
 

 

Learning to Play Bayesian Games1  

 

Eddie Dekel, Drew Fudenberg and David K. Levine2 

 

First draft: December 23, 1996 

Current revision: July 31, 2001 

 

 

Abstract 

 

 

This paper discusses the implications of learning theory for the analysis of Bayesian 

games.  One goal is to illuminate the issues that arise when modeling situations where 

players are learning about the distribution of Nature’s move as well as learning about the 

opponents’ strategies.   A second goal is to argue that quite restrictive assumptions are 

necessary to justify the concept of Nash equilibrium without a common prior as a steady 

state of a learning process. 

                                                 
1 This work is supported by the National Science Foundation under Grants 99-86170, 97-30181, and 97-
30493. 
2 Departments of Economics: Northwestern and Tel Aviv Universities, Harvard University and UCLA. 
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1. Introduction 

 This paper discusses the implications of learning theory for the analysis of 

Bayesian games.  One of our goals is to illuminate some of the modeling issues involved 

in thinking about learning about opponents’ strategies when the distribution of Nature’s 

moves is also unknown.  A more specific goal is to investigate the concept of Nash 

equilibrium without a common prior, a solution concept that has been applied in a 

number of recent economic models.  The status of this solution concept is important, 

given the recent popularity of papers that apply it, such as Banerjee and Somanathan 

[2001], Piketty [1995], and Spector [2000].3   We argue that this concept is difficult to 

justify as the long-run result of a learning process.  The intuition for this claim is simple: 

In order for repeated observations to lead players to learn the distribution of opponents’ 

strategies, the signals observed at the end of each round of play must be sufficiently 

informative. Such information will tend to lead players to also have correct and hence 

identical beliefs about the distribution of Nature’s moves.  While our basic argument is 

straightforward, our examples highlight some less obvious points. 

 It is known that in simultaneous-move complete-information games, if players 

observe the profiles of actions played in each round, a wide range of learning processes 

have the property that the set of steady states coincide with the set of Nash equilibria of 

the game.  By contrast, we show that with incomplete information, if players begin with 

inconsistent priors, there are games in which the Nash equilibria are not steady states of 

any plausible learning processes. Moreover, in many games of incomplete information 

without a common prior, the assumptions that imply that all Nash equilibria are steady 

states imply that many other outcomes are steady states as well, questioning the focus on 

only the Nash equilibrium.  At the same time, we do identify some environments and 

games where Nash equilibrium without a common prior does have a learning 

justification. 

                                                 
3 We do not explore these applications in detail, so in particular we do not claim that their use of Nash 
equilibrium is inappropriate.  We only want to argue that in the context of incorrect priors, the use of Nash 
equilibrium requires more careful justification than is typically given.  In fact, Spector [2000] assumes that 
actions are observed while payoffs are not, noting that, while these are fairly extreme assumptions, if 
payoffs were observed then the players would learn the true distribution of Nature’s move.   
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 This learning-theoretic critique is related to two other problems of Nash 

equilibrium without a common prior.  One is internal consistency: a Nash equilibrium 

when players have different priors in general is not a Nash equilibrium when Nature is 

replaced with a player who is indifferent among all her choices and who behaves exactly 

as did Nature.4 A related problem (Dekel and Gul [1997]) is that the epistemic 

foundations of Nash equilibrium without a common prior are unappealing. The epistemic 

foundation for Nash equilibrium relies on a common prior about strategies, and it is not 

obvious why we should impose this on the states of Nature underlying the strategic 

uncertainty and not on those corresponding to the incomplete information.  

 In Section 2 we present our basic solution concept, self-confirming equilibrium, 

which we motivate as a steady state of a learning process in which there is only one 

person in each player role and Nature’s choice of the state of the world is iid over time.  

The relationship between this notion of self-confirming equilibrium and Nash 

equilibrium in games of incomplete information with diverse priors is discussed in 

Section 3.  Finally, in Section 4 we discuss how the definition of self-confirming 

equilibrium needs to be revised if Nature’s choice is not iid, or if there are many learning 

agents who are randomly placed in each player role. 

2. The Model 

 We consider a static simultaneous-move game with I  player roles.5  (All 

parameters of the game, including the number of players, and their possible actions and 

types, are assumed to be finite.) In the static game, Nature moves first, determining 

players’ types, which we denote i iθ ∈Θ . To model cases where the types alone do not 

determine the realized payoffs, we also allow Nature to pick 0 0θ ∈Θ ; we call this 

“Nature’s type.”  Players observe their types, and then simultaneously choose actions 

i ia A∈  as a function of their type, so that a strategy iσ  for player i  is a map from her 

types to mixed actions. Player i’s utility ( , )iu a θ  depends on the profile 

1( ,..., )Ia a a= A∈  of realized actions, and on the realization 0 1( , ,..., )Iθ θ θ θ= ∈Θ of 

Nature’s move. When ( , ) ( , )i i iu a u aθ θ=  we refer to the game as having private values.  

                                                 
4 This is because in a Nash equilibrium the strategy of the player replacing Nature is known. 
5 Fudenberg and Kreps [1988, 1995] and Fudenberg and Levine [1993] examined learning and steady 
states in games with non-trivial extensive forms; we do not consider such games so as to focus on the role 
of incomplete information and incorrect priors.  
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For any finite set X, we let ∆( )X denote the space of probability distributions over X.  

Thus player i’s prior about Nature’s move is denoted iµ ∈∆ Θ( ) ; µ µ µ= { ,... }1 I  is the 

profile of priors.  When i jµ µ=  for all i and j, the game has a common prior; in the 

complementary case where µ µi j≠  for some i and j we say that the priors are diverse.    

