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Abstract

We consider discrete versions of first-price auctions. We present a condition on beliefs
about players’ values such that, with any fixed finite set of possible bids and sufficiently
many players, only bidding the bid closest from below to one’s true value survives iterative
deletion of bids that are dominated, where the dominance is evaluated using beliefs that
satisfy the condition. The condition holds in an asymmetric conditionally independent
environment so long as the likelihood of each type is bounded from below. In particular,
with many players, common knowledge of rationality and that all types are possible in
an independent and private values auction implies that players will bid just below their
true value.



1 Introduction

We consider first-price auctions with private values and with many players. It is well
known that in the unique equilibrium of the symmetric model (with independent values)
the bids converge to the true values as the number of bidders is made large and hence
the price converges to the highest value. Our analysis here presents a sense in which this
result is robust to relaxing the solution concept and the assumption that the distribution
of types is common knowledge. We assume that the set of valuations and the set of
allowable bids are finite and show that in large auctions bidders bid (almost) their true
value when it is only common knowledge that players are rational and that the joint
distribution of the values satisfies a certain condition. This condition is satisfied, for
example, if the distribution of the values is conditionally independent and the likelihood
of every value in each state is bounded above zero. Thus, with many bidders (in this
discrete environment), the object goes to the bidder with the highest value (efficiency),
and almost surely the price is (almost) the highest value, even without imposing the
equilibrium assumptions.

Our analysis concerns a special instance of a general issue in auction theory. Since
various results on auctions rely on Nash equilibrium as the solution concept, and in
addition many of these are sensitive to the specific distribution of values, it is important
to investigate the robustness of results to the solution concept and to the assumption
of a commonly known distribution of values. In this vein, it is often shown in second—
price and in ascending auction mechanisms that the Nash equilibria of interest are ex
post equilibria, i.e., the strategies select best replies against the realized outcomes, so
that the results are not sensitive to the distribution of values. However, in first—price
auctions such as we analyze here, the literature considers Nash equilibria that are not
ex post equilibria. Moreover, other than the well—known result that bidding one’s value
is weakly dominant in private—and—independent value second—price auctions, we know of
only two papers in auction theory whose results do not rely on Nash equilibrium.

Chung and Ely (2000) show that in two—person auctions iterated deletion of ex post
weakly dominated strategies selects the efficient equilibrium of a Vickrey-Clark-Groves
auction even when values are interdependent. In a paper very closely related to ours,
Battigalli and Siniscalchi (2000) also study the implications of common knowledge of
rationality (rationalizability) in a first price auction with private independent values.
Unlike our model, they adopt the standard (for auction theory) setup of continuum sets
of bids and values. They show that any positive bid up to some level strictly above the
Nash equilibrium bid is rationalizable. Therefore, in particular, the set of rationalizable
strategies in their model does not approach the competitive equilibrium when the number
of bidders becomes large.1 Thus, their result stands in sharp contrast to ours. We will

1The upper bound does converge to the Nash, hence competitive equilibrium. This follows from the
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discuss further the difference between these results in the concluding section.

A more distantly related literature explores the eductive justification of the competi-
tive Equilibrium. Guesnerie (1992) looks at the set of rationalizable outcomes in a game
in which a continuum of suppliers decide simultaneously on the quantities of a homoge-
nous product that they supply and then the price is determined by an exogenously given
demand function. He shows that when the supply curve is steeper than the demand
curve (in the traditional labeling of price on the vertical axis), then the rationalizable
set contains only the competitive equilibrium. One may think of course of the mirror
image of that model in which the supply curve is fixed and the buyers decide strategically
on their quantities. The corresponding condition in that variation is that the demand
curve is steeper than the supply curve. The auction model is not a special case of that
variation, since it designates prices rather than quantities as the strategic variables. But,
in any case, the condition on the relative slopes does not hold in the auction model, since
the supply curve is inelastic at one unit. Thus, the competitive prediction of Guesnerie’s
model does not apply in the auction model.

