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1. Introduction

In this paper we ¯nd su±cient conditions for the robust control of asset price volatil-
ity through ¯nancial innovation. An intimately related question, often asked in the
literature (see our discussion of the literature below), is whether the degree of market
incompleteness a®ects asset price volatility.

We take advantage of a very simple, standard model of discrete-time dynamic
trading of assets and multiple goods in a ¯nite economy. In our setup, ¯nancial inno-
vation is not the result of optimizing behavior, and asset markets are incomplete. We
do not seek to explain why markets are incomplete or why new assets are introduced,
but we take this as given and concentrate on the equilibrium e®ects of having di®erent
¯nancial structures. We impose time and state separability of preferences, and use
von Neumann-Morgenstern expected utilities. This is done for the sake of exposition,
and because of the wide use of the separable case in the ¯nance and macroeconomic
literature. Any weaker version of separability (such as time nonseparability, or a
habit formation assumption) also gives rise to the same results as the ones presented
in this paper. The model we use covers any ¯nite time horizon trading economy,
even though here we focus on the three-period case. Although a new ¯nancial asset
generally plays a role as a hedging device and as an information vehicle, the results in
this paper do not address di®erential information economies. Rather, we concentrate
on the spanning role of ¯nancial assets.

With these maintained general speci¯cations, we ¯rst elaborate on a well-known
result (see Oh (1996), e.g.) showing that with quadratic (i.e., mean - variance) pref-
erences price volatility is una®ected by the degree of market incompleteness, and
¯nancial innovation has no e®ect on volatility.

Second, we ¯nd a class of economies where market-completing ¯nancial innovation
never increases price volatility, and almost always reduces it. These are economies
with no aggregate risk. Here asset prices show zero volatility with complete markets,
provided the stationarity of payo® expectations is assumed. In Proposition 3.2, we
prove that any ¯nancial innovation is volatility-reducing, generically in endowments,
existing asset payo®s and preferences, but within this class, if: i) we go from one asset
to complete markets; ii) there is one commodity, and; iii) conditions of e®ective incom-
pleteness are added to this environment, i.e., idiosyncratic risks cannot be perfectly
hedged when markets are incomplete. We also give numerical examples, suggesting
that the volatility-reducing e®ects of innovation extend in this class of economies to
a general comparison between incomplete and complete markets. Our examples also
suggest that no qualitative role is played by the type of risk aversion. We obtain price
volatility with incomplete markets and with CRRA or CARA utilities.

Finally, in Theorem 5.2 and its Corollary we ¯nd conditions on the number of
states, assets and types of households such that, in an open and dense subset of
preferences and endowments, ¯nancial innovation allows the control of asset price
volatility. These conditions imply that, with su±cient market incompleteness to start
with, we can ¯nd a new asset which reduces price volatility. Moreover, our theorem
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allows the comparison between incomplete and (dynamically) complete markets, with
one initial asset and a binomial-tree structure for uncertainty, if the new asset is
retraded.

The last result of the paper shows that it is easier to reduce volatility through
¯nancial innovation when traders cannot rebalance their holdings of the new asset.
More precisely, in the case of impossibility of retrading (Theorem 5.2) the condition
linking the number of states, households and assets is weaker than in the case of
retrading (Theorem 5.6). Suppose that over-the-counter ¯nancial contracts can be
designed in a more customized way and retrading of these contracts is more di±cult
than on standardized contracts exchanged on organized markets. Then it can be
argued that in the absence of greater levels of market incompleteness (higher dimen-
sionality of the state space), it may be convenient to introduce hedging instruments
over the counter as opposed to widely retraded assets, when the intent is to control
price volatility of existing ¯nancial assets (and in the absence of other e®ects, such as
informational).

More formally, Theorem 5.2 states that there is some ¯nancial innovation lead-
ing to a volatility decrease, while some other leads to an increase in volatility. The
intuition here is, along the lines of what is known in the constrained suboptimality
literature (see Geanakoplos and Polemarchakis (1986), Citanna, Kajii and Villanacci
(1998), e.g.), that price e®ects induced by payo® changes may allow modifying asset
prices in such a way to control volatilities at pleasure. To get the result, we have to
impose some extra conditions on the economy. In particular, the degree of incom-
pleteness must be larger than the sum of the number of (types of) households in the
economy and of the number of preexisting assets. This condition is generally su±-
cient, and also tight within our di®erential framework of analysis, in the sense that
this condition is required to obtain robust (open sets of new assets have the same
e®ect on open sets of economies, for almost all initial economies) and predictable
(locally one-to-one) e®ects of ¯nancial innovation. The exact meaning of this will
become apparent after Lemma 5.1.

The remainder of the paper is organized as follows. After a brief discussion of
the related literature, in Section 2 we present the model, and a CAPM economy. In
Section 3 we examine the no aggregate risk economies, and study examples illustrating
the role of risk aversion. Section 4 introduces a general framework for the comparative
statics of ¯nancial innovation, generalizing Cass and Citanna (1998). This section
can be skipped by the reader familiar with that paper. Section 5 contains the general
controllability results without or with retrading, and further examples. The Appendix
contains the technical proofs.

1.1. Related literature

Despite the fact that ultimately ¯nancial innovation should be judged on the basis of
its e®ects on welfare, its impact on asset price volatility has spurred a considerable
debate over the years, also at the academic level. Market volatility has been the focus
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of empirical tests of asset pricing models and business cycle theories (the literature
is huge and cannot be summarized here; an example is Shiller (1981)). These studies
mainly found excess volatility of stock returns, or deviations of asset price volatil-
ity from the one determined by the \fundamentals". Traditionally the benchmark
volatility is derived from a complete-market, in¯nite-horizon model of consumption
and investment. Market incompleteness, as a form of market imperfection, has been
conjectured to be one of the causes of excess volatility (see Shiller (1989)). Com-
putationally, examples of incomplete market models have shown no quantitatively
signī cant amount of this excess volatility (see Telmer (1993), or Rios-Rull (1994)).
On the other hand, Geanakoplos (1997) in a multi-commodity world with bankruptcy,
and Calvet (2001) in an in¯nite horizon CARA - normal framework with no aggregate
uncertainty have recently con¯rmed the conjecture.

In its weaker form, the conjecture compares volatility with complete and incom-
plete markets, asserting that the former is lower than the latter (see Calvet (2001),
e.g.1). The basic idea behind this hypothesis is that when ¯nancial markets are incom-
plete, risk averse individuals cannot perfectly smooth consumption across time and
states, and this causes °uctuations in aggregate endogenous variables across states of
the world. In particular, asset prices show volatility in excess of what found when
markets are complete. Hence, under the weaker hypothesis, ¯nancial innovation which
completes markets always has bene¯cial e®ects for volatility, no matter what new as-
sets are introduced. Shiller (1993) has also proposed the introduction of index trading
as an e®ective way to reduce market incompleteness and ¯nancial market volatility.2

Our result in economies with no aggregate risk, and quadratic preferences, are
in line with those of Calvet (2001), as we have no stochastic volatility in that case.
Our numerical examples with no aggregate risk point to the fact that the absence
of stochastic volatility is the e®ect of mean-variance preferences, and not of constant
absolute risk aversion. Moreover, we show that incomplete markets cause an increase
in volatility for general preferences and asset payo®s, enlarging Calvet's result on
volatility with incomplete markets and no aggregate risk beyond the CARA - normal
setup.

1In fact, Calvet (2001) asserts that \More asset markets should not only help improve welfare and
reduce social inequalities through better risk sharing; they should also dampen volatility in existing
¯nancial markets and the real economy", going past the weaker form of the hypothesis. It should
also be noticed that in Calvet (2001), volatility means deterministic °uctuations, while in this paper
we focus on stochastic °uctuations.

2Using a di®erent modeling framework, Detemple and Selden (1991) studied the e®ects of option
contracts on price volatility, and Detemple (1996), Zapatero (1998) examined general ¯nancial inno-
vation with asymmetric information and heterogeneous beliefs, respectively. Parametric restrictions
were imposed on preferences (e.g., logarithmic or CRRA) or on asset payo®s, that is, on dividend
processes in continuous time, and on prices (di®usion processes). Zapatero (1998) ¯nds that market
incompleteness is a source of increased volatility. Our paper addresses situations studied by Zapatero
(1998), where traders di®er in their beliefs. It does not directly compare to the results obtained in
Detemple (1996) because we do not have an asymmetric information economy. In the paper, we
choose to expose the case of heterogeneous preferences and homogeneous beliefs to simplify the ex-
position, although it is immediate to see that the gist of our theorem holds even in the presence of
heterogeneous beliefs.

4



By looking at economies where asset prices show zero volatility with complete
markets, we focus on situations where market incompleteness has unequivocal ef-
fects on volatility, abstracting from other factors which may entail volatility even in
the presence of complete markets. Pure sunspot economies also display this excess
volatility phenomenon. However, in our parameter space these economies are a large
class only in the nominal asset case (see Cass 1992). With real or num¶eraire assets,
sunspot equilibria are known to occur: generically, only with restrictions on asset
payo®s, multiple commodities and a number of states no greater than the number of
commodities, and no asset retrading, as in Gottardi and Kajii (1999); or just robustly,
as in Hens (2000). By looking at no aggregate risk economies, we attempt at gaining
degrees of freedom in the parameters and show that there is endogenous aggregate
(i.e., asset price) uncertainty due to market incompleteness even with one commod-
ity. Our economies di®er from those of Pietra (1992, 2001), and the perturbation
technique developed there cannot be straightforwardly applied. They also di®er from
those studied in Siconol¯ and Villanacci (1991) because here assets are real.

Theorem 5.2 shows that nothing so general can be deduced as \the more ¯nancial
markets are incomplete, the higher the volatility". Without controlling for asset
specī cations, more incompleteness may be associated to lower volatility. However,
¯nancial innovation can be used as an instrument of volatility control. This generalizes
Shiller's proposal to reduce incompleteness in order to reduce price volatility, with
the caveat that the innovation must be precisely selected in order to achieve the
desired e®ect. Moreover, in our framework, an option is characterized by a ¯xed
functional form and by only one extra parameter, the strike price. This seems not
su±cient to guarantee robustness of volatility-reducing e®ects.3 This paper of course
does not address the informational requirements needed for the implementation of
this policy instrument, a topic linked to the recoverability literature in incomplete
markets. While we cannot say anything about calibrated models, or time series, our
results and numerical examples complement the quantitative analysis of Telmer (1993)
and Rios-Rull (1994) for this ¯nite horizon setup. Changes in volatility may rise to
about 10% of their initial value, depending on the level of market incompleteness.

Technically, Theorems 5.2 and 5.6 extend to a multi-period setting the di®eren-
tial framework developed in Cass and Citanna (1998) to study ¯nancial innovation
in incomplete markets, itself a rami¯cation of the long-debated issue of constrained
suboptimality (see Citanna, Kajii and Villanacci (1998)). As we explained, we be-
lieve that the study of the e®ects of ¯nancial innovation cannot be reduced to welfare
comparisons, already addressed in the literature (see, for example, Cass and Citanna
(1998) or Elul (1995)). As a di®erence with respect to that literature, we study the
e®ects of innovation on price volatility, which cannot be de¯ned in the standard two-
period exchange economy. Moreover, the restrictions that naturally arise on the payo®
matrix representing ¯nancial markets with dynamic trading are not encompassed by
the previous theorems, and provide the structural motivation to this work. Finally,

3In this sense, our results do not directly address the robustness of the work by Detemple and
Selden (1991) on option contracts.