 Our solution concept is motivated by thinking about a learning environment in 

which the game given above is played repeatedly. We suppose that players know their 

own payoff functions and the sets of possible moves by Nature (Θ ) and players (A); but 

they know neither the strategies used by other players nor the distribution of Nature’s 

move; the players learn about these latter variables from their observations after each 

period of play.  We also suppose that each period the types are drawn independently over 

time from a fixed distribution p.  Thus p corresponds to the true distribution of Nature’s 

move in the stage game, and when i pµ =  for all players i we say that the priors are 

correct.6  For the time being, we also assume that there is a single agent in each player 

role.  Section 4 discusses the case where there is a large population of agents in each role 

who are matched together to play the game; we also discuss there the possibility that 

types are generated by a more general stochastic process.   

Of course, what players might learn from repeated play depends on what they 

observe at the end of each round of play.  To model this, we suppose that after each play 

of the game, players receive private signals ( , )iy a θ  which is their only information 

about Nature’s and their opponents’ moves.  It is natural to assume that players observe 

their own actions and types, but whether or not they observe others’ actions, or their own 

and others’ payoffs, depends on the observation structure and will affect which outcomes 

can arise in a steady state. We assume that each player observes her own private signal 

iy , along with her own action and own type.7  

                                                 
6 Note that if players are Bayesians they will have a “prior” about the state of the overall learning process, 
and this prior need not be the fixed “prior” iµ  that is taken as data in the specification of the stage game. 
We call the latter objects “priors” to conform to past usage, but the language is inaccurate once we set the 
stage game in a repeated learning setting.  
7  We consider the case in which knowledge of opponents’ play comes only from learning by observation 
and updating, and not from deduction based on opponents’ rationality, so we do not require that players 
know their opponents’ utility functions or beliefs.  Rubinstein and Wolinsky [1994] explore steady states in 
learning processes where there is common knowledge of rationality, and Dekel, Fudenberg and Levine 
[1999] consider the case of almost common knowledge of rationality.  
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 We will not formally model the dynamics of learning, but will appeal informally 

to the idea that a steady state of a belief-based learning process must be a unitary self-

confirming equilibrium (Fudenberg and Levine  [1993]). Thus, our focus is on how the 

information that players observe at the end of each round of play determines the set of 

self-confirming equilibria, and how these equilibria relate to the Nash equilibria of the 

game.   

The key components of self-confirming (and Nash) equilibrium are each player 

i’s beliefs about Nature’s move, her strategy, and her conjecture about the strategies used 

by her opponents. Player i’s beliefs, denoted by µ i , are a point in the space ∆ Θ( )  of 

distributions over Nature’s move, and her strategy is a map σ i i iA: ( )Θ ∆→ . The space of 

all such strategies is denoted Σi , and the player’s conjectures about opponents’ play are 

assumed to be a ˆ iσ−  ∈×− −i iΣ , that is, a strategy profile of i’s opponents. The notation 

ˆ ( | )i
iµ θ⋅  refers to the conditional distribution corresponding to µ i  and θ i , while 

( | )i i iaσ θ  denotes the probability that ( )i iσ θ  assigns to ai .  

 

Definition: A strategy profile σ  is a self-confirming equilibrium with conjecture ˆ iσ−  

and beliefs ˆ iµ  if for each player i , 

(i) p i( )θ > 0  implies ( )µ θi i > 0 , 

and for any pair ˆ,i iaθ  such that ˆ ˆ( ) ( | ) 0i
i i i iaµ θ σ θ⋅ >  both the following conditions are 

satisfied  

(ii) 
,

ˆˆ ˆargmax ( , , , ) ( | ) ( | )ii i i

i
ai i i i i i i i i ia

a u a a aθ θ θ µ θ θ σ θ
− −

− − − − − −∈ ∑ , 

and 

(iii) 
ˆ{ , : ( , , , ) }

ˆ{ , : ( , , , ) }

ˆ ˆ( | ) ( | )

( | ) ( | ).

i i i i i i i i

i i i i i i i i

i
i i i i ia y a a y

i i i i ia y a a y

a

p a

θ θ θ

θ θ θ

µ θ θ σ θ

θ θ σ θ
− − − −

− − − −

− − − −=

− − − −=
=

∑
∑
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We say that σ  is a self-confirming equilibrium if there is some profile ˆ ˆ( , )µ σ  such that 

(i), (ii) and (iii) are satisfied.8 

Condition (i) is a consequence of the assumption that players observe their own 

types.  Condition (ii) says that any action played by a type of player i that has positive 

probability is a best response to her conjecture about opponents’ play and beliefs about 

Nature’s move. Condition (iii) says that the distribution of signals (conditional on type) 

that the player expects to see equals the actual distribution. This captures the least 

amount of information that we would expect to arise as the steady state of a learning 

process.  

We will sometimes consider the restriction of self-confirming equilibria to the 

case where players’ beliefs about Nature satisfy certain restrictions.  In particular, we say 

that a self-confirming equilibrium has “independent beliefs” if for all players i the beliefs 
ˆ iµ  are a product measure. Because the domain of ˆ iµ  is all of 0 1 ... IΘ ×Θ × Θ , 

independence implies that player i’s beliefs about the types of her opponents do not 

depend on her own type.  This restriction is most easily motivated in games where the 

true distribution p is a product measure, that is, players’ types are in fact independent, as 

in this case assuming independent beliefs amounts to saying that players understand this 

particular fact about the structure of the game. The following game demonstrates the 

effect of assuming independent beliefs. 

 

Example 1: Independent Beliefs 

Consider a one-person two-type two-action game with two different states in 0Θ . The 

actions are labeled In and Out; the types are labeled “Timid” (T) and “Brave” (B), the 0Θ  

states are labeled L and R. Both types get a payoff of 0 from Out.  Payoffs from In are 

given in the table below. 

