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1 Introduction

Consider the following two-player non zero-sum game, that is played in

stages. At every stage n each of the two players has to decide whether

to quit or to continue the game. If both players decide to continue, the game

proceeds to stage n + 1. Otherwise, the game terminates, and player i re-

ceives the payoff ri
S,n, where ∅ ⊂ S ⊆ {1, 2} is the set of players that decide

to quit at stage n. If no player ever quits, the payoff is 0 to both players.

This game is a stopping game with deterministic payoff processes. Stop-

ping games have been introduced by Dynkin (1969) as a generalization of op-

timal stopping problems, and later used in several models in economics and

management science, such as optimal equipment replacement, job search,

consumer behavior, research and development (see Mamer (1987) and the

references therein), and the analysis of strategic exit (see Ghemawat and

Nalebuff (1985) or Li (1989)). Dynkin was interested in zero-sum stop-

ping games in which the sequences (rS,n)n are stochastic processes, where

rS,n := r1
S,n = −r2

S,n. He proved the existence of optimal pure strategies,

under the assumption that at any stage, only one of the players is allowed

to stop. Since then, a very extensive literature in the theory of stochastic

processes has dealt with zero-sum stopping games, both in discrete and con-

tinuous time. Most contributions provide conditions on the sequences (rS,n)

under which each player has pure ε-optimal strategies (a pure strategy cor-

responds to the notion of stopping time in probability theory). The typical

condition takes the form: r{1},n ≤ r{1,2},n ≤ r{2},n for each n. Rosenberg,

Solan and Vieille (2001) removed this assumption and proved that every

zero-sum stopping game admits a uniform value, when mixed strategies are

allowed.

Non zero-sum stopping games were studied, amongst others, by Mamer

(1987), Morimoto (1986), Hideo (1987) and Ohtsubo (1987, 1991). They
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provided conditions on the payoff process under which ε-equilibria exist.

We prove that every two-player non zero-sum deterministic stopping game

with uniformly bounded payoffs admits an ε-equilibrium, for every ε > 0.

The proof uses Ramsey Theorem (see, e.g., Bollobás (1998)) that states that

for every coloring of a complete infinite graph by finitely many colors there is

a complete infinite subgraph which is monochromatic. An interesting feature

of the proof is that it does not rely on the proof for zero-sum games.

We are not aware of any previous application of Ramsey Theorem to

game theory, except for Ramsey games, which were designed to fit Ramsey

theory.

2 The Game and the Result

A deterministic (two-player) stopping game Γ is described by a bounded

sequence (rn) in R6. The components of rn are labeled ri
S,n, where i = 1, 2

and ∅ 6= S ⊆ {1, 2}. The game is played as follows. At every stage n ≥ 1,

each of the two players has to decide whether to quit or to continue the game.

Let θ be the first stage, possibly infinite, in which at least one of the players

decides to quit, and let S∗ be the subset of players who decide to quit at

stage θ (provided θ < +∞). The payoff to player i is ri
S∗,θ if θ < +∞, and 0

if θ = +∞.

A (behavioral) strategy for player 1 is a function x : N → [0, 1], x(n) being

the probability player 1 quits at stage n, provided no player quit before that

stage. Strategies y of player 2 are defined analogously.

Every pair of strategies (x, y) induce a payoff to both players:

γi(x, y) = Ex,y[r
i
S∗,θ1θ<+∞],

where the expectation is taken w.r.t. the probability distribution Px,y over

plays induced by the strategies x and y.

Our main result is:
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Theorem 1 For every ε ∈ (0, 1) the game admits an ε-equilibrium: there is

a pair of strategies (x∗, y∗) such that

γ1(x, y∗) ≤ γ1(x∗, y∗) + ε and γ2(x∗, y) ≤ γ2(x∗, y∗) + ε, for every x and y.

We conclude this section by an example, showing that a 0-equilibrium

needs not exist, even if the sequence of possible payoffs is constant.

Example: Consider the zero-sum game defined by r{1},n = r{2},n = 1

and r{1,2},n = 0 for every n ∈ N. The strategy xε defined by xε(n) = ε

guarantees 1 − ε: infy γ1(xε, y) = 1 − ε. Since payoffs are at most one, the

value of the game is equal to one. However, player 1 has no optimal strategy.

Indeed, let x be any strategy and let y be the strategy defined by

y(n) =

 0 if x(n) = 0

1 if x(n) > 0

It is easy to verify that γ1(x, y) < 1.

3 The proof

Since payoffs are uniformly bounded, we assume w.l.o.g. that payoffs are

bounded by 1. Fix ε > 0 sufficiently small once and for all, and choose an

ε-discretization A of the set [−1, 1]2; that is, A is a finite set such that for

every u ∈ [−1, 1]2, there is a ∈ A with ‖a− u‖∞ < ε.