5



the analysis of equilibrium volatility is meant to be illustrative of more general is-
sues whose study can be easily embedded in this framework, provided they can be
represented by a smooth function de¯ned over the equilibrium set.4

2. The model

We consider a standard model of an intertemporal, competitive, pure-exchange econ-
omy with incomplete ¯nancial markets. Let t denote the time period, with t =
0; 1; : : : ;T ; where t = 0 is today, and t = T is the terminal date. Uncertainty is
represented by 1 < S < 1 states of the world in each period t > 0 and at each spot,
or realization of previous uncertainty, indexed by s:5 The following tree structure
represents uncertainty in this economy,

0 t = 0
Á j Â

Á1 ¢ ¢ ¢ s ¢ ¢ ¢ SÂ t = 1
Á Â Á Â

Á1 SÂ Á1 SÂ t = 2

The total number of states in the economy is therefore given by
PT

t=0 S
t
: In this

paper, we assume that all the information in the economy is publicly available. We
will assume that J ¯nancial instruments are tradable today and that S > J; so
¯nancial markets are incomplete, even dynamically. These instruments are long-term
securities, since they can be held until the terminal date T . Nevertheless, they can
be retraded in any period t < T: It is notationally convenient also to represent the

retraded instruments as independent assets i; where i = 1; : : : ; I ; and I = J
PT¡1

t=0 S
t
.

We will also index states in di®erent periods all together as spots s; and will write

S+1 =
PT

t=0 S
t
: Although the formalization encompasses any ¯nite-horizon economy,

we will focus on the three-period case, i.e., T = 2.
There are H ¸ 2 households (also referred to as `traders') indexed by h: At each

date and state, there are C commodities or goods indexed by c, with C ¸ 16. The
commodity (and endowment) space is taken to be RG

++, where G = C (S + 1). A
typical household's preferences are represented by the utility function uh : RG

++ ! R,
which is assumed to be smooth, di®erentially strictly increasing and di®erentially
strictly concave, and to have the closure of indi®erence surfaces contained in RG

++ .

4An example of which is the study of the robustness of the di®erences in the price level of one
asset depending on markets being complete or not, also known as the `precautionary savings' e®ect.
See Elul (1997), whose robustness conditions can be simpli¯ed using our framework.

5Although this is not strictly necessary, to simplify the notation we take the number of states to
be constant over time and at each spot.

6Contrary to Cass and Citanna (1998), robustness can be shown here also in the case when C =1;
but the equations considered are slightly di®erent, and we do not give the computational details in
this paper.
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Moreover, the utility will be assumed of the form

uh(xh) =
SX

s=0

¼svh(xs
h), (2.1)

with ¼s > 0 and
P

s>0 ¼ s = 2. That is, we consider von Neumann-Morgenstern
preferences, with objective probabilities and time separable utility. The case of non-
separability (time and state) is easier to deal with, and follows from the proofs given
below. We choose to present the results with this specī cation because it is the most
widely used, although maybe not the most economically plausible. As for using ob-
jective probabilities, again this choice derives from the need of comparison between
our statements and those made in the related literature, and to simplify computations
already burdensome.7 Note that one can interpret ¼s as derived from a (stationary)
probability measure ¼ on the states s > 0 in the following standard way:

¼s =

½
¼(s) if 0 < s � S
¼(sjs0)¼(s0) s = s0S + s

where ¼(sjs0) is the conditional probability of state s in period t = 2 after state
s0 occurs in period t = 1; and s; s0 2 f1; : : : ; Sg. ¼0 is interpreted as a simple
intertemporal preference parameter, not as a probability.

The space of households' endowments is E = (RG
++)H . The space of households'

utility functions is U = UH , where U is a subset of the C3(RG
++ ; R) mappings8,

endowed with the subspace topology induced by the compact-open topology assigned
to the whole space. With xh 2 RG

++ , bh 2 RI , p 2 RG and q 2 RI we denote the
consumption bundle and the asset portfolio for household h, the commodity price
vector and the asset price vector, respectively. It will be convenient to take quantity
vectors as columns, and price vectors as rows.

The ¯nancial structure is represented by an (S + 1) £ I-dimensional matrix of
prices and payo®s R expressed in terms of a num¶eraire commodity, which we take to
be the last at each spot s, i.e., c = C. It is apparent that we are dealing here with
a special case of the usual standard incomplete market model, where the matrix R
assumes the following form

7The conditions of Theorem 5.2 may be slightly altered by a subjective probability speci¯cation
(due to the need of keeping track of volatility as perceived by each household, and therefore requiring
a higher degree of market incompleteness for the theorem to hold), but the general framework of
analysis does not change.

8More precisely, we need the functions to be three times continuously di®erentiable locally around
an equilibrium, although we consider them in the C2 topology for our genericity statements.
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R = ªC

2
666666666666664

¡q0 0 0 0 0
y1(0) + q1 ¡q1 0 0 0
y2(0) + q2 0 ¡q2 0 0

... 0 0
. . . 0

yS (0) + qS 0 0 0 ¡qS

0 Y (1)
0 Y (2)

0
. . .

0 0 Y (S)

3
777777777777775

where

ªC =

2
64

p0;C 0 : : :

0
. . . 0

: : : 0 pS;C

3
75

is an S+1-dimensional square matrix of prices of the num¶eraire commodity, and Y (s);
with s = 0; 1; : : : ; S is an S £ J matrix of payo®s for the traded security. We will
assume that each Y (s) be in general position, in that every submatrix of row or column
dimension m � J has full rank9. The argument of this paper adapts to the one-asset
case (J = 1) with this condition becoming Y (s) = Y À 0; which is consistent with

intertemporal models of stock and bond trading. Denote by ¡ ½ RSJ (S+1) the space
of such matrices.

Note that an asset j 2 J in this economy promises to deliver ys;j (0) units of the
num¶eraire good in state s in period t = 1, and ys0;j (s) units of the num¶eraire in state
s0 in period t = 2 after s occurred in period t = 1, with s;s 0 2 f1; : : : ; Sg: Hence
ys0

(s) = (ys0;j (s))j2J ; is the s 0-th row of Y (s); for s = 0; 1; : : : ; S:
Here qs is a J £1 vector of prices, which are endogenously determined in equilib-

rium, and which correspond to `di®erent' assets as a function of the state. So, each
asset j 2 J is exchanged at price q0;j at t = 0; and at price qs;j in state s and period
t = 1; and qs = (qs;j )j2J ; for s = 0; 1; : : : ; S:

Finally, we denote by b0;j
h trader h's holdings of the j-th asset at time zero; and

by bs;j
h trader h's holdings of the same asset at time t = 1 in state s: However, in

what follows the natural identi¯cation of asset i with a pair (s; j) for s = 0; 1; : : : ; S
will be used, and each asset j will generate S + 1 `di®erent' assets, where bi

h denotes
the holdings of asset i for trader h.10

9This is essentially the de¯nition as in Mas-Colell (1985, p.13).
10This framework of analysis of dynamic trading in ¯nancial markets is common, apart from

slight di®erences in the timing of trading or payo® payments, to several treatments of sequential
trading in rational expectations models, and in particular to a model by Du±e and Shafer (1986).
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We will parametrize each economy as an element of the pair E £ U, endowed with

the product topology, with securities
³
Y (s)S

s=0

´
2 ¡: We will later use the notation

y(s) = (y1(s); : : : ; yS (s)); for s = 0; 1; : : : ; S; and

y = [y(0); y(1); : : : ; y(S)]0

for the payo® vector of a newly introduced asset; an element of RS :
A ¯nancial equilibrium is a vector ((xh; bh)

H
h=1; p; q) such that:

(H) given p; q; households optimize, that is, for every h, (xh; bh) solves the problem

maximizexh;bh
uh(xh)

subject to ª(xh ¡ eh) = Rbh,

where

ª =

2
64

p0 0 : : :

0
. . . 0

: : : 0 pS

3
75

is an (S + 1) £ C price matrix, eh 2 RG
++ is the household's endowment, and

(M) markets clear, that is,
P

h(xh ¡ eh) = 0
and

P
h bh = 0.

An equilibrium is represented in extended form by the system of equations11 consisting
of both the households' Kuhn-Tucker conditions and the market-clearing conditions,

...
Duh(xh) ¡ ¸hª = 0

¸hR = 0
¡ªzh + Rbh = 0

...P
h z

n
h = 0P

h bh = 0,

(2.2)

It su±ces to note at this stage that the economy is a dynamic one in the usual sense that trading
occurs sequentially, but plans are made once at time t = 0. Indeed, in the ¯rst period (t = 0),
households maximize utility given rational expectations about future prices, and the existing ¯nancial
structure, making plans for trading commodities and assets today and tomorrow. Then, today's
trades are carried through, and households consume and hold portfolios to transfer wealth in the
future. Tomorrow, given the state of the world, households ful l̄l their ¯nancial obligations, and
then again trade commodities and ¯nancial instruments, and consume. At T = 2; again households
ful l̄l their ¯nancial obligations, trade commodities and consume.
11The analysis in terms of extended systems was ¯rst exploited by Smale (1974) for pure walrasian

economies.
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where ¸h 2 RS+1
++ is the household's vector of Lagrange multipliers (i.e., marginal

utilities of wealth), zh = xh ¡ eh is the household's vector of excess demands, and

z
n
h is zh deprived of the element corresponding to commodity C , for all s, by Walras'

law. Throughout, we will use the standard normalization ps;C = 1, all s.
We de¯ne volatility of the j ¡ th ¯nancial instrument as

Áj = ¾2
0(q

j) =
X

s

¼s(qs;j ¡ E0(q
j ))2

where E0(q
j) =

P
s ¼sqs;j: In other words, we look at price volatility, as opposed to

return volatility. Return volatility can be studied with a slight modi¯cation of the

de¯nition given above. The coe±cient of variation, de¯ned as CV j = ¾0(q
j)

E0 (qj)
¢ 100;

enables a comparison of the price volatility modulo changes in the price level, and
will be used as a measure in some numerical examples.

Existence of equilibrium for this model has essentially been analyzed by Du±e
and Shafer (1986). Retrading can potentially lead to a matrix R whose rank is less
than I: To see this, let Q be the S £ J matrix of security prices at time t = 1: The
problem of loss of rank, i.e., redundancy, arises because Y (0) + Q may not have full
rank. This will hold generically in endowments and security payo®s. Note that for
J = 1 the rank result follows immediately from the assumption that Y À 0, in which
case the existence proof follows from Geanakoplos and Polemarchakis (1986):

To state the existence result for J > 1, we parametrize economies by endowments
and securities only, ¯xing preferences once and for all.12 Let £ ´ E £ ¡ denote the
parameter space.

Proposition 2.1. (Du±e and Shafer, 1986) For an open and full-measure subset £¤

of £; a ¯nancial equilibrium exists. Moreover, if µ 2 £¤; all the equilibria are such
that rank R = I; and Y (0) + Q is in general position.

The proof of this Proposition is in essence identical to the one in Du±e and Shafer,
hence the reader is referred to that paper for the details. An argument already adapted
to this paper's notation is available from the corresponding author upon request.13

2.1. An example with no control through innovation: the CAPM

Controlling volatility through ¯nancial innovation is not an obvious task. We elab-
orate on a well-known example for one-period trading models (see Geanakoplos and
Shubik (1990), Magill and Quinzii (1996), and Oh (1996)) of an economy with incom-
plete markets and linear-quadratic utility functions, a CAPM economy. The example

12So, for the time being, we keep u 2U as ¯xed; parameterization by utility functions will appear
in the next section.
13The proposition holds even in the case of the restrictions we impose in the next section, as it

can be easily checked. However, for the sake of compactness the details are omitted.
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shows that ¯xing speci¯c preferences leads to no changes in asset prices due to ¯nan-
cial innovation, therefore to no changes in volatility. The example also shows that
utility perturbations are needed in all the density arguments that will follow.

