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Abstract

Many refinements of Nash equilibrium yield solution correspondences
which do not have closed graph in the space of payoffs or information.
This has significance for implementation theory, especially under com-
plete information. If a planner is concerned that all equilibria of his
mechanism yield a desired outcome, and entertains the possibility that
players may have even the slightest uncertainty about payoffs, then the
planner should insist on a solution concept with closed graph. We show
that this requirement entails substantial restrictions on the set of imple-
mentable social choice rules. In particular, when preferences are strict
(or more generally, hedonic), while almost any social choice function can
be implemented in undominated Nash equilibrium, only monotonic social
choice functions can be implemented in the closure of the undominated
Nash correspondence.

∗We benefited from conversations with Nabil Al-Najjar and Stephen Morris. Thanks to
Eddie Dekel and Mike Whinston for helpful comments and advice. The suggestions of two
anonymous referees helped us to improve the exposition of this paper.

†sau@nwu.edu
‡ely@nwu.edu. Financial Support from NSF grant SES 99-85462 is gratefully acknowl-

edged.

1



1 Introduction

Results from the theory of implementation under complete information suggest
that a planner can implement virtually any social choice function if he can
expect that players will play according to some refinement of Nash equilibrium,
say undominated Nash equilibrium or subgame-perfect Nash equilibrium. The
mechanisms used in the proofs of these results make conspicuous use of the
assumption of complete information, for example by severely punishing players
when their reports are inconsistent, or by asking players to challenge one another
to deter lying.

Complete information entails common knowledge of preferences, an assump-
tion generally taken to be at best a simplifying approximation, but often less
innocuous. In this paper we address the following question. Suppose the plan-
ner acknowledges that complete information is an idealization and that in the
true environment players may be uncertain about the state of the world. What
social choice functions can be implemented by mechanisms which provide the
desired outcomes in all equilibria of environments that are arbitrarily close to
complete information?

We find that this type of robustness analysis yields surprisingly strong re-
strictions. We demonstrate this by considering implementation in undominated
Nash equilibrium (UNE-implementation). As shown by Palfrey and Srivastava
(1991), almost any social choice function can be UNE-implemented in complete
information environments. Without imposing any restrictions on the mecha-
nism used, we find that only monotonic social choice functions can be robustly
implemented when players have strict, or more generally, hedonic preferences.

The technical observation that lies at the heart of our conclusion is that
refinements like undominated Nash equilibrium yield solution correspondences
that do not have closed graph with respect to information, and discontinuities
often occur at points of complete information. This means that even when all
complete-information solutions yield the planner’s desired outcomes, there may
be environments arbitrarily close to complete information with equilibrium out-
comes far from the desired set. In this paper we show that this is necessarily the
case for mechanisms which implement non-monotonic social choice functions.

Related observations have been made in the game theory literature, for ex-
ample in Fudenberg, Kreps, and Levine (1988), Dekel and Fudenberg (1990),
and Kajii and Morris (1997). The result in the present paper, while similar
in spirit, requires a distinct type of argument. The aforementioned papers
study elaborations of complete-information games in which “crazy types” with
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altogether different preferences appear, and consequently, preferences over all
possible action profiles are perturbed. In this paper, we fix the set of types
from the complete-information environment and perturb only the information
structure. Thus not all payoffs in the strategic form can be affected by the
perturbation. Messages remain cheap talk.

2 Illustration of the Theorem

In this section we illustrate the logic of our main result within the context of
a simple example. The example is taken from Jackson and Srivastava (1996,
Example 5)1 There are two players, labeled player 1 and player 2, two states
of the world, labeled θ′ and θ′′, and three social alternatives a, b, and c among
which a planner must choose. Players’ strict preference orderings over these
alternatives depend on the state of the world. Player 2 has preference a �′

2

b �′
2 c in state θ′, and preference a �′′

2 c �′′
2 b in state θ′′. Player 1 has the

same ranking c �1 a �1 b in either state. The planner designs a mechanism to
implement a social choice function f which selects an alternative f(θ) for each
state.

For the Nash equilibrium solution concept with complete information, Maskin
(1977) derived a necessary condition, known as monotonicity, for implementabil-
ity of a social choice function. (For a formal definition of monotonicity, see
section 5.) On the other hand, when the planner uses a refinement of Nash
equilibrium such as Nash equilibrium in undominated strategies (UNE), mono-
tonicity is no longer necessary and in fact the set of implementable social choice
functions can be quite large. Consider the non-monotonic social choice function
f defined by f(θ′) = a and f(θ′′) = c. The following mechanism Γ, in which
player 1 chooses the row and player 2 chooses the column, implements f in
UNE.

m′
2 m′′

2

m′
1 a a

m′′
1 b c

The profile m′, leading to outcome a = f(θ′) is the unique Nash equilibrium
in state θ′, but both m′ and m′′ are Nash equilibria in state θ′′. However, m′

2

1We thank an anonymous referee for suggesting this example.
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being dominated for player 2 in state θ′′, the only undominated Nash equilibrium
is m′′ leading to the outcome c = f(θ′′).

