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Abstract. Because rational agents use their private information strategically

in many trading environments any budget balanced, incentive compatible, and

individually rational market mechanism will be ineÆcient.

This paper is concerned with the arising ineÆciencies as the number of

traders becomes large. We prove that the absolute ineÆciency of a sequence

of budget balanced market mechanisms can not converge to zero faster then
co
m
, where m is the size of the market and co is a number explicitly determined

in the paper. We propose a simple modi�cation of the Vickrey-Clarke-Groves

mechanism which is budget balanced, individually rational, implementable in

dominant strategies, and asymptotically optimal in the sense that it achieves

the above rate of convergence.

As a side product of our analysis we get other asymptotic results describing

the trade o� between revenue and eÆciency. For example, we prove that, as

the market size m goes to in�nity, the minimal de�cit needed to implement

the eÆcient allocation rule converges to a number do, which is also explicitly

determined in the paper.

Keywords: Asymmetric information, large markets, asymptotic eÆciency,

Myerson-Satterthwaite Theorem, Vickrey-Clarke-Groves Mechanism.

1. Introduction

1.1. Problem. It is diÆcult to imagine a trading environment in which buyers

and sellers do not have some private information about their own valuations of the

traded goods. Because traders will use this private information strategically usually

there will be no incentive compatible and individually rational trading mechanism

which is both budget balanced and eÆcient. This result was �rst proved by Myerson

and Satterthwaite1 for the case of one buyer and one seller but remains qualitatively

I thank Levon Barseghyan, Je� Ely, Burcay Erus, Eddie Dekel, Peter Klibano�, Francesca

Molinari, Lyndon Moore, Marcin Peski, Maxim Sinitsyn, and Michael Whinston for useful com-

ments. I am most grateful to Asher Wolinsky for his valuable advice. I would like to thank Mark

Satterthwaite for stimulating my interest in the topic, helpful comments, and making available

computational resources of the KGSM to calculate the numerical example in Section 5.1.
1See Myerson and Satterthwaite (1983).

1



true if many buyers and sellers interact.2 In this paper we will be interested in the

e�ects of strategic use of private information as the number of traders becomes

large.

The fact that it will usually be impossible to implement an incentive compatible

and individually rational mechanism which is both budget balanced and eÆcient

means that a mechanism designer will have to choose between a more eÆcient

mechanism which runs a higher de�cit and a less eÆcient one which creates a

higher revenue. This poses several questions. What is the exact trade o� between

revenue and eÆciency ? How signi�cant is the whole problem quantitatively ? In

particular the following two dual questions seem to be of primary interest:

1. How costly is it to implement the eÆcient allocation ?

2. What is the least size of ineÆciency obtainable with a budget balanced

mechanism ?

From the point of view of mechanism design two other questions are relevant:

3. What is a simple mechanism implementing the eÆcient allocation at mini-

mal cost ?

4. What is a simple, budget balanced mechanism which achieves maximal

eÆciency ?

As for the third question, the work of Krishna and Perry (1998) implies that for

any market size the Vickrey-Clarke-Groves mechanism, in which the expected gains

of the buyer with the lowest valuation and of the seller with the highest valuation

are equal to zero, minimizes the expected de�cit.3 The mechanism is not only

simple, but also implementable in dominant strategies.

We will try to give answers to the remaining three questions in terms of asymp-

totic results for large numbers of buyers and sellers. There are several reasons why

we think such asymptotic results are relevant in this context.

First, many interesting trading situations involve large numbers of buyers and

sellers. Examples are stock markets and the rapidly increasing trade conducted

via the internet. Secondly, by looking at asymptotic results we get simpler and

more explicit statements than those obtainable for a �xed market size even under

very strong assumptions. Finally, it turns out that our results give reasonable

predictions even for very small markets as illustrated by a numerical example. This

is, of course, crucial as the value of any asymptotic result depends on how good it

approximates the environments of interest.

1.2. Model. We will consider a simple framework where the demand and supply

sides are given by k1 � m sellers and k2 � m buyers. Here the numbers k1 and k2

will be assumed �xed, while the number m will be referred to as market size and

allowed to vary.

We assume that each seller owns a single unit of some homogeneous good and

each buyer is interested in purchasing exactly one unit. Both buyers and sellers

2Proposition 4 and Remark 4 (both in Section 3) give two versions of the Myerson-Satterthwaite

Impossibility Theorem for the case of many buyers and sellers.
3The exact conditions under which this statement holds are given in Section 3.
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are risk neutral and have privately known valuations of owning a unit of the good,

which are drawn independently using a distribution F for sellers and G for buyers.

We will assume that the distributions F and G have the property that there is a

unique point p� such that expected supply at price p� is equal to expected demand

at this price.4 Moreover we will assume that F and G have bounded supports, are

twice continuously di�erentiable in some neighborhood of p�, and that the densities

F 0(p�) and G0(p�) are greater then zero.

1.3. Results. Our analysis starts with a look at the Vickrey - Clarke - Groves

mechanism where the expected gains of a buyer with lowest valuation and of the

seller with highest valuation are equal to zero. Our �rst result is that, as the market

size m goes to in�nity, the de�cit of this mechanism converges to

k1 � F (p�)
k1 � F 0(p�) + k2 �G0(p�)

:

This is interesting because, as mentioned above, any mechanism implementing the

eÆcient outcome must have a higher or equal de�cit than that mechanism.5 There-

fore, the above expression also describes the cost of implementing the eÆcient

allocation.

To answer the second question about the minimal ineÆciency obtainable with

a budget balanced mechanism we need a measure of ineÆciency. We de�ne the

absolute ineÆciency of a mechanism to be equal to the di�erence between the

expected gains of trade created under the eÆcient allocation rule, and the expected

gains of trade realized by the mechanism.6 We prove that, as the market size m

goes to in�nity, the minimal absolute ineÆciency obtainable with a budget balanced

mechanism converges to zero at a rate of

(1)
1

2 �m � k1 � F 0(p�) � k2 �G0(p�)

(k1 � F 0(p�) + k2 �G0(p�))3
:

To provide a satisfactory answer to the last question is harder. For the case

of regular7 distributions F and G the work of Gresik and Satterthwaite (1989)

proves the existence of a constrained eÆcient mechanism8 and describes it.9 For

general distributions F and G the existence and form of a constrained eÆcient

mechanism is a complicated issue. Even in the case of regular distributions F and

4This is equivalent to the requirement that the equation k1 � F (p�) = k2 � (1 � G(p�)) has a

unique solution.
5The exact conditions under which this statement holds are given in Section 3.
6There is another measure of ineÆciency commonly used in the literature. The relative ineÆ-

ciency of a mechanism is de�ned to be the absolute ineÆciency of the mechanism divided by the

expected gains of trade obtainable under the eÆcient allocation rule . All our results could be

easily restated in terms of relative ineÆciencies as explained in Remark 2, Section 2.
7Gresik and Satterthwaite require that: (i) the supports of F and G are identical and equal

to some bounded interval [a; b] (ii) F and G have continuous and bounded �rst and second order

derivatives on (a; b); (iii) the densities F 0 and G0 are bounded away from 0 on (a; b) (iv) the

functions x+ F (x)=F 0(x) and x� (1 �G(x))=G0(x) are increasing on (a; b).
8By constrained optimal mechanism we mean the budget balanced, incentive compatible and

individually rational mechanism with minimal ineÆciency.
9See also Satterthwaite and Wiliams (1999).
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G the constrained eÆcient mechanism seems too complex to be implementable in

practice.

This suggests the quest for a mechanism which does not run a de�cit and which

is strongly asymptotically eÆcient in the sense that its absolute ineÆciency con-

verges to zero at the optimal rate given by Formula (1). We prove that an intuitive

modi�cation of the Vickrey - Clarke - Groves mechanism does the job. The modi�-

cation lies in the introduction of a �xed trading fee charged from those players who

actually conduct a trade. Using an appropriate fee we are able to eliminates the

de�cit. The new mechanism is simple, implementable in dominant strategies and

requires the mechanism designer to choose just one parameter - the size of the fee.

We can use our results to conclude that several mechanisms studied previously

in the literature are weakly asymptotically eÆcient in the sense that as the market

size m gets large their absolute ineÆciency converges to zero at a rate of the same

order as the optimal one.

Rustichini, Satterthwaite and Williams (1994) showed that under appropriate

regularity conditions the absolute ineÆciency of k-double auctions converges to zero

at a rate of order O( 1
m
).10 Another mechanism achieving ineÆciencies converging at

a rate of this order was proposed by McAfee (1992).11 Our results (see Formula (1))

imply that the minimal ineÆciency obtainable by a budget balanced mechanism

for market size m can not converge to zero faster then at a rate of order O( 1
m
).

Therefore, we can conclude that both k-double auctions and McAfee's mechanism

are weakly asymptotically eÆcient.

Yoon (2000a) considers a modi�cation of the Vickrey-Clarke-Groves mechanism

which is di�erent from ours. In our mechanism a �xed trading fee is charged,

ex post, from those traders who actually conduct a trade. Yoon, on the other

hand, considers a modi�cation of the Vickrey-Clarke-Groves mechanism, where the

players are invited to pay a �xed participation fee at the interim stage. Then a

Vickrey-Clarke-Groves mechanism is implemented which includes only those play-

ers who paid the fee.12 Yoon proves that if the participation fee is chosen to achieve

budget balance the absolute ineÆciency of this mechanism is at most of order O(1).

Although this result does not establish whether the mechanism is weakly asymp-

totically eÆcient or not Yoon (2000a) uses simulations to argue that asymptotically

the mechanism has a higher ineÆciency then the mechanism proposed by McAfee.

