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Abstract

We prove that every two-player non zero-sum deterministic stop-
ping game with uniformly bounded payoffs admits an e-equilibrium,
for every € > 0. The proof uses Ramsey Theorem that states that
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1 Introduction

Consider the following two-player non zero-sum game, that is played in
stages. At every stage n each of the two players has to decide whether
to quit or to continue the game. If both players decide to continue, the game
proceeds to stage n + 1. Otherwise, the game terminates, and player ¢ re-
ceives the payoff T%yn, where () C S C {1,2} is the set of players that decide
to quit at stage n. If no player ever quits, the payoff is 0 to both players.

This game is a stopping game with deterministic payoff processes. Stop-
ping games have been introduced by Dynkin (1969) as a generalization of op-
timal stopping problems, and later used in several models in economics and
management science, such as optimal equipment replacement, job search,
consumer behavior, research and development (see Mamer (1987) and the
references therein), and the analysis of strategic exit (see Ghemawat and
Nalebuff (1985) or Li (1989)). Dynkin was interested in zero-sum stop-
ping games in which the sequences (rg,,), are stochastic processes, where
TSp ‘= T§, = —T%s, He proved the existence of optimal pure strategies,
under the assumption that at any stage, only one of the players is allowed
to stop. Since then, a very extensive literature in the theory of stochastic
processes has dealt with zero-sum stopping games, both in discrete and con-
tinuous time. Most contributions provide conditions on the sequences (g,,)
under which each player has pure e-optimal strategies (a pure strategy cor-
responds to the notion of stopping time in probability theory). The typical
condition takes the form: 71y, < rg 9y, < ry, for each n. Rosenberg,
Solan and Vieille (2001) removed this assumption and proved that every
zero-sum stopping game admits a uniform value, when mixed strategies are
allowed.

Non zero-sum stopping games were studied, amongst others, by Mamer

(1987), Morimoto (1986), Hideo (1987) and Ohtsubo (1987, 1991). They



provided conditions on the payoff process under which e-equilibria exist.

We prove that every two-player non zero-sum deterministic stopping game
with uniformly bounded payoffs admits an e-equilibrium, for every ¢ > 0.
The proof uses Ramsey Theorem (see, e.g., Bollobds (1998)) that states that
for every coloring of a complete infinite graph by finitely many colors there is
a complete infinite subgraph which is monochromatic. An interesting feature
of the proof is that it does not rely on the proof for zero-sum games.

We are not aware of any previous application of Ramsey Theorem to
game theory, except for Ramsey games, which were designed to fit Ramsey

theory.

2 The Game and the Result

A deterministic (two-player) stopping game T' is described by a bounded
sequence (r,,) in R®. The components of 7, are labeled Tf‘g’n, where 1 = 1,2
and ) # S C {1,2}. The game is played as follows. At every stage n > 1,
each of the two players has to decide whether to quit or to continue the game.
Let 6 be the first stage, possibly infinite, in which at least one of the players
decides to quit, and let S, be the subset of players who decide to quit at
stage 6 (provided 0 < +o0). The payoff to player i is rg*ﬁ if 6 < 400, and 0
if 6 = +o00.

A (behavioral) strategy for player 1 is a function z : N — [0, 1], z(n) being
the probability player 1 quits at stage n, provided no player quit before that
stage. Strategies y of player 2 are defined analogously.

Every pair of strategies (x,y) induce a payoff to both players:

’Yi(xa y)=E;, [7"2**,919<+oo]a

where the expectation is taken w.r.t. the probability distribution P, , over
plays induced by the strategies x and y.

Our main result is:



Theorem 1 For every e € (0,1) the game admits an e-equilibrium: there is

a pair of strategies (x*,y*) such that
Y, y") <A yt) + e and (", y) <A, yY) + e, for every xoand y.

We conclude this section by an example, showing that a 0-equilibrium

needs not exist, even if the sequence of possible payoffs is constant.

Example: Consider the zero-sum game defined by ryy, = gy, = 1
and {19y, = 0 for every n € N. The strategy z. defined by z.(n) = ¢
guarantees 1 — e: inf, y'(x.,y) = 1 — e. Since payoffs are at most one, the
value of the game is equal to one. However, player 1 has no optimal strategy.