                                                 
8 Battigalli [1988] and Kalai and Lehrer [1993] defined similar concepts.  This is the “unitary” version of 
self-confirming equilibria because it supposes that there is a single ˆ iσ−  for each player i. The unitary 
version of the concept is appropriate here because of our assumption that there is a single agent in each 
player role; when we discuss large populations and matching in Section 4 we will need to allow for 
heterogeneous beliefs.  Note that i’s beliefs about opponents’ play take the form of a strategy profile as 
opposed to a probability distribution over strategy profiles. The complications that arise due to correlations 
in conjectures are discussed in Fudenberg and Kreps [1988] and Fudenberg and Levine [1993]; we 
simplify by ignoring them here. 
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 L R 

Brave  1 2 

Timid 2 -1 

 

Notice that In is a dominant strategy for the Brave type. Suppose the player does not 

observe Nature’s move but does observe her own payoff.9  Suppose also that the 

objective distribution p on Nature’s move assigns equal probability to the four states (B, 

L), (B, R), (T, L) and (T, R).  The Brave type has In as a dominant strategy, and so Brave 

will go In in every self-confirming equilibrium.  Thus, since the player observes her 

payoff, the Brave type learns the distribution of Nature’s move conditional on Brave, so 

the only self-confirming equilibrium with independent beliefs has ˆ pµ =  and both types 

playing In.  However, there is also a self-confirming equilibrium without independent 

beliefs where the Timid type stays Out because the player believes that Nature plays R 

whenever the player is Timid, that is ˆ ( | ) 1i R Tµ = .   ■ 

 

 We are interested in the relationship between the set of self-confirming equilibria 

and the set of Nash equilibria.  In a Nash equilibrium, each player’s strategy must 

maximize her expected payoff given her prior about the distribution of θ  and correct 

conjectures about the play of the opponents.  

Definition: A strategy profile σ  is a Nash equilibrium with conjecture ˆ iσ−  and beliefs 
ˆ iµ  if for each player i , and for any pair ˆ,i iaθ  such that ˆ ˆ( ) ( ) 0i

i i iaµ θ σ⋅ >   

(ii) 
,

ˆˆ ˆargmax ( , , , ) ( | ) ( | )ii i i

i
ai i i i i i i i i ia

a u a a aθ θ θ µ θ θ σ θ
− −

− − − − − −∈ ∑ , 

and 

(iii') ˆ i iσ σ− −= , ˆi iµ µ= . 

                                                 
9 Note that even though player 1 and Nature move simultaneously, when Nature’s move is not observed the 
problem has the structure of a one-armed bandit, which is normally thought of as a game with a non-trivial 
extensive form. 
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Note in particular that (iii') has the further implication that ( ) 0i
iµ θ >  implies 

ˆ ( ) 0i
iµ θ > .10   

When the priors are diverse, we say that the Nash equilibrium has diverse priors.  

Finally, to distinguish the case where the beliefs are correct, that is µ i p=  for all i, we 

say this is a Nash equilibrium with correct priors. 

 Note that the set of self-confirming equilibria does not depend on the exogenous 

stage-game priorsµ . To see why, note that a complete belief-based learning model 

would specify priors over both Nature's probability distribution and opponents' strategies. 

These priors would be updated over time, so that the steady state belief-conjecture pair 

(µ , ˆ iσ− ) need not be the same as the priors. In the learning process, different priors can 

lead to a different distribution over steady states; in our definition the set of self-

confirming equilibria corresponds to the set of possible steady states for all initial 

conditions of the learning process.  

Note also that there need not exist a self-confirming equilibrium where beliefs 

coincide with the exogenous prior µ .  For example, if players observe Nature’s move at 

the end of each period, then self-confirming equilibrium requires that the beliefs equal 

the objective distribution p.   Conversely, there is always a self-confirming equilibrium 

with beliefsµ  if players observe nothing at all, so that the set of outcomes Y has only a 

single element, but in that case the set of self-confirming equilibria includes all profiles 

of ex- ante undominated strategies.11 (Since we consider different classes of games and 

different assumptions about the signals observed at the end of each round, we end up 

making several points.  Since these points do not require lengthy proofs, we do not 

display them formally; instead,   we underline them to make them easier to locate.) 

                                                 
10 This definition of Nash equilibrium allows for a player to believe that an opponent is not optimizing, 
since j can assign strictly positive probability to a type of i to which i assigns zero probability.  To deal 
with this issue we could state the primitives of the game as conditional probabilities ( | )i

i iµ θ θ−  and 
impose interim optimality even for own types to which one assigns zero probability.  We chose to avoid 
this extra complexity in the notation. 
11 The strategies are ex-ante undominated because there is only one agent in each player role, so that an 
agent’s conjectures about the other players’ strategies must be the same regardless of that agent’s action 
and type, and the belief about Nature must also be conditionally independent of the action chosen given the 
type. 
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3. The Relationship Between Self-Confirming Equilibria and Nash 
Equilibria 

 In this section we focus on the relationship between  self-confirming equilibria 

and Nash equilibria. Specifically we explore the assumptions about observability under 

which the set of self-confirming equilibrium profiles with beliefs µ µ=  coincide with 

the set of Nash equilibrium profiles of the game where players’ priors regarding Nature 

are µ .  We abbreviate this by saying (imprecisely) that the sets of Nash and self-

confirming equilibria with beliefs µ coincide.  

3.1 The tension between Nash and self-confirming equilibria 
As mentioned above,  if players cannot observe or deduce their opponents’ 

actions at the end of each period, then in general there can be self-confirming equilibria 

that are not Nash equilibria. So we begin by considering the case in which players either 

directly observe, or indirectly deduce from other observations, the realized actions of 

their opponents after each play of the game.     