10The results of Gresik and Satterthwaite (1989) as well as Rustichini, Satterthwaite and

Wiliams (1994) are formulated using relative ineÆciencies. The relative ineÆciency of a direct

mechanism is de�ned as the fraction of expected gains from trade, which could be achieved by the

eÆcient allocation rule, but are not achieved by the mechanism. Here their results are stated using

absolute ineÆciencies. Remark 2 in Section 2 explains the connection between the two measures

of ineÆciency.
11The environment studied by McAfee di�ers from ours, it has a nonstrategic \expert" whose

only role is to receive a steady 
ow of income generated by the mechanism. It is, however, easy to

implement the allocation rule of McAfee's mechanism in our environment, simply by redistributing

the expected income of the expert equally among all players.
12Yoon (2000b) considers a generalization of this mechanism to the case multi unit demand.
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An example of a mechanism which is clearly not weakly asymptotically eÆ-

cient is the mechanism charging a �xed price of p� considered by Hagerty and

Rogerson (1985). As the market size m increases the absolute ineÆciency of this

mechanism does not converges to zero but instead converges to in�nity at a rate of

order O(
p
m).

1.4. Other Related Literature. We are not aware of any paper studying asymp-

totic properties of the minimal de�cit needed to implement the eÆcient allocation

rule.

As for the rate at which the minimal ineÆciency of a budget balanced mecha-

nisms converges to zero as the market size becomes bigger, our work is closely re-

lated to a paper by Satterthwaite and Williams (1999). Satterthwaite and Williams

build on the work of Gresik and Satterthwaite (1989) on constraint eÆcient mech-

anisms and on the work of Rustichini, Satterthwaite and Williams (1994) on k-

double auctions. They show that in an environment where the number of buyers

and sellers are equal and the distributions F and G are both uniform on [0; 1] the

minimal ineÆciency of a budget balanced mechanisms converges to zero at a rate

of order O( 1
m
). Then they use this result to show that k-double auctions satisfy a

notion of worst-case asymptotic optimality over sets of environments including the

environment mentioned above.

Our results about the minimal ineÆciency of a sequence of budget balanced

mechanisms extend those of Satterthwaite and Williams (1999) in two directions.

First, our results are more general, since we drop the assumptions that the number

of buyers and sellers are equal and that the distributions F and G are both uniform

on [0; 1]. Instead, we allow di�erent numbers of buyers and sellers and quite general

distributions.13 Secondly, we prove stronger results, which describe not only the

order of the rate of convergence, but also the exact asymptotic behavior as for

example in Formula (1). This is important, because it means that our asymptotic

results can be used to predict the constrained optimal ineÆciency of a budget

balanced mechanism for any �xed market size m.14

Less related to our work are several papers (for example Gul and Postlewaite

(1992)) considering a more general framework and dealing with the qualitative

question whether convergence to eÆciency does occur as the market size becomes

large.

1.5. Organization of the paper. The next section formally introduces the frame-

work and some notation.

Section 3 concerns the Vickrey-Clarke-Groves mechanism and the related issue

of the minimal de�cit required to implement the eÆcient allocation rule.

13The requirements on F and G were stated in Section 1.2 of this introduction.
14In terms of techniques our proofs di�er from those in Satterthwite,Wiliams in two major

aspects. First, as we rely less on combinatorial arguments we are able to successfully `localize'

our discussion around the point p�. Secondly, the introduction of the Vickrey-Clarke-Groves

mechanism with trading fees is helpful. After developing a good understanding of this mechanism

we use it as a comparison device to obtain our results about the rate of convergence of the minimal

ineÆciency obtainable with a budget balanced mechanisms.
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In Section 4 we introduce a new class of mechanisms - the Vickrey-Clarke-Groves

mechanisms with a �xed trading fee - which generalizes the Vickrey-Clarke-Groves

mechanisms discussed in Section 3. Next, in Theorems 1 and 2, we describe how

the de�cit and absolute ineÆciency of the mechanism depend on the choice of

the trading fee. This allows us to see how the Vickrey-Clarke-Groves mechanisms

with an appropriately chosen trading fee resolves the con
ict between revenue and

eÆciency. Then, in Theorem 3, we prove that no mechanism can do asymptotically

better.

Section 5 discusses several smaller topics related to our main results from Section

3 and Section 4. First, we present a numerical example illustrating our results.

Then we consider the question whether it could be worthwhile for a social planner

to implement the eÆcient allocation and �nance the de�cit via taxes. Finally we

brie
y discuss the di�erence between requiring ex ante and ex post budget balance.

A short conclusion follows in Section 6.

2. Framework and Notation

2.1. Buyers and Sellers. The supply and demand side of the model are given by

a set S of k1 � m sellers and a set B of k2 � m buyers. Here the numbers k1 and

k2 will be considered �xed while m will be referred to as the market size and will

be allowed to vary. Sellers and buyers have valuations drawn independently from

some probability distributions F and G respectively. Each player maximizes a von

Neumann-Morgenstern utility function of the form

Qi � vi + Ti;

where vi is the privately known valuation of a unit of the good, Qi is the expected

probability of ending up with a unit of the good, and Ti the expected net transfer

payment to agent i. Note that although we are mainly interested in the case where

the valuations are non-negative our framework allows negative valuations.

Consider a �xed price p. For any market size m the expected supply at price p

is equal to

E(jfi 2 S : vi < pgj) = m � k1 � F (p):
while expected demand is given by

E(jfi 2 B : vi > pgj) = m � k2 � (1�G(p)):

Notice therefore that the expected demand at price p is equal to expected supply

if and only if

m � k1 � F (p) = m � k2 � (1�G(p)):

Dividing both sides of the equation bym we see that this condition does not depend

on the market size m.

We will assume that the distributions F and G have bounded supports and that

there is a unique number p� such that the expected demand at price p� is equal to

expected supply, i.e.

(2) k1 � F (p�) = k2 � (1�G(p�)):
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Remark 1. The above assumption does not seem too restrictive. Indeed, consider,

for example, the case where the number of buyers and sellers are equal, i.e. k1 = k2;

F and G are continuous; and the supports of F and G are proper intervals [a; b]

and [c; d]. Then, one of the following three cases can occur:

1. c > b, the valuation of a buyer is always smaller then the valuation of a seller.

In this case the eÆcient allocation requires each seller to keep his good. It is trivial

to implement it.

2. a > d, the valuation of a seller is always smaller then the valuation of a buyer.

In this case the eÆcient allocation requires that each buyer gets a good. We can

implement the eÆcient allocation with a mechanism which gives the goods to all

buyers for a �xed price of p�, where p� is any number in [d; a].

3. The support of F and G have an intersection with a non-empty interior. This is

the case where the Myerson-Satterthwaite Impossibility Theorem holds and in which

we are interested. Note that in this case our assumption will always be satis�ed,

there is a unique price p� satisfying Equation (2).

2.2. Market Mechanisms. Appealing to the Revelation Principle we can limit

ourselves to mechanisms that induce buyers and sellers to truthfully reveal their

valuations. More precisely, for any �xed market size m 2 N a (direct) market

mechanism Mm consists of a pair of functions (q; t), where q and t are called

respectively allocation and transfer payment rule. For any pro�le of valuations

v = (vi)i2B[S and player i 2 B [ S the number qi(v) is the probability that player

i ends up with one unit of the good and ti(v) is the net payment received by player

i.

As qi(v) are probabilities, they have to lie in the interval [0; 1]. In addition, the

usual feasibility assumption X
i2B[S

qi(v) = k1 �m

has to be satis�ed. The individual rationality conditions translate in our framework

into

E(qi(v) � vi + ti(v) j vi) > 0 for i 2 B

and

E(qi(v) � vi + ti(v) j vi) > vi for i 2 S:

The incentive compatibility constraint for a player i 2 B [ S is equivalent to

E(qi(v) � vi + ti(v) j vi) > E(qi(v�i; v
0
i) � vi + ti(v�i; v

0
i) j vi)

for all types v0i; vi that are possible for player i.

For any mechanism M = (q; t) we de�ne the de�cit of the mechanism M to be

equal to

Expected De�cit(M) = E(
X

i2B[S

ti(v))

We will say that a mechanism is (ex ante) budget balanced if its expected de�cit is

equal to zero. In Section 5.3 we discuss the connection to ex post budget balance,

which requires that the de�cit is always equal to zero.
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2.3. IneÆciency. For any �xed market size m and mechanism M = (q; t) the

gains of trade from using the allocation rule q if the pro�le of valuations of all

players is v = (vi)i2B[S 2 RB[S are de�ned as

Exp. Gains of Trade(q) = E(
X

i2B[S

vi � qi(v)�
X
i2S

vi):

It will be useful to de�ne qeff to be the eÆcient allocation rule which maximizes

gains of trade. This means that qeff almost surely assigns the k1 �m goods to the

k1 �m players with the highest valuations.

To measure the ineÆciency of a particular mechanism Mm we compare the

expected gains of trade created by the mechanism with the expected gains from

trade implementable by a social planner in the case of full information. De�ne I(M),

the absolute ineÆciency of a direct, incentive compatible mechanism M = (q; t)

as the di�erence between the expected gains from trade created by the eÆcient

allocation rule and the expected gains from trade achieved by the mechanism Mm

i. e.,

I(Mm) = Exp. Gains of Trade(qeff )� Exp. Gains of Trade(q)

Now the asymptotic properties of a sequence of mechanisms (Mm)m2N specifying

one mechanism for each possible market size m 2 N can be understood in terms of

the asymptotic properties of the sequence (I(Mm))m2N.

Remark 2. The absolute ineÆciency measures non-realized gains of trades in

terms of units of the transfer payments. Thus, if transfer payments are calcu-

lated in dollars the absolute ineÆciency will tell us how many dollars could have

been gained under the eÆcient allocation rule.

