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Abstract

We formulate the problem of deciding which preference domains admit a non-dictatorial
Arrovian Social Welfare Function as one of verifying the feasibility of an integer linear
program. Many of the known results about the presence or absence of Arrovian Social
Welfare Functions, and properties of majority rules, can be derived in a simple and unified
way from this integer program. We provide a complete polyhedral description of Arrovian
Social Welfare Functions on single-peaked domains. Finally, we extend the method to
study Arrovian Social Choice functions.
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1 Introduction

The Old Testament likens the generations of men to the leaves of a tree. It is a simile that
applies as aptly to the literature inspired by Arrow’s impossibility theorem [2]. Much of
it is devoted to classifying those preference domains that admit or exclude the existence of
a non-dictatorial Arrovian Social Welfare Function (ASWF).! We add another leaf to that
tree. Here we formulate the problem of deciding whether a preference domain admits a non-
dictatorial ASWF as an integer program. This formulation allows us to derive in a systematic
way many of the known results about Arrovian domains.

The integer program derived here is inspired by a characterization of Arrovian domains
due to Kalai and Muller [7]. We reformulate it as an integer program. So as to describe the
result we introduce some notation.

Let A denote the set of alternatives (at least three). Let X denote the set of all transitive,
antisymmetric and total binary relations on A. An element of ¥ is a preference ordering.
Notice that this set up excludes indifference. The set of admissible preference orderings
for members of a society of n-agents will be a subset of ¥ and denoted Q. Let Q" be the
set of all n-tuples of preferences from 2. An element of Q" will typically be denoted as
P = (p1,p2,...,Pn), Where p; is interpreted as the preference ordering of agent 7. In the
language of Le Breton and Weymark [14] we assume the common preference domain
framework.

An n-person Social Welfare Function is a function f : Q" — X. Thus for any P € Q",
f(P) is an ordering of the alternatives. We write z f(P)y if z is ranked above y under f(P).
An n-person Arrovian Social Welfare Function (ASWF) on Q is a function f : Q" — ¥
that satisfies the following two conditions:

1. Unanimity: If for P € Q" and some z,y € A we have zp;y for all 7 then zf(P)y.

2. Independence of Irrelevant Alternatives: For any z,y € A suppose JP,Q € Q"
such that zp;y if an only if zq;y for i = 1,...,n. Then zf(P)y if and only if zf(Q)y.

An ordered pair z,y € A is called trivial if zpy for all p € Q. In view of unanimity, any
ASWF must have zf(P)y for all P € Q™ whenever z,y is a trivial pair. If Q consists only
of trivial pairs then distinguishing between dictatorial and non-dictatorial ASWF becomes
nonsensical, so we assume that {2 contains at least one non-trivial pair. An ASWF is dicta-
torial if there is an 7 such that f(P) = p; for all P € Q". Call Q Arrovian if it admits a
non-dictatorial ASWF.

Kalai and Muller [7] derive a set of necessary and sufficient conditions on Q for the
existence of a non-dictatorial 2-person ASWF. They also prove that € admits an n-person
non-dictatorial ASWF if and only if it admits a 2-person non-dictatorial ASWF. Thus, to
decide if €2 is Arrovian it suffices to determine if a 2-person non-dictatorial ASWF exists.

The main contributions of this paper are summarized below.

!An ASWF is a social welfare function that satisfies the axioms of the Impossibility theorem.



e Our first result is an integer linear programming formulation of the problem of finding a
n-person ASWF. For each (2 we construct a set of linear inequalities with the property
that every feasible 0-1 solution corresponds to a n-person ASWF. For certain classes
of  (e.g., Q is single-peaked), the polytope defined by the set of linear inequalities
is integral: the vertices of the polytope correspond to ASWEF’s and every ASWF
corresponds to a vertex of the polytope.

e We use this formulation to derive a result of Kalai and Muller [7]: € admits an n-person
non-dictatorial ASWF if and only if it admits a 2-person non-dictatorial ASWF. This
allows us to derive a succinct linear integer program to decide if £ is Arrovian. For the
case when |A| = 3,4 we derive the convex hull of integer solutions.

e The characterization of ASWF via integer program allows us to derive several structural
results on majority rules in a simple manner. The same approach can also be used to
study Arrovian Social Choice Function.

e The inequalities in the formulation can be divided into two groups: easy and hard. The
easy ones have the property that they define a polyhedron whose extreme points are
0-1. Hence if the easy constraints were the only ones that mattered, the feasibility of
the integer program would coincide with feasibility of its linear relaxation. The second
set of constraints, the hard ones, introduce fractional extreme points to the underlying
linear relaxation. This makes a characterization of the feasible 0-1 solutions of the set
of inequalities difficult. Nevertheless, for many different subsets Q of ¥ we are able to
show that the hard constraints are redundant. Under this condition one can establish
that 2 is Arrovian if and only if the corresponding set of linear inequalities admits
0-1 solutions different from the all zero’s and all one’s solution. The extreme points of
the inequality set characterize all ASWF’s on this domain. The easy constraints are
capable of a graph theoretic interpretation which allows one to formulate a theorem of
the following kind: If a certain directed graph, depending on (2, is strongly connected,
then {2 is non-arrovian. Arrow’s theorem, amongst others, is a consequence of this

result.

2 The Integer Program

Denote the set of all ordered pairs of alternatives by A2. Let E denote the set of all agents,
and S¢ denote E\ S for all S C E.

To construct an n-person ASWF we exploit the independence of irrelevant alternatives
condition. This allows us to specify an ASWF in terms of which ordered pair of alternatives
a particular subset, S, of agents is decisive over.

Definition 1 For a particular ASWF, a subset S of agents is weakly decisive for z over
y if whenever all agents in S rank x above y and all agents in S¢ rank y over z, the ASWF
ranks x over y.



Since this is the only notion of decisiveness used in the paper, we omit the qualifier ‘weak’
in what follows.

2.1 n-person ASWF’s

For each non-trivial element (z,y) € A2, we define a 0-1 variable as follows:

1 if the subset S of agents is decisive for z over y,

ds(z,y) = { 0 otherwise.
If (z,y) € A% is a trivial pair then by default we set ds(z,y) = 1 for all S # @; also, for
notational purposes we assume that dg(z,y) = 0 for all (z,y) € A2

For an ASWF f, we can determine whether dg(z,y) = 1 or 0 by observing the output
f(P) of a suitably chosen P € Q™ in which agents in S rank z over y, and agents in S rank y
over z. In the rest of this section, we study the properties that these functions should satisfy.

Unanimity: To ensure unanimity,

de(z,y) =1 for all z,y. (1)

Independence of Irrelevant Alternatives: Consider a pair of alternatives (z,y) € A2, a
P € Q" and a subset S of agents such that all agents in S prefer z to y, and all agents in
S¢ prefer y to z. Suppose zf(P)y. Let Q be any other profile such that all agents in S rank
z over y and all agents in S° rank y over z. By the independence of irrelevant alternatives
condition zf(Q)y. Hence the set S is decisive for = over y. However, had yf(P)z a similar
argument would imply that S¢ is decisive for y over z. Hence for all S and (z,y) € A2, we
must have

dS(xvy) + dsc(y,ZL‘) = 1. (2)

Transitivity: To motivate the next class of constraints, it is useful to consider majority rule.
If the number n of agents is odd, majority rule can be described using the following variables:

ds(x,y):{ (1) if |S| > n/2,

otherwise.
Notice that this solution satisfies both (1) and (2). However, if Q admits a Condorcet triple
(e-g., P1,P2,P3 € 2 with zp1yp1 2, yp22p2z, and zp3zpay), then such a rule does not always
produce an ordering of the alternatives for each preference profile. Our next constraint is
designed to rule out this and similar possibilities.