We present the model and solution concept in the next section. The results are
stated in proven in the following section. The last section contains the interpretation of
our solution concept and results, and more detail on the relationship of this work to the
literature.

2 The Model

As mentioned, we consider a first-price auction with private values. Each player i ∈
{1, 2, ..., n} is informed of her private value (type), vi, of the object, and then submits
a bid. The object is awarded to the highest bidder who then pays her bid; in the case
of ties, the object is awarded with equal probability to one of the tied highest bidders
(and only the winner pays the winning bid). We assume that values and bids are on a
discrete grid, say V = {0, 1/m, 2/m, ..., 1− 1/m, 1} , and we denote the size of the grid
by d = 1/m.

An ex ante strategy, si ∈ Si, for player i in this environment is then a function from
i’s possible values, V , into the possible bids, V , and a strategy profile s ∈ S is an n—tuple
of such functions. For our purposes it is more useful to think of interim strategies that
specify the bid of a player with a particular value. This bid is thus an element of V , and
an interim strategy profile is then a (m+ 1)× n—tuple specifying what bid each type of
each player chooses. Let ui (v, bi, b−i) denote player i’s expected utility when i is of type

fact that the upper bound cannot be greater than the bidder’s value for the object (see also footnote ??
below and the related discussion in the text), and the Nash equilibrium converges to this value.
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v, i chooses bid bi, and i’s opponents bid b−i. (Recall that since we assume independent
values, i’s payoffs depend only on i’s type.)

We solve the game using iterated deletion of dominated strategies. The version
of dominance allows the players’ beliefs about their opponents’ types not to be common
knowledge, while at the same time some restriction on these beliefs is commonly known.2

Formally, the conditional beliefs of player i of type v over the types of all players is
a probability measure pi (·|vi = v) ∈ ∆ (V n−1), where ∆ (X) is the set of probability
distributions over the set X; restrictions on beliefs are captured by considering only
probabilities in a subset denoted by P ⊂ ∆ (V n−1). We first define the subset of beliefs
to which we restrict attention, and then define the resulting notion of dominance. The
relationship between this notion of dominance and other concepts is discussed in the last
section.

Definition 1 P ⊂ ∆ (V n−1) is the subset of beliefs satisfying the following two condi-
tions:

1. Each player believes with positive probability that he might have the highest valua-
tion:

pi (vj < v ∀j 6= i | vi = v) > 0 ∀v > 0 (1)

and pi (vj = 0 ∀j 6= i | vi = 0) > 0
2. For sufficiently large n, player i type v assigns a “small” probability to the event
that only m or fewer of the bidders have values v as well, conditional on all n having
valuations smaller or equal to v:

There exists N such that, for all n > N , all i and v,

pi (#{j : vj = v} ≤ m | vj ≤ v ∀j, vi = v) < 1

n(m− 1) + 1 (2)

As we show at the end of the next section, if the vi’s are independently distributed
and the probability of vi = 1 is greater than δ > 0, for all i, then pi(#{j : vj = v} ≤ m |
vj ≤ 1 ∀j, vi = 1) is bounded by an expression on the order of nm(1− δ)n. Therefore, in
this case Condition (2) is satisfied since, for large n, nm(1− δ)n < 1

n(m−1)+1 .

2Formally, what we present here is a “situation” rather than a Bayesian game, since we do not specify
commonly-known beliefs. Obviously, we can turn it into a Bayesian game by enriching the sets of possible
types, specifying the priors over them and completing it with the assumption that the expanded model
is common knowledge. For simplicity we do not take this extra step.
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Definition 2 The bid bi is P—dominated for type v of player i by b0i given that opponents’
strategies restricted to S−i ⊂ S−i , {s−i : V n−1 → V n−1} if for all pi (·|vi = v) ∈ P and
all s−i ∈ S−i,X
v−i∈V n−1

pi (v−i|vi = v)ui (v, b0i, s−i (v−i)) >
X

v−i∈V n−1
pi (v−i|vi = v)ui (v, bi, s−i (v−i))

When i’s type and the set to which opponents’ strategies are restricted is obvious we will
simply say that bi is P—dominated by b0i, and if it is dominated by some b

0
i ∈ V we will

just say that it is P—dominated.