Another notion of ineÆciency often used in the literature measures the inef-

�ciency as a percentage of expected gains of trade achievable under the eÆcient

allocation rule. More precisely, �(Mm), the relative ineÆciency of a market mech-

anism M = (q; t) is de�ned to be the fraction of the expected gains from trade

which could be achieved in the full information case, but are not achieved by the

mechanism M . Thus,

�(M) =
Exp. Gains of Trade(qeff )� Exp. Gains of Trade(q)

Exp. Gains of Trade(qeff )

=
I(M)

Exp. Gains of Trade(qeff )
:

The law of large numbers implies that Exp. Gains of Trade(qeff )
m

converges as m goes

to in�nity to

k2 � (1�G(p�)) � E(vb j vb > p�) + k1 � (1� F (p�)) � E(vs j vs > p�)� k1 �E(vs)

where b 2 B is a buyer, s 2 S is a seller. Using this it is easy to restate our results

in terms of relative ineÆciencies instead of absolute ineÆciencies.
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2.4. Comparing mechanisms. We will be interested in asymptotic properties

of market mechanisms as the number of traders becomes large. In particular, we

would like to compare the eÆciency of two sequences (Mm)m2N and (Nm)m2N,

where for each m 2 N, Mm and Nm are mechanisms for market size m. For this

we will use the sequences (I(Mm))m2N and (I(Nm))m2N. We will say that the

sequence (Mm)m2N is asymptotically less eÆcient then (Nm)m2N if and only if

lim inf
m!1

I(Mm)

I(Nm)
> 1:

Similarly, we will say that (Mm)m2N is asymptotically at least as eÆcient as

(Nm)m2N if and only if

lim sup
m!1

I(Mm)

I(Nm)
6 1:

Finally, we will say that a sequence of budget balanced mechanismsMm is strongly

asymptotically optimal (in the class of all budget balanced mechanisms) if it is at

least as eÆcient as any other sequence of budget balanced mechanisms Nm.

Remark 3. The de�nitions of absolute and relative ineÆciencies of a mechanism

imply that for any two mechanisms

I(M)

I(N)
=
�(M)

�(N)
:

Thus, the above de�nitions could have been as well stated in terms of relative inef-

�ciencies.

A weaker notion of asymptotic eÆciency can be de�ned analogously. A sequence

(Mm)m2N is weakly at least as eÆcient as (Nm)m2N if and only if

lim sup
m!1

I(Mm)

I(Nm)
<1:

A sequence of budget balanced mechanismsMm is weakly asymptotically optimal if

it is weakly at least as eÆcient as any other sequence of budget balanced mechanisms

Nm:15

3. The cost of efficiency

For a market of size m we will de�ne V CGm to be the Vickrey-Clarke-Groves

mechanism where the expected gains of a buyer with lowest valuation and of a

seller with highest valuation are equal to zero. The signi�cance of the mechanism

V CGm lies in the fact (Krishna, Perry (1998)) that, under weak assumptions, any

eÆcient mechanism will run a de�cit at least as big as the de�cit of the V CGm.

Thus, by calculating the expected de�cit of the V CGm we will de facto calculate

the minimal cost of implementing the eÆcient outcome.

15The notion of weak asymptotic optimally is only used in the introduction of this paper to

state implications of our results for mechanisms studied previously in the literature.
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3.1. De�nition of the VCGm. Fix a market size m 2 N. We will denote by

V CGm the Vickrey-Clarke-Groves mechanism in which the expected gains of a

buyer with lowest valuation and of a seller with highest valuation are equal to zero.

This means that the allocation rule of the V CGm is equal to the eÆcient allo-

cation rule qeff , which assigns the k1 �m objects to the k1 �m players with highest

valuations vi. For the sake of concreteness we will assume that the allocation rule

assigns an object with equal probability to two players in case of ties.

The payment rule tV CG
m

is de�ned by

(3) tV CG
m

i (v) =

�
SW�i(v)� SW (vb; v�i) if i 2 B

SW�i(v)� SW (vs; v�i) + vs if i 2 S

where vb is the smallest possible valuation of a buyer in the support of G, vs is

the highest possible valuation of a seller in the support of F , SW (v) is the social

welfare under the eÆcient allocation:

SW (v) =
X

i2B[S

vi � qeffi (v);

and SW�i(v) is de�ned as

SW�i(v) =
X

j2B[S�fig

vj � qeffj (v):

In other words, the payment of a player corresponds to the impact she has on

social welfare compared with the situation if she had type vb (in case of buyers) or

vs (in case of sellers).

3.2. Further description of the VCGm. To get a more explicit description of

the payment rule tV CG
m

de�ne p(v) to be the highest valuation among the players

who end up without a good under the eÆcient allocation rule

p(v) = maxfvi : i 2 B [ S and qeff (v) < 1g:
Similarly de�ne p(v) to be the lowest valuation among the players who end up with

a good under the eÆcient allocation rule

p(v) = minfvi : i 2 B [ S and qeff (v) > 0g.
Note that if the valuations of all players are di�erent then p and p are respectively

equal to the (k1 �m)-th highest and (k1 �m+ 1)-th highest valuation.

Now Equation (3) implies that

(4) ti(v) =

(
�qeffi (v) �max(p(v); vb) if i 2 B

(1� q
eff
i (v)) �min(p(v); vs) if i 2 S

where vs is the highest valuation in the support of F and vb is the lowest valuation

in the support of G.

In other words, any buyer pays max(p(v); vb) if he does get a good and zero if

he does not get a good. Similarly, sellers get min(p(v); vs) if they sell their good

and zero if they do not.
10



3.3. The De�cit of the VCGm. The above characterization of the payment rule

allows a simple formula for the expected de�cit. For any pro�le v de�ne �eff (v) to

be equal to the number of trades under the eÆcient rule

�eff (v) =
X
i2B

q
eff
i (v) =

X
i2S

(1� q
eff
i (v)):

Now we can write the expected de�cit of the V CGm as

(5) Expected De�cit(V CGm) = E(�eff (v) � (min(p(v); vs)�max(p(v); vb)))

The next proposition describes the behavior of the expected de�cit as the market

size m goes to in�nity.

Proposition 1. Assume F and G are twice continuously di�erentiable in some

neighborhood of p� and G0(p�); F 0(p�) > 0. Then

Expected De�cit(V CGm)! k1 � F (p�)
k1 � F 0(p�) + k2 �G0(p�)

as m!1:

Proof. See appendix. �

In the appendix the above proposition is proven as a special case of Theorem 1

bellow, concerning the de�cit of the more general Vickrey-Clarke-Groves mecha-

nisms with trading fees. Here we would like to take a more informal path - we will

sketch an informal derivation of Proposition 1 and in the next section use the result

to provide intuition for Theorem 1.

To understand Proposition 1 recall that p� was de�ned by the equation

m � k1 � F (p�) = m � k2 � (1�G(p�)):

This means that the expected number of players with valuations higher or equal

then p� is equal to

k1 �m � (1� F (p�)) + k2 �m � (1�G(p�)) = m � k1:
As p and p where de�ned to be the (k1 �m)-th highest and (k1 �m+ 1)-th highest

valuation the law of large numbers suggests that that as the market size m becomes

larger both p and p will converge in probability to p�.

Consider Equation (5) describing the expected de�cit. Our assumptions guar-

antee that vb < p� < vs. The above observation that p and p will converge in

probability to p� suggests that

(6) Exp. De�cit(V CGm) = lim
m!1

E(�eff (v) � (p(v)� p(v)))

What can we say about the number of trades �eff (v) ? Note that, the number

of trades � is equal to the number of sellers with valuations higher then p. As for

large markets p will be usually close to p� the expected number of trades should be

approximately equal to the expected number of sellers with valuations higher then

p�, i.e.

(7) �eff (v) � k1 �m � F (p�) for large m.

Now consider the term (p(v) � p(v)). Note that p(v) � p(v) is the distance

between the (k1 �m)-th and (k1 �m+1)-th valuation among the players. What is the
11



expected distance of two neighboring valuations lying close to p� ? To answer this

question consider the average number of players with valuations in a small interval

[p � 1
2h; p +

1
2h]. If p is close to p� there will be approximately k1 �m � F 0(p�) � h

sellers and k2 �m �G0(p�) �h buyers with valuations in the interval. This means that

the distance between two neighboring valuations will be approximately

(8) p(v) � p(v) � 1

k1 �m � F 0(p�) + k2 �m �G0(p�)
for large m.

Substituting �eff (v)
m

and p(v)� p(v) from Equations (7) and (8) in Equation (6)

we get that the expected de�cit converges to k1�F (p�)
k1�F 0(p�)+k2�G0(p�)

.

3.4. The cost of eÆciency. As noted before, the signi�cance of the mechanism

V CGm lies in the following proposition, which is a corollary of the results of Kr-

ishna, Perry (1998):

Proposition 2 ( Krishna, Perry). Assume F and G have convex supports and are

twice continuously di�erentiable on their supports. Then the de�cit of any eÆcient,

incentive compatible, and individually rational mechanism is at least as high as the

de�cit of the V CGm.

Proof. The proposition is a straightforward application of Theorem 1 from Krishna,

Perry (1998). �

Remark 4. The above proposition together with Formula (5) gives a multilateral

version of the Myerson-Satterthwaite Impossibility Theorem. Indeed, assume the

assumptions of Proposition 2 hold and the point p� lies in the interior of the sup-

ports of F and G. Then Formula (5) implies that the expected de�cit of the V CGm

is positive. Therefore Proposition 2 implies that there is no incentive compatible,

individually rational and budget balanced mechanism implementing the eÆcient al-

location.

Propositions 1 and 2 together imply that if F and G have convex supports

and are twice continuously di�erentiable on the whole support the minimal cost of

implementing the eÆcient allocation will converge to k1�F (p�)
k1�F 0(p�)+k2�G0(p�)

.

It turns out that this is true even if we relax the global assumptions on the

distributions F and G.

Proposition 3. Assume F and G are twice continuously di�erentiable in some

neighborhood of p� and G0(p�); F 0(p�) > 0.