Let A, B,C, U, V,and W be (possibly empty) disjoint sets of agents whose union includes
all agents. For each such partition of the agents, and any triple z,v, z,

davvuv (Z,y) + deuvuw (Y, 2) + deuvuw (2, z) < 2, (3)



where the sets satisfy the following conditions (hereafter referred to as condition (*)):

A # 0 only if there exists p € Q, zpzpy,
B # 0 only if there exists p € Q,ypzpz,
C # 0 only if there exists p € Q, zpypz,
U # 0 only if there exists p € 0, rpypz,
V # @ only if there exists p € 2, zpzpy,
W # 0 only if there exists p € Q, ypzpz.
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Figure 1: The sets and the associated orderings

It is easy to show that every ASWF satisfies (3). Suppose the contrary, and there is an
ASWF f such that the corresponding d variables violate constraint (3). Then there exists
(possibly empty) disjoint sets A, B, C, U, V and W, and triple z,v, 2, such that

dAUUUV(fL'»y) = dBuUuW(y, Z) = dCuVUW(Z#L') =1,

with the sets A, B, C, U, V, and W satisfying condition (*). Note that in such a case, each
of the three sets AUU UV, BUUUW, and CUV UW must be non-empty.

We now construct a profile P as follows: agents in A rank z over z over y; similarly,
agents in B rank y over x over z, agents in C rank z over y over z, agents in U rank z over y
over z, agents in V rank z over x over y, and finally agents in W rank y over z over z. The
agents in AUU UV | which is guaranteed to be non-empty, rank = over y and are decisive for
z over y. Hence zf(P)y. The agents in BUU U W, also guaranteed to be non-empty, rank y
over z, and are decisive for y over z; hence yf(P)z. By considering the agents in CUV UW,
we conclude, using an identical argument, that zf(P)z. This contradicts the assertion that
f is an ASWF.

A consequence of (3) combined with (2) that will be useful is that

davvuv (z,y) + dpuvuw (v, 2) + dewvow (2, ) > 1.



To see this, interchange the role of z and z in (3). Then the roles of A and V' (resp. B and
W, C and U) can be interchanged to obtain the new inequality:

daucuv (2,y) + dpucuw (¥, ) + dauBuu(z, 2) < 2.

Using (2), we obtain

dpuuuw (y, Z) + dAuUUV(m,y) + dCUVUW(Z, fE) > 1.

Subsequently we prove that constraints (1-3) are both necessary and sufficient for the
characterization of n-person ASWF’s. Before that, it is useful to develop a better under-
standing of constraints (3), and their relationship to the constraints identified in [7], called
decisiveness implications, described below,

Suppose there are p,q € 2 and three alternatives z,y and z such that zpypz and yqzqz.
Kalai and Muller [7] showed that

ds(z,y) =1=ds(z,2) =1,

and
ds(z,z) =1=ds(y,z) = 1.

These conditions can be formulated as the following two inequalities:

ds(z,y) < ds(z, 2), (4)
ds(z,z) < ds(y, ). (5)

The first condition follows from using the profile P in which agents in S rank z over y
over z and agents in S° rank y over z over z. If § is decisive for = over y, then xf(P)y.
By unanimity, yf(P)z. By transitivity, zf(P)z. Hence S is also decisive for = over z. The
second condition follows from a similar argument.

Claim 1 Constraints (4, 5) are special cases of constraints (3).

Proof. Let
U—S WS

in constraint (3), with the other sets being empty. Note that U and W can be assumed to
be non-empty by condition (*). Constraint (3) reduces to

dy(z,y) + duuw (y, 2) + dw(z,z) < 2.
Since U UW = F, the above reduces to

0 <ds(z,y) +dse(z,2) <1,



which implies ds(z,y) < ds(z, z) by (2). By interchanging the roles of S and S¢, we obtain
the inequality dgc(x,y) < dge(x, z), which is equivalent to dg(z,z) < ds(y, z). [

Suppose we know only that there is a p € Q with zpypz. In this instance, transitivity

requires:
ds(z,y) =1 and dg(y,2) =1 = dg(z,2) =1,

and
ds(z,z) = 1 = at least one of ds(y,z) =1or ds(z,y) =1.

These can be formulated as the following two inequalities:

ds(z,y) +ds(y,z) < 1+ds(.’l),z), (6)
ds(z,y)—l—ds(y,a:) > ds(z,x). (7)

Similarly, we have:
Claim 2 Constraints (6, 7) are special cases of constraints (3).

Proof. Suppose 3 q € 2 with zqyqz. If there exists p € Q with ypzpz or zpzpy, then
constraints (6, 7) are implied by constraints (4, 5), which in turn are special cases of constraint
(3). So we may assume that there does not exist p €  with ypzpz or zpzpy. If there does
not exist p € §2 with zpypz, then z, z is a trivial pair, and constraints (6, 7) are redundant.
So we may assume that such a p exists, hence C can be chosen to be non-empty. Let

U—SCS5°
in constraint (3), with the other sets being empty. Constraint (3) reduces to
dU(‘T’ y) + dU(ya Z) + dC(Zv 33) < 21

which is just
ds(z,y) + ds(y, 2) + dse(2,2) < 2.
Thus constraint (6) follows as a special case of constraint (3). By reversing the roles of S and

S¢ again, we can show similarly that constraint (7) follows as a special case of constraint (3). m

In fact, for n = 2, it can be shown that constraints (1-3) reduce to constraints (1, 2, 4-7).

Theorem 1 Every feasible integer solution to (1)-(3) corresponds to an ASWF and vice-

versa.

Proof. Given an ASWF, we have shown that the corresponding d vector satisfies (1)-(3).
Now pick any feasible solution to (1)-(3) and call it d. To prove that d gives rise to an
ASWF, we show that for every profile of preferences from (2, d generates an ordering of the



alternatives. Unanimity and Independence of Irrelevant Alternatives follow automatically
from the way the dg variables are used to construct the ordering.

Suppose d does not produce an ordering of the alternatives. Then, for some profile P € Q7,
there are three alternatives z, y and z such that d ranks z above y, y above z and z above
z. For this to happen there must be three non-empty sets H, I, and J such that

du(z,y) =1, di(y,z) =1, dj(z,2) =1,

and for the profile P, agent 4 ranks x over y (resp. y over z, z over z) if and only if i is in H
(resp. I, J). Note that H U I U J is the set of all agents, and HNINJ = 0. Let

A—H\({IUJ),B—I\(HUJ),C~— J\(HUI),

U—~HNILLV—HnOJW«InJ

Now A (resp. B, C, U, V, W) can only be non-empty if there exists p in Q with zpzpy

(resp. ypzp2, 2PYPT, TPYPZ, ZPTPY, YPZPI).
In this case constraint (3) is violated since

davvuv (2, y) + dpuvuw (Y, 2) + decuvuw (2, 7) = di(z,y) + di(y, 2) + dy(z,z) = 3.
|
A dictatorial ASWF, with agent j as dictator, corresponds to a solution of the system
where ds(z,y) = 1 for all (z,y) € A? whenever S 3 j. It is easy to see that such an ASWF
satisfles (1)-(3). To illustrate how (1)-(3) can be used to verify if a rule is an ASWF, we

consider the born loser rule. For each j, we can define the born loser rule with respect to j
(denoted by B;) in the following way:

o dgj (z,y) = 1 for every z,y € A2,
. dgj(x,y) =1 for every z,y € A2,

e For every non-trivial pair (z,y), and for any S # 0, E, dgj (z,y) =0if S > 7, dgj (z,y) =
1 otherwise.

