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Abstract

Given a strategic form game G, we can derive the set of ratio-
nalizable action profiles A®°(G). We can also derive the set of all
action profiles which are rationalizable in some incomplete informa-
tion environment in which it is approximate common-knowledge that
the payoffs are as they are in G. Call this set A>°(G). This paper pro-
vides a formal definition of A% (G) where the concept of approximate
common-knowledge is that of Monderer and Samet (1989). In general
A% (@) can be a proper subset of A®(G), but the two sets are equal
for compact and continuous G.
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1 Introduction

Standard solution concepts in game theory are built on the assumption, ei-
ther implicit or explicit, that the structure of the game to be played is com-
mon knowledge among the players. The Nash equilibrium concept applied
to games with complete information entails an implicit assumption that the
payoffs are common knowledge. The weaker concept of rationalizability fol-
lows from the explicit assumption that the payoffs and the rationality of the
players are both common knowledge (Tan and da Costa Werlang (1988)).

Precise knowledge of anything is already a rare condition. Common
knowledge, defined as mutual knowledge of arbitrary order, is a fortior: a
theoretical ideal. It is therefore natural that researchers have investigated
whether these standard concepts truly rely on exact common knowledge, or
whether their conclusions can be expected to hold (perhaps in the approxi-
mate) in environments in which rationality and payoffs are nearly common
knowledge. As it pertains to equilibrium concepts, the pioneering study of
this type of question is Rubinstein (1989), who shows that Nash equilibrium
may produce solutions for complete information games (i.e. common knowl-
edge of payoffs) which need not be (Nash equilibrium) solutions when those
payoffs are mutual knowledge of arbitrary finite order. Subsequent work
which has investigated this apparent discontinuity includes Carlsson and van
Damme (1993), Kajii and Morris (1997) and Kajii and Morris (1998). An
important paper in this literature is Monderer and Samet (1989) who pro-
vide a formal measure of the closeness of an information structure to exact
common knowledge.

To similarly determine the robustness of the non-equilibrium concept of
rationalizability would appear to be at least as important as this concept
is explicitly defined as the behavioral implications of common knowledge
of rationality and payoffs. That is, the set of rationalizable strategies of a
complete information game are all those that can be played in a state of the
world in which all players are rational and know the game’s payoffs and this
is common knowledge (Tan and da Costa Werlang (1988)).

This paper shows by example that in general the set of rationalizable
strategies may be unacceptably sensitive to small deviations from exact com-
mon knowledge. There can be strategies which are rationalizable under every
information structure arbitrarily close to common knowledge, but which are



not rationalizable under exact common knowledge. ! The example has in-
finitely many actions and a payoff function that is continuous in each player’s
action independently but has a “diagonal discontinuity.” On the other hand,
it is shown that when action spaces are compact and the payoff function
jointly continuous, rationalizability under approximate common knowledge
coincides with rationalizability under exact common knowledge. The latter
result generalizes the observation made in Dekel and Giil (1997) pertaining
to finite games.

Lipman (1994) concerns an issue that is closely related. The relationship
between the example in Lipman (1994) and the present paper is discussed in
Section 3.

2 Setup

A strategic form game G with N players is a pair (A, ), where A = X;cnA4;
is the set of action profiles a = (ay,...,ay) with a; € A;, and 7 : A - RN
is the payoff function assigning a utility vector 7(a) = (71(a),...,7n(a)) to

each action profile a. We assume that each A; is a topological space and give
products of these spaces the product topology. For K C A, we denote by
A;(K) the set of Borel probability measures, called conjectures, over A_; with
support in K_;. In general, we use the notation C(¢) to denote the support
of a conjecture ¢. We can extend the payoff function m; to conjectures by
writing 7;(a;, ¢;) for the expectation of m;(a;,-) with respect to ¢;.

For a given K C A, the set R;(K) is defined by

R,(aZ\K) = {(bz S AZ(K) ta; € argmaxZieAim(ai,qSi)}.

This is the set of rationalizations of a; over K_;. The operator A is defined
as follows. An action profile a belongs to A(K) if R;(a;|K) # () for each i.

!Note that while Rubinstein (1989) and related examples demonstrate a possible failure
of lower-hemicontinuity of the equilibrium correspondence, the violation here is of upper-
hemicontinuity. Failure of upper-hemicontinuity is a potentially more serious defect when
it is important for a planner to ensure that social outcomes belong to some restricted
subset. Chung and Ely (??7?) discusses the significance for implementation theory. See
also Fudenberg, Kreps, and Levine (1988) for related problems with upper-hemicontinuity
of equilibrium refinements.



