decision rules f : S — {0,1}, where
f(s) = 1iff the public good is to be produced. We shall call a public decision
rule in this public goods setting a provision rule. A provision rule f is
efficient if f(s) = 1 whenever V(s) := v1(s) + va(s) > ¢, and f(s) = 0
whenever V(s) < c¢. A provision mechanism (f,¢) satisfies budget balance
when f(s) = 1 implies 1(s) + t2(s) > c. It satisfies exact budget balance if
the latter is always satisfied with equality.

Definition 10 A provision rule f is monotone if f(s) =1 implies f(5) =1
for every s > s where the inequality is weak, and co-ordinate-wise.
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By Theorem 2, a provision rule is ex post incentive compatible if and only
if it is monotone.

5.1 Efficient Provision Rules

Our first observation is that efficient provision rules are always ex post in-
centive compatible because they are always monotone. For any § > s,

V(is)>c = V(s) >c

Theorem 7 FEvery efficient provision rule is ex post incentive compatible.

5.2 Budget-Balanced Provision Mechanisms

Unfortunately, ex post individually rational provision mechanisms are not
typically self-financing and require subsidies from outside. In the remainder
of this subsection, we study the constraints implied by the restriction to ex
post individually rational, budget-balanced mechanisms. In the literature
on provision of public goods when agents have private values, a well-known
theme is that budget-balanced mechanisms suffer from the free-rider prob-
lem. This problem becomes more and more severe in larger populations,
asymptotically leading to complete free-riding and no public good provision.
The free-rider problem arises in our context with interdependent valuations,
but becomes less and less severe as values become “more” common. In the
extreme case in which agents have pure common values, v;(s) = wvy(s) for
every s, the efficient mechanism is also exact budget-balancing.

We will distinguish between three classes of enviornments, those with
increasing, constant, and decreasing differences. Informally, increasing dif-
ferences means that agent ¢’s value is more sensitive to changes in his own
information than to changes in the information of agent —i. Decreasing dif-
ferences is the opposite case. Constant differences implies that agents have
pure common values, v;(s) = v_;(s) for each s. We think of increasing dif-
ferences as the typical case. Note that private values is a special case of
incresing differences.

Definition 11 Say that the environment is one of increasing differences,
decreasing differences, or pure common values according to whether the dif-
ference

Uz'(SZ', S_,') - U_Z'(Si, 8_,')
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18 strictly increasing, strictly decreasing, or constant in s;, respectively.

The proof of the following theorem is straightforward and hence is omitted.

Theorem 8 Possibilities for efficient, ex post incentive compatible, ex post
individually rational and budget-balanced public goods provision are classified
as follows.

1. With increasing differences, every ex post incentive compatible, ex post
individually rational, and budget-balanced provision rule is inefficient.

2. With decreasing differences, efficient provision rules are budget-balanced.

3. With pure common values, efficient provision rules are exactly budget-
balanced.

Given the above result, we would want to characterization of second-best
budget-balanced mechanisms when there are increasing differences. Say that
a (deterministic) ex post incentive compatible provision rule f is budget-
balanced if its associated generalized VCG mechanism (which by Theorem 3
is well defined) is budget-balanced. Say a budget-balanced f is dominated if
there exists another budget-balanced f such that

1 fs)=1 = f(s)=1.
2. If f(s) =1 but f(s) = 0 then V(s) > c.

When searching for the second-best mechanism, which amounts to to
searching for the f* that maximizes [ f(s)[v(s) — ¢] du among all budget-
balanced f for some prior belief y over S, a planner can always restrict
attention to budget-balanced provision rules that are undominated.

A special role will be played by the following class of provision rules which
we call threshold contribution rules.

Definition 12 f is a threshold contribution rule if there exists a pair of
valuations U1, s such that f(s) =1 iff vi(s) > U1 and wve(s) > vs.

We can think of v; as the “pivotal” valuation for agent i. Only if each
agent’s valuation exceeds his pivotal level will the good be provided.
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Theorem 9 Assume increasing differences. Then f is an ex post incentive
compatible, budget-balanced, and undominated provision rule if and only if
it 1s a threshold contribution rule with pivotal valuations v1, o such that

1. 11+ 7, =c, and
2. there ezists § such that v;(5) = 0; for i=1,2.

Proof: We begin by showing that such a threshold contribution rule is ex
post incentive compatible and budget-balanced. Ex post incentive compat-
ibility follows from Theorem 2. The associated generalized VCG payment
rule is:

£(5) = {0 if f(s) =0

inf{v;(5;,s_;) : f(5;,s_;) =1} otherwise

Because f(s) =1 only if v;(s) > v; and 71 + U2 = ¢, the mechanism (f,¢) is
budget-balanced.

Now we show that f is undominated. Consider a candidate dominating
f; ie. suppose f(s) =1 = f(s) = 1 and f(s) = 1 for some s such that
v;(s) < v; for some 3.

Since f is a threshold contribution rule, v;(5) = v, for each j for some 5
where 7 is the pivotal value for agent j. Note that f(5) = 1 for every § such
that §_; > 5_;, since f is monotone, and hence f (5) =1 as well.