Corollary 1 For all z,y, z, if there do not exist p1,pz2,Pp3 in  with
IP12P1Y, TP2yP22, Z2P3TP3y,
then Bj is a non-dictatorial n-person ASWF for every j and n > 2.

Proof. It is clear that by definition, d% satisfies (1, 2). To see that it satisfies (3), observe
that in every partition of the agents, one of the sets obtained must contain j. Say 7 € AUUUV.
If dﬁﬁUUv(az,y) = 0, then (3) is clearly valid. So we may assume that dﬁfJUUv(x,y) =1
This happens only when AUU UV = E (or if (z,y) is trivial, which in turns imply that all



the other sets are empty). We may assume U,V #  and j € A, otherwise (3) is clearly valid.
But according to condition (*), this implies existence of p1, p2, p3 in Q with

IP1zP1yY, TP2YP22, ZPsTP3y,

which is a contradiction.
So, d% satisfies (1-3) and hence corresponds to an ASWF. When n > 2, B; is clearly
non-dictatorial. [ |

2.2 Single-peaked preferences for the n-person case

The class of single-peaked preferences has received a great deal of attention. The domain
is single-peaked with respect to a linear ordering q over A if 2 C {p € £ : for every triple
(z,y,2) if zqyqz then it is not the case that zpy and zpy}.

The 0-1 solutions to the IP (1-3) correspond to Arrovian Social Welfare functions. We
prove that for single-peaked domains, the constraints (1-3) are sufficient to characterize the
convex hull of the 0-1 solutions.

Theorem 2 When ) is single-peaked the set of non-negative solutions satisfying (1-3) is an
integral polytope. All ASWF’s are extreme point solutions of this polytope.

Proof. To see this, we prove that every fractional solution satisfying (1-3) can be written
as a convex combination of 0-1 solutions satisfying the same set of constraints. Let q be the
linear ordering with respect to which  is single-peaked.

Rounding Scheme:
Let ds(-) be a (possibly) fractional solution to the LP. We round the solution d to the 0-1

solution d’ in the following way:

o Generate a random number Z uniformly between 0 and 1.
e For a,b € A with aqb, and S C E, then

— ds(a,b) =1, if ds(a,b) > Z, 0 otherwise;
— dg(b,a) =1, if dg(b,a) > 1 — Z, 0 otherwise.

The integral solution obtained is feasible:

The 0-1 solution d generated in the above manner clearly satisfies constraints (1). To see
that it also satisfies constraint (2), fo r any a, b, we need to show that d’-(a,b) + d/. (b,a) = 1,
for any T C E. Suppose not. Then dyp(a,b) = dpc(b,a) = 1 or dip(a,b) = dfc(b,a) = 0.
Without loss of generality, let aqb. If d-(a,b) = dfc(b,a) = 1, we have dr(a,b) > Z and
dre(b,a) > 1 — Z, which contradicts the constraint dp(a,b) + dre(b,a) = 1. If, on the other




hand, we have dy(a,b) = dpc(b,a) = 0, dr(a,b) < Z and dpe(b,a) < 1 — Z, which also
contradicts the constraint dr(a,b) + dpe<(b,a) = 1.

We show next that all the constraints in (3) are satisfied by the solution d(-). Consider
three alternatives a,b,c, and constraint (3) (with a,b, ¢ replacing the role of z,y, z) can be
re-written as:

dauvuv (a,b) + dpuvuw (b, ¢) + douvuw (¢, a) < 2.

Suppose agbqc. Then in constraints (3), by the single-peakedness property, we must have
A =V = 0. In this case, the constraint reduces to

dy(a,b) + dpuvuw (b, ¢) + deuw (¢, a) < 2.
We need to show that
dy(a,b) + dpuyuw (b ¢) + douw (¢, a) < 2.
By choosing the sets in constraints (3) in a different way, with
U'—UB « B W «WucC,C' «§,
we have a new inequality
dy:(a,b) + dpuuruw (b, ¢) + doruw (c,a) < 2,

which is equivalent to
dU(a,b) + 1+ dCUW(C, a) < 2.

Hence we must have dy(a,b) + dcuw(c,a) < 1. Note that since agb and bqc, our rounding
scheme ensures that dj;(a,b) + dp (e, a) < 1. Hence

dlU (a,b) + ijuUuW(b’ c) + dICuW(C, a) <2

To finish the proof, we need to show that constraint (3) holds for different orderings of
a,b and c under q; the above argument can be easily extended to handle all these cases to
show that constraint (3) is valid. We omit the details here.

All extreme point solutions are integral:

Suppose now that the fractional solution dg is a fractional extreme point in the polytope
defined by constraints (1-3). By standard polyhedra theory, there exists a cost function
(cs(a,b)) such that ds is the unique minimum solution to the problem:

(P) min > sapcs(a,b)zs(a,b)
subject to: zg(a,b) satisfies constraints (1-3);
zs(a,b) € [0,1].



The rounding scheme we have just described converts a fractional solution to a 0-1 solution

satisfying
E(ds(a,b)) = P(Z < ds(a,b)) = ds(a,b), if aqb,

and
E(ds(a,b)) = P(Z > 1 — dg(a,b)) = ds(a,b), if bqa.

Hence E(dg(a,b)) = ds(a,b) for all S, a and b. Thus

E(Y cs(a,b)ds(a,b)) = > cs(a,b)ds(a,b),
S,a,b S,a,b
and hence all the 0-1 solutions obtained by the rounding scheme must also be a minimum

solution to problem (P). This contradicts the fact that dg is the unique minimum solution.
||

The argument above shows the set of ASWF’s on single-peaked domains (wrt q) has a
property similar to the generalized median property of the stable marriage problem (see Teo
and Sethuraman [18]):

Theorem 3 Let f1, fa,..., fn be distinct ASWF’s for the single-peaked domain Q (with re-
spect to q). Define a function Fy : Q" — X with the property:

The set S under Fy is decisive for x over y if

zqy, and S is decisive for x over y for at least k + 1 of the ASWF f;’s; or
yqzx, and S is decisive for x overy for at least N — k of the ASWF f;’s.

Then Fy, is also an ASWF.

One consequence of Theorem 3 is that when  is single-peaked, it is Arrovian, since the
dictatorial ASWF can be used to construct non-dictatorial ASWF in the above manner.

3 2-person ASWF’s

From Kalai and Muller [7] we know that every 2-person ASWF corresponds to a feasible 0-1
solution to the system (1, 2, 4-7) and vice-versa.

Two obviously feasible solutions are di(z,y) = 1,d2(z,y) = 0,V(z,y) € A% and d;(z,y) =
0,dy(z,y) = 1¥(z,y) € A% The first corresponds to an ASWF in which agent 1 is the
dictator and the second, by default, to one in which agent 2 is the dictator. We refer to these
solutions as the all 1’s solution and all the (’s solution respectively.