The profile m′ is ruled out by UNE because player 2 knows the true state
with certainty. If player 2 is only nearly certain that the the true state is
θ′′, and hence entertains some (perhaps vanishingly small) probability that the
true state is θ′ (i.e., he actually prefers b to c), then the argument that m′

2 is
dominated no longer goes through.

In fact, in a sequence of vanishingly small perturbations of player 2’s infor-
mation, m′

2 is never dominated. To see this observe that if player 1 were to
play m′

1 in state θ′′ and m′
2 in state θ′, then m′

2 would be a strict best-response
for player 2 for any belief which assigns positive probability to state θ′. The
implication is that m′ would remain as an UNE along such a sequence of pertur-
bations despite the fact that it is dominated at the complete-information limit.
Formally, it means that the UNE correspondence induced by the mechanism Γ
does not have closed graph, and due to the non-monotonicity of f there is a
crucial discontinuity at the point of complete information.

However, to establish monotonicity as a necessary condition for robust UNE-
implementation, we must show in that any mechanism that implements a non-
monotonic social choice function such as f necessarily fails this robustness test.
We show this in Theorem 1.

Let us conclude this section with a preview of some of the secondary aspects
of the analysis to follow. First, in the type of perturbation used in the proof
of our main theorem, some players are necessarily imperfectly informed about
their own preferences. Indeed, for any perturbation of the example above this
must be so. It is this type of perturbation that we exploit in the proof of
Theorem 1. In many of the economic contexts in which implementation theory
is applied, potential uncertainty of one’s own preferences is a relevant concern.
One prominent example arises in the application to the theory of contracts where
the “planner’s” uncertainty is about the result of actions previously taken by
the players themselves. In section 5.2 , we present a simple version of this type
of application and show the constraints that our robustness concept implies.

On the other hand, the full strength of our robustness test is less appropriate
in truly private-value environments; i.e., situations in which the only relevant
un-modeled uncertainty concerns the preferences of other players. Implemen-
tation of allocations in pure exchange economies would be a typical example.
For these environments we formalize in Section 5.1 a weaker robustness test by
considering only those near-complete information structures in which players’
knowledge of their own preferences is preserved. Our Proposition 1 shows that
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within this class of perturbations, robustness of UNE-implementation is much
less of a concern.

Finally, we remark on our approach to modeling players’ preferences under
incomplete information. To define equilibrium in incomplete information envi-
ronments we must extend the state-dependent preference relation given by the
original implementation problem to a preference relation over such uncertain
prospects. Rather than assuming some specific form for such preferences, we
employ just the axioms on preferences that we need for our results.

3 The Environment

There is a finite set N of players, and a set A of social alternatives. There is a
finite set Θ of states of the world. Associated with each state θ is a preference
profile �θ which is a list (�θ

1, . . . ,�θ
n) where �θ

i is player i’s state θ preference
relation over A.

For our necessary conditions for robust implementability, we will assume
players have hedonic preferences. Intuitively speaking, a player is said to have
hedonic preferences if he does not care about aspects of social alternatives that
only affect other players, but has strict preferences over aspects that affect he
himself.

Definition 1 Players are said to have hedonic preferences if for each player i,
for every pair of states θ and θ′, and for every pair of social alternatives a and
b,

a ∼θ
i b⇔ a ∼θ′

i b.

Hedonic preferences are often assumed in, for example, the literature of
matching and assignment problems.2 For another example, suppose that A
consists of various production levels of a public good, as well as taxation levels
for each player. A given player will have strict preferences over levels of the
public good and his own tax, but will be indifferent in every state over the tax
applied to other players. Clearly the stronger assumption of strict preferences
is a special case.

Players do not observe the state directly, but are informed of the state via

2See, for example, Pápai (2000).
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signals. Player i’s signal set is Si which for simplicity we identify with Θ.3 A
signal profile is an element s = (s1, . . . , sn) ∈ S = ×i∈NSi. When the realized
signal profile is s, each player i observes only his own signal si. We let µ denote
the prior probability over Θ× S, and let P be the set of all such priors.

Let us designate sθ to be the signal profile in which each player’s signal is the
state θ. Complete information refers to the environment in which µ(θ, s) = 0
whenever s 6= sθ. Under complete information, the state, and hence the full
profile of preferences is always common knowledge.