Suppose that i iy u= , that is, players observe their own utility. With generic 

payoffs the map ( , )iu a θ  is 1-1, and both the actions of other players, ia− , and Nature’s 

move, θ , can be uniquely determined from iy . Consequently, the only beliefs and 

conjectures that are self-confirming are the correct ones.  We conclude that with generic 

and observed payoffs, the set of self-confirming equilibria coincides with the set of Nash 

equilibria of the game with the correct (hence common) prior.   In particular, if the priors 

in a given game of incomplete information are not common, and in addition, if the set of 

Nash equilibria of that game differs from the set of Nash equilibria with the correct prior 

(that is if the presumption of diverse priors has any significance), then the Nash equilibria 

of the game with diverse priors will not coincide with the self-confirming equilibria.   

Next suppose that i iy a−= , that is, players observe their opponents’ actions. 

Then in a self-confirming equilibrium players must know the conditional distribution of 

opponents’ actions given their own type.  Suppose in addition that the game is a game of 

private values, that is, ( , ) ( , )i i iu a u aθ θ= .  Since players do not care about their 

opponents’ types, this implies that with private values and observed actions every self-
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confirming equilibrium has the same strategies as a Nash equilibrium of the game with 

the correct and hence common priors.12,13 Once again, the fact that self-confirming 

equilibria are Nash equilibria of the game with the correct prior implies in particular that 

when such games have diverse priors, then any Nash equilibria that are not Nash in the 

game with correct priors are not self -confirming.  That is, if the diverse priors create any 

additional Nash equilibria, those equilibria are not self-confirming.14 This is 

demonstrated in Example 2 below.   

Example 2: Nash Equilibria that are Not Self-Confirming Equilibria 

 
We consider a game with a column player, C, and two row players, R1 and R2.  Nature 

chooses L or R, with equal probability; the column player observes Nature’s choice of L 

or R, while the two other players do not. Thus players R1 and R2 each have a single type, 

player C has two types, L and R, and the set Θ0  of Nature’s types is empty. 

In this game, C’s payoff depends only on her own action and type, but not on the 

actions taken by the row players: specifically, C’s actions are labeled l and r, and C gets 

1 for choosing the same as Nature, and 0 for choosing the opposite. The row players’ 

payoffs each depend on the column player’s action and their own action, as shown in the 

following two matrices. 

                                                 
12 Note that the beliefs about opponents’ types and strategies may not correspond to the Nash equilibrium; 
we return to this question in other contexts below. 
13 In this case the specification of assumptions about player’s prior knowledge of the game is irrelevant for 
long-run learning. It may however make a difference for predictions of the model about play in the first 
few periods, before much learning has taken place, and so can also influence the long-run behavior of the 
system in cases where a steady state is not reached. 
14 Note that in two-person games with private values (in which by implication θ 0  is irrelevant) the set of 
Nash equilibria of a game with diverse priors depends only on the support of the priors and equals the set 
of Nash equilibria of the same game with common priors (and the same support). The key point is that a 
player’s prior about her own type does not matter to him, and so there is no harm in modifying it to reflect 
her opponent’s belief.  In a similar vein, neither player cares about Nature’s type θ 0 .  Formally, if σ  is a 

Nash equilibrium where player 1’s prior on 1 2Θ ×Θ is 1 1 1
1 2µ µ µ= × , and two’s prior is 2 2 2

1 2µ µ µ= × , 

then it is also an equilibrium when the priors are both 2 1
1 2µ µ× .  
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R1 l r   R2 l r 

U 0 1   U 1 0 

M ¾ ¾   M ¾ ¾ 

D 1 0   D 0 1 

 

This is a game with private values, because the row players' payoffs depend only 

on the column player’s action, not her type.  In the learning environment, everyone 

observes the column player’s action after the game is played.  Clearly the column player 

has a dominant strategy of playing l when type L and r when type R, so in the self-

confirming equilibrium, the column player plays l on L and r on R, so plays each half the 

time. The row players observe this, so must play M.  

 Now suppose that R1’s prior assigns probability .9 to type L and .1 to R, while 

R2’s prior is the reverse, with .1 probability of type L and .9 to R.   In a Nash equilibrium, 

C plays l upon observing L and r upon observing R, and the row players know this.  

Given the priors, this implies that R1 and R2 believe that they will face the actions l and r 

respectively .9 of the time. Consequently, in this Nash equilibrium with diverse priors, 

R1 and R2 will both choose D.  However, this is not a Nash equilibrium for any common 

prior, and so it is not a self-confirming equilibrium for any p when the column player’s 

action is observed.15  

We see in this example that, when players observe actions, the self-confirming 

equilibria in which beliefs are equal to the priors is unique, and is different from the Nash 

equilibrium.  When players observe nothing at all, the set of self-confirming equilibria 

with beliefs equal to the priors includes the Nash equilibrium, but in fact imposes no 

restrictions at all on the play by R1 and R2 since the row players will not know anything 

about columns choice.  ■ 

                                                 
15 One way of summarizing this example is to say that two players who agree about an opponent’s strategy 
can have different forecasts about the distribution of that opponent’s actions if they have different beliefs 
about the distribution of that player’s type.  In contrast, with observed actions players correctly forecast the 
distribution of opponent’s actions in any self-confirming equilibrium, but they can have different beliefs 
about the distribution of Nature’s move and about the opponent’s strategy.   
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 Without private values, if neither types nor payoffs are observed, but actions are, 

there can be self-confirming equilibria with correct beliefs about Nature that are not Nash 

even with correct priors, as in the next example.   