The main result of [7] can be phrased as follows: a non-dictatorial solution to (1, 2, 4 -
7) exists for the case n = 2 agents if and only if a non-dictatorial solution to (1-3) exists for
any n. We show how this result can be proved using the IP formulation.



It is easy to show that a non-dictatorial solution to (1, 2, 4-7) (for n = 2) automatically
implies a non-dictatorial solution to (1-3). For a proper subset, S, of agents, let

di(z,y) ifl1es,
do(z,y) otherwise.

dS(xay) = {

It is easy to see that the function d defined above corresponds to an n-person ASWF, and
hence constraints (1)—(3) are satisfied. Next, we give a proof of the converse.

Let d* be a non-dictatorial solution to (1-3). If there is a set of agents S such that d§(z,y)
is non-zero for some but not all (z,y) € A%, we are done because d; = dg,ds = dg. would
be a non-dictatorial solution to (1, 2, 4-7). Thus we assume that for each S C F, d§(z,y) is
either all 0 or all 1, for all (z,y) € A2
Case 1: Suppose the born loser rule Bj, j # 1,2 is a non-dictatorial ASWF for the domain
Q). We can construct a non-dictatorial 2-person ASWF in the following manner:

e Assign a fixed preference p to j.
e Fori=1,2, di(z,y) =1 if and only if ypz.
e dio(z,y) =1 for all 7,y € A2

The born loser rule thus induces a non-dictatorial ASWF for n = 2.
Case 2: We may assume that there exists p1, p2, ps in 2 with

TP12P1Y, TP2YyP22, 2P3TP3y-

This rules out the existence of sets S,T in F such that dg = dr =1, SNT = @, otherwise
constraint (3) will be violated for the triple z,y, 2.

Observe that for each agent j, dj(z,y) is either all 0 or all 1, for all (z,y) € A%. One of
two things must be true:

1. 3 j such that dj(z,y) = 1 for all (z,y) € A2 or
* — . 2
2. dj(z,y) = 0 for all j and (z,y) € A°.

Suppose the first holds. Since d* is non-dictatorial, there is a subset S > j such that
d%(z,y) = 0 for some (z,y) € A2, otherwise j would be a dictator. Now j, S¢ are disjoint
sets with d;j(z,y) = dge(z,y) = 1 V(z,y) € A?, which cannot be possible by our assumption.

Suppose now that d}(z,y) = 0 for all j and (z,y) € A2, By equation (1) we can choose a
set T such that d(z,y) = 1 ¥(z,y) € A%. Suppose also that T is minimal with respect to this
condition. Choose any j € T'. By the minimality condition on T' it follows that dr; (z,y) =0
and drey;(z,y) = 1 for all (z,y) € A2 By equation (1) we have that dr(z,y) = 0 V(z,y) €
A?. Since dj(z,y) = 0 for all (z,y) € A2 it follows that dr\jure(z,y) = 1 for all (z,y) € A%
We now define a 3 agent ASWF. Label the 3 agents {1,2, 3}.

1. di(z,y) =0 forall i =1,2,3 and (z,y) € A2,



2. dy o(z,y) = dp\ju;(z,y) = 1 for all (z,y) € A%
3. d/1,3(‘r’y) = dT\jUTc(xvy) =1 for all (l‘,y) € A2a
4. dy3(z,y) = djure(z,y) =1 for all (z,y) € A%

The function we have just defined, d’, is 3-person majority rule. Since inequality (3) is
satisfied by the d, it follows that d’ does not ‘cycle’ on 2. Thus d’ is an ASWF on . We
now construct a 2-person ASWF using d’. Fix any p € Q. Now apply 3-person majority rule
to the 2 agent society with a dummy third agent whose preference ordering is always p.

We have thus shown that given an n-person non-dictatorial ASWF, we can always con-
struct a 2-person non-dictatorial ASWEF. | |

4 Sufficient Conditions

We now use the system (1, 2, 4-7) to derive the main impossibility results about Arrovian
domains. In view of the Kalai-Muller result we can restrict our attention to 2-person ASWF’s.

It is instructive to ignore, for the moment, inequalities of types (6) and (7). The constraint
matrix associated with the inequalities of types (1, 2, 4, 5) and 0 < d(z,y) < 1 ¥(z,y) € A?
is totally unimodular. This is because each inequality can be reduced to one that contains at
most two coefficients of opposite sign and absolute value of 1.2 Hence the extreme points are
all integral, in fact 0-1. If one or more of these extreme points was different from the all 0’s
solution and all 1’s solution we would know that §2 is Arrovian. If the only extreme points
were the all 0’s solution and all 1’s solution that would imply that §2 is not Arrovian.

Thus difficulties with determining the existence of a feasible 0-1 solution different from
the all 0’s and all 1’s solution have to do with the inequalities of the form (6) and (7). Notice
that any admissible ordering (by €2) of three alternatives gives rise to an inequality of types
(6) and (7). However some of them will be redundant. Constraints (6, 7) are not redundant
only when they are obtained from a triplet (z,y, z) with the property:

There exists p such that zpypz but no q € Q2 such that yqzqz or zqzqy.

Such a triplet is called an isolated triplet.

Call the inequality representation of €2, by inequalities of types (1, 2, 4, 5), the uni-
modular representation of 2. Note that all inequalities in the unimodular representation
are of the type d(z,u) < d(z,v) or d(u,z) < d(v,z). Furthermore, d(z,u) < d(z,v) and
d(u,y) < d(v,y) appear in the representation only if there ezist p,q with upz and vpz and
rqu and Tqu.

This connection allows us to provide a graph-theoretic representation of the unimodular
representation of (2 as well as a graph-theoretic interpretation of when 2 is not Arrovian.

*It is well known that such matrices are totally unimodular. See for example, Theorem 11.12 in [1].



With each non-trivial element of A% we associate a vertex. If in the unimodular represen-
tation of §) there is an inequality of the form dj(a,b) < di(z,y) where (a,b) and (x,y) € A?
then insert a directed edge from (a,b) to (z,y). Call the resulting directed graph D

If (z,y) is a trivial pair (and hence (z,y) ¢ D), then dy(z,v) is automatically fixed at
1, and d;(y, z) fixed at 0. An inequality of the form d)(z,y) < di(z,2) (or di(2,y)) cannot
appear in the unimodular representation, for any alternative z in A. Otherwise there must
be some p € Q with ypz. Similarly, if (z,y) is trivial, d(y,z) > di1(z,z) (or di(y, 2)) cannot
appear in the unimodular representation, for any alternative z in A. Thus fixing the values
of di(z,y) and d;(y, z) arising from a trivial pair (z,y) does not affect the value of d;(a,b)
for (a,b) € D%

A subset S of vertices in D is closed if there is no edge directed out of S. That is, there
is no directed edge with its tail incident to a vertex in S and its head incident to a vertex
outside S. Notice that di(z,y) = 1 V(z,y) € S and 0 otherwise (and together with those
arising from the trivial pairs) is a feasible 0-1 solution to the unimodular representation of
Qif S is closed. Hence every closed set in D! corresponds to a feasible 0-1 solution to the
unimodular representation. The converse is also true.

Theorem 4 If D% is strongly connected then § is non-Arrovian.

Proof. The set of all vertices of D is clearly a closed set. The solution corresponding to
this closed set is the ASWF where agent 1 is the dictator. The empty set of vertices is closed
and this corresponds to agent 2 being the dictator. Hence, Q is Arrovian if and only D%
contains a closed, non-empty proper subset of vertices. However D has a closed, non-empty
proper subset of vertices if and only if D% is not strongly connected.? [ |

We note that verifying that a directed graph is strongly connected can be done efficiently.
See [1] for details.