To this purpose, assume that uh takes the form

uh(xh) = ¼0
hv(x0

h) +
X

s>0

¼ sfh(v(xs
h)), (2.3)

where v : RC
++ ! R is a smooth, di®erentially strictly increasing and concave, homo-

geneous of degree one function, and

fh(y) = ¡(1=2) (®h ¡ y)2

Then preferences are homothetic and spot-separable, and spot commodity equilibrium
prices are independent of the income distribution across agents and across states.
Then the portfolio choice only a®ects the level of consumption in each spot, but not the
commodity prices. Let ws = §hes

h be the level of aggregate endowments in spot s; and
consider the spot price normalization psws = 1; for all s: From Dv(ws)ws = v(ws);
all s; we get

ps = Dv(ws)=v(ws)

for all s; which shows that ps only depends on aggregate resources, not on income dis-
tribution (hence, and a fortiori, not on ¯nancial innovation): Therefore one can reduce
the trader's multi-commodity maximization problem to a one-commodity maximiza-
tion: after de¯ning ms

h = pses
h +rsbh; and noting that the optimal consumption vector

in spot s is given by xs
h = ms

hws ; we transform (H) into

maxbh
¼0

h ~x0
h +

P
s>0 ¼sfh(~xs

h)

s: t: ~xh = !h + ~Rbh

with ~xs
h = v(ws)ms

h; !s
h = v(ws)pses

h and the s¡th row in ~R is ~rs = v(ws)rs: De¯ne

!1
h =

³
!1

h; : : :!s
h; : : : ; !S

h

´
and !2

h(s) =
³
!

(s¡1)S+1
h ; : : : ; !

(s¡1)S+S
h

´
; for 1 � s � S:

Also de¯ne ¼0 = §h¼0
h; ® = §h®h; !1 = §h!1

h and !2(s) = §h!2
h(s): At this point,

the linear-quadratic assumption on uh leads to the following equilibrium asset prices

q0 =
1

¼0

¡
®1 ¡ !1

¢0
¦(0) [Y (0) + Q]

and, for s = 1; 2; : : : ; S

qs =
1

® ¡ !s

¡
®1 ¡ !2(s)

¢0
¦(s)Y (s)

where ¦(s) is the S¡dimensional square, diagonal matrix of conditional probabilities
given state s has occurred, s = 0; 1; : : : ; S: Neither of these expressions changes as we
add a new asset. So in particular, moving from complete to incomplete markets does
not a®ect asset prices (see Oh (1996) for the two-period economy result), and price
volatility is unchanged.
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3. Price volatility with incomplete markets

In this section, we provide a set of circumstances where market incompleteness brings
about price volatility in excess of the uncertainty on fundamentals. In order to focus
on the lack-of-smoothing e®ect due to market incompleteness, we look at the case
where asset prices show zero volatility with complete markets.

When ¯nancial markets are complete, equilibria are Pareto e±cient and the multi-
pliers ¸h are colinear across households, i.e., ¸h = ¹h bpC , with ¹h > 0 and bpC 2 R1+S

++ ,
a vector of num¶eraire commodity prices in the equivalent Debreu economy. From
D:;Cuh ¡¸h = 0 we have ¼sD: ;Cvh(xs

h)¡¹h bps;C = 0, all s. Hence another equivalent
way of writing the no arbitrage conditions is

qs =
1

bps;C

sS+SX

s=sS+1

bps;CY (s); for s = 1; : : : ; S

Looking at the previous expression, we have immediately that if the conditional
expected asset payo®s are state - independent, i.e.,

SX

s0=1

¼(s0js)Y (s) does not depend on s;

and bpC is proportional to ¼, then qs = q for all s, all j , that is, zero price volatility.
As a special case, if Y (s) = Y for all s = 1; : : : ; S; and there is a uniform distri-

bution of beliefs, or ¼s = ¼, again Debreu prices proportional to probabilities imply
zero volatility.

We now relate this property to the primitives of the economy. Let bp 2 RG
++ be

the whole Debreu price vector, including all state-contingent commodities, and let
bbp 2 RC

++ . Let r 2 RC
++. With a strengthening of the proportionality requirement

to all commodity prices, it is immediate to see that, once the state independence of
conditional expected payo®s is assumed and utilities are von Neumann - Morgenstern,
the following assumption on the primitives is both necessary and su±cient for the
desired result.

Lemma 3.1. The Debreu prices are proportional to ¼, i.e., bp = (¼0bbp; : : : ; ¼Sbbp) if and
only if there is no aggregate risk, i.e.,

P
h es

h = r , all s. Hence, if conditional expected
payo®s are state-independent, there is zero volatility if there is no aggregate risk.

Proof. See the Appendix.

Note that when C = 1, the proportionality requirement is necessary to get zero
volatility, and if conditional expected payo®s are state-independent, there is zero
volatility if and only if there is no aggregate risk. Hence, combining this observation
with the CAPM example, we obtain that if there is no aggregate uncertainty, asset

12



prices are deterministic in a mean-variance setup, although they may change over
time (from q0 to q = qs for all s) as in Calvet (2001). Moreover, volatility cannot go
up when moving from incomplete to complete markets.

It turns out that in the case of the economies without aggregate risk, stationary
conditional expected payo®s and von Neumann - Morgenstern utilities, incomplete
markets economies typically display positive price volatility.

We prove the result for J = C = 1. In order to do so, we introduce the condition:
for all h, all ® 2 R+ and all s 2 f1; : : : ; Sg, there is no bh such that ®¡ es0

h = ys0
(s)bh

for all s0 2 f1; : : : ; Sg. We call this condition e®ective market incompleteness for
obvious reasons. Note that under e®ective market incompleteness, es0

h = ys0
(s)bh for

no bh; no h. If not, and if it happened that eh = R(q)bh, for some bh and all h, when
¸h = ¼, no aggregate risk would imply that this individual can synthesize the riskfree
asset and construct a fully hedged consumption pro¯le, as with complete markets.
Hence we can now state the following result.

Proposition 3.2. Assume J = C = 1. (i) Under the maintained assumptions on
utilities, endowments, probabilities and asset payo®s, there is an open and dense
subset of utilities such that incomplete markets equilibria are regular; (ii) q(1;s) 6=
q(1;s0) for all s; s0 with s 6= s0 in an open and dense subset of utilities, so that there is
positive volatility when markets are incomplete.

Proof. See the Appendix.

Next we present some numerical examples illustrating the result of Proposition 3.2.
We also provide an example of economies that does not satisfy the assumptions of the
proposition, but still exhibits the positive price volatility result.

3.1. Numerical examples

The ¯rst set of examples illustrates and extends the statement of Proposition 3.2.
Consider an economy with S = 2 states at t = 1 and so ¹S2 = 4 states at t = 2: There

are H = 2 traders who have CRRA utility functions vh(x) = x1¡°h

1¡°h
: Traders have

identical uniform beliefs, that is, ¼s = 0:5 for s = 1; 2; and ¼ s = 0:25 for s = 3; : : : ; 6:
There is a single consumption good.

Example 1a. Traders have the endowments

e1 = (1;
4

3
;
2

3
;
4

3
;
2

3
;
4

3
;
2

3
) and e2 = (1;

2

3
;
4

3
;
2

3
;
4

3
;
2

3
;
4

3
):

There is a single riskless asset with a payo® of 1 in each state at t = 1 and t = 2
(a bond): We compute an equilibrium for a variety of di®erent values of the risk-
aversion coe±cients (for information on the algorithm for computing equilibria and
its implementation see the appendix).
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°1 °2 q1 q2 E0(q) ¾2
0(q) CV

0.5 0.5 1.04660 1.04660 1.04660 0 0
0.5 1.0 1.06923 1.07712 1.07318 0.00002 0.36737
0.5 2.0 1.10034 1.12303 1.11168 0.00013 1.02042
0.5 3.0 1.12282 1.15924 1.14103 0.00033 1.59607
0.5 5.0 1.15306 1.21377 1.18342 0.00092 2.56492
1.0 2.0 1.20292 1.22856 1.21574 0.00016 1.05437
1.0 3.0 1.25921 1.31406 1.28663 0.00075 2.13141
1.0 5.0 1.33729 1.44784 1.39256 0.00306 3.96958
2.0 3.0 1.56703 1.61647 1.59175 0.00061 1.55293
2.0 5.0 1.80683 1.97654 1.89168 0.00720 4.48570

Table 1a: Price volatility for a riskless asset.

Table 1a shows the two possible prices of the asset at t = 1; their expected value,
variance, and coe±cient of variation. When the traders have identical levels of risk
aversion then the price of the riskless asset is identical in both states at time t = 1:
There is zero price volatility. Whenever the traders have heterogeneous levels of risk
aversion (a utility perturbation), then there is positive price volatility. The volatil-
ity appears to increase both when the levels of risk aversion increase and when the
di®erence between the two levels increases, a fact not explained by Proposition 3.2,
though. Similarly, Table 1a shows that CV has no clear relation with an increase in
risk aversion.

Example 1b. Traders have the same endowments as in Example 1a. The single
asset has now payo®s that exhibit a moderate amount of risk (like `equity'), namely,
y = (1:1;0:9; 1:1; 0:9; 1:1; 0:9): (Note that these economies are not perfectly symmetric,
whenever trader 1 is in his high endowment state, then the asset has a high payo®.)

°1 °2 q1 q2 E0(q) ¾2
0(q) CV

0.5 0.5 1.04924 1.04182 1.04553 0.13774E-04 0.35497
1.0 1.0 1.13465 1.11538 1.12501 0.92855E-04 0.85653
2.0 2.0 1.43223 1.37569 1.40396 0.79902E-03 2.01337
3.0 3.0 1.94693 1.83322 1.89008 0.32330E-02 3.00831
5.0 5.0 4.02786 3.74067 3.88426 0.20620E-01 3.69686
6.0 6.0 5.93438 5.53927 5.73683 0.39028E-01 3.44362
7.0 7.0 8.79662 8.28713 8.54188 0.64896E-01 2.98232

Table 1b: Price volatility for a risky asset.

When the asset is risky, then even in an economy with traders who have identical
utility functions there is positive price volatility.

Example 1c. In this example the values of endowments and dividends are
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the same as in the previous example. But now traders have CARA utility functions
vh(x) = ¡ 1

ah
e¡ahx:

a1 a2 q1 q2 E0(q) ¾2
0(q) CV

0.5 0.5 1.01497 1.01226 1.01361 0.18285E-05 0.13341
0.5 1.0 1.02917 1.02398 1.02657 0.67373E-05 0.25284
0.5 2.0 1.05431 1.04506 1.04968 0.21370E-04 0.44039
0.5 3.0 1.07459 1.06255 1.06857 0.36226E-04 0.56325
0.5 5.0 1.10261 1.08767 1.09514 0.55769E-04 0.68191
1.0 1.0 1.06024 1.04948 1.05486 0.28950E-04 0.51007
1.0 2.0 1.11446 1.09479 1.10462 0.96796E-04 0.89067
1.0 3.0 1.15991 1.13372 1.14681 0.17156E-03 1.14213
1.0 5.0 1.22565 1.19203 1.20884 0.28256E-03 1.39056
2.0 2.0 1.24708 1.20496 1.22602 0.44356E-03 1.71782
2.0 3.0 1.35812 1.29957 1.32885 0.85697E-03 2.20296
2.0 5.0 1.53510 1.45492 1.49501 0.16074E-02 2.68174
3.0 3.0 1.57926 1.48792 1.53359 0.20858E-02 2.97803
3.0 5.0 1.92089 1.78839 1.85464 0.43890E-02 3.57209
5.0 5.0 2.83208 2.60550 2.71879 0.12834E-01 4.16689

Table 1c: Price volatility with CARA utilities.

There is positive, albeit small, volatility in all economies. As in Example 1b, the
volatility appears to increase both when the levels of risk aversion increase and when
the two agents become more heterogeneous.

Note that contrary to the economies with CRRA utilities in Example 1a, there
is no price volatility in a model with CARA utilities and a riskless asset, even when
the agents have heterogenous levels of risk aversion. With the symmetric endowment
parameterization of the economies in the present example the asset must be risky to
create any price volatility.