A social choice rule is a function f : Θ → A. A mechanism is a game form
Γ = (M, g). Here M = ×iMi refers to the set of message profiles m, where
m = (m1, . . . ,mn). The outcome function g : M → A assigns to each message
profile m an alternative g(m) ∈ A. Given a prior µ, a mechanism determines a
Bayesian game Γ(µ) in which each player’s type is his signal, and after observing
his signal, player i selects a message from the set Mi. A strategy in Γ(µ) for
player i is a rule σi : Si → Mi. A strategy profile σ = (σ1, . . . , σn) lists a
strategy for each player.

Under a complete information prior µ, the game Γ(µ) can be thought of
as a collection of distinct strategic form games which can effectively be solved
independently of one another because the preferences are common knowledge.

Definition 2 Let µ be a complete information prior. We say that a strategy
profile σ is a Nash equilibrium of Γ(µ) if for each player i, state θ, and message
mi,

g(σ(sθ)) �θ
i g(mi, σ−i(s

θ)).

Let µθ denote the prior which assigns probability 1 to (θ, sθ). In such a case
it will not cause confusion to refer to a strategy σi simply by the action mi it
prescribes for signal si = θ.

When the environment is not one of complete information (in which case
we will say there is incomplete information) a player may not know the state,
and hence the preference profile, with certainty. Moreover, since players other
than i may be conditioning their behavior in the mechanism on information not
available to player i (i.e., their signals), even in a given state, the outcome itself
may appear random to player i. In order to describe the player’s decision prob-
lem in such cases we must make an assumption about their preferences under

3This merely ensures that there are enough signals so that each player can be fully informed
of the state. This allows us to accommodate complete information which is the focus of this
paper. Nothing would be added by allowing for additional signals.
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uncertainty. Rather than working with any specific model of such preferences,
such as Bayesian expected utility maximization, we will assume only what will
be needed for our result.

An act is a mapping α : Θ× S → A. Let A be the set of all acts. A belief
is a probability β on Θ× S. The notation C(β) denotes the support of β. We
assume that for any given belief β each player i has a preference relation �β

i over
acts. We assume only the following about this family of preference relations:4

Assumption 1 Let α and α̂ be two acts, and β a belief. Then

[α(θ, s) �θ
i α̂(θ, s) ∀(θ, s) ∈ C(β)] =⇒ α �β

i α̂;

and if one of the preferences on the left-hand-side is strict for a state which has
positive probability under β, then the preference on the right-hand-side is strict.

Obviously this axiom is implied by expected utility maximization as well as
many other commonly studied theories of choice under uncertainty. Given an
environment, and a model of preferences under uncertainty consistent with the
above axiom, we can define the analog of Nash equilibrium for mechanisms under
incomplete information. Let σ be a strategy profile in mechanism Γ = (M, g).
The act αΓ

σ induced by σ is defined by αΓ
σ(θ, s) = g(σ(s)). We furthermore

assume that players derive conditional beliefs β = µ(·|si) from the prior µ using
Bayes’ rule.

Definition 3 Given a mechanism Γ, a Bayesian Nash equilibrium of Γ(µ) is a
profile σ, such that for each player i, signal si, and strategy σ′i,

αΓ
σ �

µ(·|si)
i αΓ

σ′i,σ−i
.

In this paper, we will study implementation in undominated (Bayesian) Nash
equilibrium (UNE); i.e.; (Bayesian) Nash equilibrium in which no player uses
a dominated strategy. The following is a definition of interim weak-dominance
for our setting.

Definition 4 Let Γ be a mechanism. Strategy σi is dominated for type si if
there exists a strategy σ′i such that for every strategy profile σ−i of players other

than i, αΓ
σ′i,σ−i

�µ(·|si)
i αΓ

σ with a strict preference for at least one σ−i. Strategy

σi is undominated if it is not dominated for any type.

4Throughout, we fix a particular family {�β
i }β and our definitions of equilibrium and

dominance are stated in terms of this family.
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It is obvious that under a complete-information prior µ, a strategy profile σ
is a Bayesian Nash equilibrium of Γ(µ) if and only if σ(θ) is a Nash equilibrium
of Γ(µθ) for each state. The same statement holds for undominated BNE and
undominated NE.

4 UNE-implementation

Henceforth we assume that A is a Hausdorff topological space, and that A =
AΘ×S is endowed with the product topology. Given a mechanism Γ, any solution
concept E (such as Bayesian Nash equilibrium) induces a correspondence ψE

Γ :
P → A, where each element α of ψE

Γ(µ) is an act (or outcome) corresponding to
some E-solution of Γ(µ), which describes the alternatives α(θ, s) that will result
for each (θ, s).