We set A = A and define inductively A" = A(A"!). Finally,

A“:éA”

is the set of rationalizable action profiles.?

An elaboration of a strategic form game G is a Bayesian game I" consisting
of aset T = x;T; of type profiles; a utility function u : AxT — R” satisfying
for each ¢ in some non-empty set of types T°, u(a,t) = w(a) for all a € A;
and finally a probability measure p on 7. We assume there exists a uniform
bound B such that u;(a,t) —u;(z,t) < B for every a, z, t and i for all u arising
from elaborations. This is the only restriction on the types of elaborations
considered.

We can consider the strategic form of an elaboration, with 3} denoting the
set, of strategies for player ¢, and calculating payoffs by taking expectations
of u with respect to . A conjecture for player 7 is then a probability measure
@; over XF . If K C A, and ¢; a conjecture for i, then in an abuse of notation,
we denote by ¢; ' (K) the set

e (K)= [ oK)

o_€C(p)

If ¢ is a profile of conjectures, we write ¢ '(K) = M;ip; '(K). The set
@ 1 C T is the set of type profiles at which according to ¢, it is the players’
mutual conjecture that the action profile will be in K. For any subset of
strategy profiles S, Let A;S be the set of conjectures for ¢ with support
included in S_;, and AS the set of profiles of such conjectures.

For any event E C T, let BL(E) be the set of type profiles ¢t € T such
that u(E|t;) > p for all 4, i.e. that the event E is mutual p-belief among the
players. Then we say that F is common p-belief at a type profile ¢ if

t € CR(E) := N, B2(E).

Monderer and Samet (1989) introduced the concept of common p-belief as
an approximation to common-knowledge, which is common 1-belief.* They

2Bernheim (1984) defines the set of rationalizable action profiles in a different way and
proves that for compact and continuous games, his definition is equivalent to the one given
here. See Section 3

3modulo zero probability events.



provide a characterization of CL(E) in terms of p-evident events, a gener-
alization of self-evident events. For our purposes, the following implication
will be useful.

Proposition 1 The event CE(E) is p-evident. That is, u(CR(E)|t;) > p for
each t; € CY(E).

Write C%_E for the set of type profiles in I" at which T° is common 1 — ¢
belief. We record the following simple fact about the operator Bf.

Lemma 1 B2(F)n BL(F) c B Y(ENF)

We now define the operator A.. An action profile a belongs to A (K) iff
there exists an elaboration I' of G, a type profile ¢, and a profile of conjectures
¢ such that ¢ € B (o"'(K) N T°) and a is an interim best-reply for ¢
against ¢. In words, A, is the set of action profiles that can be rationalized
when it is mutual 1 —e¢ belief that the payoffs are as in T° and that the action

profile will be from K.
We now inductively define A = 4 and A” = A, (A" !)). Finally,

AP =[)Ar
n
is the set of e-rationalizable action profiles.

Lemma 2 For anye >0, &' > ¢ andn, AT C AL.

Proof: Because Bl(}_s)(E) C Bi™¥(E) for any FE, it follows immediately
from the definition that A.(K) C A.(K) for any K C A. Moreover, for
any K C K', and profile of conjectures ¢, ¢~ '(K) C ¢ '(K') and hence
A (K) C A(K") for any € > 0. The first claim implies that Al = A.(4) C
A (A) = AL. Suppose now the lemma is true for n — 1. Then

AT = A(AT7Y) CAL(AZTY) C AL (AL = AT

The following proposition clarifies why we are interested in A°.

Proposition 2 1. A® = Ay

2. If 0 € A®(T") for some T, then o(t) € A for alle >0 and t € C%f‘ .

ML
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Proof: The first part is straightforward.
For the second part, we prove the following claim by induction.

oEN = Cp e ocM(A") Ve>0

It will follow from this that o € A®(T") C A} for all n = C% ? o (A?)
for all n — C%_% C Npo Y(A") = 071N, A") = 071 (A%®), which would
prove the proposition.

Since A? = A and A = Yr, the claim is trivial for n = 0. Suppose now
the claim is true for n — 1, and let 0 € A}, Then there exists a profile of
conjectures ¢ € AAL™" such that o € ﬂ(go).