Example 1d. Traders have the endowments

e1 = (1;
4

3
;
2

3
;
3:75

3
;
2:25

3
;
4:25

3
;
1:75

3
) and e2 = (1;

2

3
;
4

3
;
2:25

3
;
3:75

3
;
1:75

3
;
4:25

3
):

The traders endowment risk for the last period changes at t = 1: In state 1 it increases,
in state 2 it decreases. Aggregate endowments are una®ected and remain constant.
There is a single riskless asset with a payo® of 1 in each state at t = 1 and t = 2:
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°1 °2 q1 q2 E0(q) ¾2
0 (q) CV

0.5 0.5 1.02526 1.07660 1.05093 0.00066 2.44261
1.0 1.0 1.06840 1.21404 1.14122 0.00530 6.38107
2.0 2.0 1.21297 1.72485 1.46891 0.06551 17.42388
3.0 3.0 1.44697 2.70037 2.07367 0.39275 30.22176
4.0 4.0 1.79134 4.44576 3.11855 1.76150 42.55869
5.0 5.0 2.27659 7.49191 4.88425 6.79989 53.38918
6.0 6.0 2.94504 12.75275 7.84890 24.04781 62.47830
7.0 7.0 3.85402 21.79858 12.82630 80.50180 69.95220

Table 1c: Price volatility with changing endowment risk.

The change in the endowment risk leads to a substantial increase in the price
volatility for the riskless asset in comparison to Example 1a, even though agents have
identical levels of risk aversion.
Therefore, these examples suggest that the asymmetry between traders is the cause
of the increase in volatility. Usually, when sunspot equilibria are present, these asym-
metries are endogenous, or related to such endogenous variables as prices. Here the
asymmetries are on the exogenous and individual parameters, as opposed to the ag-
gregate ones (total resources been identical across states).

The next and last example shows that there is positive volatility in economies
that are not covered by Proposition 3.2. In particular, we show that there is positive
volatility in economies with more than a single asset, that is, when J > 1: The gist is
again the asymmetry among traders.

Example 2. Consider an economy with S = 4 states at t = 1 and so S
2

= 16
states at t = 2: There are H = 2 traders who have CRRA utility functions. Traders
have identical uniform beliefs of ¼s = 0:25 for s = 1; : : : ; 4 and ¼s = 0:0625 for
s = 5; : : : ; 20: There is a single consumption good. Traders have an endowment of
e0

h = 1; h = 1; 2; at t = 0: For each set of S = 4 states they have endowments

(
4:25

3
;
3:5

3
;
2:5

3
;
1:75

3
) and (

1:75

3
;
2:5

3
;
3:5

3
;
4:25

3
);

respectively. There are J = 2 assets. The ¯rst asset is risky and has payo®s for a set
of S states of (1:0; 2:0; 1:5; 1:0): The second asset has a safe payo® of 1.

°1 °2 E0(q1) ¾2
0(q1) CV1 E0(q2) ¾2

0 (q2) CV2

0.5 0.5 1.42055 0.0000038 0.13716 1.04296 0.0000025 0.15263
1.0 1.0 1.50188 0.0000266 0.34313 1.11976 0.0000161 0.35842
2.0 2.0 1.79998 0.00020 0.78091 1.40236 0.00010 0.72638
3.0 3.0 2.35545 0.00057 1.01438 1.93273 0.00028 0.85865
4.0 4.0 3.32340 0.00103 0.96361 2.86455 0.00047 0.76011
5.0 5.0 4.97334 0.00134 0.73633 4.46553 0.00061 0.55246
6.0 6.0 7.76769 0.00139 0.47934 7.19599 0.00062 0.34735
7.0 7.0 12.49799 0.00120 0.27755 11.84498 0.00054 0.19629
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Table 2: Price volatility of two assets.

The prices of both assets show positive price volatility.

We now turn to adjusting a framework formerly developed in Cass and Citanna
for comparing equilibria before and after the introduction of new assets, allowing the
comparison of price volatility in general economies, and for di®erent degrees of market
incompleteness.

4. Introducing a new asset into the economy

For the model described in Section 2, the basic idea of the analysis of the impact
of ¯nancial innovation on volatility can be easily reconduced to the framework for
the study of the welfare impact of ¯nancial innovation as found in Cass and Citanna
(1998). Although it will become apparent that the logic of the analysis follows very
closely that paper, we stress that a straightforward application of the theorems pro-
vided there is not possible in this multi-period setup with separable utilities. To
reiterate, the steps of the analysis are identical, but the proofs di®er because of the
special structure of the payo® matrix R. Proofs of Lemmas 4.2, 5.1, of Theorem 5.2,
case b), and of the lemmas and theorem in Section 5.3 are similar but not encom-
passed by statements contained in Cass and Citanna. For instance, in order to derive
the condition on multipliers, Cass and Citanna assumed that either the last I rows of
the matrix had full rank (general nonseparable case), or that the payo® matrix was
in general position (additively separable utility, treated in their Appendix). Here we
tied our hands as for the specī cation of the R matrix, given the dynamic structure
of the model, and R is no longer in general position.

Obviously, our proofs in this paper show that the general position of R is not
necessary to obtain results in this model14. Because of the similarities in the analyses
of the two problems (welfare impact and volatility impact), we will show how to
proceed with the general logic, we will leave the unchanged proofs to the reader, but
will provide the di®ering proofs in the Appendix.

It is convenient to introduce some general notation for representing equations
(2.2). We ¯rst normalize the num¶eraire commodity price at each spot, given that
households' budget constraints are homogeneous of degree zero in ps;C , all s. Hence,
ps;C = 1, all s (for simplicity, hereafter we will rede¯ne q=p0;C as q). Moreover, we
drop S + 1 commodity market clearing conditions, say, those corresponding to the

num¶eraire commodity at each spot, by utilizing the analogue of Walras' law. Let z
n
h

14Since we can prove the lemmas and theorems essentially without changing conditions on S; I
and H; ex post this di®erence turns out not to substantially matter. Indeed, and to anticipate
the presentation of our results, in the Cass and Citanna paper the controllability is obtained if
S +1¡ I ¸ H+H; while here if S +1¡ I ¸ H+J (Theorem 5.2). The ¯rst H conditions account
for the new no arbitrage equations, and the last conditions (H there, J here) account for the number
of objectives to control.
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be zh less the num¶eraire commodity at each spot. Let pn be the commodity price
vector without the normalized components.

Let F1 : ¥n1 £ £¤ ! Rn1 be the mapping representing the left-hand side of
(2.2) after the above changes, where ¥n1 is the n1-dimensional space of endogenous
variables », with

» = ((xh; bh; ¸h)H
h=1; p

n; q)

and the economy is again parametrized by endowments and securities only. An equi-
librium in the original economy is then represented by the equation F1(»; µ) = 0.

We will consider a (smooth) function, de¯ned over the equilibrium manifold of
a (now multi-period and) ¯ctitious economy, i.e. the economy where the new asset
is chosen so that at the original values of the endogenous variables it is redundant,
but traded. For the original economy and given a ¯xed µ 2 £¤, we can describe the
equilibria by the zeros of a mapping

F : ¥n1 £ T ! Rn

with n > n1, such that

F (»; ¿) = (F 0
1(»; ¿ ; µ); F2(»; ¿)),

where F 0
1 is going to be the mapping into Rn1 describing the same equations as those

of the original equilibrium, but modi¯ed according to the designer's intervention,
while F2 is going to be the mapping into Rn¡n1 describing the arbitrage-pricing and
market-clearing conditions for the new assets. T is the space of instrumental variables,
including both direct policy variables (new asset payo®s) and related market variables
(new asset prices and holdings).

If we can show that there is a subvector of n ¡ n1 instrumental variables ¿ 0 0 for
which a regularity-like result can be established, that is,

rank D»;¿ 00F (»; ¿)
¯̄
¯
F (»;¿)=0

¿ 0=¹¿ 0

= n. (4.1)

where ¿ 0 is another subvector of ¿ ¯xed at the value ¿ 0 so to obtain the original
equilibrium, then the set

M = f(»; ¿) 2 ¥n1 £ T¹¿ 0 : F (»; ¿) = 0g

where T¹¿ 0 is an open neighborhood of ¹¿ 0 in T , is a smooth, ¯nite-dimensional manifold,
by a straightforward application of the preimage theorem (see Guillemin and Pollack
(1974, p. 21), for instance).

Our standard reference to » as \endogenous variables" is justi¯ed by the following
lemma, which is a well-known regularity result, and is therefore stated here without
proof.
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Lemma 4.1. rankD»F1

¯̄
¯
F1(» ;µ)=0

= n1 on a generic subset of £¤ .

Generic here means in an open, full-measure subset, although in the next section,
when introducing volatilities in the analysis, we will use the term in a topological sense
only. One property of the Lagrange multipliers and two of equilibrium commodity
prices and asset price volatilities are summarized in the following lemma, and will be
quite useful in the ensuing analysis. Their demonstration basically involves routine
applications of a transversality theorem, hence the proof will be omitted. Let ¾(s) be
a permutation function of f0; 1; : : : ; Sg into itself.

Lemma 4.2. Consider the solutions to F1(»; µ) = 0: Then,

(i) rank[¸
¾(s)
h ; 1 � h � H; 0 � ¾(s) � H ¡ 1] = H if H � S + 1 ¡ I and

(ii) Dqs;j Áj = 2¼s(qs;j ¡ E0(q
j )) 6= 0

(iii) ps0
is not colinear with ps00

; s0 6= s00 > 0,

on a generic subset of £¤:

Notice that if J = 1; and it is assumed that Y À 0; we can always extract H spots

out of the last S
2
; since the ¯rst S + 1 = I rows of R form the required full-ranked

matrix.15

It will be convenient to let

£u = fµ 2 £¤ j µ satis¯es Lemmas 4.1, 4.2g,

which is therefore also a generic subset of £¤. From now on, µ 2 £u:
Now let G : M ! Rk be such that m 7! G(m) is a general function de¯ned over

the equilibrium manifold. Note that if m 2 M and ¿ 0 = ¹¿ 0, then G(m) is precisely
the value of the function at an equilibrium before innovation takes place. One such
function could be the utility vector, with k = H as in Cass and Citanna, or the price
level of traded securities or, as hereafter, the price volatility, with k = J. So it is
clear from their analysis that a (local) su±cient condition to obtain a decrease (or
increase) of volatility due to ¯nancial innovation is that G be a submersion at every
m 2 M with ¿ 0 = ¹¿ 0, that is, that

dGm : Tm (M) ! RJ

is onto for all such points. We can restate this condition in terms of the rank of a
suitable matrix, which can be expressed using the complementary condition in terms

15`Always extract H spots' means that the permutation ¾ can be chosen for all economies so that
it maps spot s = 1+S +h to spot ¾(s) = h¡ 1, for h = 1; : : : ;H.
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of the system of equations

a0
�

DF
DG

¸

F (»;¿ )=0

¿ 0=¹¿ 0

= 0

and a0a ¡ 1 = 0,

(4.2)

where a is an (n + J)-dimensional vector.
Financial innovation generated by altering the yields from redundant assets can

bring about an increase in volatility if the system of equations (4.2) has no solution.16

We will establish that this property obtains at every equilibrium for an open and dense
set of economies. Having accomplished this, we will show robustness in the space of
¯nancial innovations, that is openness of the set of volatility-reducing innovations.
It will simply follow from establishing that, for an open and dense set of economies,
some altered equilibrium (after volatility-reducing innovation) is regular, just as was
the original equilibrium.