Definition 5 A mechanism Γ E-implements a social choice function f : Θ → A
under µ if ψE

Γ(µ) 6= ∅, and for each α ∈ ψE
Γ(µ), we have α(θ, s) = f(θ) for each

(θ, s) ∈ C(µ).

When µ is a complete-information prior, and the solution concept is Nash
equilibrium (NE) or undominated Nash equilibrium (UNE), the above definition
is equivalent to the standard definition of implementation.

Lemma 1 Let µ be a complete information prior. Mechanism Γ NE-implements
(resp. UNE-implements) a social choice function f if and only if for each state
θ such that µ(θ, sθ) > 0, ψNE

Γ (µθ) 6= ∅ (resp. ψUNE
Γ (µθ) 6= ∅), and for each

m∗ ∈ ψNE
Γ (µθ) (resp. m∗ ∈ ψUNE

Γ (µθ)), g(m∗) = f(θ).

When the solution correspondence ψE
Γ does not have closed graph, there may

be environments arbitrarily close to µ where the set of solutions is undesirably
large. Such a scenario would undermine the planner’s confidence in his mech-
anism if he entertained the possibility that he had even slightly misspecified
the environment. This motivates us to consider the “closure” of the solution
correspondence ψE

Γ. Define

ψE
Γ(µ) = {α : (µ, α) ∈ graphψE

Γ}.

The following notation will be convenient. If B is a set of acts such that
α(θ, s) = f(θ) for each α ∈ B and (θ, s) ∈ C(µ), then we will write B @µ f .
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Definition 6 A mechanism Γ E-implements a social choice function f under
µ if

1. ψE
Γ(µ) 6= ∅,

2. ψE
Γ(µ) @µ f .

In this paper, we study implementation in the closure of the undominated
Nash equilibrium correspondence, which we refer to as UNE-implementation.
In particular, we are interested in complete-information environments.

5 Monotonicity as a Necessary Condition

Recall the definition of monotonicity (Maskin (1977)):

Definition 7 A social choice function f is monotonic if for every pair of states
θ and θ′ such that for each player i,

a �θ′

i f(θ) =⇒ a �θ
i f(θ), (1)

we have f(θ′) = f(θ).

Theorem 1 Assume players have hedonic preferences. Then if a social choice
function is UNE-implementable under complete information, it is necessarily
monotonic.

Remark: To see that this is a substantial restriction, note that with strict
preferences, it follows from Palfrey and Srivastava (1991) that with at least
three players any social choice function that satisfies no-veto-power is UNE-
implementable. Furthermore, hedonic preferences are consistent with the class
of “separable” environments studied by Jackson, Palfrey, and Srivastava (1994)
where any social choice function is implementable via a finite mechanism, even
in the two-player case. We have not imposed any restrictions on the mechanism,
such as boundedness (Jackson (1992)) or ruling out integer games (Sjöström
(1994)).
Proof: Let complete-information prior µ be given, and let f be a UNE-
implementable social choice function with implementing mechanism Γ = (M, g).
Suppose θ and θ′ are two possible states satisfying (1).
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Since Γ UNE-implements f , it also UNE-implements f since UNE ⊂ UNE.
Thus, there exists an undominated Nash equilibrium m∗ of Γ(µθ) such that
g(m∗) = f(θ). From (1) it follows that m∗ is a Nash equilibrium of Γ(µθ′) for
if not, there must exist a player i and a message mi such that g(mi,m

∗
−i) �θ′

i

g(m∗). But by (1), this implies that g(mi,m
∗
−i) �θ

i g(m
∗), which is a contradic-

tion since m∗ is a Nash equilibrium Γ(µθ).
If m∗ is undominated in Γ(µθ′), then m∗ ∈ ψUNE

Γ (µθ′), and since Γ UNE-
implements f , it follows from Lemma 1 that f(θ′) = f(θ), and we are done.
So suppose m∗ is dominated in Γ(µθ′). Then let I ⊂ N be the non-empty set
of players i for whom m∗

i is dominated in Γ(µθ′); and for each i ∈ I, let Di be
the set of dominating messages. Because m∗ is undominated in Γ(µθ), for each
mi ∈ Di, one of the following must hold

1. g(m∗
i , m̂−i) ∼θ

i g(mi, m̂−i) for all m̂−i.

2. There exists m̂−i such that g(m∗
i , m̂−i) �θ

i g(mi, m̂−i).