Let (Mm) be a sequence such that Mm is an eÆcient, incentive compatible, and

individually rational mechanisms for market size m. Then

lim inf
m!1

Expected De�cit(Mm) >
k1 � F (p�)

k1 � F 0(p�) + k2 �G0(p�)
:

Proof. The proposition is a special case of Theorem 3 from the next section. See

the appendix for details. �

Note that the above proposition implies that an approximation of a large market

with a \limiting model" which has a continuum of buyers and sellers with deter-

ministic valuations (distributed accordingly to F and G) is problematic. Indeed,
12



in this \limiting model" it is possible to implement the eÆcient allocation using

a budget balanced mechanism in which everybody trades at the price p�. Propo-

sition 3, however, shows that, in our framework, the de�cit will remain bounded

away from zero as the market becomes large .

As a direct corollary of Proposition 3 we get the following version of the Myerson-

Satterthwaite Impossibility Theorem for the case where the valuations of buyers and

sellers have distributions with possibly non-convex supports.

Proposition 4. Assume F and G are twice continuously di�erentiable in some

neighborhood of p� and G0(p�); F 0(p�) > 0.

Then there exists a number mo such that for all m > mo there is no incentive

compatible, individually rational, and budget balanced mechanism implementing the

eÆcient allocation rule for market size m.

Note that Proposition 4 shows that, qualitatively, ineÆciencies will arise as the

market size becomes large even if trade was eÆcient for small market sizes. This is

interesting because it contradicts the common intuition that strategic use of private

information becomes less relevant as the number of traders increases.

This ends our section on the implementation of the eÆcient allocation rule. We

showed that under very weak assumptions the minimal de�cit needed to implement

the eÆcient allocation asymptotically has to be at least equal k1�F (p�)
k1�F 0(p�)+k2�G0(p�)

.

Moreover, the bound is sharp, since, as shown in Proposition 1, the de�cit of the

V CGm converges to this value.

4. The VCG mechanism with a trading fee

In this section we introduce a modi�cation of the Vickrey-Clarke-Groves mecha-

nism, which is still individually rational and implementable in dominant strategies

but no longer runs a de�cit. The idea of the modi�cation is quite simple - we will

use a trading fee to reduce the de�cit of the Vickrey-Clarke-Groves mechanism.

The signi�cance of the new mechanism lies in the fact that we can explicitly deter-

mine the asymptotic behavior of its ineÆciency and then show that the ineÆciency

created by the introduction of the fee is small in the sense that the mechanism is

strongly asymptotically optimal.

4.1. Idea. We want to modify the V CGm in a way which eliminates the de�cit.

We will achieve this by charging a �xed fee R for each trade which occurs. For

the sake of concreteness imagine that each buyer has to pay R after he receives the

good.16 Thus a buyer who anticipates the fee will assign a new valuation v
(R)
b to

the good, which is given by

v
(R)
b = vb �R for all b 2 B:

16Who pays the fee is not very important. If we would imagine a situation where the seller

has to pay the fee after he sold his good the valuations v
(R)
i would change, but the following

construction would lead to the same allocation rule. This is also true if buyers and sellers actively

engaging in trade pay respectively fees R1 and R2, where R1 +R2 = R.

The reason for this is that the allocation rule is fully determined by the relative valuations of

buyers and sellers.

13



On the other hand, the valuations of the seller from keeping the good clearly are

una�ected by some fees which buyers have to pay, thus

v(R)s = vs for all s 2 S:

The V CGm(R) de�ned in this section can be seen as a two stage mechanism.

The �rst stage consists of a Vickrey-Clarke-Groves mechanism, which is identical

to the one discussed in Section 3 except that it uses the valuations v
(R)
i instead

of the real valuations. In the second stage all the buyers who got the good pay

R. As players participating in the �rst stage use the valuations given by v
(R)
i the

construction makes sense.

4.2. De�nition. The allocation rule of the V CGm(R) is de�ned to be the rule

which assigns the k1 �m goods to the k1 �m players for which the valuations v
(R)
i

are the highest. Again, we will assume that the allocation rule is symmetric in the

sense that it allocates the good with equal probabilities in case of ties. Note that

for each pro�le of valuations v = (vi)i2B[C the allocation rule qV CG
m(R) solves the

program

(9) max
q

X
i2B[S

v
(R)
i � qi(v)

where the maximum is taken over all allocation rules q.

The formula for the transfer payments is given by:

t
V CGm(R)
i (v) =

(
SW

(R)
�i (v)� SW (R)(vb; v�i)� q

V CG(R)
i (v) � R if i 2 B

SW
(R)
�i (v)� SW (R)(vs; v�i) + v if i 2 S

where

SW (R)(v) =
X

i2B[S

v
(R)
i � qV CG(R)

i (v)

and

SW
(R)
�io

(v) =
X

i2B[S�fiog

v
(R)
i � qV CG(R)

i (v)

for any player io 2 B [ S.
Proposition 5. The mechanism V CGm(Rm) de�ned above is individually rational

and implementable in dominant strategies for any m 2 N and R 2 R.
Proof. The derivation is routine. To verify the individual rationality condition of a

buyer i 2 B notice that his utility after reporting his type truthfully is given by

vi � qV CG
m(R)

i (v) + ti(v) = SW (R)(v)� SW (R)(vb; v�i):

As SW (R)(v) is equal to the sum of the (k1 �m)-highest valuations v
(R)
i it is clearly

increasing in vi. Therefore SW (R)(v) � SW (R)(vb; v�i) > 0 and the individual

rationality constraint holds. The argument for a seller i 2 S is similar. 17

17For a seller i 2 S the utility after reporting his type truthfully is given by:

vi � q
V CGm(R)
i + ti = SW (R)(v) � SW (R)(vs; v�i) + vs:

14



To check that the mechanism is implementable in dominant strategies notice that

the utility of a buyer i 2 B after reporting type v0i is equal to vi �qV CG
m(R)

i (v0i; v�i)+

ti(v
0
i; v�i) or

(10)
X

i2B[S

v
(R)
i � qV CGm(R)

i (v0i; v�i)� SW (R)(vb; v�i)

As the allocation rule q
V CGm(R)
i was a solution to the program (9) it is clear that

v0i = vi maximizes expression (10) for any pro�le v�i. The argument for a seller

i 2 S is identical. �

4.3. Size of the fee. The next theorem is a generalization of Proposition 1 and

describes the de�cit of the V CGm(Rm).

Theorem 1. Assume F and G are twice continuously di�erentiable in some neigh-

borhood of p� and G0(p�); F 0(p�) > 0.

Let � 2 R be a �xed number and Rm any sequence of fees such that

lim
m!1

Rm �m = �:

Then the expected de�cit of the V CGm(Rm) converges to

k1 � F (p�) � ( 1

k1 � F 0(p�) + k2 �G0(p�)
� �):

Proof. See Appendix �

To understand Theorem 1 consider the interpretation of the V CGm(Rm) as a two

stage mechanism given in Section 4.1. The �rst stage consisted of a Vickrey-Clarke-

Groves mechanism which used the valuations v
(R)
i instead of the real valuations.

Notice that under the assumptions of the theorem Rm converges to zero as the

market size grows, therefore, the valuations v
(R)
i will converge to the real valuations

vi. In this situation Proposition 1 suggests that the �rst stage will run a de�cit

of k1�F (p�)
k1�F 0(p�)+k2�G0(p�)

. In the second stage all the buyers who got the good paid

R. Therefore, the second stage creates a surplus which is equal to Rm times the

number of conducted trades. As the number of conducted trades is approximately

equal to k1 �F (p�) �m and the fee Rm is assumed to be approximately equal to �
m

it

seems plausible that the surplus of the second stage should be equal to k1 �F (p�) ��.
Subtracting the surplus of the second stage from the de�cit of the �rst stage we get

the formula in the theorem for the total de�cit.

Using the theorem we are able to determine the size of the fee needed in order

to eliminate the de�cit, as seen in the next corollary.

Corollary 1. Assume F and G are twice continuously di�erentiable in some neigh-

borhood of p� and G0(p�); F 0(p�) > 0.

To check the individual rationality condition we have to verify that SW (R)(v)�SW (R)(vs; v�i)+

vs > vi. But this follows from the observation that by changing the type of player i from vs to vi
we can not decrease SW (R) by more than vs � vi.
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Then there exists a sequence of numbers Rm such that

1. The fees Rm satisfy

lim
m!1

Rm �m =
1

k1 � F 0(p�) + k2 �G0(p�)
:

2. For all m 2 N
Expected Surplus(V CGm(Rm)) > 0

Moreover, if F and G are continuous everywhere we can choose the fees Rm so that

the mechanisms V CGm(Rm) are ex ante budget balanced for all m 2 N:
Proof. See Appendix �

4.4. Calculation of Asymptotic ineÆciency. The following theorem charac-

terizes the size of ineÆciency caused by the introduction of fees.

Theorem 2. Assume F and G are twice continuously di�erentiable in some neigh-

borhood of p� and G0(p�); F 0(p�) > 0.

Let � 2 R be a �xed number and Rm any sequence of fees such that

Rm �m! �:

Then

I(V CGm(Rm)) �m! 1

2

k1 � F 0(p�) � k2 �G0(p�)

k1 � F 0(p�) + k2 �G0(p�)
� �2;

as m converges to in�nity.

Proof. See Appendix. �

The formal derivation of the above result is in the appendix. Here we will present

an informal argument.18 To calculate the absolute ineÆciency of the V CGm(Rm)

we need to compare its gains of trade with the gains of trade if the eÆcient allocation

rule was implemented, for example, by the V CGm(0). What is the ineÆciency

connected with the introduction of a fee Rm charged from all buyers who bought a

unit of the good? Consider the supply-demand diagram in Figure 1, which should

be familiar to any undergraduate economics student.