Let t € C’%*%. Then t € B;%(TO). And since Cp 2 is 1 — S-evident,
te 31—2(01_2) By the induction hypothesis, C’l_E ~_l(A"_l) for every
e A and since C((pl) C [AZ1]_; for each 4, we have C e e LA,
Thus t € B (TO) N B 2( ~1(A™1)). By lemma 1,

™

te BTN (AT
and since o (t) is an interim best-reply for ¢, we conclude that o(t) € A (A?!) =
A™, n

The closure of the rationalizability solution concept, applied to G is then
defined as follows.
-

e>0

Requiring a strategy profile to be e-rationalizable for every £ > 0 may not a
priori seem the only natural way to define rationalizability with approximate
common-knowledge. Two equally natural alternative limit sets are:

llIEILIglfAOO— U ﬂ A

e>00<e<e

and
3 oo o0
lim S(}lpAe = ﬂ U A?
£ e>00<e'<e

It turns out that the monotonicity of of A, implies that these three alternative
definitions are equivalent.



Proposition 3 [, A¥ = liminf, o A?® = limsup, ,, A

Proof: First observe that o € limsup A% iff for every ¢ > 0 there exists ¢’ €
(0,¢) such that 0 € A%, and o € liminf A% iff there exists ¢ > 0 such that
o€ A% for all ¢’ € (0,¢). Clearly liminf A C limsup A%. It is also obvious
that N AZ° C liminf AZ°. Thus, it suffices to show limsup AZ® C N A,

Let € > 0. If 0 € limsupA, then there exists ¢ € (0,¢) such that
o € AZ¥. Since AY =N, AL and A7, C A? for every n by Lemma 2, we have

¥ CNRAY = A, Thus, 0 € AZ. [ ]

We show by example below that there can be strategies that are rational-
izable in all nearby elaborations, and yet not rationalizable in G. For such
games, the rationalizability loses some of its force. Fortunately, when G is
compact and continuous, these sets are equal, i.e. no action which is ruled
out by rationalizability can be rationalized in nearby incomplete information
environments, where “nearby” is in the sense of Monderer and Samet (1989)
approximate common-knowledge of payoffs.

Theorem 1 If G is compact and continuous, then A®(G) = A*°.

Let AA_; be the compact space of Borel probability measures on A_;
with the topology of weak convergence. For any action a; and conjecture
¢ € AA_; define

fi(a, ¢) = maxm(zi, (b) — Wi(ai,¢).

2;€A;

By the compactness of AA_; and the continuity of m; this function well-
defined and continuous.

Lemma 3 a € A (K) for some K C A if and only if for each i, there is a
conjecture ¢; € AK_; such that

eB
1—¢

fila, ¢;) <

Proof: For sufficiency, we construct an elaboration I'. There are two types
t? and ¢; for each i. The prior distribution is such that conditional on being
type 9, each player assigns probability (1 —¢) to the true state being ¢°, and



the remaining probability to the event that all other players j are of type fj.
We set u(-,t°) = 7(-) and for any type profile ¢ other than ¢°,

~ max{0, (2, ¢i) — mi(ai, d:) }
filai, ¢:)

for each z;, a_;. This payoff function satisfies the boundedness restriction and
the set 70 = {t°} is (1 — ¢) evident and hence t° € Cz7°. We will show that
action a; is interim rationalizable for type ¢! in this elaboration. For each
a_j € K_j, let 0; denote the strategy profile in T' where 0(19) = 0;(t;) = a;
for each j # 1. Consider the conjecture ¢; for ¢ that his opponents choose
strategies from {0%; : a_; € K_;} according to the measure ¢;. The difference
in expected utility to type ¢0 from choosing a; over some alternative action

Zi is

’LLZ'(ZZ',CL_Z',t) =B|1

max{0, 7;(z;, ¢;) — mi(as, ¢i) }
filas, i)
1 —¢) [m(ai, ¢5) — 7 (i, @) + max{0, 7; (2, ¢:;) — mi(as, di)}]

(1 —¢)[m(as ¢i) — (2, ¢5)] +€B

AVARYS

(
0
Thus a; is an interim best-reply to ;.

To show necessity, suppose for some i that f;(a;, ¢;) > l—i for all ¢; €
AK_;. Consider any elaboration I', type profile ¢ in 0111_6, and profile of con-
jectures ¢ such that t € BA(T°N¢ '(K)). Let ¢; € AK_; be the conditional
probability over K_; derived from ¢; conditional on type ¢; and the event
T°N ! (K). For any z; € argmaxm;(-, ¢;), the expected utility difference for
t; from choosing z; over q; is at least (1 — &)(m;(2, ;) — mi(a;, ¢3)) —eB =
(1 —¢)fi(ai, ¢;) —eB > 0. Therefore, a; is not an interim best-reply for type
t; and thus a ¢ A (K). |

It follows from Lemma 3 that A.(K) is compact when K is, and hence
that A? is compact for every n.