 

Example 3: Self-confirming equilibria that are not Nash 

Player R and player C each choose either –1 or 1. Player R’s type is either +1 (with 

probability 2/3) or –1 (with probability 1/3), and player R’s payoff is her action times her 

type, so player R plays +1 when type 1 and –1 when type –1.   Player C’s payoff is the 

product of player 1’s type and the two actions, so the unique Nash equilibrium with the 

correct prior has player C play +1.  If all that player C observes is player R’s action, then 

player C can have correct beliefs about Nature’s move and conjecture that player R plays 

+1 when type –1 and mixes ½- ½ when type +1. In this case the best response is for 

player C to play –1. Consequently, player C plays –1 in all self-confirming equilibria.  

■  

  

By assuming that players observe very little (or that payoffs are not generic) it is 

easier for a Nash equilibrium with diverse priors to also be a self-confirming equilibrium.  

However, the less the players observe when the game is played, the less they learn about 

opponents’ strategies, so the bigger the set of self-confirming equilibria, which makes it 

more likely that the set of self-confirming equilibria contains equilibria that are not Nash.  

This tension is noted following Example 2 above; to further illustrate it we consider the 

following team problem, based on the model of Banerjee and Somanathan [2001].  
 
Example 4: Nash Equilibria and Self-confirming equilibria in a Team Problem 

Nature chooses either 0 or 1.  The team as a group needs to choose a single action 

in {0, 1}; each player’s utility is 1 if the action matches Nature’s choice and 0 otherwise.  

There is a continuum of players on the unit interval, i Œ[ , ]0 1 .  The game does not have 

common prior; instead, each player i believes that Nature plays “1” with probability i. 

Nature’s actual probability is some fixed p not too far from ½.  One of the players is 

chosen as the decision-maker.  All other players observe a noisy signal that takes value 1 

or 0, where for each player the probability that the signal value equals Nature’s choice is 

α >1/2.  After observing these signals, one player is chosen at random to send the 
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decision-maker a message in {0, 1}. The decision-maker does not observe the identity of 

the sender, and then chooses the group’s action.   

 This game has several Nash equilibria. One of these, which seems analogous to 

those on which Banerjee and Somanathan focused, has an interval of players of measure t 

around the decision maker send the message that corresponds to their signal.  In the two 

intervals of measure ( )1 / 2t−  consisting of players with more extreme priors players 

ignore their signals and always send 0 and 1, depending on whether they are at the 

“right” or “left” extreme.   We now explore whether this Nash equilibrium (with diverse 

priors) is a self-confirming equilibrium under different assumptions regarding what 

players observe when the game is played.  

  Obviously if players observe the true state at the end of each period they will 

learn   the actual distribution of Nature’s move, so diverse priors would not persist.  If 

players observe their own payoff and the decision-maker’s action they would also learn 

the distribution of Nature’s move.  On the other hand, if the signal senders observe only 

their payoffs, and the decision maker observes nothing but her action, the Nash 

equilibrium is a self-confirming equilibrium with the given beliefs about Nature and the 

correct conjectures about players’ strategies because in this equilibrium the distribution 

over payoffs is (1-t)/2+αt, independent of the state.16  The Nash equilibrium is also a self-

confirming equilibrium if the players observe actions but not payoffs; but once again in 

this case there are other self-confirming equilibria as well. Finally, if the decision-maker 

observes her payoff, she can deduce the state and thereby learn the true distribution; in 

this case the Nash equilibrium is a self-confirming equilibrium only if the decision-

maker’s prior is correct. ■ 

 

We have seen that observing actions is not sufficient for Nash and self-confirming 

equilibria with given beliefs µ  to coincide.  The next example sharpens this point. Even 

if the set of strategy profiles in self confirming equilibria  with beliefs ˆµ µ=  coincides 

with the set of Nash equilibria, conjectures about opponents’ play may fail to be correct, 

                                                 
16 There may be other SCE, but as the original paper does not analyze the whole set of Nash equilibria, we 
only emphasize here the stringent assumptions necessary to make the particular Nash equilibrium they 
consider correspond to a self-confirming equilibrium with the same beliefs. 
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and so the profile can fail to be self-confirming once actions are added to the available 

information.  

 

Example 5: A game where when payoffs are observed,  Nash equilibrium and self-

confirming equilibrium are equivalent iff actions are not observed. 

Consider a two-player game in which Nature chooses the left or right matrix.  Neither 

player has private information; both players think the left matrix is chosen with 

probability 1 ε− , while it is actually chosen with probability ε .  

 
 A B   A B 

A 1, 1 0, 0  A 0, 0 1, 1 

B 0, 0 0, 0  B 1, 1 0, 0 

 

The strategic form for this game given the common beliefs µ  is 

 

  

 

 

The unique Nash equilibrium is (A, A).  

If players only observe their payoffs, then (A, A) is a self-confirming equilibrium with 

beliefs (1 ε− ,ε ) and conjecture that the opponent is playing B: in this case each player 

believes that playing A yields 1 with probability ε , and B yields 0. However, if players 

observe actions, the Nash equilibrium (A, A) is not self confirming. ■ 

3.2  Examples where Nash equilibria and self-confirming equilibria 
coincide  
 Example 2 showed that when players observe everyone’s actions there could be 

Nash equilibria that are not self-confirming with respect to any beliefs.  Our next 

example shows a sort of converse: for some games with diverse priors, the Nash 

equilibria and self-confirming equilibria do coincide, whether or not players observe 

actions.  In this example the diverse priors are significant: the set of Nash (and self-

confirming) equilibria with the diverse priors differs from the set of Nash (and self-

 A B 

A 1-ε , 1-ε  ε , ε  

B ε , ε  0, 0 
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confirming) equilibria with a common prior.  The example demonstrates this point using 

ex-ante dominating strategies, in which it is irrelevant what players observe; in an 

example in the appendix the players do care about their opponents’ actions, and in that 

example players must observe either their own payoffs, or opponents’ actions, or both.  