5. E®ects on market volatility

The purpose of this section is to develop conditions on the number of states, assets and
households such that, in an open and dense subset of preferences and endowments,
¯nancial innovation allows the control of asset price volatility. These conditions imply
that, with su±cient market incompleteness to start with, we can ¯nd both a new
asset which reduces price volatility and a new asset which increases price volatility.
We ¯rst examine economies in which the new asset cannot be retraded in the middle
period. After illustrating our results with some numerical examples we examine the
introduction of an asset that can be traded at time t = 1:

5.1. Innovation without retrading

When an asset is redundant, it has no e®ect on the market allocation. If such a new
asset is introduced into the economy, then (2.2) becomes

16Note that a necessary condition to have no solution to (4.2) is that dimT ¸ n¡n1+ k; and this
will be veri¯ed in our case.

20



...
Duh(xh) ¡ ¸hª = 0

¸hR = 0

¡ªzh + [R r ]

µ
bh

b̂h

¶
= 0

...P
h z

n
h = 0P

h bh = 0
...

¸hr = 0
...P

h b̂h = 0,

(5.1)

where b̂h; all h; q̂ and y are the new asset holdings, price and yields, and r =

µ
¡ q̂
y

¶
.

Note that here it is implicitly assumed that the asset cannot be retraded. For retrad-
ing, see Section 5.3 below.

The left-hand side of the equations (5.1) corresponds to our function F , when

(̂b; q̂; y) = ((b̂h; all h); q̂ ;y) is identī ed with ¿ . A designer can introduce a new asset

by choosing b̂; q̂ and y, with the constraint that b̂ and q̂ are equilibrium asset holdings
(so they satisfy market clearing) and equilibrium price for given yields y (so they
satisfy a no-arbitrage condition). That is, the constraints are

...
¸hr = 0

...

and
P

h b̂h = 0,

(5.2)

which would have to be appended to equations (2.2), while simultaneously modifying
the households' budget constraints accordingly. The full set of constraints facing the
designer is then described by equations (5.1). The dimension of the range of F just
equals the number of equations de¯ning an equilibrium with I + 1 assets. Note that
the designer uses H + 1 + S instruments (so that T = RH+1+S), of which (as many
as) H + 1 cannot be chosen independently, given equations (5.2).17

If the completely redundant asset y = 0 is introduced, arbitrage-pricing requires
that q̂ = 0 as well, so that market-clearing is the only e®ective restriction on b̂ (and
the planner is free to choose all but two of the remaining \policy" instruments, q̂ and

17By this we mean that equations (5.2) restrict the choice of ¿, so that in order for these equations
to be satis¯ed, H+1 elements of ¿ must be endogenously determined, once the others are ¯xed. The
elements of ¿ which are unrestricted are said to be `independent'.
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b̂h; some h). Thus, in the ¯ctitious equilibrium, a natural choice for the subvector of

instrumental variables ¿ 0 is ¿ 0 = ((b̂h; h > 1); y), and for their particular values ¹¿ 0,
say,18

¹¿ 0 = ((¹bh; h > 1); ¹y) = (1; 0).

With these choices, and given Lemma 4.2 (i), we will now prove condition (4.1) by
selecting ¿ 00 as

¿ 00 = (b̂1; r
¾(s); 0 � ¾(s) � H ¡ 1)),

For this and later purposes it is very convenient to partition

r = (r00; r000) = ((r¾(s); 0 � ¾(s) � H ¡ 1);(r¾(s); H � ¾(s)),

to conform with ¿ 00.

Lemma 5.1. For every µ 2 £u,

rankD» ;̂b;r F
¯̄
¯ F (»;b̂;r)=0

b̂h=¹bh; h>1
y=¹y

= rankD»;b̂1;r 00 F
¯̄
¯ F (» ;̂b;r)=0

b̂h=¹bh; h>1
y=¹y

= n,

provided S + 1 ¡ I = S(S ¡ J) + S + 1 ¡ J¸ H.

Proof. See the Appendix.

It is not di±cult to see that, equipped with Lemma 5.1, we can apply the general
methodology outlined in the previous section to this case, where G(») = Á(») =
(Á1; ::; ÁJ). Therefore, we establish that Á(») is a submersion at (»; ¿) with ¿ 0 = ¹¿ 0 for

which F (»; ¿ )
¯̄
¯
¿ 0=¹¿ 0

= 0 if and only if the system of equations (4.2), now appearing as

a0
�

DF
DÁ

¸
F (»;b̂;r)=0

b̂h=¹bh;h>1
y=¹y

= 0

and a0a ¡ 1 = 0;

(5.3)

has no solution. This last is the result that we now verify for an open and dense set
of economies parameterized by both endowments and utility functions.

Intuitively, we are using H +1+S instruments to achieve J objectives, the changes
in volatility. The introduction of a new asset carries additional constraints in the form
of H arbitrage pricing equations and one asset market clearing condition. Note that
dim T = H +1 +S ¸ H + 1 +J; where H + 1 = n ¡ n1; which is equivalent to S ¸ J ,
obviously true in our context: However, the previous lemma indicates that this is not
enough. H instruments (the new asset holdings) are indeed useless, because they
only control market clearing. The remaining S + 1; the new asset price and yields,

18The argument, and only in Theorem 5.2, requires that ¹bh 6= 0, all h.
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are also constrained to spread their e®ect through elements of the orthogonal space of
R (through the ¸'s), losing I dimensions. Hence S + 1 ¡ I of these instruments must
be used to accomplish the control task, but they need to satisfy the H no arbitrage
equations as well. Therefore, S + 1 ¡ I ¡ H are really the independent instruments.
The following theorem shows that condition S + 1 ¡ I ¡ H ¸ J itself is necessary (in
our framework) and su±cient in order to show that the equilibrium volatility function
is locally onto.

Theorem 5.2. On an open and dense set £̂ ½ ££ U, at any original equilibrium, G
is a submersion, so that there are new assets y0 and y0 0 whose introduction decreases
and increases volatility, respectively, provided S + 1 ¡ I ¸ H+J (that is, again,
S(S ¡ J ) + S + 1 ¡ J ¸ H + J).

The proof of Theorem 5.2 is rather technical and is deferred to the Appendix.
From an economic viewpoint, only two aspects of the proof are worth mentioning
here. First, the proof shows that it would be possible to choose the new asset payo®s
out of the last spots, if these were in su±cient number. That is, if a stronger condition

holds, and S
2¡J (S+1) ¸ H +J; then the new asset payo®s can be chosen only at the

terminal date. When J = 1; no extra condition has to be explicitly imposed in order
to establish the dependence of the payo® speci¯cation on the terminal date, because
the condition occurs automatically. Second, in proving Theorem 5.2 we show that it
is always possible to take as \independent" the subvector of instrumental variables

¿ 000 = (r¾(s);H � ¾(s) � H + J ¡ 1).

and to ¯x r¾(s); for ¾(s) ¸ H + J; and bbh; for h > 1.19 Taking advantage of this last
observation, we can state and prove a corollary which shows the robustness of the
existence of volatility-reducing innovation. It will be convenient hereafter to simply
use ¿ in place of (b̂; r).

Corollary 5.3. On an open and dense set £̂¤ ½ £̂, at any original equilibrium,
there is some altered equilibrium which is (i) volatility-reducing and (ii) regular, as
well as some altered equilibrium which is (i) volatility-increasing and (ii) regular,
so that there are open sets of new assets Y 0 and Y 00 such that the introduction of
y0 2 Y 0 or y00 2 Y 00 can decrease or increase market volatility, respectively, provided
S(S ¡ J ) + S + 1 ¡ J ¸ H + J.

Proof. See the Appendix.

It should be noticed that, when there is retrading on all initial assets, the minimal
degree of incompleteness achievable is 1+S, when only one asset per period is missing,
i.e., J = S ¡1. Therefore a comparison between incomplete and complete markets is

19This is what \dropping the equations corresponding ¢ ¢ ¢" means, as used in the course of the
proof (see the Appendix).
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never possible when the new asset is not retraded: the degree of incompleteness goes
down to S only. Furthermore, note that H ¸ 2 because otherwise the equilibrium is
no trade, and no change in the asset structure can change the price volatility.

5.2. Numerical examples

We describe two examples that illustrate the workings of Theorem 5.2. In the
Appendix we explain in detail how we compute volatility-decreasing and volatility-
increasing assets by applying the proof of Theorem 5.2 and its Corollary to the econ-
omy in the examples.

Other than illustrating the workings of the theorem, the examples also show that
even in the case of no aggregate risk ¯nancial innovation must be carefully designed
when it does not result in complete spanning (Example 3a). No result on unambiguous
e®ects of innovation can be expected for general incomplete versus less incomplete
markets even under the assumptions of Section 3, unless the asset e®ectively completes
the span, as at the end of Example 3a.

The analysis underlying Theorem 5.2 is local in nature; as a result, the assets
computed in the two examples have very small payo®s and their introduction results in
fairly small changes in the equilibrium. In particular, they result in modest volatility
changes of the prices of the other assets. Even so, as the examination of Examples 3a
and 3b will convincingly show, volatility changes due to a new asset can be signī cant.
The introduction of the riskless asset in Example 3a leads to zero volatility, while
the introduction of the (\uncertain Arrow-like") security in Example 3b leads to a
drastic increase in volatility. We also see that the presence of a riskless asset may not
automatically lead to very small asset price volatility.

We use the same basic framework for both Examples 3a and 3b. Consider an
economy with S = 4 states at t = 1: There are H = 2 traders who have CRRA
utility functions. Traders 1 and 2 have degrees of risk-aversion of °1 = 1 and °2 = 4;
respectively. Traders have identical uniform beliefs of ¼s = 0:25 for s = 1; : : : ; 4 and
¼s = 0:0625 for s = 5; : : : ; 20: There is a single consumption good.

Example 3a. Traders have an endowment of e0
h = 1; h = 1; 2; at t = 0: For each

set of S = 4 states at t = 1; 2 they have endowments

(1:5; 1:0; 1:0; 0:5) and (0:5; 1:0; 1:0; 1:5);

respectively. There is no aggregate endowment risk. There are J = 2 risky assets.
For each set of S = 4 states the two assets have payo®s

(2:0; 1:0; 2:0; 1:0) and (2:0; 1:5; 1:0; 0:5);

respectively.
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First, we compute an equilibrium for this two-asset economy. The equilibrium
asset prices at time t = 1 are

q1 = (1:836560; 1:752614; 1:814881; 1:729699)

for the ¯rst asset and

q2 = (1:552650; 1:466383; 1:529431; 1:444429)

for the second asset. The resulting volatility equals

¾2
0(q1) = 0:043728 and ¾2

0(q2) = 0:044283:

One volatility-reducing asset has a payo® vector r with the following properties.
It has nonzero payo®s in the four states 5, 10, 15, and 20. (So, from the 16 states at
t = 2 these are the states 1, 6, 11, and 16.) The computed payo®s in these four states
are

y(5) = ¡0:014512; y(10) = +0:015973; y(15) = +0:04210542; y(20) = ¡0:02143766:

The price of this new asset and all other payo®s are set to 0. Furthermore the holdings
of this new asset for the two traders are b̂1 = 1 and b̂2 = ¡1:

The equilibrium asset prices at time t = 1 in the altered economy with the addi-
tional volatility-reducing asset are

q̂1 = (1:828769; 1:746204; 1:819525; 1:745595)

for the ¯rst asset and

q̂2 = (1:542404; 1:457999; 1:524497; 1:453454)

for the second asset. The resulting volatility is

¾2
0(q̂1) = 0:039261 and ¾2

0(q̂2) = 0:039407:

The price volatility is reduced by 10.2% and 11.0%, respectively.
When we repeat the process to ¯nd the payo®s of a volatility-increasing asset we

obtain

y(5) = +0:007256; y(10) = ¡0:0079865; y(15) = ¡0:02371974; y(20) = +0:01280912:

The equilibrium asset prices at time t = 1 in this altered economy with the additional
volatility-enhancing asset are

q̂1 = (1:840544;1:75591; 1:812808; 1:720833)

for the ¯rst asset and

q̂2 = (1:557893; 1:470688; 1:532603; 1:439363)
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for the second asset. The resulting volatility is

¾2
0(q̂1) = 0:046898; and ¾2

0(q̂2) = 0:047304:

The price volatility is increased by 7.25% and 6.82%, respectively.
In the equilibria of both three-asset economies the holdings of the new third asset

are b̂1 = 1 and b̂2 = ¡1 and its asset price at t = 0 is 0.20

Note that the example has been set up in such a fashion that the introduction of
a riskless asset paying 1 in every state at t = 1 and t = 2 but which is not retraded,
results in the spanning of the endowments and thus zero price volatility at t = 1: The
price of the ¯rst asset is 1.5 in all four states, the price of the second asset equals 1.25
in all four states.