3 The Result

Our first result is that the only bid that survives iterated deletion of P—dominated bids
is {v − d}. That is, each bidder bids the highest price that is still below her valuation.
We then prove that beliefs are in P when bidders’ types are drawn from a conditionally
independent and symmetric distribution in which the probability of each type is bounded
away from zero. We conclude by arguing that the symmetry assumption can be dropped.

Proposition 1 There exists N such that, for all n > N , the bid v−d is the only bid for
a player of type v that survives iterated elimination of P—dominated bids.

The intuition for this result is as follows. First, we observe that bidders with positive
valuations will bid strictly below their valuations. This follows from condition (1) and
iterated deletion of bids at or above a bidder’s own value (starting from those with v = 1
and proceeding inductively to those with lower valuations). Second, we observe that, for
sufficiently large n, the bid v−d dominates all lower bids for a type v. Consider the type
v = 1 and assume that it is some bid b < 1− d is the lowest bid that survived iterated
P—dominance for any player with this type. Bidding b is clearly not best if other players
of type v = 1 are around and are bidding more than b. It is also not best if there are
many other players of type v = 1 who are bidding b. It may be best otherwise, that is,
if there are few enough players of type 1 and they all bid b. We show that, for n large
enough, condition 2 implies that the loss in expected payoff from bidding 1− d instead
of b in the otherwise event is smaller than the gain in expected payoff from bidding 1− d
instead of b in the preceding two events.

Proof: We iteratively delete strategies that are dominated, where in each iteration we
consider a situation that remains after the preceding dominated strategies have been
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deleted. For any bidder i, bidding 1 is dominated by bidding 0 for all types vi < 1 since
a bid of 1 may win, and then such a type will end up with a negative payoff.3 Next,
bidding 1 is dominated by bidding 1− d for vi = 1, because bidding 1 yields a payoff of
0 and, by Condition 1 and the previous step, bidding 1 − d can yield a positive payoff.
Now bidding 1 − d is dominated by bidding zero for all types vi < 1 − d, and therefore
bidding 1− d is dominated by bidding 1− 2d for vi = 1− d. Iterating we conclude that
it is dominated for any type vi of any bidder i to bid more than vi − d, except type zero
who bids zero. Notice that the foregoing argument uses (informally) only the assumption
that Condition (1) is common knowledge.

Let bn be the lowest bid that survives iterated deletion of P—dominated bids, for any
bidder with type v = 1, when there are n bidders. We now argue that for n large enough
bn = 1− d. Assume to the contrary that bn < 1− d. We show that, for large n, the bid
1− d P—dominates bn, for each bidder, in contradiction to the definition of bn.

Consider some bidder i, a distribution pi(v−i|vi = v) ∈ P , and a collection of strate-
gies s−i : V n−1 → V n−1 that survive iterated elimination of P—dominated bids, (more
precisely, strategies such that if v−i = s−i (v̂−i) then every element of v−i survived the
iterated deletion procedure). In particular, for v−i in which vj = 1 for some j, the jth el-
ement of s−i (v−i) contains only bids greater than or equal to bn. For these pi(v−i|vi = v)
and s−i’s, let q (k|`) denote the probability that k bidders other than i with values v = 1
bid bn, conditional on there being ` ≥ k bidders other than i of type v = 1. The profit
to bidder i with vi = 1 from bidding 1− d is at least

L , d×
³
pi (vj < 1,∀j 6= i | vi = 1) (3)

+
n−1X
`=1

pi (#{j 6= i s.t. vj = 1} = ` | vi = 1)
X̀
k=0

q (k|`) 1

`− k + 1
´

This is the benefit from winning with bid 1−d times a lower bound on the probability of
winning with this bid. The probability of winning (conditional on vi = 1) is at least the
probability of everyone else having value v < 1 plus a lower bound on the probability of
winning in the event that there are some players with type v = 1. The latter bound is a
sum of probabilities of there being ` players with type v = 1 times the probability q (k|`)
that k of those players bid bn times the probability of winning if the remaining `− k are
also bidding 1−d. This is a lower bound since some of those `−k players who bid above
bn may still bid below 1− d.