 
Example 6: A game where Nash equilibrium  and self-confirming equilibrium coincide 

even with diverse priors 

 L R   L R 

U 1, 1 0, 0  U -1, -1 0,0 

D 0, 0 -1, -1  D 0, 0 1, 1 

 

This is a two-player game in which Nature chooses the left (l) or right (r) payoffs, 

and neither player observes Nature’s move.  The row player believes the left payoffs are 

chosen, the column player believes the opposite: 1 2( ) ( ) 1l rµ µ= = . So the unique Nash 

equilibrium is for the row player to play U and the column player R, with payoffs (0, 0). 

Whether or not players observe their opponent’s actions or their own utility, this profile 

is self-confirming with beliefs equal to the given priors. However, the subset of self-

confirming equilibria with beliefs in which µ µ1 2= is either (U, L), (D, R), or the entire 

strategy space. ■ 

  

 To summarize, we have seen that observing actions is neither necessary nor 

sufficient for self confirming and Nash equilibria to coincide, and that when payoffs are 

observable, observing actions in addition may make a Nash equilibrium that was self- 

confirming no longer so.  Thus, we see that the “best” case for Nash and self-confirming 

equilibria to coincide is when actions are observable and payoffs are not. Moreover, we 

saw that this assumption can only be useful when the game is not one of private values.  

Then, if 0( , ) ( , , )i i iu a u aθ θ θ= , and if players observe actions and not payoffs, they can 

correctly infer opponents’ distribution of actions as a function of their own type.  

However, while this forces them to agree about the distribution of private types, it does 

not force them to agree about 0θ , the portion of Nature’s move that is unknown to 

everyone. So in a self-confirming equilibrium players may disagree about the distribution 
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of 0θ  and how it is correlated with the private types.    In this class of games, where each 

player’s utility depends only on that player’s type and the type of Nature, the Nash 

equilibria coincide with the self-confirming equilibria when actions are observed but 

payoffs are not. A practical example that has this flavor is the case of voting by juries. 

Assume that jurors all wish to convict the guilty and release the innocent, and have the 

same preferences of the cost of making a mistake. Here we would take 0θ  to be whether 

or not the defendant is guilty, and suppose that there are no private types. Since they 

never get to observe whether a defendant is actually guilty they do not observe their own 

payoffs. But if some jurors get to participate in many trials, or hear about the 

deliberations of many juries, they may learn the strategies of other players, even though 

they never acquire any information about the correctness or incorrectness of their beliefs 

about the relationship between evidence and guilt.  

Next consider more general games, in which players do care directly about 

opponents’ types. The Nash equilibria will coincide with the self-confirming equilibria  

with the same beliefs if players observe opponents’ types and actions, but do not observe 

their  own payoffs, and if additionally the priors over private types are correct.  (That is, 

the marginal of µ  on players’ types coincides with the marginal of p on players’ types.)  

 

4. The Joint Distribution of Nature’s Moves over Time, Agents, and 
Players 

4.1.  Correlation Over Time  

The assumption we made in Section 2 to justify self-confirming equilibrium as 

the steady state of a learning process is that Nature makes independent draws from p each 

period. However, there are stochastic processes generating agents’ types that, loosely 

speaking, “draw types according to p” but where p turns out not to be directly relevant 

for the long-run outcome.  For example, Nature might make a single once-and-for-all 

draw θ̂  from p, so that the “real game” about which learning occurs corresponds to the 

particular realization of θ̂ .  In this case, the “appropriate” definition of self-confirming 

equilibrium replaces p in condition (ii) with the degenerate distribution that chooses θ̂  

with probability one.  This is “appropriate” in the sense that the players learn only about 
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the particular draw, and so steady states of a learning procedure will coincide with the 

self-confirming equilibria when p is replaced in this manner.  In the remainder of this 

section we point out, for various stochastic processes, what is the “appropriate” 

replacement of p.   

Obviously the fact that the realized θ̂  differs from p  can have significant 

implications for what is learned.  For instance, in the case just mentioned, players may 

learn the true state.  The next example illustrates another possible implication: the players 

might learn the state for some realizations of θ̂  and not for others. 

Example 7: Learning about only some states 

Consider again the one-player game of Example 1, where the payoffs for Out are 

0 for both types and for In are 

 

 L R 

Brave  1 2 

Timid 2 -1 

 

As before, suppose the player does not observe Nature’s move but does observe her own 

payoff.  But now suppose also that the objective distribution p assigns probability ½ to 

(B, L) and ½ (T, L) so that Nature’s type is always L. As before, the only self-confirming 

equilibrium with independent beliefs is for both types to play In, but this solution concept 

is not appropriate in the case when θ̂  is drawn once from p and then fixed. The 

supposition underlying self-confirming equilibrium is that player i has a single belief ˆ iµ  

over Θ  that is possibly updated based on iθ . This makes sense when a given agent gets 

many observations of games with each possible realization of iθ . With a single draw, 

however, we need to allow for each type iθ  to have separate beliefs.  In this case, even 

when player i knows that the distribution of Nature’s type is independent of her own, 

there is a self-confirming equilibrium where the Timid type stays Out (believing that 

Nature always plays R) while the Brave type plays In believing (correctly) that Nature 

always plays L.  ■ 

 

Underlying our notion of a steady state is the idea that players repeatedly sample 

from a fixed distribution that does not change over time. Suppose we consider the more 
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general class of exchangeable processes for types, which have a representation as a 

“prior” probability distribution over (conditionally) iid processes. Then we can think of 

Nature making a single once-and-for-all draw p̂ from the class of iid processes, and the 

“appropriate distribution” to use in the definition of µ  self-confirming equilibrium is the 

p̂  drawn by Nature; the fact that players “could have” faced some different distribution 

and that the overall distribution was p is not relevant in the long-run steady state.17  

Thus, we can extend the discussion of independent private values in Section 3, 

where we said that every self-confirming equilibrium has the same strategies as a Nash 

equilibrium of the game with the correct and hence common priors:  With independent 

private values and observed actions of opposing players, a self-confirming equilibrium is 

a Nash equilibrium in a game with priors equal to the “realized distribution” of types, p̂ .  