In case 1, by the assumption of hedonic preferences, g(m∗
i , m̂−i) ∼θ′

i g(mi, m̂−i)
for all m̂−i, but this contradicts the fact that m∗

i is dominated by mi for i in
Γ(µθ′). Hence, we must have case 2 for each mi ∈ Di.

Consider the following family of information structures νε, parameterized by
ε > 0. Let τ i represent the profile of signals (s1, . . . , sn) defined by si = θ′ and
sj = θ for all j 6= i.

νε(θ, τ i) =
ε

|I|
µ(θ, sθ), ∀i ∈ I, (2)

νε(θ, sθ) = (1− ε)µ(θ, sθ), (3)

νε(θ̃, sθ̃) = µ(θ̃, sθ̃), ∀θ̃ 6= θ. (4)

In this information structure, when the state is anything other that θ or θ′,
the state is common knowledge. Furthermore, when a player observes the signal
θ, that player knows that the state is θ. Obviously νε → µ as ε→ 0. Note that

C(νε) = {(θ̃, sθ̃) : θ̃ ∈ Θ} ∪ {(θ, τ i) : i ∈ I}.

Let σ̂ be an undominated Nash equilibrium of the complete information game
Γ(µ). (We know there is at least one because Γ UNE-implements f .) We
consider the strategy profile σ in which σi(si) = σ̂i(si) for si /∈ {θ, θ′}, and
σi(θ) = σi(θ

′) = m∗
i . We claim that for every ε > 0, this profile is an undom-

inated Bayesian Nash equilibrium of Γ(νε). This will finish the proof because
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σ generates an act αΓ
σ for which αΓ

σ(θ′, sθ′) = f(θ) and since σ is an undomi-

nated BNE for every ε > 0, it follows that (µ, αΓ
σ) ∈ graphψUNE

Γ . Thus, since Γ
UNE-implements f , we must have f(θ′) = αΓ

σ(θ′, sθ′) = f(θ).
Consider any σ′i for player i. The act generated by σ′i against σ−i is given

by αΓ
σ′i,σ−i

(θ, s) = g(σ′i(si), σ−i(s−i)). By construction, for every (θ̃, s) ∈ C(νε),

the message profile played is a Nash equilibrium of Γ(µθ̃), and hence g(σ(s)) �θ̃
i

g(σ′i(si), σ−i(s−i)). Thus Assumption 1 implies αΓ
σ �νε(·|si)

i αΓ
σ′i,σ−i

for each si.

This establishes that σ is a BNE of Γ(νε).
We now show that σi is undominated for each i. By construction, for each

type si /∈ {θ, θ′}, σi(si) is undominated for type si because under νε, for each
such type, the preference profile is common knowledge, and σi selects an un-
dominated Nash equilibrium for these preferences.

A player of type si = θ knows under νε that the true state is θ, and hence that
his preferences are �θ

i . However, it does not follow immediately that σi(si) = m∗
i

is undominated for si, because in the environment νε, type si assigns positive
conditional probability to more than one type profile. If i’s opponents use
strategies that play different messages in these different type profiles, then from
the perspective of player i, they are playing a mixed (possibly even correlated)
strategy profile. We must ensure that m∗

i is undominated for i against such
possibly mixed strategy profiles.

Since m∗
i is undominated in µθ, we know that for every message mi, either

case 1 or 2 is satisfied. In case 1, it follows from Assumption 1 that for every
strategy profile σ′−i of the opponents of i, αΓ

m∗
i ,σ′−i

∼νε(·|si)
i αΓ

mi,σ′−i
, because these

acts are pointwise indifferent from the point of view of type si = θ. In case 2,
we can set σ′j(·) ≡ m̂j for all j 6= i, and it again follows from Assumption 1 that

αΓ
m∗

i ,σ′−i
�νε(·|si)

i αΓ
mi,σ′−i

. Together, these imply that no mi can dominate m∗
i for

type si = θ.
Finally, consider type si = θ′. If i /∈ I, then under νε, such a type knows

that his preferences are �θ′ . Since m∗
i was not dominated in Γ(µθ′), it follows

from an argument analogous to the one in the previous paragraph that m∗
i is

not dominated for type si = θ′ under νε.
Suppose on the other hand, i ∈ I. For any mi ∈ Di, there exists m̂−i

satisfying case 2. In this case we set σ′j(sj = θ) = m̂j and σ′j(sj = θ′) = m∗
j for

all j 6= i. Against this strategy profile, the act resulting from i playing m∗
i gives

g(m∗
i , m̂−i) in state θ and g(m∗) in state θ′. Since m∗ is a Nash equilibrium

under µθ′ , g(m∗) �θ′
i g(mi,m

∗
−i) and by construction g(m∗

i , m̂−i) �θ
i g(mi, m̂−i).
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Thus, Assumption 1 implies αΓ
m∗

i ,σ′−i
�νε(·|si)

i αΓ
mi,σ′−i

, and hence mi does not

dominate m∗
i for type si = θ′.