3Bidding more than v is not necessarily dominated since one can believe that all types are bidding
even more, so that one gets a payoff of zero in any case.
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The profit from bidding bn is at most

U , (1− bn)×
³
pi (vj < 1,∀j 6= i | vi = 1) (4)

+
n−1X
`=1

pi (#{j 6= i s.t. vj = 1} = ` | vi = 1) q (`|`) 1

`+ 1

´
Again this is the benefit of winning times an upper bound on the probability of winning.
The probability of winning is at most the probability that everyone else has value v < 1
plus the probability of there being ` players with type v = 1 times the probability q (`|`)
that all those players bid bn, divided by `+ 1 and summed over all possible values of `.
This is an upper bound because even when everyone has value v < 1, they may bid more
than bn.

We want to argue that L > U for large n. To this end, we partition the summations
in (3) and (4) into `’s that are no more than m, and those that are greater than m, and
weaken the bounds further. First, since q (`|`) 1

`+1
≤P`

k=0 q (k|`) 1
`−k+1 , we have

d×
³
pi (vj < 1,∀j 6= i | vi = 1)

+
mX
`=1

pi (# {j 6= i s.t. vj = 1} = ` | vi = 1)
X̀
k=0

q (k|`) 1

`− k + 1)
´
≥

d×
³
pi (vj < 1,∀j 6= i | vi = 1) (5)

+
mX
`=1

pi (# {j 6= i s.t. vj = 1} = ` | vi = 1) q (`|`) 1

`+ 1

´
, L1

Second, since q (`|`) + (1− q (`|`)) 1
`+1
≤P`

k=0 q (k|`) 1
`−k+1

d

Ã
n−1X

`=m+1

pi (#{j 6= i s.t. vj = 1} = ` | vi = 1)
X̀
k=0

q (k|`) 1

`− k + 1

!
≥

d

Ã
n−1X

`=m+1

pi (#{j 6= i s.t. vj = 1} = ` | vi = 1)
µ
q (`|`) + (1− q (`|`)) 1

`+ 1

¶!
, L2

Define

U1 , (1− bn)×
³
pi (vj < 1,∀j 6= i | vi = 1) (6)

+
mX
`=1

pi (#{j 6= i s.t. vj = 1} = ` | vi = 1)
´
q (`|`) 1

`+ 1
)
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and

U2 , (1− bn)×
Ã

n−1X
`=m+1

pi (#{j 6= i and vj = 1} = ` | vi = 1) q (`|`) 1

`+ 1

!
Clearly L− U ≥ (L1 − U1) + (L2 − U2). Observe from (5) and (6) that

L1 − U1 = (−1 + bn + d)×
³
pi (vj < 1,∀j 6= i | vi = 1)

+
mX
`=1

pi (#{j 6= i s.t. vj = 1} = ` | vi = 1)
´
q (`|`) 1

`+ 1

≥ − (1− d)× pi (#{j 6= i s.t. vj = 1} ≤ m | vi = 1) (7)

Since bn < 1−d we have L1−U1 < 0. On the other hand, we now show that L2−U2 > 0.