4.1 Application 1: Arrow’s Theorem

An obvious application is to Arrow’s impossibility theorem. In this case ! = ¥ and we need
to verify that between any ordered pair of vertices of D! there is a directed path from one to
the other. Each vertex corresponds to a non-trivial pair. Let the pairs corresponding to these
two vertices be (z,y) and (u,v). Since Q = X, all possible orderings of the following triples
are possible: {z,y,u}, {z,y,v}, {z,u, v}, {y,u,v}. In particular from inequalities (4) and (5)
we get d(z,y) < d(z,u) and d(z,u) < d(v,u), and so there is a path (z,y) — (z,u) — (u,v).
Since the choice of (z,y) and (u,v) was arbitrary, it follows that D is strongly connected.

4.2 Application 2: Saturating Preference Domains

To describe the next application, we need a few additional definitions. A triple z,y,2z € A is
called free if each possible ordering of the triple is attained by some permutation in . In

3A directed graph is strongly connected if there is a directed cycle through every pair of vertices.



other words, a triple z,y, z € A is free, if the preferences of any individual are unrestricted on
{z,y,z}. Two pairs « and 3 contained in A are called strongly connected if o U S is a free
triple.? They are called connected if there exists a finite sequence of pairs A(1), A(2), ..., A(k)
contained in A with A(1) = a, A(k) = B, and A(j) U A(j + 1) is strongly connected for all
7=12,..,k—1. Qis called saturating if

1. there exists at least 2 non-trivial pairs, and
2. any two non-trivial pairs are connected.

Kalai, Muller and Satterthwaite [8] show that if Q is saturating, then ) is non-arrovian.
This important sufficient condition is the basis of many impossibility results in the social
choice literature. We refer the reader to Le Breton and Weymark [14] for a comprehensive
survey. The saturating criterion is not a necessary condition for dictatorship. It is immediate
from the definition of saturating preference domains that D is strongly connected and so

non-arrovian.

4.3 Application 3: Linked Domains

As another application we consider a restriction on §2 introduced in [6]: 2 is minimally
rich if for every z € A there is a p €  which ranks z first. The main result in [6] is that
a subclass of minimally rich domains which they call linked does not admit the existence of
an onto strategy proof social choice function.

Given a p € ©, denote the k" ranked alternative in p by r* (pP). A set K C A of at least
three alternatives is called internally complete if for all ordered pairs (z,y) in K there
exists p € £ such that 71(p) = z and r?(p) = y. In particular, this implies that all possible
orderings of the alternatives in K are found in .

Two sets of alternatives K and M, each with at least three alternatives, are adjacent
if there is an z € K which is ranked second in two orderings headed by distinct elements
of M and a y in M which is ranked second in two orderings headed by distinct elements
of K. Consider the graph, L with a vertex corresponding to each internally complete set,
and edges between pairs of vertices corresponding to adjacent internally complete sets. The
domain € is linked if the following two statements hold.

e The elements of A can be partitioned into a collection K7, ..., K of internally complete

sets; and

e The associated graph, L%, is connected, i.e. there is a path between every pair of

vertices.

Notice that a linked domain is minimally rich. It is also easy to see that if  is linked then
D% is strongly connected.

“The term strongly connected here has a different meaning to the term strongly connected in a directed

graph.



4.4 Application 4: Cyclic Domains

Kim and Roush (1980) consider the domain  consisting of all cyclic permutations of a fixed
ordering of the alternatives. In this domain it is easy to see that in the system (1, 2, 4-7),
the inequalities (6) and (7) are redundant. So, in this case the domain is dictatorial if and
only if D% is strongly connected. It is easy to verify that in this instance D! is not strongly
connected and so {2 admits a non-dictatorial ASWF.

5 Complexity and Polyhedral Structure

To study the complexity of deciding whether a domain is Arrovian, we must first specify
how  is encoded. If 2 has exponentially many permutations (say O(2")) elements, where
n = |A|), then the straight forward input model needs at least O(2") bits. Note that the
number of the decision variables for the Integer Program for 2-person ASWF’s is polynomial
in n. Furthermore, the time complexity of verifying the existence of triplets in  can be
trivially performed in time O(n32"). Hence the decision version of the existence of ASWF
can be solved in time polynomial in the size of the input.

Suppose, however, instead of listing the elements of ), we prescribe a polynomial time
oracle to check membership in 2. The complexity issue of deciding whether the domain is
Arrovian now depends on how we encode the membership oracle, and not on the number of
elements in 2. In this model, we exhibit an example to show that checking whether a triplet
exists in Q) is already NP-hard.

Consider a domain €2 where membership is specified by a set of forbidden triplets (denoted
by A). To check whether p is in 2, we only need to verify that p does not contain any triplet
in the set A. Thus membership can be checked in polynomial time.

Claim 3 For any given triplet (z,y, z), it is NP-complete to determine whether there erists
p € Q such that xpypz.

Proof: This follows from the NP-completeness of the Betweenness Problem (See Opatrny [13]
or Chor and Sudan [4]), which is as follows:

Given a set of betweenness constraints on triplets (in the form yy is between z; and 2z, k =
1,...,m), is there a permutation that satisfies all the specified betweenness constraints?

To see the connection between the two problems, note that the betweenness constraints
can be viewed as conditions on triplets. The constraint y; is between z, and z; can be
viewed as constraints of the form: p satisfies the betweenness condition if it is not the case
that zxpyr and zxpyx or yxpzr and yrpzg. If we can answer the first problem in polynomial
time, then given any domain () specified by forbidden triplets, and any triplet (z,y, z), we
can check in polynomial time whether there exists p € €2 such that zpypz. We can use
this routine recursively to determine whether there exists a permutation that satisfies all the
betweenness constraints in the following manner:



1. N« 1.

2. Let 2y be specified by forbidden triplets of the type
{z£P2kPYE, 2kPTEPYK, YkP2kPTk, YePTEP2: 1k =1,...,N}.

3. Check whether there exists p € Qn such that x4+ 1PYN+1PZN+1 OF 2N 4+1PYN+1PIN41-
If N < m and no such p exists in Qp, then the answer to the betweenness problem is
“No”. Otherwise N «— N + 1.

4. If N < m, go to Step 2. Otherwise, we conclude that the answer to the betweenness
problem is “YES”.

Note that Step 3 is executed at most O(n3) times and hence if Step 3 can be executed
in polynomial time, this will give rise to a polynomial routine for the betweenness problem
which is known to be NP-complete. |

Hence given an (2 specified by forbidden triplets, it is NP-hard just to write down the set
of inequalities required by our integer program!

The above result yields evidence that given a domain Q, it is in general very difficult
to check whether 2 is an Arrovian domain. In the rest of this section, we investigate the
polyhedral structure of the polyhedron defined by (1-3). We restrict our attention to problems
involving just two agents, conveniently labelled 1 and 2; also we can consider the equivalent
class of inequalities defined by (1, 2, 4-7). For any pair of alternatives a and b, we know, by
(2), that

da(a,b) = 1—di(a,b),

using which we can eliminate all of the variables corresponding to agent 2. Since all of the
variables correspond to agent 1, we suppress the subscript hereafter, and simply use d(a, b)
instead of d;(a,b).