Step 1: Periodic games

For every two positive integers k < l, we define a periodic stopping game

G(k, l) as follows:

ri
S,n(k, l) = ri

S,k+(n−1 mod l−k).
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We interpret this game as “the game that starts at stage k, and restarts at

stage l (from stage k)”. We denote by γk,l(x, y) the payoff function in the

game G(k, l).

The game G(k, l) may be analyzed as a stochastic game with finitely

many states. The most convenient way is to define a stochastic game Γ(k, l),

where each stage of play corresponds to a period of play of G(k, l). To be

more formal, the set of action of each player in Γ(k, l) is {c, 1, 2, . . . , l − k}.
Action c corresponds to continuing in all stages of the period. Action labeled

p, 1 ≤ p ≤ l − k, corresponds to continuing in the first p − 1 stages of the

period, and stopping in the pth stage. As is customary for stochastic games,

we represent this game through the following matrix.

c 1 · · · l − k

c 0 r{2},k
∗ r{2},l−1

∗

1 r{1},k
∗ r{1,2},k

∗ r{1},k
∗

...
...

l − k r{1},l−1
∗ r{2},k

∗ r{1,2},l−1
∗

Figure 1: The game Γ(k, l)

An entry is starred if the corresponding combination of actions leads to an

absorbing state with the corresponding payoff; that is, the game terminates.

Note that stationary strategies in Γ(k, l) correspond to periodic strategies in

G(k, l), with period l− k. A stationary strategy of player i in Γ(k, l) can be

identified with a probability distribution πi over the set {c, 1, ..., l − k} of his

actions, with the interpretation that πi is used in every stage until at least

one of the players chooses an action other than c (and the game terminates).

The game Γ(k, l) is a recursive absorbing stochastic game: there is a

unique non-absorbing state, in which the reward function is identically zero.

By Flesch et al (1996), such games have a stationary ε-equilibrium π =

(π1, π2). Moreover, it follows from their proof that the profile π can be chosen

6



such that one of the alternatives holds:1

A.1 π1(c) = π2(c) = 1.

A.2 (i) γi
k,l(π) ≥ 0 for i = 1, 2,2 and (ii) π1(c) ≤ 1− ε or π2(c) ≤ 1− ε.

A.3 (i) γ1
k,l(π) < 0 and π2(c) ≤ 1− ε, or (ii) γ2

k,l(π) < 0 and π1(c) ≤ 1− ε.

In particular, either the probability that both players continue is 1 or it is at

most 1− ε.

We denote by (xk,l, yk,l) the periodic profile in G(k, l) that corresponds

to a stationary ε-equilibrium π of Γ(k, l) that satisfies one of A.1-A.3. It is

a periodic ε-equilibrium of G(k, l), with period l − k.

For every k < l we choose a(k, l) ∈ A such that

‖γk,l(xk,l, yk,l)− a(k, l)‖∞ < ε.

Step 2: Application of Ramsey Theorem.

For every pair of positive integers k < l we attached an element in the

finite set A – a color. By Ramsey Theorem there is an infinite subset of

integers K ⊆ N and a ∈ A such that a(k, l) = a for every k, l ∈ K, k < l.

In particular, there exists an increasing sequence of positive integers

k1 < k2 < · · · such that for every j ∈ N, a(kj, kj+1) = a. For notational

convenience, we write (x∗j , y
∗
j ) for (xkj ,kj+1

, ykj ,kj+1
).

For every k ∈ N, we let G(k,∞) denote the stopping game induced by

Γ from stage k, i.e., ri
S,n(k,∞) = ri

S,n+k−1 for every n ∈ N. We denote by

γk,∞(x, y) the payoff function in the game G(k,∞).

Let (x∗, y∗) be the profile in G(k1,∞) obtained by concatenating the

profiles (x∗j , y
∗
j ) :

x∗(n) = x∗j(n + k1 − kj) for kj − k1 + 1 ≤ n < kj+1 − k1 + 1.

1Alternatively, one can use the analysis of Thuijsman and Vrieze (1989) to show that

there exists a stationary
√

ε-equilibrium that satisfies one of the conditions A.1-A.3.
2With abuse of notations, γi

k,l(π) is the payoff of player i in Γ(k, l) under π.

7



The definition of y∗ is similar.

Step 3: |γi
k1,∞(x∗, y∗)− ai| < ε for i = 1, 2.

Assume w.l.o.g. that k1 = 1. If |ai| ≤ ε, then, for every j, either A.1 holds

or Px∗,y∗(kj ≤ θ < kj+1) ≥ ε. In the first case, Px∗,y∗(kj ≤ θ < kj+1) = 0,

whereas in the second,∣∣Ex∗,y∗
[
ri
S∗,θ|kj ≤ θ < kj+1

]
− ai

∣∣ ≤ ε.