L2 − U2 =
n−1X

`=m+1

pi (#{j 6= i s.t. vj = 1} = ` | vi = 1)

×
µ
d

µ
q (`|`) + 1− q (`|`)

`+ 1

¶
− (1− bn) q (`|`)

`+ 1

¶
=

n−1X
`=m+1

pi (#{j 6= i s.t. vj = 1} = ` | vi = 1) 1

`+ 1

µ
d+ `q (`|`)

µ
d− 1− bn

`

¶¶
Since ` > m, we have d − 1−bn

`
> 0. Therefore, L2 − U2 > 0 and L2 − U2 is minimized

when q (`|`) = 0. Since ` < n, we also have

L2 − U2 > d

n
(1− pi (#{j 6= i s.t. vj = 1} ≤ m | vi = 1)) > 0. (8)

We want to show that, if bn < 1−d, then bidder i with vi = 1 would prefer bidding 1−d
to bn, i.e., that L2 − U2 > −(L1 − U1). From Condition (2)

pi (#{j 6= i s.t. vj = 1} ≤ m | vi = 1) < 1

n(m− 1) + 1 ,

and since (1− d) = (m− 1)d, it follows from (7) and (8) that L2 − U2 > −(L1 − U1).

We have therefore shown that, for n large enough, the following holds. For any i,
any pi(v−i|vi = v) ∈ P and any strategies s−i which only prescribe bids that survived
iterated elimination of P—dominated bids, we haveX
v−i∈V n−1

pi (v−i|vi = 1)ui (1, bn, s−i (v−i)) <
X

v−i∈V n−1
pi (v−i|vi = v)ui (1, 1− d, s−i (v−i))
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That is, the bid 1−d P—dominates bn contrary to the supposition. Therefore, for n large
enough, the minimal bid that survives the iterated elimination procedure for any bidder
with v = 1 is 1− d.

Consider next type v = 1− d. Since for this type, only bids less than 1− d survive
iterated elimination, this type only wins if no players are of type v = 1, so their bidding
behavior can be analyzed conditional on there being no players of type v = 1. But then
the analysis above implies that, for n large enough, the only bid that survives iterated
deletion of P—dominated bids is v − 2d. Continuing in this way shows that iterated
deletion yields the outcome described in the proposition. ¥

We now describe a familiar environment in which the beliefs belong to the set P
defined in Definition 1. Consider the above auction environment with the following special
features: the bidders are symmetric; the bidders’ types are conditionally independent;
and the probability of each type in each state is bounded away from zero. The following
proposition establishes that the beliefs in the Bayesian game model that describes this
case belong to the set P.

Proposition 2 Suppose that there are k states of nature θ1, ..., θk occurring with proba-
bilities σ1, ...,σk and that conditional on θi the valuations of the bidders are i.i.d. random
variables such that Pr(vi = v | θj) ≥ δ > 0 for all v, i and j. The beliefs in the Bayesian
game that describes this case satisfy Conditions (1) and (2).

Proof: Let γj = Pr(vi = 1 | θj) and observe that in this case
pi (#{j 6= i s.t. vj = 1} ≤ m | vi = 1) =
kX
j=1

Pr(θj | vi = 1)
Ã¡
1− γj

¢n−1
+

mX
`=1

µ
n− 1
`

¶¡
1− γj

¢n−1−`
γ`j

!
=

kX
j=1

γjσj

γ1σ1 + ...+ γkσk

Ã¡
1− γj

¢n−1
+

mX
`=1

µ
n− 1
`

¶¡
1− γj

¢n−1−`
γ`j

!
(9)

Each one of the bracketed terms is bounded as follows¡
1− γj

¢n−1
+

mX
`=1

µ
n− 1
`

¶¡
1− γj

¢n−1−`
γ`j

< (m+ 1)nm
¡
1− γj

¢n−m ≤ (m+ 1)nm (1− δ)n−m (10)

Observe that, for sufficiently large n,

(m+ 1)nm (1− δ)n−m <
1

n(m− 1) + 1 (11)
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This can be verified by multiplying both sides by n(m − 1) + 1, writing (1− δ)n−m as
(1/ (1− δ))n−m and applying L’Hopital rule repeatedly m+1 times to this expression to
conclude that the left-hand-side after multiplication converges to zero as n grows.