FIGURE 1

The fee charged from consumers moves the demand curve downwards by an amount

corresponding to the size of the fee. The e�ect of this is that some trades will not

be realized. The gains of trade lost due to the fee correspond to the area of the

small triangle shaded in the picture. To calculate the area of the triangle we need

to know the slopes of the demand and supply curves around the equilibrium price

p. To determine these slopes think how a small change of the price from p to p+ h

would a�ect expected supply. As the valuations of buyers are distributed according

to distribution F the probability that a seller has a valuation between p and p+h is

equal to F (p+h)�F (p). As there are k1 �m sellers the expected change in supply

is equal to k1 �m � (F (p+ h)�F (p)). Letting h go to zero we obtain that the slope

18The argument presented here is due to Asher Wolinsky.
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of the supply curve is 1
k1�m�F 0(p�) at an equilibrium price p�. Similar analysis gives

a slope of the demand curve equal to � 1
k2�m�G0(p�) : Simple geometry now implies

that the area of the triangle is equal to

1

2
� Rm � Rm

1
k1�m�F 0(p�) +

1
k2�m�G0(p�)

:

Using the fact that limm!1Rm �m = � we get the formula from the theorem.

For the important special case where Rm are chosen to achieve budget balance

as described in Corollary 1 we get the following result.

Corollary 2. Assume F and G are twice continuously di�erentiable in some neigh-

borhood of p� and G0(p�); F 0(p�) > 0.

Then there exists a sequence of numbers Rm such that

1. The absolute ineÆciency of the V CGm(Rm) converges to

lim
m!1

I(V CGm(Rm)) �m =
1

2

k1 � F 0(p�) � k2 �G0(p�)

(k1 � F 0(p�) + k2 �G0(p�))3
:

2. For all m 2 N
Expected Surplus(V CGm(Rm)) > 0

Moreover, if F and G are continuous everywhere we can choose the fees Rm so that

the mechanisms V CGm(Rm) are ex ante budget balanced for all m 2 N:

Proof. The result follows immediately from Corollary 1 and Theorem 2. �

Remark 5. In the case where F and G are not continuous it is still easy to con-

struct a sequence of mechanismsMm which are individually rational, implementable

in dominant strategies, ex ante budget balanced and whose relative ineÆciency con-

verges to zero at the same rate as in Corollary 2. Indeed, to construct such a

sequence it is enough to take a sequence of fees Rm as described in Corollary 2 and

then de�ne the mechanism Mm to be identical to the V CGm(Rm) except that the

payment to each player is increased by Expected Surplus(V CGm(Rm))
k1�m+k2�m

.

To get a sequence of ex post budget balanced mechanism with the above properties

another modi�cation is necessary. This modi�cation is described in Section 5.3.

4.5. Asymptotic optimality. Theorems 1 and 2 describe how de�cit and ineÆ-

ciency of the V CGm(Rm) depend on the choice of the fees Rm. Putting the two

results together we see the trade o� between revenue and eÆciency. Let � 2 R be an

arbitrary number. If we want the de�cit of a sequence of mechanisms to converge

to some number smaller than

k1 � F (p�) � (�� 1

k1 � F 0(p�) + k2 �G0(p�)
)

we have to choose fees Rm such that � > lim inf
m!1

Rm � m and, therefore, incur an

ineÆciency of at least

1

2

k1 � F 0(p�) � k2 �G0(p�)

k1 � F 0(p�) + k2 �G0(p�)
� �2:
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Can we �nd a sequence of mechanisms which resolves the con
ict between rev-

enue and eÆciency in a better way? The following theorem says that asymptotically

this is not the case.

Theorem 3. Assume F and G are twice continuously di�erentiable in some neigh-

borhood of p� and G0(p�); F 0(p�) > 0.

Assume Mm is any sequence of incentive compatible, individually rational market

mechanisms such that for some � 2 R
lim sup
m!1

Expected De�cit(Mm) = k1 � F (p�) � ( 1

k1 � F 0(p�) + k2 �G0(p�)
� �)

as m goes to in�nity. Then

lim inf
m!1

I(Mm) �m >
1

2

k1 � F 0(p�) � k2 �G0(p�)

k1 � F 0(p�) + k2 �G0(p�)
� �2:

Proof. See Appendix. �

As a direct implication we get the following important corollary

Corollary 3. Assume F and G are twice continuously di�erentiable in some neigh-

borhood of p� and G0(p�); F 0(p�) > 0.

Assume Mm is any sequence of incentive compatible, individually rational, market

mechanisms such that

Expected Surplus(Mm) > 0

for all m 2 N. Then

lim inf
m!1

I(Mm) �m >
1

2

k1 � F 0(p�) � k2 �G0(p�)

(k1 � F 0(p�) + k2 �G0(p�))3
:

Moreover, the bound is sharp.

Proof. The �rst statement of the corollary is a trivial consequence of Theorem 3

for the case where � is set to be equal to 1
k1�F 0(p�)+k2�G0(p�)

. The sharpness of the

bounds follows from Corollary 2. �

Corollaries 2 and 3 imply that the Vickrey-Clarke-Groves mechanism with an

appropriately chosen trading fee is strongly asymptotically optimal in the class of

mechanisms which do not run an expected de�cit.

Why can't we do better than with the V CGm(Rm) ? To get a good understand-

ing for this result the reader might want to consult the proof of Theorem 3 in the

appendix. In short, the intuition is as follows. Not realizing a trade involving a

buyer with a very high valuation or a seller with a very low valuation will lead to

substantial losses in potential gains of trade. Therefore, somebody trying to design

a mechanisms outperforming the V CGm(Rm) has very little freedom when choos-

ing how to allocate the goods for players with valuations far away from p�.19 As

a consequence, it is not possible to outperform the V CGm(Rm) by changing the

allocation rule for players with valuations far away from p�.

On the other hand, choosing how to allocate the goods among buyers and sellers

with valuations very close to p� in some sense boils down to the question to which

19See Section A.5 of the appendix for details.
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extent the allocation rule should discriminate between buyers and sellers. In other

words if a seller has a valuation p close to p� and a buyer has a valuation p+h; the

question is about the size of h necessary for the mechanism to assign the good to

the buyer rather then to the seller. Note that a rule which does not discriminate

at all against buyers will run a de�cit and that a rule which discriminates against

buyers will not be eÆcient. More generally, the mechanism designer faces a trade

o� between eÆciency and de�cit { a rule which discriminates more against buyers

will create a higher revenue but at the same time be less eÆcient. As a result the

mechanism designer trying to maximize eÆciency will choose the fee which achieves

budget balance. The fact that the same fee is sometimes used to compare valuations

of buyers and sellers which are `far away from p�' is irrelevant.

5. Comments

5.1. Numerical Example. It turns out that our asymptotic results can have sur-

prisingly good predictive power even for relatively small market sizes.

Consider the case where there are twice as many buyers as sellers (i.e. k1 =

1, k2 = 2) and the valuations of buyers and sellers are drawn using quadratic

distributions20 with supports [$0; $100] for sellers and [$0; $120] for buyers (see

Figure 2).

FIGURE 2

This means that the price p� at which expected supply is equal to expected demand

is approximately equal to $69. At this price the probability of trading would be

approximately 77% for sellers and 39% for buyers.21

Using Corollary 3 we can predict that if there are 2 buyers and 4 sellers the

absolute ineÆciency of the constrained optimal mechanism22 is equal to23

1

2 �m
k1 � F 0(p�) � k2 �G0(p�)

(k1 � F 0(p�) + k2 �G0(p�))3
' $1:5

what corresponds to approximately 2.3% of the total gains from trade obtainable

under the eÆcient allocation rule.

The absolute ineÆciency of the constrained optimal mechanism calculated in

our simulations is approximately equal to $1.3 what corresponds to approximately

2.0% of the total gains from trade.

Using our asymptotic results we were able to predict the ineÆciency of the

constraint optimal mechanism with an accuracy of approximately 20 cents which

corresponded to 0.3% of the total expected gains of trade. It seems as if our results

20We consider bell-shaped density functions because of the common intuition that they are

relevant in economics. The choice of quadratic distributions is connected with computational

issues.
21The actual probability of engaging in trade under the eÆcient allocation rule will depend

slightly on the market size m.
22By constrained optimal mechanism we mean the budget balanced, incentive compatible and

individually rational mechanism with minimal ineÆciency.
23Notice that the prediction is the same whether we use k1 = 1, k2 = 2, m = 2 or k1 = 2,

k2 = 4, m = 1.
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have good predictive power even for markets involving as few as 6 players. In this

context it is noteworthy that, as the market size m increases, our predictions should

become more precise, while the numerical calculations will become more and more

diÆcult due to the, so called, \curse of dimensionality".

Table 1 illustrates the convergence of some values of interest as the market size

m goes to in�nity.

TABLE 1

The �rst two columns of the table correspond respectively to the market size m

and to the de�cit of the V CGm. The numbers in the third column are equal to m

times the absolute ineÆciency of the V CGm(Rm), where the fees Rm are chosen

to achieve budget balance. Finally the numbers in the last column are equal to m

times the absolute ineÆciency of the constraint optimal mechanism.24

5.2. Application. Let us use our understanding of the trade o� between revenue

and eÆciency to answer a 'real world' question:

Should a benevolent government use tax money to �nance the

de�cit of an eÆcient trading mechanism in the case of a large num-

ber of traders ?

First, consider the case where the government can costlessly collect lump sum

taxes to �nance the de�cit of an eÆcient market mechanism. Then doing so clearly

increases total social welfare independently of the market size m.

Usually, however, the collection of taxes is connected with costs on society arising

from behavioral disturbances and organizational issues. Assume, therefore, that the

cost of collecting an additional dollar of tax money is equal to a �xed value � > 1.

In this case �nancing the de�cit of an eÆcient mechanism via taxes causes a cost

on society which by Proposition 3 is asymptotically at least

(�� 1) � k1 � F (p�)
k1 � F 0(p�) + k2 �G0(p�)

> 0

On the other hand, the bene�ts of implementing the eÆcient outcome instead of

an asymptotically eÆcient budget balanced mechanism are equal to the absolute

ineÆciency of that mechanism and, thus, by Corollary 3, approximately equal to

k1 � F 0(p�) � k2 �G0(p�)

2m � (k1 � F 0(p�) + k2 �G0(p�))3
! 0

Therefore, it is clear that �nancing the de�cit using tax money will decrease total

social welfare as long as the market size m is large enough.