Indeed, let x be any strategy and let y be the strategy defined by

y(n) = 0if z(n) =0
0

1if z(n) >

It is easy to verify that v'(z,y) < 1.

3 The proof

Since payoffs are uniformly bounded, we assume w.l.o.g. that payoffs are
bounded by 1. Fix ¢ > 0 sufficiently small once and for all, and choose an
e-discretization A of the set [—1, 1]2; that is, A is a finite set such that for

every u € [—1,1]%, there is a € A with |ja —ul| < e.

Step 1: Periodic games
For every two positive integers k£ < [, we define a periodic stopping game

G(k,1) as follows:

i i
TS,n(k’ l) = TS k+(n—1 mod I—k)-



We interpret this game as “the game that starts at stage k, and restarts at
stage [ (from stage k)”. We denote by vx;(x,y) the payoff function in the
game G(k,1).

The game G(k,l) may be analyzed as a stochastic game with finitely
many states. The most convenient way is to define a stochastic game I'(k, 1),
where each stage of play corresponds to a period of play of G(k,l). To be
more formal, the set of action of each player in I'(k, 1) is {c,1,2,...,1 — k}.
Action ¢ corresponds to continuing in all stages of the period. Action labeled
p, 1 < p <1 —k, corresponds to continuing in the first p — 1 stages of the
period, and stopping in the pth stage. As is customary for stochastic games,

we represent this game through the following matrix.

c 1 e l—k
c 0 T4k T{2}i-1
1 rank ol T2kt T{1}k
=k | ray—1™ | o © T{12)—1"

Figure 1: The game I'(k, 1)

An entry is starred if the corresponding combination of actions leads to an
absorbing state with the corresponding payoff; that is, the game terminates.
Note that stationary strategies in I'(k, ) correspond to periodic strategies in
G(k, 1), with period [ — k. A stationary strategy of player i in I'(k,[) can be
identified with a probability distribution 7" over the set {c, 1,...,1 — k} of his
actions, with the interpretation that 7! is used in every stage until at least
one of the players chooses an action other than ¢ (and the game terminates).

The game I'(k,[) is a recursive absorbing stochastic game: there is a
unique non-absorbing state, in which the reward function is identically zero.

By Flesch et al (1996), such games have a stationary e-equilibrium 7= =

(7!, 7). Moreover, it follows from their proof that the profile 7 can be chosen



such that one of the alternatives holds:!

A1 7l(c) = 7%(c) = 1.

A.2 (i) vy (m) > 0fori=1,22and (ii) 7'(c) <1 —ecor °(c) <1 —e.
A.3 (i) 7 (m) < 0and 7%(c) <1—e¢, or (ii) 77,(7) <0 and 7'(c) <1 —e.

In particular, either the probability that both players continue is 1 or it is at
most 1 — .

We denote by (zx,yk,) the periodic profile in G(k,[) that corresponds
to a stationary e-equilibrium 7 of I'(k, ) that satisfies one of A.1-A.3. It is
a periodic e-equilibrium of G(k, 1), with period | — k.

For every k < [ we choose a(k,l) € A such that

Vea(Tr, yt) — al(k, Dl < e

Step 2: Application of Ramsey Theorem.

For every pair of positive integers k < [ we attached an element in the
finite set A — a color. By Ramsey Theorem there is an infinite subset of
integers K C N and a € A such that a(k,l) = a for every k,l € K, k < .

In particular, there exists an increasing sequence of positive integers
k1 < ko < --- such that for every j € N, a(kj,kj+1) = a. For notational

. : * *
convenience, we write (3, y;) for (Ta; ks Yr; k-

For every k € N, we let G(k, 00) denote the stopping game induced by
I' from stage k, ie., r§, (k,00) = 1§, 4, for every n € N. We denote by
Vi0o(Z,y) the payoff function in the game G(k, 00).

Let (z*,y*) be the profile in G(ki,00) obtained by concatenating the
profiles (77, y5) :

x*(n):x;(njtk‘l—k‘j) for k; — k1 +1<n<kjy—Fk +1

! Alternatively, one can use the analysis of Thuijsman and Vrieze (1989) to show that

there exists a stationary +/e-equilibrium that satisfies one of the conditions A.1-A.3.
*With abuse of notations, v, ;(7) is the payoff of player 7 in T'(k,[) under 7.
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The definition of y* is similar.