Lemma 4 Suppose a ¢ A}. Then there exists € > 0 such that a ¢ AZ.

Proof: The lemma is proven by induction. Note that Al is just A.(A). Since
A_; is compact, it follows from lemma 3 that if a ¢ A} then there exists § > 0
such that f;(a;, ¢;) > ¢ for some i and ¢; € AA_;. Therefore, for ¢ = BLM,
we have a ¢ Al



For the inductive step, suppose a; ¢ [A}]; and consider the compact subset
R; := R;(a;, A) of rationalizations of a; in G. If ¢; € R;, then C(¢;) ¢ [Af]—,
else ¢; € A;Al™" which would imply a € [A];. Let z_; € C(¢;) N —[A?]_;.
By the inductive hypothesis, there exists ¢ > 0 such that z_; ¢ [A?]_;, and
by Lemma 3 there is a neighborhood U of z_; such that U C —[A?]_;. But
this implies that z_; ¢ C(@;) for any @¢; € A;A?!, and since z_; € C(¢;), we
conclude ¢; ¢ A; AL

Consider the following family of open sets:

U={-ANA"" e >0}

The argument of the previous paragraph amounts to the statement that U
covers R;. And by lemma 3 this is an open covering. Hence, there exists a
finite set {e1,...,ex} such that {-A;AZ7'}5_; covers R;. Let & = min;e;.
Note that ﬁAiA?j*I C —|AZ-A?_1 and therefore

R; C AN

Hence if ¢ € A;AZ !, then a; ¢ argmax m;(-, ¢), i.e. fi(a;, #) > 0. Now
by the compactness of A;AZ™!, there exists § > 0 such that fi(a;, ¢) > § for
all ¢ € A;AZ'. If we set ¢ = BLM > 0, we have f;(a;, @) > f—i and hence
a¢ AL [
Proof of Theorem 1 By Lemma 2 and the first part of Proposition 2,
A*® C A>=. To show the opposite inclusion, suppose o ¢ A® = AZ. Then
o ¢ A} for some n. By Lemma 4, 0 ¢ AT for some € > 0. Since A, C A? for
all &' < e by Lemma 2, we have o ¢ Al, and hence o ¢ A for all &' € (0,¢).
This implies that o ¢ limsup A2 and hence o ¢ A* by Proposition 3. ®

3 A Discontinuous Counterexample

In this section I show that Theorem 1 can fail for discontinuous games. There
is an example in Lipman (1994) which has a similar motivation but makes
a different point. To illustrate the difference, it will help to introduce some
additional terminology. Let us say for the purposes of this section that the
set R(G) of rationalizable strategies for a game G is the set of strategies
that could be played at some state of the world in which the payoffs of GG
as well as the rationality of the players are common-knowledge. In fact, this
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is how Bernheim (1984) formally defined rationalizability and was also the
motivation for the definition in Pearce (1984). It was proven in Bernheim
(1984) that R(G) = A*°(G) for games with continuous payoffs and compact
action spaces. Since A®(G) is equal to the “limit” as N — oo of Np<yA"(G)
and Np<nyA™(G) is equal to the set of strategies which could be played in
a state of the world in which the payoffs and rationality of the players are
mutually known to N-levels, the Bernheim (1984) result could be thought
of as stating that in continuous games, rationalizability (i.e. R(G)) is well
approximated when there is approximate common-knowledge in the sense of
many, but finitely many, levels of mutual knowledge. *

Lipman (1994) shows that compactness and continuity are necessary for
this result. In his example, R(G) is a proper subset of A®(G). However,
there always exists a sufficiently large ordinal number « such that A%(G) =
R(G) regardless of the continuity properties of the payoff function. That is,
rationalizability is well-approximated by approximate common-knowledge in
the sense of sufficiently, and possibly trans-finitely many, levels of mutual
knowledge of rationality.

The example below demonstrates something different. In the game G 1
present below, R(G) = A®(G). Also, for the elaborations I'(¢) used in the
example, R(I'(¢)) = A®°(['(¢)). Thus, rationalizability for complete informa-
tion games is not well-approximated by rationalizability itself for games with
near-complete information.