Now (9), (10) and (11) together imply that there is a level N such that, for all n > N ,

pi (#{j 6= i s.t. vj = 1} ≤ m | vi = 1) < 1

n(m− 1) + 1
Essentially the same argument is used to establish

pi (#{j : vj = v} ≤ m | vj ≤ v ∀j, vi = v) < 1

n(m− 1) + 1
for any v. It follows that, in the symmetric model, if the pi’s are conditionally independent
with full support in the sense described above, then pi ∈ P . ¥

Observation: Obviously, the symmetry does not play an important role in the preceding
discussion. It is easy to see that an asymmetric model of conditional independence that
still requires Pr(vi = v | sj) , γj,i ≥ δ > 0 for all v, i and j, would generate the

same result. The only difference is that in equations (9)-(11) expressions like
¡
1− γj

¢h
and γhj will be replaced by products like

¡
1− γj,i1

¢ × ¡1− γj,i2
¢ × ... × ¡1− γj,ih

¢
and

γj,i1 × γj,i2 × ...× γj,ih.

Thus, the assumption of our general model that it is commonly known that the
bidders’ beliefs belong to the set P , holds in a situation in which it is commonly known
that the underlying structure satisfies conditional independence and the δ—full—support
requirement.

4 Discussion

4.1 The Solution Concept

The solution concept employed above is iterated deletion of P—dominated strategies. In
the following discussion we relate this concept to other notions of dominance in games
of incomplete information. We also relate this to Battigalli’s notions of rationalizability
in such games, and use this to argue that common knowledge of rationality and of the
fact that the beliefs belong to P imply that only bids that survive iterated deletion of
P—dominated will be used.
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Clearly the definition of P—domination applies for any restriction on beliefs, not only
to the particular set P we defined. To present the general version of this definition,
consider a game of incomplete information with player set I, type spaces Ti for each player
i, action spaces Ai for (each type ti of) each player i, and utility functions, ui : A×T → <.
As usual t ∈ T and t ∈ T−i are, respectively, profiles of types for all players and for
players than i;and the same notation is used for a ∈ A and a−i ∈ A−i. As before let
S−i ⊂ S−i , {s−i : T−i → A−i} be a subset of strategies for i’s opponents, denote mixed
actions for i by αi ∈ ∆ (Ai), and let Pi ∈ ∆ (T−i) be a subset of i’s possible beliefs.
(As is standard we extend the utility function to mixed strategies using linearity, writing
ui (αi, a−i, t) for ı́’s expected utility from playing αi against a−i when types are t.) The
definition below extends our earlier definition to general games with any, not necessarily
symmetric, restriction on i’s beliefs.

Definition 3 The action ai is Pi—dominated for ti by αi, given that opponents’ strategies
are restricted to S−i, if for all pi (·|ti = t̄i) ∈ Pi and all s−i ∈ S−i,X

t−i∈T−i
pi (t−i|ti = t̄i)ui (αi, s−i (t−i) , t) >

X
t−i∈T−i

pi (t−i|ti = t̄i)ui (ai, s−i (t−i) , t)

In this general definition the domination can be by mixed actions, whereas Definition
2 in Section 2 admits only domination by pure actions. While domination via mixed
actions is clearly the appropriate concept, the weaker notion of Definition 2 is both
somewhat simpler and sufficient for our main result.

Remark 1 If Pi is a singleton, say pi, then ai is Pi—dominated if and only if it is interim
dominated. At the other extreme, if T−i ⊂ Pi (where we abuse notation by writing
t−i for the measure in ∆ (T−i) that assigns probability one to the point t−i) then ai is
Pi—dominated if and only if ai is ex post dominated.4 (This follows from the immediate
observation that ai is Pi—dominated if and only if it is co (Pi)—dominated, where co (Pi)
denotes the convex hull of Pi.) Thus, Pi—dominance is intermediate between ex post dom-
inance and interim dominance. Moreover, using the interpretation discussed below, it
also follows that iterated deletion of ex post dominated strategies corresponds to common
knowledge of rationality (with no restrictions whatsoever on beliefs). This is the obvious
analog to the characterization of iterated deletion of interim dominated strategies in a
game of incomplete information with given beliefs pi as common knowledge of rationality
and of the game, hence of those beliefs.