24The values in Table 1 were calculated using numerical methods and, therefore, might carry

errors. The main source of such errors should be the Monte Carlo methods used to calculate

various integrals. Various and repeated calculations suggest that these errors should not be bigger

then �$0:1 for all the values reported in Table 1.
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5.3. Budget balance. Until now we have only considered mechanisms which are

ex ante budget balanced in the sense that the expected de�cit is equal to zero:

(11) E(
X

i2B[S

ti) = 0:

We might consider a stronger notion of budget balance, where we require that

(12)
X

i2B[S

ti = 0 a. s.

It is well known that in environments with a �nite number of players and quasi-

linear utility functions the two requirements are equivalent in the sense that for

any incentive compatible and individually rational mechanism satisfying Equa-

tion (11) there is an outcome equivalent, incentive compatible, and individually

rational mechanism satisfying Equation (12). The intuition for this is quite simple.

As each of the players cares only about E(ti j vi) the expected payment given his

own type, it is possible to change the payments to achieve Equation (12) without

changing the values E(ti j vi).
Proposition 6. Assume that (q; t) is a market mechanism which is ex ante budget

balanced, i. e. E(
P

i2I ti) = 0:

De�ne a new payment rule s by

si(v) = E(ti(v) j vi)�
P

j2B[S�fig E(tj(v) j vj)
k1 �m+ k2 �m� 1

+E(ti(v)).

Then the mechanism (q; s) is ex post budget balanced (i.e.
P

i2I si = 0 a.s.) and

E(si(v) j vi) = E(ti(v) j vi) a.s. for all i 2 B [ S:
In particular, the mechanism (q; s) is individually rational and incentive compatible

if and only if the mechanism (q; t) has the respective properties.

Proof. Straightforward. �

In the case of our trading mechanisms we can apply the proposition to the

V CGm(Rm), where the fees where chosen to achieve budget balance. As a result,

we obtain an incentive compatible, individually rational mechanism which is ex

post budget balanced in the sense of Equation (12). The mechanism obtained in

this way will no longer be implementable in dominant strategies.25

6. Conclusion

In most economic situations agents have some private information about their

own preferences. The strategic use of this private information means that in many

trading situations any incentive compatible, individually rational mechanisms will

either run a de�cit or be ineÆcient. Indeed, we saw in Proposition 4 that in our

environment this will always be the case as long as the numbers of buyers and

sellers is large enough.

25As a matter of fact an ex post budget balanced mechanism can not be implementable in

dominant strategies. See Green and La�ont, 1977.
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This paper tried to study the con
ict between eÆciency and budget balance using

asymptotic results for markets involving many buyers and sellers. We introduced a

new class of mechanisms, the Vickrey-Clarke-Grovesmechanism with a �xed trading

fee. Theorems 1 and 2 described how the expected de�cit and ineÆciency depend

on the size of the fee. This allowed us to understand the trade o� between revenue

and eÆciency for the Vickrey-Clarke-Groves mechanisms with a �xed trading fee.

Then Theorem 3 proved that no other mechanisms can resolve this trade o� in a

way which is asymptotically superior. Using Theorems 1, 2 and 3 we were able to

deduce results for two important special cases. Section 3 dealt with the problem

of implementing the eÆcient allocation using a mechanism minimizing expected

de�cit. The corollaries of Section 4 dealt with the problem of �nding a budget

balanced mechanisms minimizing expected ineÆciency.

What this paper did not attempt to do is to study the strategic use of private

information from the point of view of a positive theorist. Our results are able

to answer questions about ineÆciencies connected with asymmetric information if

the market mechanism happens to be constrained optimal. The question what

market mechanisms we might expect in an unregulated competitive environment

with buyers, sellers and intermediaries was not addressed here.
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Appendix

A.1. Notation and Conventions. All results of this paper required that F and

G are twice continuously di�erentiable in some neighborhood of p� and that the

densities G0(p�) and F 0(p�) are positive. We will make this assumption throughout

this appendix, without explicitly stating it each time in the following.

The appendix will make extensive use of conditional expectations. As those

conditional expectations are de�ned up to a null event we will understand that any

statements involving one or more conditional expectations are ment to hold almost

surely. Assume for example that we say that

E(qV CG
m(Rm) j vi = p) �m2 < C1 for all p 6 p� � Æ:

This means that there exists a function Q : R ! R such that

Q(p) �m2 < C1 for all p 6 p� � Æ

and Q(vi) is equal to E(q
V CGm(Rm)(v) j vi) with probability one. The above con-

vention will allow us to omit most `a.s' in the following.

It will be useful to denote by � the value

� = k1 � F (p�) = k2 � (1�G(p�)):

Recall that for a �xed market size m the number � �m is equal to expected demand

and expected supply at price p�.

In the following we will continue to use the convention that m always denotes

the market size. In particularMm will always be a mechanism for the environment

of market size m, qm always an allocation rule for the environment of market size

m, etc.

A.2. Localization. In this subsection we will prove several results which will be

used in the proofs of Theorems 1 and 2 to `localize' our discussion around the point

p�.

Assume Rm is an arbitrary sequence of positive fees. Consider the mechanisms

V CGm(Rm). We will introduce some notation similar to the one introduced in

Section 3 to describe the V CGm mechanism. First de�ne �m(v) to be equal to the

number of trades in mechanism V CGm(Rm), i.e.

�m(v) =
X
i2B

q
V CGm(Rm)
i (v):

Next de�ne pm(v) to be the lowest valuation among the players who end up with

a good under the mechanism V CGm(Rm), i.e.

pm(v) = inffv(Rm)
i : i 2 B [ S and qV CG

m(Rm)(v) > 0g
and pm(v) to be the highest valuation among the players who end up without a

good under the mechanism V CGm(Rm), i. e.

pm(v) = supfv(Rm)
i : i 2 B [ S and qV CG

m(Rm)(v) < 1g:
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Note that, for a given m 2 N, if the v
(Rm)
i valuations of all players are di�erent

then pm and pm are respectively equal to the (k1 �m)-th highest and (k1 �m+1)-th

highest valuation v
(Rm)
i .

For each m 2 N the de�nitions of �m, pm, and pm depend on the fee Rm. In

some situations it will be useful to explicitly state this dependence. In this cases

we will write � (R
m), p(R

m), and p(R
m) instead of �m, pm, and pm.

Consider a �xed sequence of fees Rm such that Rm ! 0 as m ! 1. The weak

law of large numbers suggests that �m

m
should converge in probability to � and both

pm and pm should converge in probability to p�. As a matter of fact we will show

that the convergence is very fast. To do this we will use the following lemma.

Lemma 1 (Cherno�-Hoe�ding additive bounds). Let X1; X2; : : : ; Xn be a sequence

of independent random variables with values in f0; 1g. Then for any 
 > 0,

Pr(j
nX
i=1

Xi

n
�E(

nX
i=1

Xi

n
)j > 
) < 2e�2
2n

Proof. See Theorem A.4 in Alon, Spencer, and Erdos (1992) page 235. Apply it

once to Xi �E(Xi) and once to �(Xi �E(Xi)). �

The following lemma is the main result of this subsection.

Lemma 2. For any " > 0 and m 2 N de�ne Em
" to be the event that pm; pm 2

[p� � "; p� + "] and �m

m
2 [�� "; �+ "].

Then for any r 2 N, and " > 0

mr � (1� Pr(Em
" ))! 0

as m!1.

Proof. Fix an " > 0 and a m 2 N.
Choose a Æ > 0 small enough so that: (i) Æ < "; (ii) k1 � F (p� � Æ) > � � " and

k2 �(1�G(p�+Æ)) > ��"; (iii) k1 �F (p�+Æ) < �+" and k2 �(1�G(p��Æ)) < �+".

The remainder of the proof proceeds in �ve steps.

Step 1: For any m 2 N consider the event

Am = fpm < p� � Æg:

De�ne am and bm, to be respectively the number of sellers and buyers with valua-

tions v
(Rm)
i smaller than p� � Æ, i.e.

am =
X
i2S

1vi6p��Æ and bm =
X
i2B

1vi6p��Æ:

Clearly am and bm have binomial distributions with means m � k1 � F (p� � Æ) and

m �k2 �G(p��Æ+Rm) respectively. On the other hand the de�nition of Am implies

that

(13) Am = fa
m + bm

m
> k2g:
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Recall that k1 � F (p�) + k2 �G(p�) = k2. As R
m converges to zero there exist a


 > 0 and a mo 2 N such that for all m > mo

k1 � F (p� � Æ) + k2 �G(p� � Æ +Rm) < k2 � 2
:

Lemma 1 implies that Pr(jam
m
� k1 � F (p� � Æ)j > 
) 6 2e�2
2m and Pr(j bm

m
�

k2 � G(p� � Æ + Rm)j > 
) 6 2e�2
2m. Thus Pr(a
m+bm

m
> k2) 6 4e�2
2m for all

m � mo. But then Equation (13) implies that Pr(Am) 6 4e�2
2m for all m > mo.

In particular,

lim
m!1

Pr(Am) �mr = 0:

Step 2: An analogous reasoning as in Step 1 shows that if Bm is de�ned to be

Bm = fpm > p� + Æg
than limm!1 Pr(Bm) �mr = 0.

Step 3: Now de�ne

Cm = fpm > p� � Æ and
�m

m
< �� "g:

Notice that �m

m
< �� " means that the numbers of sellers with valuations smaller

than or equal to pm is smaller than (�� ") �m. But then pm > p� � Æ means that

the number of sellers with valuations smaller then p�� Æ must also be smaller than

(�� ") �m. Therefore

Cm � fa
m

m
< �� "g:

As E(am
m
) = k1 � F (p� � Æ) > �� " we can again use Lemma 1 to show that

lim
m!1

Pr(Am) �mr = 0:

Step 4: An analogous reasoning as in Step 3 shows that for

Dm = fpm < p� + Æ and
�m

m
> �+ "g

we have limm!1 Pr(Dm) �mr = 0.