We describe a sequential lifting method to derive valid inequalities for the problem, using
the directed graph D®. We say that the node u dominates the node v if there is a directed
path in D% from v to u (i.e. d(u) > d(v)).

Sequential Lifting Method:

e For each isolated triplet (z,y, z), we have the inequality

1+d(z,2) 2 d(z,y) + d(y, 2). (8)

e Let D(z,y) (and resp. D(y,z)) denote the set of nodes in D that is dominated by the
node (z,y) (resp. (y,z)) in D%



e For each node (a,b) in D9, if
ue D(a,b) N D(z, ) # 0, v € D(a,b) N D(y,2) # I,

then the constraint arising from the isolated triplet can be augmented by the following
valid inequalities:

d(a,b) + d(z, z) > d(u) + d(v). 9)

To see the validity of the above constraint, note that by the definition of domination, we have
d(z,y) = d(u),d(y, z) 2 d(v),d(a,b) = d(u),d(a,b) > d(v).

If d(a,b) = 0, then d(u) = d(v) = 0 and hence (9) is trivially true. If d(a,b) = 1, then (9)
follows from (8).

5.1 Example with Three Alternatives

We first show that the polyhedron defined by (1, 2, 4-7) need not be integral using a simple
example. Let A = {z,y, z}, and let

Q = {zyz,yzz, zzy, T2y }.
From (4-7), we get the following system of inequalities:

d(z,y) < d(z, z),

IA
e,
—
&
8
=

d(z,2) +d(z,y) < 1+d(=z,v),
d(y, z) + d(z,z) > d(y, z).
A fractional extreme point of this system is
d(z,z) =d(y,z) = d(y,2) = d(z,z) = d(z,y) = 0.5; d(z,y)=0.
The only other fractional extreme point is:

d(z,y) = d(z,2) =d(y,z) = d(z,z) = d(z,y) = 0.5; d(y,z)=1.



We next use the sequential lifting method to identify new valid inequalities from the
isolated triplet (z, z,y).
Consider the following set of inequalities:

1+d(z,y) >
> d(y,z) +d(z,z). (10)

Note that (z, z) dominates (y, z), and (z,y) dominates (z,z). We also have d(y,z) > d(y, 2),
and d(y,z) > d(z,z), and hence (y, z) dominates both (y, z) and (z,z). The sequential lifting
method gives rise to

dlz,y) +d(y,z) > d(y,z)+d(z ). (11)

Also, for a pair of alternatives a and b, replacing d(a,b) with 1 —d(b, a), results in another
valid inequality, which we record as

d(z,y) +d(y,z) < d(z,9)+d(z,2). (12)

More importantly, Eqgs. (11) and (12) are facets. To see this, we first observe that the
underlying polyhedron is full-dimensional (dimension 6); and its extreme points are

{el =(0,0,0,0,0,0), ey = (0,0,0,0,0,1), es = (0,0,1,0,1,1),
es = (0,1,0,0,0,0), es = (0,1,1,1,0,0), eg = (1,1,0,0,0,1),
ez =(1,1,1,0,1,1), es = (1,1,1,1,0,1), eg = (1,1,1,1,1,1)},

where the components of each entry represent d(z,y), d(z,z), d(y,z), d(y, z), d(z,z), and
d(z,y) (in that order). The elements e, ey, e3, e4, €5 and eg are affinely independent, and
satisfy (11) as an equality; the elements ey, es, es, e7, es, and eg are affinely independent,
and satisfy (12) as an equality. These two observations show, respectively, that Egs. (11) and
(12) are facets.

For |A| = 3, we enumerate all possible domains, and observe that the strengthened
formulation using the sequential lifting method defines the convex hull of all ASWF’s in each
case.

5.2 Examples with Four Alternatives

Preliminary observations. For |4| = 4, the number of possible domains, 2, is 2%4; of
these, we ignore domains that contain at most 1 alternative, which leaves us 22¢ — 25 pos-
sibilities to consider. From the IP formulation, however, we know that two domains that
generate the same set of “triplets,” are either both dictatorial or both non-dictatorial; so
the number of possibilities to be examined depends only on the number of different sets of
triplets generated by the domains. This observation reduces the number of possibilities to



77850, which is substantially smaller than all potential subsets of triples. In addition, we can
further restrict the possibilities to be explored using “symmetries:” Two distinct collections
of triplets are isomorphic if one collection can be obtained from the other by simply renaming
the alternatives. Clearly, if a collection of triplets (generated by some domain) is dictatorial,
so are all of its isomorphic equivalents. The number of distinct collections of triplets that are

not isomorphic to one another is 3315.

LP/IP relationship. For |A| = 3, we observed that whenever the LP relaxation of the
original formulation (1, 2, 4-7) has a non-trivial (possibly fractional) solution, so does the
corresponding IP. This raises the possibility that although finding a compact description of
the set of all SWFs may be difficult, or even impossible, we might still be able to resolve the
existence/non-existence of an SWF by solving the associated LP relaxation; such a result is
true for the stable roommates problem; see [18]. The following example, however, rules out

such a possibility.
Example 1: Let
Q = {wyzz, wzry, zywz, T2YW, YWIT, YZTW, ZWTY}.
The associated set of triplets is

T = {wzry,wyz,cyw, ywe, yrw, WL, LW, LZW, ZWEL, ZTW

WYz, WY, Ywz, Y2w, 2wy, ZYyw, TYZ, T2Y, Y2, 2TY}

It is easily verified that all the decision variables except d(z,y) and d(y, z) are equal to
one another in every feasible LP solution; this is a consequence of the basic formulation
(1, 2, 4-7). The fractional LP solution

d(z,y) =0, d(y,z) = 1; all other variables = 0.5,

is feasible. If the variables are restricted to be 0-1, it is easy to verify that {2 is dictatorial.

Additional valid inequalities. Consider the domain
Q = {wryz, wrzy, wzyz, 2wy, 2TYW, 2YWL},
with the associated set of triplets being

T = {wzy,zyw,yws, Wyr, 2WT, WTZ, WZT, ZTW,

W2Y, ZYW, ZWY, WYZ, 2LY, TYZ, L2Y, ZYT }

In T, the triplet wyx is the only isolated triplet; if it were absent, the LP relaxation of the
IP associated with T would be exact.



As before, we try to strengthen the formulation by finding additional valid inequalities
using the sequential lifting method. To that end, consider the following set of inequalities,
each of whose justification is included alongside, in parenthesis:

dlw,z) +1 > d(y,z)+d(w,y), (isolated triplet wyr) (13)
dw,y) 2 d(z,y), (by {ywz,wzy}) (14)
d(z,z) > d(z,w), (by {zwz,wzz}) (15)
d(z,w) > d(z,w), (by {wzz,zzw}) (16)
d(z,w) > d(z,y), (by {zyw,ywz}) (17)
d(z,z) 2 d(y,z). (by {zzy,2yz}) (18)

From Egs. (15)-(17), we have
d(z,z) > d(z,y). (19)
From Egs. (13) and (14), we have
dlw,z)+1 > d(y,z)+d(z,y), (20)
which together with Eqgs. (18) and (19) imply
d(w,z) + d(z,z) > d(y,z)+ d(z,v). (21)

As before, replacing d(a,b) with 1 — d(b, a), results in another valid inequality, which we
record as

dz,w) +d(z,z) < d(z,y)+d(y,z). (22)

It is easy, but tedious, to verify that inequalities (21) and (22) are facets of the underlying
polyhedron. It is also interesting to note that these are the first inequalities involving four
alternatives.