The last case to consider is mi /∈ Di. If case 2 is satisfied for mi, then by
an identical argument, type si = θ′ strictly prefers to play m∗

i against the σ′−i

constructed according to the previous paragraph. On the other hand, if case 1
is satisfied, then g(m∗

i , m̂−i) ∼νε(·|si)
i g(mi, m̂−i) for every m̂−i. Thus, mi does

not dominate m∗
i for type si = θ′.

5.1 “Private” Values

In the proof of Theorem 1 we construct a near-complete information structure
in which there is asymmetric information about the state of the world. We
use the fact that some players have superior information about the state and
consequently the preferences of other players.

In this section we restrict attention to private-value information structures:
priors ν which satisfy ν(θ, s) = 0 whenever �θ

i 6= �si
i (recall that we identify Si

with Θ). Thus while type si may be uncertain about the state and hence the
types and preferences of the other players, he knows that his own preferences
are �si

i . Let P̃ be the set of such private-value priors. Given a mechanism,
any strategy which is dominated under complete information is also dominated
under any ν ∈ P̃ .

Proposition 1 If σ′i dominates σi for type si under complete information, then
σ′i dominates σi for type si under any private value prior ν ∈ P̃.

Proof: Let θ be the state identified with signal si. We have

g(σ′i(si),m−i) �θ
i g(σi(si),m−i) (5)

for every profile of messages m−i, with strict preference for some m̂−i. Fix
ν ∈ P̃ . We claim that σ′i dominates σi under ν for type si. Indeed (5) holds
for every m−i with θ replaced by any θ′ ∈ C(ν(·|si)) because the private values
assumption implies �θ′

i = �θ
i . It now follows from Assumption 1 that for any

strategy profile σ−i,

αΓ
σ′i,σ−i

�ν(·|si)
i αΓ

σi,σ−i
,

with strict preference when σ−i(·) ≡ m̂−i.
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It follows that any Nash equilibrium that is dominated when information
is complete will remain dominated after any perturbation of the information
structure in which players’ knowledge of their own preferences is preserved.5

5.2 An Application

Consider a standard principal-agent problem. At date 0, the principal and the
agent sign a contract. At date 1, the agent exerts either high or low effort, which
translates into the principal’s future profitability y. At date 2, the principal and
the agent play any message game described in the date-0 contract, and payments
are made according to the result of the message game. We assume away any
renegotiation of the contract, so that if there is problem for implementation it
is not due to renegotiation.

Assume for simplicity that the translation from the agent’s effort to the
principal’s future profitability y is deterministic and one-to-one, and hence
y ∈ {yL, yH} with yL < yH . If y is both observable and verifiable, then the
principal can implement the first-best effort level with a contract that condi-
tions payments on y. Let f ∗ be a first-best contract. Note that f ∗ must be
deterministic if both players are risk averse.

Suppose y is observable but not verifiable. Then y would become the “state”
at date 2 when the principal and the agent play any message game described
in the date-0 contract. The date-0 contract design problem is equivalent to our
mechanism design problem with Θ = {yL, yH} and A equal to some subset of
lotteries over {(tP , tA) ∈ R2 : tP +tA ≤ 0}, where tP and tA are payments to the
principal and the agent respectively. The implementation problem is whether
or not f ∗ can be implemented in some solution concept.

In the standard principal-agent problem, it is usually assumed that the agent
has the same preferences over A once his date-1 effort is sunk. If the principal
is risk neutral or has an exponential utility function, then she too will have
the same preferences over A regardless of the state y, and hence the lack of
preference reversal would imply that the non-constant f ∗ is not implementable.
So let’s assume that the principal’s preferences exhibit decreasing absolute risk
aversion: −u′′(y + tP )/u′(y + tP ) is strictly decreasing in (y + tP ).

5It does not follow from Proposition 1 that UNE-implementation alone is sufficient for
UNE-implementation. As discussed in Duggan and Roberts (1997), if the original imple-
menting mechanism is badly behaved, the Nash correspondence itself may not have closed
graph.
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If A is rich in the sense that we can always punish one player without
changing the lottery of payments received by the other player, then we are
in the “separable” environment of Jackson, Palfrey, and Srivastava (1994), and
hence by their Theorem 3, f ∗ is UNE-implementable.