Step 5: Note that the complement of the event Em
" is contained in Am [Bm [

Cm [Dm. In particular

(1� Pr(Em
" )) �mr 6 Pr(Am [ Bm [ Cm [Dm) �mr 6

6 (Pr(Am) + Pr(Bm) + Pr(Cm) + Pr(Dm)) �mr:

Steps 1 to 4 therefore imply that limm!1(1� Pr(Em
" )) �mr = 0. �

The following corollary describes an application of Lemma 2 which will be used

extensively in the following.

Corollary 4. Let �m be a sequence of functions such that for each m 2 N the

function �m assigns a real number �m(v) for each pro�le of valuations v in the

environment of market size m. Assume moreover that there is a number r such

that the functions �m
mr are uniformly bounded for all m 2 N.26 Then

lim sup
m!1

E(�m(v)) = lim sup
m!1

E(�m(v) jEm
" )

26This means that 9K2R8m2N8v j
�m(v)
mr j < K.
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and

lim inf
m!1

E(�m(v)) = lim inf
m!1

E(�m(v) jEm
" ):

Proof. Notice that E(�m(v)) is equal to

Pr(Em
" ) � E(�m(v)jEm

" ) + ((1� Pr(Em
" )) �mr) �E(�m(v)

mr
j:Em

" ):

The statement of the corollary follows from Lemma 2 as the sequence of expected

values E(�m(v)
mr j:Em

" ) is bounded. �

As a �rst application of Corollary 4 we prove the following result which will be

used in the proof of Theorem 2.

Corollary 5. Assume ~F and ~G is a pair of distributions with bounded supports

such that ~F and ~G are equal to F and G in some neighborhood of p�.

Consider the environment where the valuations of buyers and sellers are dis-

tributed respectively according to ~F and ~G. Compare this new environment with

the original environment where the valuations of buyers and sellers are distributed

respectively according to F and G.

Then the values

lim sup
m!1

I(V CGm(Rm)) �m 2 [�1;+1];

lim inf
m!1

I(V CGm(Rm)) �m 2 [�1;+1]

are the same in both environments.

Proof. We will organize the proof in several steps.

Step 1: Until now we were never concerned with the way the random valuations

of the players are generated. The reason for this is, of course, that it did not matter

as long as the valuations had a given joint distribution.

To compare the two environments in the proposition it will be, however, useful

to choose a particular probabilistic structure. Let xi for i 2 B [ S be independent

random variables uniformly distributed on (0; 1). De�ne

vi(xi) =

�
inffy : F (y) > xig for i 2 S

inffy : G(y) > xig for i 2 B

and

~vi(xi) =

�
inffy : ~F (y) > xig for i 2 S

inffy : ~G(y) > xig for i 2 B:

Note that vi(xi) are independent and distributed according to F (for i 2 S) and G

(for i 2 B). Similarly ~vi(xi) are independent and distributed according to ~F (for

i 2 S) and ~G (for i 2 B). For the rest of the proof we will assume that the random

valuations vi and ~vi are given by vi(xi) and ~vi(xi) respectively.

Step 2: Choose an " > 0 small enough so that (i) ~F and ~G are respectively equal

to F and G on the interval [p� � 3"; p�+3"], (ii) F and G are di�erentiable on the

interval [p��3"; p�+3"] (iii) F 0 and G0 are positive in the interval [p��3"; p�+3"].

Next, choose a number mo such that for all m > mo the fees Rm are smaller then

".
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Consider a player i 2 B [ S such that v
(Rm)
i (x) 2 [p� � 2 � "; p� + 2 � "]. Note

that v
(Rm)
i (x) 2 [p� � 2 � "; p� + 2 � "] implies that vi(x) 2 [p� � 3 � "; p� + 3 � "]. As

(i)-(iii) imply that on [p� � 3"; p� + 3"] the functions F and G are increasing and

respectively equal to ~F and ~G we can conclude that vi(x) = ~vi(x).

An analogous reasoning shows that ~v
(Rm)
i (x) 2 [p� � 2 � "; p� +2 � "] implies that

vi(x) = ~vi(x).

Step 3: Fix a market size m > mo. Consider a �xed pro�le of valuations v(x).

Assume i 2 B [ S is a player such that v
(Rm)
i (x) 2 [p� � 2 � "; p� + 2 � "]. We claim

that

8j2B[S v
(Rm)
i (xi) < v

(Rm)
j (xi) , ~v

(Rm)
i (xi) < ~v

(Rm)
j (xi)(14)

8j2B[S v
(Rm)
i (xi) > v

(Rm)
j (xi) , ~v

(Rm)
i (xi) > ~v

(Rm)
j (xi):(15)

To see that this is true consider the case where i is a buyer.27 We will prove

(14), the proof of (15) is analogous. Note that the fact that F is strictly increasing

and equal to ~F on [p�� 3 � "; p�+3 � "] means that for p 2 [p�� 3 � "; p�+3 � "] there
is a well de�ned inverse F�1(p) = ~F�1(p). Thus, we can use Step 2 to conclude

that F�1(v
(Rm)
i (x)) = ~F�1(~v

(Rm)
i (x)).

To prove (14) consider �rst the case where j 2 B [ S is another buyer. Then

v
(Rm)
i (xi) < v

(Rm)
j (xj) is equivalent to vi(xi) < vj(xi). As the distribution G

is strictly increasing in [p� � 3 � "; p� + 3 � "] the de�nitions of Step 1 imply that

vi(xi) < vj(xj) is equivalent to xi < xj . An analogous reasoning proves that

~vi(xi) < ~vj(xj) is equivalent to xi < xj . Thus (14) holds for this case.

Consider now the case where j 2 B [S is a seller. This means that v
(Rm)
j (xj) =

vj(xj). As F is strictly increasing on [p� � 3 � "; p� + 3 � "] the de�nitions of Step 1

imply that vi(xi) < vj(xj) if and only if F
�1(vi(xi)) < xj . Similarly ~vi(xi) < ~vj(xj)

if and only if ~F�1(~vi(xi)) < xj . As we have already argued that F�1(v
(Rm)
i (x)) =

~F�1(~v
(Rm)
i (x)) the statement follows also for this case.

Step 4: Recall that qV CG
m(Rm) assigns the goods to the players with the highest

valuations v
(Rm)
i (in the original environment) or ~v

(Rm)
i (in the new environment).

Assume pm(v(x)); pm(v(x)) 2 [p� � 2 � "; p� + 2 � "]. Then Step 2 and 3 imply that

pm(v(x)) = pm(~v(x)), pm(v(x)) = pm(~v(x)), and �m(v(x)) = �m(~v(x)).

Step 5: De�ne the event ~Em
" in the new environment analogous to Em

" in the

original environment. Step 4 implies that Em
" � gEm

" . As the role of the two

environments is totally symmetric an analogous reasoning proves that gEm
" � Em

" .

Thus gEm
" = Em

" .

Step 6: Recall that

I(M) = E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi):

Note that for m > mo the expected value

E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi jEm

" )

27The argument for the case where i is a seller is similar.
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is equal to

= E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi � 1vi2[p��2";p�+2"] jEm

" ):

But by Step 4 and Step 5 the last expression does not depend on the choice of the

environment. Thus

lim sup
m!1

m � E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi jEm

" )

and

lim inf
m!1

m � E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi jEm

" )

also do not depend on the choice of the environment. Corollary 4 however implies

that in both environments

lim sup
m!1

m � E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi) =

= lim sup
m!1

m � E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi jEm

" )

and

lim inf
m!1

m � E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi) =

= lim inf
m!1

m �E(
X

i2B[S

(q
V CGm(0)
i � q

V CGm(Rm)
i ) � vi jEm

" ):

Thus

lim sup
m!1

I(V CGm(Rm)) �m and lim inf
m!1

I(V CGm(Rm)) �m
do not depend on the environment. �

A.3. Proof of Theorem 1. Consider an " > 0 small enough so that F and G are

twice continuously di�erentiable in the interval [p� � "; p� + "] and F 0 and G0 are

positive in [p� � "; p� + "]. De�ne �m, pm, pm and Em
" for all m 2 N as in the last

subsection.

Notice that the de�nition of the transfer payment rule in Section 4.2 implies that

the expected de�cit is equal to

(16) Exp. De�cit(V CGm(Rm)) = E(
X

i2B[S

t
V CGm(Rm)
i ) =

= E(�m � (min(pm; vs)�max(pm; vb �Rm)�Rm);

where vs is the highest valuation in the support of F and vb is the lowest valuation

in the support of G. The de�nition of Em
" together with the above formula implies

that for large enough m

(�� ") �E(m � (pm � pm) jEm
" )� (�+ ") �m � Rm 6

6 E(
X

i2B[S

t
V CGm(Rm)
i jEm

" ) 6

6 (�+ ") �E(m � (pm � pm) jEm
" )� (�� ") �m � Rm:
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The above together with limm!1m � Rm = � implies that

(�� ") � lim inf
m!1

E(m � (pm � pm) jEm
" )� (�+ ") � � 6

6 lim inf
m!1

E(
X

i2B[S

t
V CGm(Rm)
i jEm

" ) 6 lim sup
m!1

E(
X

i2B[S

t
V CGm(Rm)
i jEm

" ) 6

6 (�� ") � lim sup
m!1

E(m � (pm � pm) jEm
" )� (�+ ") � �:

Using Corollary 4 we get that

(�� ") � lim inf
m!1

E(m � (pm � pm))� (�+ ") � � 6

6 lim inf
m!1

E(
X

i2B[S

t
V CGm(Rm)
i ) 6 lim sup

m!1
E(
X

i2B[S

t
V CGm(Rm)
i ) 6

6 (�� ") � lim sup
m!1

E(m � (pm � pm))� (�+ ") � �:
As the above holds for arbitrary small " > 0 we can conclude that

� � lim inf
m!1

E(m � (pm � pm))� � � � 6

(17) 6 lim inf
m!1

E(
X

i2B[S

t
V CGm(Rm)
i ) 6 lim sup

m!1
E(
X

i2B[S

t
V CGm(Rm)
i ) 6

6 � � lim sup
m!1

E(m � (pm � pm))� � � �:
We will prove the following lemma.