When |A| = 4, we observe that, for each domain, the LP formulation, augmented with
inequalities constructed using the sequential lifting method, whenever applicable, defines the
convex hull of all ASWEF’s. A natural question is if whether the sequential lifting method will
gives rise to all facets even for the case [A| > 5; we do not yet know, although we suspect the
answer to be negative.

6 Majority Rule

In the universe of preference aggregation procedures, (simple) majority rule occupies a special
place. While majority rule satisfies unanimity and the independence of irrelevant alternatives
condition it is not guaranteed to produce a transitive ordering. In other words majority rule

is not an ASWF for all 2.



Here we show how the integer program can be used to derive, in a simple way, two of the
well known results about majority rule. The first is a characterization of those 2 on which
majority rule is an ASWF. This result is due essentially to Sen (1966). We assume, so that
majority rule is well defined, that the number of agents is odd.

Recall that ) admits a Condorcet triple if there are z, y and z € A and p1, p2 and p3 € Q

such that zpi1yp1z, yp2zp2x, and z2p3rpsy.

Theorem 5 Majority rule is an ASWEF on Q if and only if Q does not contain a Condorcet
triple.

Proof

Suppose first that majority rule is an ASWF on €. To get a contradiction assume that
z,y,2 € A form a Condorcet triple. Let n, the number of agents, be 3r + k where r > 1 is
integral and 0 < k < 2 is also integral.

If £k = 0, partition the agents into three sets of size r called U, V and W. Every agent
in U ranks z above y above z. Every agent in V ranks z above x above y. Every agent in
W ranks y above z above z. Since n is odd and 2r > n/2 it follows that on this profile that
majority rule produces a cycle.

If kK =1, choose U, V and W as above but |[U| = |V| = r and [W| = r + 1. Once again
2r+1 > 2r > n/2, so majority rules cycles again. If k = 2 repeat the argument with |U| =r
and |[V]| = |W|=r+1.

Now suppose that £ has no Condorcet triple. To show that majority rule is an ASWF we
must show that inequality (3) is satisfied. To obtain a contradiction suppose not and fix a
triple z,y, z € A for which (3) is violated. Since €2 has no Condorcet triple, at least one of A,
B or C is empty and at least one of U, V and W is empty. Without loss of generality suppose
that A,W = 0. Since (3) is violated we have dyuv(z,y) = dpuv(y,2) = deuv(z,z) =1 (a
similar argument applies in the case when they are all zero). Majority rule implies that
|Bl+|U| > n/2 and |C| + |V| > n/2. Adding these two inequalities produces:

n=|B|+|U|+|C|+ |V]|>mn,
a contradiction. ]

The next theorem we take up is due to Maskin (1995). An ASWF is called anonymous
if its ranking over pairs of alternatives remains unchanged when the labels of the agents are
permuted. Hence ds(z,y) depends only on |S| for all (x,y) € A2. In particular a dictatorial
rule is not anonymous. An ASWF is called neutral if its ranking over any pair of alternatives
depends only on the pattern of voters’ preferences over that pair, not on the alternatives’
labels. It is stronger than independence of irrelevant alternatives. Neutrality implies that
ds(z,y) = ds(a,b) for any (z,y), (a,b) € A%. Thus the value of dg(:,-) is determined by |S]
alone. In the proof below we use this observation to write dg as d, where r = |S].



It is easy to see that majority rule is both anonymous and neutral but is not the only
such rule. For three agents, three person minority rule is anonymous and neutral. In three
person minority rule only singleton sets and the entire set of agents is decisive.

Theorem 6 Let 2 admit an anonymous, neutral ASWF. Then majority rule is an ASWF
on §.

Proof
From the previous result it suffices to show that §2 has no Condorcet triples. To obtain a
contradiction suppose not. Let z,y, 2 € A be a collection that forms a Condorcet triple. Let
d be a non-dictatorial, anonymous, neutral ASWF. Thus d satisfies (1,2,3). Let n denote the
number of voters.

Inequality (3) implies:

1< da(xay) + db(ya Z) + dc(z,x) < 2>

whenever
a,b,c>0,a+b+c=n.

Note that by neutrality, ds(z,y) = ds(a,bd) for all (z,¥),(a,b). So we omit the alternatives
and represent the variables as dg.
Note that by (2), d; # d,—1. Furthermore, since

1<di+di+dn-2<2,
dn_2 # di, ie., dp_1 = dp—2. Again by (2), we must have dy = d;. Since
1<dy +d2+dp3<2,

we have d,_3 = dp_2 = d,_1. By repeating the above argument, we obtain the series of
equalities:
dy :d2=d3:-°-:d[%J’

oy =dn_y=...=dfa.

We note that n must be odd, otherwise |3 ] = [5]. However, in this case,
dq +d|_%_] +d[%] =0or 3,

a contradiction. n

Maskin (1995) also provides a converse of sorts to the above.® Let g be any rule that
assoclates with each P € Q" a pairwise ordering of the alternatives in A. There is no
requirement that g produce a transitive ordering of the elements of A, i.e., g need not be a
ASWF on every domain .

3See Campbell and Kelly (2000) for the same result derived under slightly weaker conditions.



Theorem 7 Suppose that g is anonymous, neutral, satisfies unanimity and is not majority
rule. Then there exists a domain Q on which g is a not an ASWF but majority rule is.

Proof

Anonymity implies that ¢ is not dictatorial. Thus, there has to be a domain €2 and some
profile P € Q™ on which g generates an intransitive order. Since g satisfies independence of
irrelevant alternatives, it can be described by ‘decisiveness’ variables. Call them d'.

Given that g is not a ASWF on ), there is a triple of alternatives z,y,z € A and an
appropriate partition of the agents such that constraint (3) is violated. Suppose first that
does not admit a Condorcet triple in the alternatives =, y, z. Let 11 be the set of orderings of
z,y, z admissible under . Fix an ordering o of elements of A\ {z,y,z}. Let Q' be the set of
all preference orderings of the form (7, o) where m € II. It is easy to see that majority rule is
a ASWF on this domain but g cannot be since it would violate (3) with respect to {z,y, z}.
Hence we may assume that every violation of (3) by d’ on any domain is associated with a
Condorcet triple.

Let a and b be two positive integers. We claim that d), = d, =1 = a+b > n. To
see why, suppose not and consider the domain consisting of the following three orderings:
{zyz,yzz,yzz}. This domain does not admit a Condorcet triple and so g, equivalently d’
defines an ASWF on it. Suppose now a profile where a agents have the ranking xyz, b agents
have the ranking yzz and the remaining n — a — b agents have the ranking yzrz. The first
set of a agents are the only ones to rank z above y. Since d, = 1, on this domain g ranks
z above y. A similar argument applies to the second set of b agents and the ordered pair
zz. However, unanimity requires that ¢ rank y above z. Hence g is not an ASWF on this
domain, a contradiction.

Next we claim that if a < bthen d, =1 = dj = 1. Suppose not. By (2) it follows that

»_p = 1. From the previous claim, d, = d/,_, = 1 implies that a + n — b > n which cannot
be since a < b.