Consider the following two-player symmetric game. The action sets are
A; = ZU {—00,00} for i = 1,2 where Z is the set of integers. These are
compact sets when we take oo to be the one-point compactification of Z
and —oo the one-point compactification of Z . The payoff function is sym-
metric: m (a1, as) = ma(ag, a1) = m(ay,as) and 7 is defined as follows. First
7m(—00,-) =0, m(0,-) =1, and 7(o0,y) is 1 for y < 0 and 0 for y > 0. For all
other cases,
1—%ify>0and:v=y
lify>0and z = —y
1-2ify<0,2>0
0 otherwise

m(z,y) =

“Note that Theorem 1 above establishes something different: rationalizability is well-
approximated by approximate common-knowledge in the sense of Monderer and Samet
(1989).
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With this payoff function, each player’s payoff is continuous in his own action
and in the action of his opponent as the reader can easily verify. The only
discontinuities are on the “diagonal:” for all 0 < z < oo, 7(—z,x) = 1, but
m(—00,00) = 0, and lim, ,oo 7(z,2) = 1 # 0 = 7m(0c0,00). This diagonal
discontinuity is enough to invalidate Theorem 1.

There is a unique rationalizable action profile, {0,0}, and this action
profile can be obtained by iterative elimination of actions that are never
best-replies, i.e. A® = {0,0}. In the first round, —oo, together with all
0 < z < oo are eliminated. Each of these are strongly dominated by 0. In
the second round, each x < 0 is dominated by 0 and hence eliminated, and
oo is eliminated in the third round.

Consider the following class of elaborations I'(¢) parameterized by & €
(0,1/2). Each i has two types, 7; = {t°,#} for i = 1,2. The prior y is
given by p((t°,1°)) = p((t,1)) = 5= and p((Z,¢°)) = u((¢°. 7)) = &/2. Thus,
T° = {(t°,t%)} is (1 — €)-evident and hence common (1 — ¢)-belief when it
occurs. The payoffs are as 7 in state (¢°,¢%), but in all other type profiles
t, uj((z,z),t) = 2 for j = 1,2, for all actions z. with all other payoffs
unchanged from 7.

Let o” denote the strategy which plays z independent of type. In I'(¢), a
positive integer x > % is an interim best-reply for both types of player i to
the strategy o”. To see this, note that under 7, the maximum payoff against
x is 1. Since the only action whose payoff against x has been affected in the
elaboration is x itself, it is enough to show that the interim expected payoff
from playing z against o® exceeds 1. This is obvious for type . We calculate
the interim expected payoff for type t° to action z against 0% as

Eu(z,0%|*) = (1 — e)u((x, 2), (1% 1)) + eu((z, z), (1 7))
— (1 — &)l z) + 2
(-1 =) 42
>(1-e)(l- ) +2
—1

Since for each =z > %, o” is an interim best-reply to itself, it belongs to
Al‘i‘zg). Next we will show that ¢~% € A%‘Ee) for for all such x. Consider the

the strategy o(t°) = x, o(t) = —z. If we can show that ¢~ is an interim
best-reply to o, then it will follow that both ¢ and ¢~ are rationalizable
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since o(t°) = 0%(t°) is an interim best-reply to 0® and and also o (f) = o 2(%)
is an interim best-reply to o.

Since —z is a best-reply to = in state (°,%°), and —x is a best-reply to
— in state (t°,%), —x is an interim best-reply to o for type t°. The interim
expected payoff for type ¢ against o is

Eu(—z,0lt) = (1 — e)u((—z, —x), (£,1)) + eu((—=, z), (,1°))

=2(1—-¢)+en(—2x,1)
=2(1—-¢)+¢
=2—c¢

which is greater than 1, the interim expected payoff to action 0 and is greater
than the interim expected payoff to z

Eu(z,olt) = (1 — &)u((z, —2), (t, 1)) + cu((z, z), (,1°))
=1 —-¢e)n(z,—z)+ 2¢
<(l—-¢)+2¢
=1+e

since £ < 1/2. All other actions are strictly worse as can easily be verified.
Thus, for x > %, —T € AICZ‘EE).

Finally, we show that 0> € Ay, for all £ € (0,1/2). For any —oco <z <
0, consider the strategy &(¢t°) = z and &(#) = oo. Since oo is a best-reply to
7 in state (¢°,¢°) and oo is a best-reply to oo in state (#°,7), we conclude that
oo is an interim best-reply to & for type t°. To check type £, we calculate

Eu(oo,5|t) = (1 — &)u((cc, 00), (£, 1)) + eu((co, x), (£, 1°))
=2(l—¢)+¢

which is greater than both Eu(0,5]f) = 1 and Eu(x,5|t) = 2¢. Since all
other actions are strictly worse, co is an interim best-reply for type £. It
follows that for every £ € (0,1/2), both & and o> belong to APy, given that
r< e,
13
For every € € (0,1/2), we have constructed an elaboration I'(¢) and a
o € ARy, such that o(t) = oo and ¢ € T°. We conclude that co € A, and

hence that A £ A,
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