4As mentioned, Chung and Ely (2000) analyze iterated deletion of strategies that are weakly ex post
dominated in an auction context.
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Remark 2 A game with private values is such that ui (ai, s−i (t−i) , t) depends directly
only on ti rather than the entire vector of types t. In games with private values, if
S−i = S−i, so that all possible opponents’ strategies are allowed, then the set of Pi—
dominated strategies is the same for all Pi. In particular, the set of (un)dominated
strategies is the same for ex post and interim dominance. However, in subsequent rounds
of iterated deletion S−i ( S−i, and this independence of Pi is no longer true in general.

To see this consider the private-values game below, in which the column player has two
types. After deleting dominated strategies for the column player, the action U is P—
dominated if and only if all p ∈ P assign the left type of the column player probability
less than 2/3.5

L R L R
U 3, 1 0, 0 U 3, 0 0, 1
M 0, 1 3, 0 M 0, 0 3, 1
D 2, 1 2, 0 D 2, 0 2, 1

Remark 3 A form of correlation, or communication, is implicit in the definition above.
It allows the strategy of player j to depend on the type of player k. If one requires that
S−i =

Q
j 6=i Sj, so that such correlation is prohibited, then, in general, more strategies are

dominated (since they need be worse against a smaller set–those that are not correlated
in this manner–of opponents’ strategies). Nevertheless, there are two conditions under
which it is irrelevant whether or not one allows for this form of correlation. If we consider
ex post dominance (T−i ⊂ Pi) then it is clearly irrelevant. It is slightly less obvious and
more interesting to observe that this restriction is also irrelevant in games with private
values; we did not impose this restriction above as it would not simplify the proof or
notation.

To see why this restriction is irrelevant in private-values games, argue by contradic-
tion. Assume that ai is Pi—dominated by αi when this correlation is prohibited, so thatP

t−i∈T−i pi (t−i|ti = t̄i)ui (αi, s−i (t−i) , ti)>
P

t−i∈T−i pi (t−i|ti = t̄i)ui (ai, s−i (t−i) , ti) for
all s−i ⊂

Q
j 6=i Sj and all pi ∈ Pi, and that ai is not Pi—dominated by αi when this correla-

tion is permitted, so that
P

t−i∈T−i p∗i (t−i | ti = t̄i) ui
¡
αi, s

∗
−i (t−i) , ti

¢ ≤P
t−i∈T−i p

∗
i (t−i|ti = t̄i)ui

¡
ai, s

∗
−i (t−i) , ti

¢
for some s∗−i : T−i → A−i, s∗−i /∈

Q
j 6=i Sj, and

some p∗i ∈ Pi. Therefore, ui
¡
αi, s

∗
−i
¡
t∗−i
¢
, ti
¢ ≤ ui ¡ai, s∗−i ¡t∗−i¢ , ti¢ for some t∗−i, so for

s−i = s∗−i (t
∗
i ) ∈

Q
j 6=i Sj the first inequality is not satisfied.

Remark 4 While we define our solution concept in terms of dominated strategies, we
5If we interpret the two games as different types of the row player then this is like the example used

by Fudenberg and Tirole (1991, p. 229) to demonstrate the relationship between ex ante and interim
dominance: UM is ex ante dominated but not interim dominated for the belief that assigns equal
probability to both types of the row player.
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could equivalently define it in terms of iterative deletion of strategies that are never best
replies to any beliefs about opponents and any beliefs satisfying condition P . Formally,
the action ai is never a Pi—best reply for t̄i, given that opponents’ strategies are restricted
to S−i, if for all pi (·|ti = t̄i) ∈ Pi and all σ−i ∈ ∆ (S−i) there exists a0i (pi,σ−i) s.t.X
t−i∈T−i

pi (t−i|ti = t̄i)
X
a∈Ai

ui (a
0
i,σ−i (t−i) , t) >

X
t−i∈T−i

pi (t−i|ti = t̄i)ui (ai,σ−i (t−i) , t)

