Figure 1: The Credit Market Equilibrium
Figure 2: $R(W(k_t))$

\[R = \frac{\lambda R}{1 - W(k_t)/m} \]
Figure 3a
Figure 3b
Figure 3d: Oscillatory Convergence
Figure 3e: Endogenous Fluctuations

\[
W(k_{c}) \quad \text{and} \quad W(k_{t})
\]

\[
\Pi^{-1}(R)
\]

\[
I
\]

\[
k_{t}
\]

\[
k_{c}
\]

\[
k_{\lambda}
\]

\[
k_{0}
\]
Figure 4a: \((m < K)\)

\[
\lambda R = \Pi(h(m))1 - W(h(m))/m
\]

\[
R = \Pi(W^{-1}(1-\lambda m))
\]

Endogenous Fluctuations

Oscillatory Convergence

\[
R = \Pi(1-\lambda m)
\]

\[
h(m)\Pi(m)/m = 1 - W(h(m))/m
\]
Figure 4b: \((K < m < K\phi(1/K))\)

\[
R = \Pi\left(1 - \frac{W(h(m))}{m}\right)
\]

\[
\lambda R = \Pi(K)\left(1 - \frac{1}{m}\right)
\]

\[
\Pi(h(m))
\]

Endogenous Fluctuations

Oscillatory Convergence

\[
h(m)\Pi(m)/m = 1 - W(h(m))/m
\]
Figure 4c: $(m > K\phi(1/K))$

\[
\lambda R = \Pi(K)[1-K/m] \\
R = \Pi(W^{-1}(1-\lambda)m)) \\
R = \Pi((1-\lambda)m)
\]
Figure 5: The Chaotic Maps

\[\psi(z_c) \quad z_c \quad z^* \quad \psi(z_c) \]

\[\psi^2(z_c) \quad z_c \quad z^* \quad \psi(z_c) \]

\[I_+ \quad I_- \quad I_+ \quad I_- \]

a) \hspace{1cm} b)
Figure 6
Figure 8: Introducing the Credit Multiplier Effect

\[k_{t+1} \]
\[W(k_c) \]
\[\psi(k_{\alpha}) \]
\[I \]
\[\psi^2(k_{\alpha}) \]
\[O \]
\[k' \]
\[\psi^2(k_{\alpha}) \]
\[k_{\alpha_1} \]
\[k_{\alpha} \]
\[\psi(k_{\alpha}) \]

credit multiplier
credit reversal
Figure 9: A Tangent Bifurcation and Intermittency