By summing up over j ∈ N we get
∣∣γi

k1,∞(x∗, y∗)− ai
∣∣ ≤ ε.

Assume now that |ai| > ε. Then, for every j, Px∗,y∗(kj ≤ θ < kj+1) ≥
ε and

∣∣Ex∗,y∗
[
ri
S∗,θ|kj ≤ θ < kj+1

]
− ai

∣∣ ≤ ε. The first inequality yields

Px∗,y∗(θ < +∞) = 1 while the second implies
∣∣Ex∗,y∗

[
ri
S∗,θ|θ < +∞

]
− ai

∣∣ ≤
ε. Therefore,

∣∣γi
k1,∞(x∗, y∗)− ai

∣∣ ≤ ε.

Step 4: (x∗, y∗) is a 3ε-equilibrium of the game G(k1,∞).

We show that player 1 cannot profit more than 3ε by deviating from x∗.

Assume w.l.o.g. that k1 = 1. Let x be a strategy in G(k1,∞) = Γ

and let xj be the corresponding periodic strategy in G(kj, kj+1): xj(n) =

x(kj +(n−1 mod kj+1−kj)). Since (x∗j , y
∗
j ) is an ε-equilibrium in G(kj, kj+1),

if Px,y∗(kj ≤ θ < kj+1) > 0 then

Ex,y∗
[
r1
S∗,θ|kj ≤ θ < kj+1

]
= γ1

kj ,kj+1
(xj, y

∗
j ) ≤ γ1

kj ,kj+1
(x∗j , y

∗
j ) + ε ≤ a1 + 2ε.

Therefore,

Ex,y∗ [r
1
S∗,θ1θ<+∞] =

∑
j∈N

Px,y∗(kj ≤ θ < kj+1)Ex,y∗
[
r1
S∗,θ|kj ≤ θ < kj+1

]
≤ Px,y∗(θ < +∞)(a1 + 2ε) (1)

• If a1 ≥ −ε, one has a1 + 2ε > 0 hence Ex,y∗ [r
1
S∗,θ1θ<+∞] ≤ a1 + 2ε.

• If a1 < −ε, then A.3 holds, and one has Px,y∗(θ < kj+1|θ ≥ kj) ≥ ε for

every j. Hence Px,y∗(θ < +∞) = 1, which yields Ex,y∗ [r
1
S∗,θ1θ<+∞] ≤

a1 + 2ε.
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Therefore,

γ1
k1,∞(x, y∗) ≤ a1 + 2ε ≤ γ1

k1,∞(x∗, y∗) + 3ε.

Step 5: Backward induction.

Consider the following k1−1-stage game Γ. In Γ, the two players play the

first k1−1 stages of Γ. If no player quit in the first k1−1 stages, the payoff is

a = (a1, a2). Let (x, y) be an equilibrium in Γ. Thus, x, y : {1, .., k1 − 1} →
[0, 1]. Denote by (x, y) the profile in Γ that coincides with (x, y) up to stage

k1 − 1, and with (x∗, y∗) from stage k1 on. It is straightforward to deduce

from step 4 that (x, y) is a 3ε-equilibrium of Γ. This concludes the proof of

the Theorem.

4 Extensions

We here discuss the extension to n-player games with n > 2, and to games

with general payoff processes.

The proof we presented above is divided into three parts. First we define

for every periodic game a color, by approximating an equilibrium payoff in the

periodic game. Second, we apply Ramsey Theorem to the complete infinite

graph. This way we get a sequence of periodic games. Third, we concatenate

ε-equilibria in these periodic games to form a 3ε-equilibrium in the original

infinite game.

When there are three players, the technique of Solan (1999) can be used to

prove that periodic deterministic stopping games admit equilibrium payoffs.

The ε-equilibria in the corresponding stochastic game Γ(k, l) need not be

stationary: they are either stationary or periodic with period 3. Nevertheless,

one can still construct a 3ε-equilibrium by appropriately concatenating the

ε-equilibrium strategies of the periodic games.
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When there are more than three players, it is not known whether periodic

deterministic stopping games admit equilibrium payoffs.

When the payoff processes are general, the periodic game is defined by its

starting point, and by a stopping time that indicates when it restarts. The

result of Flesch et al (1996) can be applied to show that every such game

admits an equilibrium payoff, and one can generalize Ramsey Theorem to

this more general setup. However, it is not clear whether a concatenation

of ε-equilibria in the periodic games forms a 3ε-equilibrium of the original

game.
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Footnotes:

1. Alternatively, one can use the analysis of Thuijsman and Vrieze (1989)

to show that there exists a stationary
√

ε-equilibrium that satisfies one

of the conditions A.1-A.3.

2. With abuse of notations, γi
k,l(π) is the payoff of player i in Γ(k, l) under

π.
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