However, since it is the agent’s effort that determines the principal’s future
profitability y, it is likely that the principal does not have full confidence on
her observation of y, and suspects that the agent knows slightly better than she
does about the true state (and hence her own preferences). So it is important
to ask whether or not f ∗ is also UNE-implementable. Suppose, on top of being
“separable,” A is furthermore discrete. Then generically each player will have
strict preferences over the possible lotteries he or she may receive. Since it
is natural for each player not to care about the lottery received by the other
player, players’ preferences are hedonic. Hence, by Theorem 1, only monotonic
social choice functions can be UNE-implementable.6 But then f ∗, which is
both non-constant and deterministic, cannot possibly be UNE-implementable,
because any lottery that is better than f ∗(yH) at state yL must also be better
than f ∗(yH) at state yH , and hence monotonicity would have required that
f ∗(yL) = f ∗(yH).

5.3 Sufficiency

Our robustness test delivers monotonicity as a necessary condition for imple-
mentability. Of course, this would be a trivial result if robustness were in fact
so strong as to, say, render little more than dictatorial social choice functions
implementable. So for completeness, we demonstrate that a slight strengthen-
ing of Maskin’s sufficient conditions for Nash implementability implies UNE-
implementability. We however caution the reader that our implementing mech-
anism, like those in the literature on Nash implementation, uses an integer
game.

To prove our result we will need to strengthen our assumptions on players’
preferences under uncertainty. To Assumption 1 we add a continuity property:

Assumption 2 For every pair of acts α and α̂, the set {β : α �β
i α̂} is open.

We first strengthen Maskin’s monotonicity condition:

6In fact, because only the principal’s preferences are state-dependent, just as in the example
in Section 2, it is enough to perturb only the principal’s information to obtain monotonicity
as a necessary condition.
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Definition 8 A social choice function f is strongly monotonic if for every pair
of states θ and θ′ such that for each player i,

a �θ′

i f(θ) =⇒ a �θ
i f(θ),

we have f(θ′) = f(θ).

Strong monotonicity is actually equivalent to monotonicity in many eco-
nomic applications. For example, consider the economic environment where
there exists a private good that is both desirable and continuously transferable.
Consider a monotonic social choice function f . If f(θ) 6= f(θ′), then there exist
a player i and an alternative a such that a �θ′

i f(θ) and yet f(θ) �θ
i a. But

then there exists an alternative b which is the same as a except that player i re-
ceives slightly less of the private good. By continuity of preferences we will have
b �θ′

i f(θ) and f(θ) �θ
i b. Hence f is strongly monotonic as well. Strong mono-

tonicity and monotonicity will also be equivalent when players have hedonic
preferences.

We shall also strengthen Maskin’s no-veto-power condition:

Definition 9 Let Y be a subset of alternatives. A social choice function f
satisfies Y -no-veto-power if whenever there is an alternative a ∈ A such that
for at least N − 1 players i, a �θ

i b for every b ∈ Y , we have f(θ) = a.

We will assume Y -no-veto-power for a finite set Y because this will enable us
to construct an implementing mechanism which has finite range. The equilibria
of this mechanism will be strict, and the associated finite set of strict inequalities
can be preserved by a small enough perturbation. Finite Y -no-veto-power is
equivalent to standard no-veto-power in environments in which for each player
and state there is an alternative that is best for that player in that state. Simply
take Y to be the (finite) set of alternatives that are best for some player at some
state. The two versions of no-veto-power will also be equivalent in economic
environments where alternatives that are very good for one player are necessarily
bad for all other players.

Theorem 2 Suppose there are at least 3 players. If f is strongly monotonic,
satisfies Y -no-veto-power for some finite Y ⊂ A, and if for each player i and
state θ there is an alternative a(i, θ) such that f(θ) �θ

i a(i, θ), then f is UNE-
implementable.
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Proof: We construct an implementing mechanism Γ = (M, g). For each i, the
set of available messages isMi = Θ∪(Z× Y ) where Z is the set of integers. That
is, each player is asked to report either 7 a state, or an integer and an alternative.
The outcome function g is defined as follows. Let mθ denote the message profile
(θ, θ, . . . , θ), and mθ \ mi the profile obtained from mθ by substituting mi for
player i. We set:

• g(mθ) = f(θ);

• if mi is a state θ′, and if there exists an alternative a such that a �θ′
i f(θ)

but f(θ) �θ
i a, then g(mθ \ mi) = a (if there is more than one such a,

select one arbitrarily);

• if mi is not a state, then g(mθ \mi) = a(i, θ);

• if m contains at least three distinct reports, and if each mi is a state, then
g(m) is an arbitrary element of f(Θ);

• if at least one player has announced an integer and an alternative, then
g(m) is the alternative named by the player who named the greatest in-
teger (break ties in any deterministic way).