We claim that s; < §;. For if s; > 5;, then we must have s_; < §_; so that
v;(s) < U; = v;(8). Then by increasing differences, v;(s) — 0; > v_;(s) — v,
which in turn implies that v_;(s) < @ ;. But then f cannot be budget-
balanced because t;(s) < v;(s) (by ex post individual rationality) and hence
t1(s) +ta(s) < V(s) < ¥; + ¥4 which by assumption is equal to c.
~ Now because f is ex post incentive compatible, it is monotone and hence
f(5i,s—;) = 1. According to the associated generalized VCG payment rule,

Zii(gi, S_Z') < ’UZ'(S) < 7; and -E—i(gia S:i) < ’U_i(g) = U_;, and hence tNZ'(gi, S_Z') +

t_i(8i,8-i) < U; + U_; = ¢, hence f is not budget-balanced. This concludes
the proof of sufficiency.

Now suppose that f is ex post incentive compatible, ex post individually
rational, budget-balanced, and undominated. First we claim that f(s) =1
for some s such that V(s) = c. If not, then fix an s such that V(s) = ¢, and
let f be the threshold contribution rule with pivotal valuations 7; = v;(s).
Construct a new provision rule f defined by f(s) = 1 — (1 — f(s))(1 —
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f(s)) Since both f and f are monotone, so is f and hence f is ex post
incentive compatible. Ex post individual rationality and budget balance also
are inherited. Thus f dominated f, a contradiction. .

Fix an s such that f(s) = 1 and V(s) = ¢, and let f be the threshold
contribution rule with pivotal valuations v; = v;(s). Now we claim that f is in
fact equal to f. If f(s) = 0 for some s at which f(s) = 1, then the argument
of the previous paragraph again yields a dominating provision rule. Finally,
if f(s) =1 but f(s) = 0, then v;(s) < 7; for some i, and the argument used
in the “if” part of the proof will show that f is not budget-balanced, another
contradiction. [ |

5.3 Detail-Free Implementation

In this subsection we show that when valuations satisfy increasing differences,
second-best provision rules have a detail-free indirect implementation in the
same sense as in Subsection 4.3. The mechanism can be viewed as a voluntary
contingent-contribution scheme in which each agent commits to contribute
up to some specified amount provided the pledged contribution of the other
agent is at least some level. If each agent’s pledged contribution exceeds the
minimum specified by the other, then the project is funded and each pays
that minimum.

Formally, each agent ¢ announces a pair of numbers, (d;, p;). The inter-
pretation is that ¢ is promising to contribute up to p; provided that agent
—1 promises to contribute at least d;. The mechanism works as follows. The
public good is produced if and only if p; > d_; for 7 = 1, 2, and if so, agent ¢ is
taxed the amount d_; (note that 7 has promised to pay at least this much). To
show that this mechanism implements the second-best, let f be any second-
best provision rule. Since we have assumed increasing differences, Theorem 9
implies that f is a threshold contribution rule with associated threshold val-
uations v;. For each Si, let E(S,) = {S—i : ’UZ'(SZ', S—i) > U4, U_i(Sz', S_Z') > 17_1'}.
Define ¢_;(s;) = inf F;(s;) provided the latter is not empty, otherwise define
¢-i(si) = 1.

Consider the following strategy profile. First, if Fj(s;) = [0, 1], then 4
offers v;(s;,0) contingent upon an offer of d;(s;) = v_; from agent —i. Oth-
erwise, agent i of type s; offers to contribute p;(s;) = v;(s;, ¢—i(s;)) contingent
upon an offer of at least d;(s;) = v—;(s;, —i(s;)) from agent —i.

We now show that this strategy profile is an ex post equilibrium in which
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the project is approved at state s iff f(s) = 1. First, suppose f(s) = 0. Then
for each i, ¢_;(s;) > s 4, and for some i, ¢_;(s;) > s_;. Suppose

Vi (8i, d—i(si)) = pi(si) > d_i(s5-) = vi(di(5-3),54),

then by increasing differences,

v_i(9i(s5-4),5-4) = p_i(s-i) < di(s:) = v_i(si, p—i(54));

i.e., at least one agent’s contingency is not met and the project is not ap-
proved.

If d ;(s_;) = ©;, then since p;(s;) = vi(s;, ¢_i(si)) > U;, we know that i
meets the contingency of —i. On the other hand, ifd_;(s_;) = v;i(di(s_i), 5 i) >
U;, then we must have v_;(¢;(s_;),s_;) = v_; (by the definition of ¢;), and
since v_;(s;, ¢_i(s;)) > v_;, increasing differences implies

pi(s:i) = vi(si, B—i(5:)) = vi(@i(5-i), 5-i) = d_i(s-4)

and again ¢ meets the contingency of —i. After the identical argument for
7’s contingency, we have shown that the project is approved if and only if
f(s) = 1.

To show that the strategies form an ex post equilibrium, note that in
any state s, agent i is demanding a contribution from —i which is equal
to the minimum of —i’s value among all types s_; such that f(s,s_;) = 1.
Thus, type s_; of agent —i is willing to pay this demand (by meeting i’s
contingency) if and only if f(s,s_;) = 1.
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