One can also consider the more general class of ergodic processes instead of 

exchangeable ones. It is natural in that case to think of p as the invariant distribution. 

Notice in this case that players are not actually drawing from p each period, rather they 

are drawing from time-varying distributions which average out to p.  If players believe 

that the true process is exchangeable, then beliefs in steady states will still satisfy the 

self-confirming conditions of section 2 with respect to this ergodic distribution.18  

4.2  Matching in Large Populations 

 Next we want to focus on a class of games of special interest in learning theory: 

games in which players are randomly matched to play a smaller “stage” game.  In this 

setting it is natural to think of p as the distribution of types for a given match, and not 

deal directly with the distribution of types over all matches, but we must also consider the 

relationship between the matching process and the p from which players draw their 

observations.  

Suppose that players in a given player role are independently matched in each 

period with opponents in other roles.  We mention three ways in which types could be 

determined over time.  (a) If Nature makes a once-and-for-all draw, the relevant 

                                                 
17 Note that the exchangeable model nests both the case of single once-and-for-all draw θ̂  and the case 
where each period’s θ  is an independent draw from p. Note also that the distribution from which Nature 
chooses p̂  does influence the ex-ante distribution over steady states. 
18 Of course, sophisticated players might realize that Nature’s moves do not have an exchangeable 
distribution, in which case our model would break down.  
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distribution is generated by independent draws from the realized distribution of 'sθ  in 

the population. This distribution exhibits independence across player roles on account of 

the matching procedure, even if the underlying p exhibited correlation.  For instance, if 

types were perfectly correlated according to p, then in any rematch after the first draw 

there is positive probability that a profile with zero probability according to p will 

nevertheless be matched. (b) If Nature draws independently from a correlated distribution 

p each period, and the draw is made prior to matching, a similar observation holds true:  

Because the matching is independent of type, the relevant distribution is the product of 

the marginals from p. (c) On the other hand, if Nature draws independently each period, 

and draws the types for the agents in each match from p after the match is formed, then p 

is the relevant distribution.   

Now we turn to the question of how the appropriate definition of self-confirming 

equilibrium depends on the specification of the stochastic process governing types.  We 

know from Fudenberg-Levine [1993] that when there are multiple agents in each player 

role, there can be “heterogeneous” self-confirming equilibria in which different agents in 

the same role play different strategies and have different conjectures.  Thus, when types 

are chosen independently over time, and separately for each match, the appropriate 

definition replaces allows the beliefs and conjectures of the agents to vary with the 

strategy chosen.  

Definition: A strategy profile σ  is a heterogeneous self-confirming equilibrium if for 

each player i  there exists { : }k
i ik Kσ ∈ ⊂ Σ  such that iσ  is in the convex hull of 

{ : }k
i k Kσ ∈  and such that for each k

iσ  there are conjectures ˆ iσ−  and beliefs ˆ iµ   (both of 

which can depend on k
iσ ), such that 

(i) p i( )θ > 0  implies ( )µ θi i > 0 , 

and for any pair ˆ,i iaθ  such that ˆ ˆ( ) ( | ) 0i
i i i iaµ θ σ θ⋅ >  both the following two conditions 

are satisfied  

(ii) 
,

ˆˆ ˆargmax ( , , , ) ( | ) ( | )ii i i

i
ai i i i i i i i i ia

a u a a aθ θ θ µ θ θ σ θ
− −

− − − − − −∈ ∑ , 

and 
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(iii) 
ˆ{ , : ( , , , ) }

ˆ{ , : ( , , , ) }

ˆ ˆ( | ) ( | )

( | ) ( | ).

i i i i i i i i

i i i i i i i i

i
i i i i ia y a a y

i i i i ia y a a y

a

p a

θ θ θ

θ θ θ

µ θ θ σ θ

θ θ σ θ
− − − −

− − − −

− − − −=

− − − −==

∑
∑

 

This definition allows for player i’s beliefs and conjecture to depend on the strategy she 

plays, but as in the unitary definition it requires all types of player i to form their beliefs 

by updating from a common distribution ˆ iµ .   To see the difference this heterogeneity 

can make, consider a simplified version of example 7 where the player is always Timid, 

and where the distribution of Nature’s move is such that it is optimal for the player to 

always play In.  Then there is no self-confirming equilibrium where the player 

randomizes, but there are heterogeneous self-confirming equilibria where some players 

play In and others stay Out. 

Heterogeneous self-confirming equilibrium is appropriate when Nature’s move is 

iid over time (case (c) above), since a given agent eventually receives many observations 

of the distribution of signals corresponding to each possible type iθ  in the support of p. 

However, if types are fixed once and for all, then each agent is only in the role of a single 

type, and there is no reason that beliefs across types should be consistent with updating 

from a common prior.19  Therefore, instead of imposing that restriction, we allow each 

type θ i  to have any  “interim belief” iθµ  that is consistent with that type’s observations. 

Similarly, when types are fixed, conjectures may depend on types.  The following notion 

of type heterogeneous self-confirming equilibrium captures the idea that types are fixed 

initially, but that players are subsequently matched with opponents whose types have 

been drawn from p. 