Example 3b. Traders have an endowment of e0
h = 1; h = 1; 2; at t = 0: For each

set of S = 4 states at t = 1; 2 they have endowments

(5:0; 4:0; 3:0; 2:0) and (2:0; 3:0; 4:0; 5:0);

respectively, so that there is aggregate risk. There are J = 2 assets, one is risky and
one is riskless. For each set of S = 4 states the two assets have payo®s

(1:0; 4:0; 4:0; 1:0) and (1:0; 1:0; 1:0; 1:0);

respectively.

Equilibrium asset prices at time t = 1 are

q1 = (2:844958; 2:848529; 2:864825; 2:915806)

for the ¯rst asset and

q2 = (1:255473; 1:260945; 1:280724; 1:331791)

for the second asset. The resulting volatility equals

¾2
0(q1) = 0:028304 and ¾2

0(q2) = 0:030115:

We ¯nd that the payo®s of a volatility-decreasing asset are

y(5) = 0:005398; y(10) = ¡0:007714; y(15) = ¡0:06571669; y(20) = +0:02836388:

20The changes in volatility show the same qualitative feature if we don't use the variance or
standard deviation of asset prices, but the coe±cient of variation. In the two-asset economy the
coe±cients are CV1 = 2:4519 and CV2 = 2:9557: The corresponding values in the three-asset
economy with the new volatility-reducing asset are CV1 = 2:1994 and CV2 = 2:6367; respectively.
The corresponding values in the economy with the new volatility-increasing asset are CV1 = 2:6310
and CV2 = 3:1533; respectively.
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The equilibrium asset prices at time t = 1 in the altered economy with the additional
volatility-reducing asset are

q̂1 = (2:845877; 2:846881; 2:879166; 2:908362)

for the ¯rst asset and

q̂2 = (1:256404;1:260504; 1:284301; 1:32433)

for the second asset. The resulting volatility is

¾2
0(q̂1) = 0:025846 and ¾2

0(q̂2) = 0:026985:

The price volatility is reduced by 8.68% and 10.4%, respectively. For a similar
volatility-increasing asset, the volatility is increased by 12.4% and 9.42%, respectively.

Now we examine the introduction of an asset with

y(5) = y(10) = y(15) = y(20) = 1:0

When the economy is in the middle period, this asset is e®ectively an Arrow security.
At t = 0; however, it is unknown for which state this asset is such a security; this
uncertainty is only resolved at t = 1: The equilibrium asset prices at time t = 1 in
this altered economy with the additional volatility-increasing asset are

q̂1 = (2:753361; 2:747394; 3:046386; 3:130496)

for the ¯rst asset and

q̂2 = (1:163808;1:237002; 1:323859; 1:54719)

for the second asset. The resulting volatility is

¾2
0 (q̂1) = 0:17164; and ¾2

0(q̂2) = 0:14396:

The price volatility is increased by factors of more than 6 and 4.75, respectively.

5.3. Innovation with retrading

In this section we consider the e®ects on volatility of the introduction of a new security
that can be retraded at time t = 1: In the previous section we dealt with innovative
instruments that could not be retraded between today, time of the innovation, and the
terminal date. Although some hedging instruments which are traded over the counter
present this one-time trading feature, most newly traded securities are marketed in
exchanges where retrading is possible. It turns out that the general framework of
Section 4 is applicable to this case in a fruitful manner, and almost the same analysis
developed in Section 5 carries through. In particular Lemma 5.1 and Theorem 5.2
can be recovered when the new asset can be retraded, provided we change slightly
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Lemma 4.2 (i). Since the proofs of the results are similar to those presented in the
previous sections, the details are omitted. The bottom line of this section is that
retrading makes controllability more di±cult, in the sense that the condition used to
obtain volatility-reducing (or volatility-increasing) innovation is stronger than with no
retrading. Introducing an asset with retrading corresponds to introducing S + 1 new
markets. Although we have more assets to use, the number of payo®s we control is
unchanged (totalling S), while the number of constraints increases, because retrading
requires more no arbitrage equations for the new asset.

Let R̂ be the matrix representing the payo®s and prices of the new ¯nancial instru-
ment. R̂ is just a copy of R; that is if we were to assume that J = 1; with arbitrary
payo®s Y; taken in general to be di®erent across time and states. Let rs = (¡qs ; y(s)) ;
for s = 0; 1; : : : ; S: We need to append S+1 market clearing equations and

¡
S + 1

¢
H

pricing equations to the original equilibrium system. As before, we will call F the
equilibrium function with these appended equations.

First, we need to strengthen Lemma 4.2. Let ¾0 be a permutation of the states
fs; sS + 1;sS + 2; : : : ; sS + Sg; for each s = 0; 1; : : : ; S; with generic element ¾0(s);
that is, a permutation of the set including the direct successors of a state s and this
state.

Lemma 5.4. Consider the solutions to F1(»; µ) = 0. Generically in £¤, given any
set of the S direct successors of the state s = 0; 1; : : : ; S; and a permutation ¾0;

(ii) rank[̧
¾ 0(s)
h ; 1 � h � H; 0 � ¾ 0(s) � H ¡ 1] = H ,

if 1 + S ¸ H + J:

Then we can prove the analogue of Lemma 5.1. Let rs = (rs00; rs000) = ((r¾0(s); 0 �
¾0(s) � H ¡ 1);(r¾0(s); H � ¾0(s)) be a partition of each vector rs; for s = 0; 1 : : : ; S:

Let b̂1 =
³
b̂0
1; b̂

1
1; : : : ; b̂

S
1

´
; the vector of the new security holdings for trader h = 1:

After appropriately rede¯ning the set £u in the obvious way; we have the following
lemma.

Lemma 5.5. For every µ 2 £u,

rankD» ;̂b;r F
¯̄
¯ F (»;b̂;r)=0

b̂h=¹bh; h>1
y=¹y

= rankD»;b̂1;r 00 F
¯̄
¯ F (» ;̂b;r)=0

b̂h=¹bh; h>1
y=¹y

= n,

provided 1 + S ¸ H+J .

The proof is based on the use of Lemma 5.4 and the fact that we can extract
H states following and including each state s = 0; 1; : : : ; S for which the multiplier
matrix has rank H .

Finally, Theorem 5.2 can be modi¯ed accordingly. We state here only one side
of the result, the volatility-reducing part, although the theorem shows that both
directions for volatility are possible.
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Theorem 5.6. On an open and dense set ~£ ½ £ £ U , at any original equilibrium,
G is a submersion, so that in particular there is a new asset with retrading y, whose
introduction decreases volatility provided 1 + S ¡ J ¸ H+J .

The proof of this theorem would show that only the terminal payo®s need to be
chosen appropriately. Moreover, it is immediate to see that the condition 1+ S¡ J ¸
H + J needs to hold only for those many states following one state in period t = 1:
In other words, if the number of states varied from node to node, a weaker condition
than the one used in the theorem could be adopted.

When the minimal degree of incompleteness achievable is 1 + S, a comparison
between incomplete and complete markets is possible, as the new retradable asset
allows markets to be dynamically complete. In this case, as asset markets can be
completed by the introduction of the new asset, (1+S)(H ¡1) no arbitrage equations
become redundant: with (dynamically) complete markets, multipliers are colinear
across households. Hence, with the minimal degree of incompleteness, only one no
arbitrage equation can be appended to system (2.2) as a constraint, say ¸1R̂ = 0.
Then, the condition in Theorem 5.6 becomes 1 + S ¡ J ¸ 1 + J . In other words, our
Theorem 5.6 allows the comparison between incomplete and (dynamically) complete
markets when there is only one asset to start with and two states of the world, i.e.,
J = 1 and S = 2, and an arbitrary number of households and commodities.

Of course, the theorem fails to apply if one restricts economies to the no aggregate
risk class analyzed in Section 3. In fact, it is Lemma 5.4 that needs to be modi¯ed to
include the additional restrictions on the stationarity of conditional expected payo®s,
and this reduces the degrees of freedom making the degree of (dynamic) incomplete-
ness covered by Theorem 5.6 larger than one.
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6. Appendix

Proof of Lemma 3.1
Without loss of generality, assume that bps;C = ¼s. Then, Dvh(xs

h) = Duh(xh) ¢
xh=(bp ¢ eh) bbp is state independent, or xs

h = xh, all s. Therefore, for each household, xh

solves max vh(xh) s.t. bbp(xh ¡ eh) = 0, where eh =
P

s ¼ses
h. Substituting the solution

xh(bbp; eh) into market clearing, we have

X

h

xh(bbp; eh) =
X

h

es
h (6.1)

for all s, which implies
P

h es
h =

P
h es0

h = r for all s: On the other hand, suppose
that there is no aggregate risk. From the previous reasoning we know that bpC = ¼ is
a complete market equilibrium. To see that it is the unique equilibrium, suppose not.
Then consumptions are di®erent across states, while any Pareto e±cient allocation
has constant consumption vectors across states and any complete market equilibrium
is e±cient, a contradiction.

Proof of Proposition 3.2
(i) To show the result, we need to prove that the derivative matrix D»F

0
1 of the

equilibrium system (2.2) with respect to all the endogenous variables has full rank.
For density, divide the proof in two cases.

Case A. For all h, xs
h 6= xs0

h for all s; s0 with s 6= s 0. We proceed by group of
equations in (2.2), denoted with a number in parenthesis.

(1): use ¢Duh (Note: perturbed utilities are still state independent), as in Kajii
(1991) or Pietra (1992).

(2): for the ¯rst, use ¢¸0
h (since q0 > 0); for the others, use ¢¸s

h;

(3): use ¢x:;C
h

;
(4): this equation has dropped out as C = 1;
(5): use ¢bh;
Case B. For some h, xs

h = xs0
h for all s; s0 with s 6= s0. Notice that under ef-

fective market incompleteness, this cannot occur for more than S states. We then
perturb equations (1) using ¢Dus

h for all date-events other than the ones with equal
consumption, and including one of them (we always perturb this way the equation
corresponding to state s = 0). For the remaining date-events, we perturb equations
(1) using the corresponding ¸s

h. We substitute the perturbation of equations (2) with
a remaining free ¸s

h. Everything else is unchanged.
These perturbations show that the row rank of [D»F

0
1jB ] is full, where B is the

matrix of derivatives of the equilibrium system with respect to utilities. We then
apply Sard's theorem to the natural projection of the equilibrium set and obtain by
transversality that there is a dense subset of utilities for which the equilibrium is
regular, i.e., rank of D»F

0
1 is full.
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As for openness, simply note that detD»F
0
1 = 0, where det D»F

0
1 is the Jacobian of

the equilibrium system, is the equation which we add to the equilibrium system when
regularity fails. Since det is a continuous function, the set where detD»F 0

1 = 0 is a
closed subset of the equilibrium set. Since the natural projection when restricted to
the equilibrium set is proper, the image of this closed subset in the parameter space
is also closed. Therefore, its complement is open.