We prove that Γ UNE-implements f in three steps. Let complete-information
prior µ be given. We first show that there is a neighborhood U of µ such that
Γ(ν) has an undominated BNE for every ν ∈ U . Next, we demonstrate that
every Nash equilibrium of Γ(µ) yields f , i.e. ψNE

Γ (µ) @µ f . Finally, we show

that ψNE
Γ (µ) ⊂ ψNE

Γ (µ). Since ψUNE
Γ (µ) ⊂ ψNE

Γ (µ), this proves the result.
Step 1: Consider the truthful strategy profile σi(θ) = θ for each i. It yields

outcome g(mθ) = f(θ). By construction, if in state θ, player i sends message
mi 6= θ, the outcome g(mθ \mi) is strictly worse for i according to �θ

i . Hence,
σi is a strict Nash equilibrium under complete information. We now show
that for every strict Nash equilibrium σ under complete information, there is a
neighborhood U of µ in which the equilibrium remains a strict Bayesian Nash
equilibrium.

Define
Bi = {αΓ

σ′i,σ−i
: σ′i 6= σi}

7This option, together with the finiteness of Y are what distinguish this mechanism from
the usual one.
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Note that although i has infinitely many strategies, the set Bi of acts that are
available to i against σ−i is finite. Since σ is a strict Nash equilibrium in Γ(µ),

we have αΓ
σ �

µ(·|si)
i α for each si and α ∈ Bi. By Assumption 2, and the finiteness

of N , S, and Bi’s, there is a neighborhood U of µ such that for every ν ∈ U , we
have αΓ

σ �
ν(·|si)
i αΓ

σ′i,σ−i
for each i, si, and σ′i 6= σi. Thus, σ remains a strict and

hence undominated Bayesian Nash equilibrium for each Γ(ν).
Step 2: Suppose σ is a Nash equilibrium of Γ(µ). We will show that

αΓ
σ @µ f . First suppose that in σ(θ), each player announces the same state θ′.

Then g(σ(θ)) = f(θ′). In this case we claim f(θ) = f(θ′), otherwise by strong
monotonicity there exists a player i and an alternative a such that a �θ

i f(θ′)
but f(θ′) �θ′

i a, and in this case we have constructed Γ so that g(σ(θ) \ θ) is
some such a. Thus σ(θ) would not be a Nash equilibrium of Γ(µθ). For any
other profile σ(θ), there must be at least N − 1 players who can deviate from
σ(θ) and bring about a profile in which there are at least 3 distinct messages.
Thus, by construction of Γ, each of these players could dictatorially choose his
θ-most-preferred alternative from Y . But since σ(θ) is a Nash equilibrium of
Γ(µθ), it must be that for each of these players i, g(σ(θ)) �θ

i a for every a ∈ Y .
Since f satisfies Y -no-veto-power, f(θ) = g(σ(θ)) as desired.

Step 3: Consider any act α such that α(θ, s) 6= f(θ) for some (θ, s) ∈ C(µ).

To show that α /∈ ψNE
Γ (µ) it suffices to find a neighborhood U of µ such that

α /∈ ψNE
Γ (ν) for each ν ∈ U . This is because the set of available acts in the

mechanism Γ is finite and A is Hausdorff. Set Σα = {σ : αΓ
σ = α}. If Σα is

empty, there is nothing to prove. So assume Σα is not empty. Define

Wα
i = {αΓ

σ′i,σ−i
: σ ∈ Σα and ∃si s.t. αΓ

σ′i,σ−i
�µ(·|si)

i α}.
The sets Wα

i are finite because the set of available acts in the mechanism Γ is
finite. Hence, by Assumption 2, there is a neighborhood U of µ such that for
every ν ∈ U , i ∈ N , and α̂ ∈ Wα

i , there exists si such that α̂ �ν(·|si)
i α.

Consider any σ ∈ Σα. By Step 2 σ cannot be a Nash equilibrium of Γ(µ).
There is thus a player i and a strategy σ′i such that αΓ

σ′i,σ−i
∈ Wα

i , and hence

there exists a type si such that αΓ
σ′i,σ−i

�ν(·|si)
i α for each ν ∈ U . It follows that

σ is not a Bayesian Nash equilibrium of Γ(ν). Since σ was an arbitrary element

of Σα, we have shown that α /∈ ψNE
Γ (µ).

To conclude the proof, we summarize:

∅ 6= ψUNE
Γ (µ) ⊂ ψNE

Γ (µ) ⊂ ψNE
Γ (µ) @µ f.
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