  

Definition: A strategy profile σ  is a type heterogeneous self-confirming equilibrium if 

for each player i , and for each îa  and θ i  such that ˆ( ) ( | ) 0ii i ip aθ σ θ⋅ >  there are 

conjectures ˆ iσ−  and interim beliefs iθµ   (both of which can depend on ai  and θ i ), such 

that both the following conditions are satisfied  

                                                 
19 If no restrictions are imposed on the prior, then any collection of interim beliefs ( )i

i i

θ
θµ ∈Θ  can be 

generated from a prior iµ  by setting ( , ) ( ) ( )i i i i i i iµ θ θ µ θ µ θ− −=  for some marginals ( )i iµ θ , but the 
interim definition allows for each type of player i to think all types are independently distributed while also 
allowing different types to have different beliefs.     
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 (ii) 
,

ˆ ˆargmax ( , , , ) ( ) ( | )i
ii i i

ai i i i i i i i ia
a u a a aθ

θ θ θ µ θ σ θ
− −

− − − − − −∈ ∑ , 

(iii)   

ˆ{ , : ( , , , ) }

ˆ{ , : ( , , , ) }

ˆ( ) ( | )

( | ) ( | ).

i

i i i i i i i i

i i i i i i i i

i i i ia y a a y

i i i i ia y a a y

a

p a

θ
θ θ θ

θ θ θ

µ θ σ θ

θ θ σ θ
− − − −

− − − −

− − − −=

− − − −=
=

∑
∑

 

Notice that the “full support” condition (i) is no longer needed, since we no longer derive 

the interim (that is, type-dependent) beliefs by updating from an “ex-ante” prior.  

Returning to example 7, recall that “In when Brave, Out when Timid” is a self-

confirming equilibrium, since the player can believe that Nature’s type is correlated with 

her own. This is not a self-confirming equilibrium with independent beliefs, and it is not 

a heterogeneous self-confirming equilibrium with independent beliefs, but it is a type-

heterogeneous self-confirming equilibrium with independent beliefs. The same 

distinction appears in a modified version of example 7 where “Nature” is replaced by a 

player 2 who has L as a dominant strategy, and where player 1 observes her own payoff 

but not the action of player 2. The only self-confirming equilibrium is for both types of 

player 1 to play In; this is also the only heterogeneous self-confirming equilibrium, but 

“Brave In, Timid Out” is a type-heterogeneous self-confirming equilibrium. 20 

We conclude with a final example that also uses independence to create a 

distinction between heterogeneous and type-heterogeneous self-confirming equilibrium. 

 

Example 8: Independent heterogeneous Self-Confirming Equilibria versus Independent 

type-heterogeneous Self-Confirming Equilibria  

Consider a variation of the one-player game of Example 7, where the payoffs for Out 

remain 0 and those for In are 

 

                                                 
20 The difference between the versions of the example with “Nature” and “player 2” comes from the fact 
that player 1 can think Nature’s move is correlated with her type, but player 1’s conjecture about player 2 
must correspond to a strategy for player 2, and since player 2 does not observe player 1’s type, player 2’s 
strategy cannot depend on it.  
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 L R 

Brave  2 -1 

Timid -1 2 

Here both types can stay Out only if they disagree about Nature’s move: Brave must 

believe R and Timid must believe L. Suppose in fact that players observe nothing, so that 

behavior depends only on priors. If the players’ types are drawn anew each period and 

beliefs are restricted to be independent, then in any self-confirming equilibrium 

( ) ( )In Outσ σ≥  since the beliefs corresponding to any kσ  must lead them to play In 

either when they are Brave or when they are Timid (or both).  On the other hand, if 

players’ types are drawn once and for all, they can stay Out forever (each type can have 

constant beliefs justifying Out).    ■ 
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Appendix 

 Since Example 6 involves dominant strategies, it is not very interesting from a 

game-theoretic perspective.  The next, more complicated, example, due to Phil Reny, 

shows that dominant strategies are not required for the property that the Nash and self-

confirming equilibria coincide even when actions are not observed. 

 

Example A 

In this game there are three states of Nature '
0 0 0, '', '''θ θ θ and no types. There are two 

players, a row and a column player; each chooses between three actions T, M, B. Payoffs 

in each of the states is given in the table below. 
 

 0 'θ    0 ''θ    0 '''θ  

 T M B   T M B   T M B 

T 0, 1 0, ½  1, -1  T 0, -1 0, ½  -1, 1  T 0, 1 0, 5 1, 1 

M 5, 0 5, 5 ½, 5  M 5, 0 5, 5 ½, 0   M 5, 0 5, 5 5, 0 

B 0, 0 0, 5 -1, 0  B 0, 0 0, 5 1, 0  B 0, 0 0, 5 1, 0 

 

Beliefs about and the actual distribution of Nature’s move are given below 
 0 'θ  0 ''θ  0 '''θ  

µ1 1-2ε ε ε 

µ2 ε 1-2ε ε 

µ ε ε 1-2ε 

To analyze the game, note that if 2 plays T or M it is a strict best response for 1 to play 

M; if 1 plays M or B it is a strict best response for 2 to play M. Hence the relevant portion 

of the game involves 2 playing B or 1 playing T. Payoffs in these cases are summarized 

below.   
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 0 'θ  0 ''θ  'θ  

1 -1 1 

½  ½ 5 

u1 (T, B, θ0)=u2 (T, T, θ0)= 

u1 (M, B, θ0)=u2 (T, M, θ0)= 

u1 (B, B, θ0)=u2 (T, B, θ0)= -1 1 1 

 

With the given priors the pure strategy Nash equilibria are (M, M) and (T, B).  The latter 

is not a Nash equilibrium with a common prior.  If players observe payoffs, then there are 

two (pure strategy) self-confirming equilibria with beliefs µ1, µ2: one with the strategy 

profiles (T, B) and the other with (M, M).   
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