Let r be the smallest integer such that d/. = 1. Suppose first that r < n/2. Now d,. =1

implies d;; = 1. But r+(r+1) < n a contradiction. Now assume that r > n/2. If d' ey = =0

we have from (2) that d',,_ on = = 1 which contradicts the choice of 7. Since d,, e = =1it follows

that d), =1 for all a > (n + 1)/2. That is g is majority rule, contradiction. u

7 Social Choice Functions

A Social Choice Function maps profiles of preferences into a single alternative. The analog
of Arrow’s impossibility theorem for social choice functions is the Muller-Satterthwaite theo-
rem (1977). The counterpart of Unanimity and the Independence of Irrelevant Alternatives
condition for Social Choice Functions are called pareto optimality and monotonicity. To
define them, denote the preference ordering of agent 7 in profile P by p;.



1. Pareto Optimality: Let P € Q" such that zpy for all p € P. Then f(P) # v.

2. Monotonicity: Forallz € A, P,Q € Q" if z = f(P) and {y : zpiy} C {y : zqiy} Vi
then z = f(Q).

We call a Social Choice Function that satisfies pareto-optimality and monotonicity an
Arrovian social choice function (ASCF). The theorem of Muller and Satterthwaite says that
when 2 = ¥ all ASCF’s are dictatorial.® Here we will prove something stronger using the
methods introduced earlier.

For each subset S of agents and ordered pair of alternatives (z,y), denote by [S,z,y| the
set of all profiles where agents in S rank z first and y second, and agents in S¢ rank y first
and x second. By the hypothesis on € this collection is well defined.

For any profile P € [S,z,y] it follows by pareto optimality that f(P) € {z,y}. By
monotonicity, if f(P) = z for one such profile P then f(P) =z for all P € [S, z,y].

Suppose then for all P € [S,z,y] we have f(P) # y. Let Q be any profile where all agents
in S rank z above y, and all agents in S¢ rank y above . We show next that f(Q) # y too.

Suppose not. That is f(Q) = y. Let Q' be a profile obtained by moving z and y to the
top in every agents ordering but preserving their relative position within each ordering. So,
if x was above y in the ordering under Q, it remains so under Q’. Similarly if ¥ was above z.

By monotonicity f(Q’) = y. But monotonicity with respect to Q' and P € [S, z, y] implies
that f(P) =y a contradiction.

Hence, if there is one profile in which all agents in S rank z above y, and all agents in S¢
rank y above z, and y is not selected, then all profiles with such a property will not select y.
This observation allows us to describe ASCF’s using the following variables.

For each (z,y) € A? a 0-1 variable as follows:

e gs{z,y) = 1 if when all agents in S rank z above y and all agents in S¢ rank y above
x then y is never selected,

e gs(z,y) = 0 otherwise.

If E is the set of all candidates we set gg(x,y) = 1 for all (z,y) € A2. This ensures pareto
optimality.

Consider a P € Q", (z,y) € A? and subset S of agents such that all agents in S prefer
z to y and all agents in S¢, the complement of S, prefer y to . Then, gs(z,y) = 0 implies
that gse(y,z) = 1 to ensure a selection. Hence for all S and (r,y) € A? we have

gS(xvy) + QSC(@/,JJ) = 1. (23)

First we mimic the derivation of inequalities (4) and (5). Suppose there are p,q €
and three alternatives z,y and z such that zpypz and yqzqz. Fix a subset S of agents and

5The more well known result about strategy proof social choice functions is due to Gibbard (1973) and
Satterthwiate (1975). It is a consequence of Muller-Satterthwiate (1977).



consider a profile where all agents in .S have p and all agents in S¢ have q. Suppose we set
gs(z,y) = 1. For the chosen profile this means y will not be selected. From pareto optimality
we know that z cannot be selected. Hence gs(x, z) = 1 to be consistent. Summarizing:

gs(z,y) =1=>gs(z,z) =1

and
gs(z,z) = 1= gs(y,z) = 1.

These two conditions can be formulated as inequalities:

gS(mvy) < gs(l', Z)a and (24)
gs(Z,.’L‘) < gs(y,x). (25)

Note that these inequalities hold only if there exists p,q € Q such that zpypz and yqzqz.

Using these inequalities, for each set .S, we can define a directed graph Dg where the
nodes in the graph correspond to gs(z,y) and there is a directed arc from the node gg(z,y)
to gs(z, z) if (24) holds. Similarly, we have an arc from gs(z,z) to gs(y,z). Note that the
graph Dg does not depend on the choice of S, hence in the rest of this section, we drop the
subscript S and refer to the graph as D%,

Theorem 8 Let Q be such that for all (z,y) € A? there is a p € Q such that r'(p) = z and
r2(p) = y. Then, all the ASCF’s are dictatorial.

Proof: Suppose there exist an ASCF that is not dictatorial. The corresponding gs vari-
ables are thus well defined. We first prove, using a combination of pareto optimality and

monotonicity, that

gs(z,y) < gr(z,y) VS CT. (26)

To see why it must hold, suppose not. Then we can find a specification of the g variables
that satisfies all the other inequalities but gg(z,y) = 1 and gr(z,y) = 0 for some (z,y) € A%.

Let P be a profile where all agents in S rank z first, y second and all agents in 5¢ rank
y first and = second. On such a profile, g requires that y not be selected. Pareto optimality
would dictate that z is the outcome.

Let Q be a profile where all agents in T rank z first and y second , all agents in T rank
y first and z second. Since gr(z,y) = 0 it follows that gre(y,z) = 1. Thus, on this profile g
would eliminate x. Pareto optimality would require that y be the outcome. But this violates
monotonicity with respect to P and Q.

From the assumption that D is strongly connected we know that every integral solution
to the above collection of inequalities must have for each § C E, gs(z,y) = 1 V(z,y) € A2
or gs(z,y) = 0 V(z,y) € A2 If there is a j € E such that gs(z,y) = 1 ¥(z,y) € A2, and all
S 3 j we are done. Suppose not. Pick any triple {z,y, 2} € A. From amongst all § C E with
gs(a,b) = 1 V(a,b) € A% choose one that is minimal (i.e. S has the smallest cardinality).



Suppose |S| = 1. From (26) it follows that gr(z,y) = 1 for all T that contain S and we
are done.

If |S| > 1, Pick any proper subset of agents T' C .S and consider a profile P where agents
in T rank z first, y second and z anywhere below y. Every agent in S \ T ranks z first,
z second, and y anywhere below z. Lastly, all agents in S¢ rank y first, z second and z
anywhere below z. Such profiles exist by assumption.

Since gg(z,y) = 1 for this profile we know that y can not be selected. By minimality of
S, we have that gr(z,z) = 0V(z,y) € A% From (23) we get that gg\r(2,z) = 1. For the
profile under consideration all agents in £\ T rank z above z. Hence z cannot be selected.
Similarly gs\r(2,y) = 0. Hence gseur(y, z) = 1. Since all agents in S°UT rank y above z, it
follows that for the profile under consideration that z is never selected. Hence no alternatives
from the set {z,y, 2z} are selected.

We complete the argument by showing that for this profile no a € A\ {z,y, 2} can be
selected either. Suppose not.

If agents in T rank a below z, then all agents in this profile rank z above a and so by
pareto optimality alternative a can never be selected. Thus, in this profile, a must be ranked
above z and below y by the agents in S. A similar argument shows that agents in S¢ rank y
above a above z, and agents in S \ T rank z above a above y. Hence 2 admits the following
two orderings: zya and yaz. Since gs(z,y) = 1 and D9 is strongly connected, it follows that
gs(z,a) = 1. But this means that a cannot be selected, a contradiction. [ |
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