Step 3: |, oo (2%, y%) —d'| < e for i=1,2.
Assume w.l.o.g. that k; = 1. If |a’| < &, then, for every j, either A.1 holds
or Py« «(kj <6 < kji1) > . In the first case, Py« »(k; < 0 < kjq) =0,

whereas in the second,
|Eoryr [15. 0k <O < kja] —d'] <e.

By summing up over j € N we get h,ihoo(x*,y*) —dl| <e.

Assume now that |a’| > e. Then, for every j, Po« ,«(k; < 0 < kj11) >
e and |Ege - [15 olk; <0 <kju] —a’| < e The first inequality yields
Py (0 < +00) = 1 while the second implies |Eg» - [r§_ o0 < +00] —a'| <

e. Therefore, |7,ihoo(x*,y*) —d'| <e.

Step 4: (z*,y*) is a 3e-equilibrium of the game G(k;, c0).
We show that player 1 cannot profit more than 3¢ by deviating from x*.
Assume w.l.o.g. that ky = 1. Let x be a strategy in G(ky,00) = T
and let z; be the corresponding periodic strategy in G(k;, kjt1): z;(n) =
z(kj+(n—1 mod kj; 1 —k;)). Since (x},y;) is an e-equilibrium in G(k;, kj 1),
if Py« (kj <6 < kj1q1) >0 then

Eoye [rg,olk; <0 < k] =7t 0,0, (05 85) < Yy, (25,07) 2 <l + 26
Therefore,

Eq - [7’}9*,019<+oo} = ZPw,y*(kj <0< kj+1)Ex,y* [ré*,ew{?j <0< ij}
JEN

<Py (0 < +00)(a' + 2¢) (1)
o If a' > —¢, one has a' 4 2 > 0 hence E, y+[rg, glociod] < a' + 2¢.

e If a' < —¢, then A.3 holds, and one has P, ,-(0 < kj1|0 > k;) > € for
every j. Hence P, (§ < +oc0) = 1, which yields Eq - [1g, glocios] <
a' + 2e.



Therefore,
7]11,oo(x7y*) < CLl 4+ 2e < 7é1,oo(x*7y*) + 3.
Step 5: Backward induction.

Consider the following k; — 1-stage game I'. In T, the two players play the
first k1 — 1 stages of I'. If no player quit in the first k; — 1 stages, the payoff is
a = (a',a?). Let (Z,7) be an equilibrium in T. Thus, 7,7 : {1,..,k — 1} —
[0, 1]. Denote by (x,y) the profile in I" that coincides with (Z,7) up to stage
k1 — 1, and with (2*,y*) from stage k; on. It is straightforward to deduce
from step 4 that (x,y) is a 3e-equilibrium of I". This concludes the proof of
the Theorem.

4 Extensions

We here discuss the extension to n-player games with n > 2, and to games
with general payoff processes.

The proof we presented above is divided into three parts. First we define
for every periodic game a color, by approximating an equilibrium payoff in the
periodic game. Second, we apply Ramsey Theorem to the complete infinite
graph. This way we get a sequence of periodic games. Third, we concatenate
g-equilibria in these periodic games to form a 3e-equilibrium in the original
infinite game.

When there are three players, the technique of Solan (1999) can be used to
prove that periodic deterministic stopping games admit equilibrium payoffs.
The e-equilibria in the corresponding stochastic game I'(k,[l) need not be
stationary: they are either stationary or periodic with period 3. Nevertheless,
one can still construct a 3e-equilibrium by appropriately concatenating the

g-equilibrium strategies of the periodic games.



When there are more than three players, it is not known whether periodic

deterministic stopping games admit equilibrium payoffs.

When the payoff processes are general, the periodic game is defined by its
starting point, and by a stopping time that indicates when it restarts. The
result of Flesch et al (1996) can be applied to show that every such game
admits an equilibrium payoff, and one can generalize Ramsey Theorem to
this more general setup. However, it is not clear whether a concatenation
of e-equilibria in the periodic games forms a 3e-equilibrium of the original

game.
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Footnotes:

1. Alternatively, one can use the analysis of Thuijsman and Vrieze (1989)
to show that there exists a stationary /e-equilibrium that satisfies one

of the conditions A.1-A.3.

2. With abuse of notations, ’}/Z’l(ﬂ') is the payoff of player i in I'(k, [) under

.
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