(ii) Fixing arbitrary states s; s0, we append the equation q(1;s) = q(1;s0) to the
equilibrium system. It is immediate to see that the new system can be perturbed
by using q(1;s) for this last equation, say, and as in the previous lemma for the rest.
Then, by transversality, the row rank of its derivative matrix must be full. However,
the number of rows being greater than the number of columns implies that the system
with the additional equation has no solution, i.e., that in a dense subset of utilities
q(1;s) 6= q(1;s0). Openness follows as in the previous proposition. Since there is a ¯nite
combination of equalities to be appended, taking the intersection among these ¯nitely
many open and dense sets we obtain the desired result.

Proof of Lemma 5.1
The derivative matrix of F at a point as de¯ned above is

eq. / var. ¢ ¢ ¢ xh bh ¸h ¢ ¢ ¢ p q ¢ ¢ ¢ b̂h ¢ ¢ ¢ r
...

Duh¡¸hª D2uh 0 ¡ª0 ¡¤n
h 0 0 0

¸hR 0 0 R0 0 Q1
h 0 0

¡ªzh+[R r]

µ
bh

b̂h

¶
¡ª R 0 ¡Z

n
h Q2

h j 0 ¹bhI

... jP
h z

n
h In 0 0 0 0 j 0 0P

h bh 0 I 0 0 0 0 0
...

¸hr 0 0 0 0 0 0 ¸h

...P
h b̂h 0 0 0 0 0 1 0

where

In =

2
664

. . .

[I 0]
. . .

3
775 ,
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¤
n
h =

2
66664

. . .

¸s
h

�
I
0

¸

. . .

3
77775

and

Z
n
h =

2
664

. . .

(z
sn
h )0

. . .

3
775 ;

Q1
h =

2
6664

¡¸0
hI ¸1

hI ¢ ¢ ¢ ¸S
h I

0 ¡¸1
hI 0 0

... 0
. . . 0

0 0 0 ¡¸S
h I

3
7775

and

Q2
h =

2
6666664

¡b0
h 0 ¢ ¢ ¢ 0

0 ¡b1
h + b0

h

. . .
...

...
. . .

. . . 0

0 ¢ ¢ ¢ 0 ¡bS
h + b0h

0 0 0 0

3
7777775

Lemma 4.1 implies that the block in the upper left corner (corresponding to D»F
0
1 )

has full rank. But Lemma 4.2 (i) implies that, when S + 1 ¡ I ¸ H , the block in the
lower right corner (corresponding to D

b̂;r
F2 ) also has full rank; simply consider the

columns corresponding to the particular variables b̂1 and r00 (that is, corresponding
to D

b̂1;r 00F2). Hence, since the block in the lower left corner (corresponding to D»F2 )
is 0, the matrix D

» ;̂b1 ;r00F , and, a fortiori, the matrix D
»;b̂;r

F must have full rank.

Proof of Theorem 5.2
The proof is carried out in two steps.

Step 1 - Openness.
All we need to show is that the projection ¼ : ¥n1 £ T £ £ £ U ! £ £ U is proper
when restricted to the subset of the domain where

F (»; b̂; r; e; Y (s)S
s=0; u) = 0

b̂h = ¹bh; h > 1
and y = ¹y.

(6.2)
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This follows from the fact that the set of solutions to equations (5.3) yields a closed
subset of the solutions to (6.2). Thus, given properness, the complement of its pro-
jection into the parameter space is open. But properness can be established through
a well-known argument (see Citanna, Kajii and Villanacci, Lemma 1, e.g.), whose
details we therefore omit.

Step 2 - Density.
Without loss of generality, we will assume that a (µ; u) is chosen in an open and dense
subset of £ £ U such that µ 2 £u; with all the stated properties. Moreover, we will
assume that at (µ; u) there is only one equilibrium. To establish density in £ £ U, we
show that the system (5.3) almost never has a solution for an open and full-measure

subset of fµg £ A, where µ 2 £u and A = ¢ ¢ ¢ £ Ah £ ¢ ¢ ¢ ½ (RG2
)H is the space

representing a ¯nite-dimensional parametrization of the households' utility functions
around u (again, see Cass and Citanna, e.g.).

The reader should keep in mind that we need to be able to perturb utility spot-
by-spot, at the same time keeping the functional form constant across spots. This
could be done if we had

xs0
h 6 =xs00

h ; s0 6 =s00 > 0, all h.

But as we proved in Lemma 4.2 (iii), for di®erentially strictly concave (in fact, quasi-
concave) utility functions and on a generic subset of £,

ps0
is not colinear with ps00

; s0 6 =s00 > 0,

from which the required diversity in households' consumption follows directly.
Consider the system given by (5.3) in extensive form, that is, (6.2) and

...

H G ®hD2uh ¡ °hª + ±In = 0 (1)
HI °hR + ² = 0 (2)

H(S + 1) ¡®hª0 + ¯hR0 = 0 (3)
...

(C ¡ 1)(S + 1)
P

h( ®h¤
n
h + °hZ

n
h) = 0 (4)

I
P

h(¯hQ1
h + °hQ2

h) + ¹DqÁ = 0 (5)
...

H [1] ²̂ = 0 (6)
...

S + 1 [H + J]
P

h( ¹bh°h + ^̄
h¸h) [

P
h( °#

h
¹bh + ^̄

h¸#
h )] = 0 (7)

1 and ¹0¹ ¡ 1 = 0, (8)

9
>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(6.3)

where a0 ´ (¢ ¢ ¢ ; (®h; ¯h; °h); ¢ ¢ ¢ ; ±; ²; ¢ ¢ ¢ ; ^̄
h; ¢ ¢ ¢ ; ²̂; ¢ ¢ ¢ ; ¹i; ¢ ¢ ¢), °h = (°#

h ; °##
h ) =

((°s
h; 0 � ¾(s) � H + J ¡ 1); (°s

h; ¾(s) ¸ H + J )) and ¸h = (¸#
h ; ¸##

h ) split ac-
cordingly (notation which is only used for the remainder of this argument) and on
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the far left side we have displayed the number of equations. Equation (6.3.8) replaces
a0a ¡ 1 = 0 without loss of generality due to Lemma 5.1. Since they are all identical,
hence redundant, we drop H ¡1 equations corresponding, in particular, to all but the
¯rst of (6.3.6). Given that S+1¡I ¸ H+J; and consequently that S+1¡H ¡J ¸ 0,
it follows that the equations (6.3) still outnumber the additional variables a by this
di®erence. So we can drop all but H + J of (6.3.7) { as indicated in square brackets
{ and still have one more equation than variables. Now observe that the restriction
on the domain in (6.3), that is, (6.2), is equivalent to

F1(»; µ; u) = 0;

b̂ = ¹b = (¡(H ¡ 1); 1; ¢ ¢ ¢ ;1)
and r = ¹r = 0.

But since µ 2 £u, rankD»F1 = n1, while by construction, Da;AF1

¯̄
¯
F1(»;µ;u)=0

= 0. It

remains to show that the Jacobian matrix of the truncated subsystem in (6.3) (with
respect to (a; A)) has full rank, in order to apply the transversality theorem, and
to conclude that, generically in parameterized utility functions, the full system (5.3)
has no solution. We need to consider few cases, since the matrix of derivatives of
equation (6.3.1) with respect to the elements of the symmetric matrix Ah has full
rank if ®s

h 6= 0; all s; but, for example, will have less-than-full rank if ®s
h = 0; for some

s; h. Here is where the general position of R; which we do not have, was heavily used
in Cass and Citanna.

Case a - ®s
h 6= 0, all s;all h.

In this case it is straightforward to verify that equations (6.3.1), all h, can be perturbed
independently by using the utility parameters A. Since ¹ only appears in equations
(6.3.5) and (6.3.8), while, in light of equation (6.3.8), ¹ can never be equal to zero, this
last can then be perturbed independently using ¹. Similarly, since ®h only appears
in equations (6.3.1), (6.3.8), (6.3.3) and (6.3.4), the last two, all h, can be perturbed

independently using ®: Use ®s;C
h ; all s, in (6.3.3), and ®s;c

h ; all s; all c 6= C, some
h; in (6.3.4). Continuing in the same manner, equations (6.3.5) can be perturbed
independently using ¯h; some h, while, obviously, equation (6.3.6) can be perturbed
independently using "̂. Finally, equations (6.3.2), all h, and (6.3.7) can be perturbed

independently using °
##
h , all h, and ^̄

h; all h; °
#;s
h , for J spots s and some h; here we

appeal to the assumptions that: a) the ¯rst I rows of R (including the relabelled spots
S +1 ¸ ¾(s) ¸ H +J and therefore part ## of the vectors) form an I2¡dimensional,

full rank matrix ; b) by assumption, we have at least J elements °#
h ; and the ¸#

h 's
selected include the ones forming a matrix of rank H ; c) ¹bh 6= 0, all h.

Case b - ®s
h = 0, some s; some h.

First, note that ®h = 0, some h cannot occur. In this case it is straightforward
to verify that ®h = 0; ¯h = 0 and °h = 0. Then ± = 0 and ² = 0; which implies
(®h; ¯h;°h) = 0 from demand regularity for all other h, and this implies from (6.3.5)
and Lemma 4.2.ii) that ¹ = 0; which contradicts equation (6.3.8).
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Let S0
h = fs 2 f0; 1; : : : ; Sg : ®s

h = 0g, with S0
h 6= ;, some h, and

S = [hS0
h

S = \hS0
h.

We need to look at system (6.3) more closely. We rewrite its equations below, state
by state:

s =2 S ®s
hD2

s;suh ¡ °s
hps + ±s [I0] = 0 (1a)

s =2 S0
h; s 2 S ®s

hD
2
s;suh ¡ °s

hps = 0 (1b)
°hR + ² = 0 (2)

s =2 S0
h ¡®s

h (ps)
0
+ ¯h (rs)

0
= 0 (3a)

s 2 S0
h ¯h (rs)0 = 0 (3b)

s =2 S
P

h:s=2S0
h
(®

sn
h ¸s

h + °s
hz

sn
h ) = 0 (4)P

h(¯hQ1
h + °hQ2

h) + ¹DqÁ = 0 (5)
²̂ = 0 (6)

s =2 S
P

h( °s
h
¹bh + ^̄

h¸
s
h)] = 0 (7a)

s 2 S
P

h
^̄
h¸s

h = 0 (7b)
and ¹0¹ ¡ 1 = 0. (8)

9
>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(6.4)

We have substituted for ®s
h = 0; discovering that this implies °s

h = 0 and ±s = 0
for these s 2 S0

h: This means that the corresponding equations (6.3.1) will drop for
these spots s 2 S0

h. Note that also some equations among (6.3.4) have (possibly, for
s 2 S) dropped out of the system. We have at least

P
h S0

h extra equations. If we
decide not to perturb the zeroed variables, we can drop some other equations, since
now the equations still outnumber the unknowns by more than one. Notice also that
equations (6.4.1) can be perturbed using the utility parameters Ah; equations (6.4.3a)
and (6.4.4) can be perturbed using the ®'s as before, and equations (6.4.6) using ²̂.
We are left with perturbing equations (6.4.2), (6.4.3b), (6.4.5), (6.4.7) and (6.4.8).