If Pi is convex then ai is never a Pi—best reply for t̄i if and only if it is Pi—dominated
for ti. To see this consider the agent game where each type is a player, and Nature
is a player choosing which “type” will get to play. The equivalence then follows from
the usual arguments [see Pearce (1984, Lemma 3), van Damme (1987, Lemma 3.2.1) or
Myerson (1991, Theorem 1.6)] so long as Pi is convex. Note that when Pi is not convex,
never best replies may be undominated. (Consider the game in Remark 2, but with
Prow containing the two extreme beliefs that the column player is either the left type
or the right type for sure. In this situation D is undominated but it is never a best
reply–either U or M is better, depending on the belief in Prow.)

Using the above equivalence it is easy to see that our solution concept is the same as (a
static, correlated, n—person version of) Battigalli’s (1999) notion of weak (and strong)
∆—rationalizability (where ∆ is the counterpart of our Pi). Battigalli argues that the
∆—rationalizable set is the set implied by common knowledge of rationality and of the
beliefs satisfying ∆. This then means that the actions surviving iterated deletion of Pi—
dominated strategies are those corresponding to common knowledge of rationality and of
the beliefs being contained in P .

Recall from Remark 1 above that Pi—dominance is intermediate between ex post dom-
inance and interim dominance. In particular, it follows that iterated deletion of ex
post dominated strategies corresponds to common knowledge of rationality (with no re-
strictions whatsoever on beliefs), since from Remark 1 ex post dominance is equivalent
to Pi—dominance with unrestricted Pi sets. This is the obvious analog to the charac-
terization of iterated deletion of interim dominated strategies in a game of incomplete
information with given beliefs pi as common knowledge of rationality and of the game.

We can now rephrase the main result in terms of this interpretation.

Corollary 1 For sufficiently large n only the strategy profile of bidding just below one’s
value is consistent with common knowledge of rationality and that beliefs are in P .

12



4.2 Finiteness

A key assumption for our results is the finiteness of the set of possible bids. To understand
the role of finiteness, consider the case where bids must be in B = {1/i : i = 1, 2, ...}, and
let the values be distributed uniformly on the unit interval. In this case it is easy to see
that for any m large enough, the bid 1/m survives iterated deletion of P—dominated bids
for all types with v > 1/ (m− 1). (The bid 1/m is a best reply to the strategy profile in
which everyone with v > 1/m bids 1/ (m+ 1), and so on, so survives iterative deletion.)
As another example, observe that in the symmetric model with independent values and a
continuum of types, v̄ bidding half the Nash equilibrium bid is not iteratively dominated.
(This strategy is a best reply to types below v̄ bidding half their Nash equilibrium bids,
and those above bidding their Nash equilibrium bids, so will never be deleted.)

Battigalli and Siniscalchi (2000) analyze the case where the bids and values are not
on a grid (thus are any number in [0, 1]) and allow for any n (not necessarily large). As
follows from the above examples, they show that any small positive bid is rationalizable.
They also go beyond this intuition and show that the rationalizable set includes any bid
between 0 and some bid that is strictly greater than the Nash equilibrium bid, and they
provide methods for calculating the upper bound precisely.

Thus, the finiteness of the possible bids is crucial. However, the finiteness of the
type space does not seem crucial. It seems obvious, though we have not verified all
the details, that our analysis carries through also when only the bids are restricted to a
finite grid, and it is commonly known that the values are distributed according to some
distribution function with density at least δ on [0,1]. The result would then be that for
any m, η ∈ (0, 1/m), and δ > 0 there exists N(m, η, δ)such that for any n > N(m, η, δ)
only the bid k/m will survive iterated deletion of P—dominated strategies for any type
v ∈ [k/m+ η, (k + 1)/m].
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