Let R
n0
h be the submatrix of R with rows corresponding to those spots s =2 S0

h; and
R0

h be the matrix with rows corresponding to spots s 2 S0
h; equations (6.4.3b) then

read ¯hR00
h = 0. At this junction, the choice of the equations to be dropped depends

on the rank of these two matrices. Let rank R
n0
h = I¤

h = minfI; 1 + S ¡ S0
hg and

rank R0
h = I¤¤

h = minfI; S0
hg; using the general position of Y: Of equations (6.4.3b),

S0
h ¡ I¤¤

h are redundant and must be thrown away. Therefore we have a surplus of at
least

P
h I¤¤

h (i.e., fewer) equations.
If S0

h = ;; some h; then his equations (6.4.3b) disappear, and equations (6.4.3),

(6.4.2) for this h and (6.4.7) are perturbed using this trader ®h; °h and ^̄; as in Case
a). Then we can use this trader's ¯h to perturb equations (6.4.5). The remaining
equations (6.4.2) and (6.4.3b) are perturbed as follows. Since there are

P
h I¤¤

h +P
s2S (C ¡ 1) extra equations, if I¤¤

h = I; we throw away equations (6.4.2) and use ¯h

to perturb ¯h = 0; implied by (6.4.3b). If I¤¤
h < I;then I¤¤

h = S0
h, and we can use ¯h

to perturb equations (6.4.3b), and perturb (6.4.2) using °h possibly (if I¤
h < I) after

throwing away S0
h of these equations. Equation (6.4.8) is perturbed using ¹.
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So consider the case when S0
h 6= ;; all h:

1) If I¤¤
h = I ; all h, equations (6.4.3b) imply ¯h = 0: Then the system of equations

for each household is

s =2 S ®s
hD2

s;suh ¡ °s
hps + ±s [I0] = 0 (1a)

s 2 S; s =2 S0
h ®s

hD2
s;suh ¡ °s

hps = 0 (1b)
°hR + ² = 0 (2)

s =2 S ¡®s
h (ps)

0
= 0 (3a)

First, we throw away J equations (6.4.7), perturbing the remaining H using ^̄: Equa-
tion (6.4.8) is perturbed using ¹. Note that equations (6.4.5) are now

P
h °hQ2

h +
¹DqÁ = 0: They can be rewritten as

£
°0

1 : : : °0
H

¤
2
64

¡b01
...

¡b0H

3
75

H£J

= 0

and

£
°s

1 : : : °s
H

¤
2
64

¡bs
1 + b0

1
...

¡bs
H + b0

H

3
75

H£J

+ ¹(DqsÁ) = 0

for s = 1; : : : ; S: For each s; let J ¤(s) be the rank of these matrices after deleting
the rows corresponding to °s

h = 0. In order to perturb equations (6.4.5) using °s
h, we

need to delete
PS

s=0[J ¡J ¤(s)] of them. We observe that it can never be that °s
h = 0

for all h; for s > 0; since then ¹ = 0; contradicting Lemma 5.1. Hence J ¤(s) ¸ 1;
for s > 0 (this uses the fact that bs

h 6= 0 or ¡bs
h + b0

h 6= 0; all h; s, generically in £¤ ;
through an argument similar to the ones in the proof of Lemma 4.2). This implies

I > J +
PS

s=0[J ¡ J ¤(s)]: Take h = 1 and leave J + (J ¡ J¤)(S + 1) of equations
(6.4.2), and perturb them using ²i : Then we can throw away the I equations (6.4.2)
for h > 1; completing this subcase.

2) If I¤¤
h < I; for some, but not all h: When I¤¤

h0 = I for some h0, for one of them we
keep equations (6.4.2), which we perturb using ². Equations (6.4.3b) are eliminated,
thereby freeing the vector ¯h 0 for use in equations (6.4.5). For all other h0; we can
throw away the I¤¤

h0 equations (6.4.2), and use the vector ¯h0 in equations (6.4.3b). For
h such that I¤¤

h < I; we throw away I¤¤
h = S0

h equations (6.4.2), obtaining a submatrix

of R
n0
h with 1+S¡S0

h rows and I¡S0
h columns, and since rows are more than columns,

the rank of this submatrix is I¤
h = 1 + S ¡ S0

h using the general position of Y ; we use
°h to perturb the remaining equations (6.4.2). Equation (6.4.3b) is perturbed using
¯h; and equation (6.4.8) using ¹. For equations (6.4.7), we can perturb the J (6.4.7a)

using °s
h, for some h such that s =2 S0

h; and perturb the rest with ^̄. Note that such
a °s

h is free because s =2 S if s is part of these equations, and because either °s
h is not
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used to perturb (6.4.2), for h such that I¤¤
h0 = I; or we can always avoid using one

such element if h is such that I¤¤
h < I , since S + 1 ¡ S0

h > I ¡ S0
h; completing the

subcase.
3) If I¤¤

h < I; all h : Then, as in the previous subcase, for h > 1 we throw

away I¤¤
h = S0

h equations (6.4.2), obtaining a submatrix of Rn0
h with more rows than

columns, and we use °h to perturb the remaining equations (6.4.2). For equations
(6.4.3b), we use ¯h. For h = 1; we keep equations (6.4.2) and perturb them with ²:
Then we throw away equations (6.4.3b), we use ¯1 to perturb equations (6.4.5). As
for equations (6.4.7a), again we use °s

h for h such that s =2 S; which we can always do
as explained in the previous subcase, and for equation (6.4.8) we use ¹.

This ends the proof of case b).
In this way, we have established density. It now follows that, in the (weakly)

generic set of economies for which G is a submersion, we can construct a new as-
set y0 = ¢y0 6 =0 so that volatility increases in equilibrium, as well as a new asset
y00 = ¢y00 6= 0 so that volatility decreases.

Proof of the Corollary to Theorem 5.2.
We will focus on decrease of volatility, as the symmetric argument requires merely

reversing an inequality. Fix b̂h = ¹bh = 1; h > 1; and y¾(s) = ¹y¾(s) = 0; ¾(s) ¸ H + J .

Then, for µ̂ 2 £̂, consider the system of equations and inequalities describing pairs
of ¯ctitious and altered equilibria where the latter are both volatility-reducing and
regular, that is,

F (¹»; ¹¿ ; µ̂) = 0 or F1(¹»; µ̂) = 0

F (»; ¿ ; µ̂)
¯̄
¯ b̂h=¹bh;h>1

y¾(s)=¹y¾(s);¾(s)¸H+J

= 0

Á(») ¿ Á(¹»)

and det D»;b̂; q̂F (»; ¿ ; µ̂)
¯̄
¯ b̂h=¹bh ;h>1

y¾(s)=¹y¾(s) ;¾(s)¸H

6= 0.

(6.5)

We will show that the projection of the solutions to (6.5) onto £̂ is open and dense.
The proof is carried out in two steps.

First, it is straightforward to verify that, by virtue of the particular choice for
¹bh; h > 1, the projection ¼ : ¥n1 £ ¥n1 £ T £ £̂ ! £̂ restricted to the set de¯ned
by the ¯rst pair of equations in (6.5) is a proper mapping. Openness then follows
directly from the fact that the denial of either of the second pair of inequalities in
(6.5) is a closed property in the same set.

Now let N¢»;¢¿ 00 be an open neighborhood of 0 in Rn1+(H+1), N¢¿ 000 be an open
neighborhood of 0 in RJ and N¢v be an open neighborhood of 0 in RJ ; intersected
with RJ

++ . Then, for µ̂ 2 £̂ with µ 2 £u, consider the system of k 0 + 1 = (n1 +
J + 2n) + 1 equations (representing di®erential volatility decrease with respect to a
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critical equilibrium)

» F1(»; bµ) = 0,

¢v ¡DÁ(»; ¹¿)D» ;¿ 00F (»; ¹¿; bµ)¡1D¿ 000F (»; ¹¿; bµ)¢¿ 00 0 = ¢Á,

¢»;¢¿ 00 F (» + ¢»; ¹¿ + ¢¿; bµ) = 0,

a; A a 0D
»; b̂;q̂

F (» + ¢»; ¹¿ + ¢¿; bµ) = 0

and a0a ¡ 1 = 0

(6.6)

in the k 0 \variables" (»; ¢»;¢¿; a) 2 ¥n1 £ N¢»;¢¿ 00 £ N¢¿ 000 £ f0g £ Rn and ` =
J + G2HJ \parameters" (¢v; A) 2 N¢u £ A . It is only tedious to show that, by
virtue of the particular choice for ¹y¾(s);¾(s) ¸ H + J, for N¢» ;¢¿00 ; N¢¿ 00 and N¢v

(as well as A and O) su±ciently small, the Jacobian matrix of this system has full
rank (by perturbing each equation using the variables listed alongside). Hence we
can once again apply the transversality theorem, and conclude that, generically in
the \parameters", (6.6) has no solution. Density then follows from the fact that b£
is open. The remainder of the argument is based on the implicit function theorem.
Since it is always possible to restrict the analysis to the subset of utilities which have a
compact domain containing the total resources of the given economy, and this subset
is a Banach space, then (locally) the altered equilibrium depends smoothly on the
yields from the volatility-reducing new asset.

On the numerical computations in Section 5.2

We describe how we compute the volatility-changing assets in Section 5.2 by ap-
plying the proof of Theorem 5.2 and its Corollary.

The introduction of the new asset adds the bottom three lines to the matrix in
the proof of Lemma 5.1; there are 2 no-arbitrage equations and one market-clearing
equation. In addition, there two more rows corresponding to the volatility equations.
Hence, in order to maintain a square matrix we need to take derivatives with respect
to 5 more variables. One variable is the asset holding of one agent, and 4 variables are
elements of the payo® vector r of the new asset. We (arbitrarily) pick some of these
payo®s; in the examples in Section 5.2 these are the elements y(5); y(10); y(15); and
y(20): The price of this new asset and all other payo®s are set to 0. Furthermore we

set the holdings of this new asset for the two traders arbitrarily to b̂1 = 1 and b̂2 = ¡1:
Now, by solving system (5.3), without the equation a0a ¡ 1 = 0, and normalizing the
solution we obtain values for the four nonzero elements of r:

We keep the ¯rst two values because there are 2 no-arbitrage conditions, so 2 ele-
ments of r are dependent instruments. We now solve system (5.1) where we impose

that the equilibrium price at time t = 0 must be q0
3 = 0 and the agents hold b̂1 = 1

and b̂2 = ¡1: We endogenously compute the third and fourth value of r: Before doing
so we normalize the ¯rst two elements in order to stay within the neighborhood where
the Implicit Function Theorem applies.21 Once we have determined all 4 nonzero val-

21Note that at this point we could try to estimate the size of the neighborhood in the direction
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ues of r the process is complete. We can check our results by simply computing an
equilibrium for the resulting three-asset economy.

The only change in the described process for ¯nding the payo®s of a volatility-
increasing asset (instead of those of a volatility-reducing asset) is to change the two
volatility equations.

Computational methods and implementation

We computed the equilibria for the examples in Sections 3.1 and 5.2 by numer-
ically solving the nonlinear system of equations consisting of both the households'
Kuhn-Tucker conditions and the market-clearing conditions. We solved these systems
using a variation of the homotopy algorithms of Schmedders (1999) and Kubler and
Schmedders (2000). We implemented the algorithm on a 450 MHz Pentium PC using
the software package HOMPACK, which is a collection of FORTRAN 77 subroutines
for solving systems of nonlinear equations using homotopy methods. Maximal run-
ning times for our examples were around four seconds, maximal relative numerical
errors were below 10¡12:

The calculation of the new asset in Section 5.2 requires us to solve a linear system
of equations (in the examples, 119 linear equations and unknowns). This system can
be solved in less than two seconds using the subroutine DLSARG from the IMSL
library of FORTRAN subroutines and functions. The relative numerical errors were
below 10¡14:

For the ¯nal calculation of the new asset we need to solve system (5.1). Solving
this system is essentially like computing an equilibrium, except that the price and
the portfolio positions of the new asset are held constant, and that instead two of the
asset's payo®s are variables. Therefore, we can use a slight variation of the homotopy
algorithm that we use for computing equilibria to solve this system. Maximal running
times were less than ten seconds, maximal relative numerical errors were below 10¡12:

(given by the ¯rst two elements of r) by examining various step sizes and computing the resulting
payo®s. If we make the ¯rst two elements too large, then we will not be able to solve the resulting
system of equations.
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