Lemma 3. Under the assumptions of the theorem limm!1E(m � (pm�pm)) exists
and

lim
m!1

E(m � (pm � pm)) =
1

k1 � F 0(p�) + k2 �G0(p�)

Before we prove Lemma 3 notice that Lemma 3 together with Formula (17)

implies that the expected de�cit of the V CGm(Rm) converges to

� � 1

k1 � F 0(p�) + k2 �G0(p�)
� � � �:

as m goes to in�nity.

Q.E.D.

Proof of Lemma 3. An informal argument for this result was given in section 3.3.

Unfortunately the formalized version of this argument is rather tedious and will

therefore be organized in several steps.

Step 1: For any " > 0 small enough so that F and G are di�erentiable at all

points in the interval [p� � "; p� + "] de�ne

�" = sup
p2[p��";p�+"]

max(jF 0(p)� F 0(p�)j; jG0(p)�G0(p�)j):

As F and G are twice continuously di�erentiable in some neighborhood of p� it is

clear that the function �(�) is continuous at zero and lim"!0�" = 0:

Choose an " > 0 small enough so that (i) F and G are di�erentiable in the

interval [p� � 5 � "; p� + 5 � "]; (ii) �5�" < min(F 0(p�); G0(p�)).
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Step 2: Recall that pm is the lowest valuation out of the �m buyers and the

k1 �m� �m sellers with valuations higher than pm. This means that m � (pm� pm)

conditional on pm and �m

m
has the distribution given by:

Pr(m � (pm � pm) 6 x j pm = p;
�m

m
= a) =

= 1� Pr(m � (pm � pm) > x j pm = p;
�m

m
= a) =

(18) = 1� (1� F (p+ x
m
))m�(k1�a)

(1� F (p))m�(k1�a)

(1�G(p+ x
m
+Rm))m�a

(1�G(p+Rm))m�a
=

= 1� (1� F (p+ x
m
)� F (p)

1� F (p)
)m�(k1�a) � (1� G(p+ x

m
+Rm)�G(p+Rm)

1�G(p+Rm)
)m�a

Step 3: Choose an mo such that for all numbers m > mo the fees Rm are

smaller then ".

For any m > mo de�ne the distribution functions Km
" ; L

m
" : R ! R by

Km
" (x) = 1�(1� x � (F 0(p�) + �5�")

m � (1� F (p� + "))
)m�(k1��+")�(1� x � (G0(p�) + �5�")

m � (1�G(p� + 2 � "))) )
m�(�+")

and

Lm" (x) = 1�(1� x � (F 0(p�)��5�")

m � (1� F (p� � "))
)m�(k1���")�(1� x � (G0(p�)��5�")

m � (1�G(p� � 2 � "))) )
m�(��")

respectively.

Using Equation (18) it is trivial to verify that for p 2 [p� � "; p� + "], a 2
[�� "; �+ "] and x � 2 � " �m

Km
" (x) 6 Pr(m � (pm � pm) > x j pm = p;

�m

m
= a) 6 Lm" (x):

This equality will be exploited in Step 5.

Step 4: De�ne K1
" and L1" to be exponential distributions with means

1
(F 0(p�)+�5�")�(k1��+")

1�F (p�+") + (G0(p�)+�5�")�(�+")
1�G(p�+2�")

and
1

(F 0(p�)��5�")�(k1���")
1�F (p��") + (G0(p�)+�5�")�(��")

1�G(p��2�")

respectively, i.e.

K1
" (x) = 1� e

�x�(
(F 0(p�)+�5�")�(k1��+")

1�F (p�+")
+

(G0(p�)+�5�")�(�+")

1�G(p�+2�")
)

and

L1" (x) = 1� e
�x�(

(F 0(p�)��5�")�(k1���")

1�F (p��")
+

(G0(p�)+�5�")�(��")

1�G(p��2�")
)
:

Using the de�nitions of Km
" and Lm" it is routine28 to verify that for any x > 0

Km
" (x) �!

m!1
K1
" (x) and Lm" (x) �!

m!1
L1" (x):

28Use the fact that for any x 2 R the sequence (1� x
m
)m converges (monotonically) to e�x as

m goes to in�nity.
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In other words Km
" and Lm" converge in distribution to K1

" and L1" , as m goes to

in�nity.

Step 5: Consider the distribution of m � (pm � pm) conditional on pm, �m

m
and

Em
" . Note that

Pr(m � (pm � pm) 6 x jEm
" ; p

m = p;
�m

m
= a) =

= 1� Pr(m � (pm � pm) > x j p� + " > pm; pm = p;
�m

m
= a) =

= 1� Pr(m � (p� + "� p) > m � (pm � pm) > x j pm = p; �
m

m
= a)

Pr(m � (p� + "� p) > m � (pm � pm) j pm = p; �
m

m
= a)

=

= 1�max(1� Pr(m � (pm � pm) 6 x j pm = p; �
m

m
= a)

Pr(m � (pm � pm) 6 m � (p� + "� p) j pm = p; �
m

m
= a)

; 0):

The above equality together with the inequalities from Step 4 imply that for

p 2 [p� � "; p� + "], a 2 [�� "; �+ "] and x
m
6 2 � "

1�max(1� Km
" (x)

Lm" (m � (p� + "� p))
; 0)

(�)

>

(19)
(�)

> Pr(m � (pm � pm) 6 x jEm
" ; p

m = p;
�m

m
= a)

(��)

>

(��)

> 1�max(1� Lm" (x)

Km
" (m � (p� + "� p))

; 0):

We will show that (**) holds also if p 2 [p� � "; p� + "], a 2 [� � "; � + "] but
x
m
� 2 � " ? Notice that in this case x � 2 � " �m > p� + " � p. This has several

consequences. First

Pr(m � (pm � pm) 6 x jEm
" ; p

m = p;
�m

m
= a) = 1

Secondly

Km
" (m � (p� + "� p)) > Km

" (x) > Lm" (x):

and therefore

1� Lm" (x)

Km
" (m � (p� + "� p))

� 0:

Thus for p 2 [p�� "; p�+ "], a 2 [�� "; �+ "] Equation (**) holds even if x
m
� 2 � ".

De�ne for m > mo the distribution functions Sm" ; T
m
" : R ! R by

Sm" (x) =

(
1 if x

m
� 2 � "

1�max(1� 1�Km
" (x)

1�Lm" (m�(p�+"�p)) ; 0) otherwise

and

Tm
" (x) = 1�max(1� 1� Lm" (x)

1�Km
" (m � (p� + "� p))

; 0):

The results of this step can now be summarized in the observation that for

p 2 [p� � "; p� + "], a 2 [�� "; �+ "] and x � 0

Sm" (x) > Pr(m � (pm � pm) 6 x jEm
" ; p

m = p;
�m

m
= a) > Tm

" (x)
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In other words, for any p 2 [p� � "; p� + "] and a 2 [� � "; � + "] the distribution

m � (pm � pm) conditional on Em
" , pm = p and �m

m
= a stochastically dominates

Sm" , but is itself stochastically dominated by Tm
" .

Before we can use the above �rst order stochastic dominance relationship we

need to establish a uniform bound on the distributions Tm
" .

Step 6: Notice that the de�nition of Tm
" implies that

Tm
" (x) > 1� (1� Lm" (x)) = Lm" (x):

The de�nition of Lm" implies that for any �xed x the sequence Lm" (x) is decreasing.

In particular, Lm" (x) > limm!1 Lm" (x) = L1" (x).

Therefore we can conclude that

Tm
" (x) > L1" (x):

for all m > mo.

Step 7: Let sm" and tm" be respectively the mean of the distributions Tm
" and

Sm" .

Step 5 implies that

sm" (x) 6 E(m � (pm � pm) jEm
" ; p

m = p;
�m

m
= a) 6 tm" (x):

As, by the law of iterated expectations, the expected value E(m � (pm � pm)) is

equal to

E(E(m � (pm � pm) > x jEm
" ; p

m = p;
�m

m
= a))

we can conclude that

sm" (x) 6 E(m � (pm � pm)) 6 tm" (x):

In particular,

(20) lim inf
m!1

sm" (x) 6 lim inf
m!1

E(m � (pm � pm)) 6

6 lim sup
m!1

E(m � (pm � pm)) 6 lim sup
m!1

tm" (x):

The de�nitions of Sm" and Tm
" in Step 5 imply immediately that for any x

lim
m!1

Sm" (x) = lim
m!1

Km
" (x) = K1

" (x)

and

lim
m!1

Tm
" (x) = lim

m!1
Lm" (x) = L1" (x)

In other words Sm" and Tm
" converge in distribution to K1

" (x) and L1" (x).

As we established in Step 6 that the distributions Sm" and Tm
" are uniformly

dominated by L1" , which is an exponential distribution and therefore integrable we

can use the Dominated Convergence Theorem to conclude that

lim
m!1

sm" =
1

(F 0(p�)+�5�")�(k1��+")
1�F (p�+") + (G0(p�)+�5�")�(�+")

1�G(p�+2�")

and

lim
m!1

tm" =
1

(F 0(p�)��5�")�(k1���")
1�F (p��") + (G0(p�)+�5�")�(��")

1�G(p��2�")
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Plugging in the above expressions in Equation (20) we get that

1
(F 0(p�)+�5�")�(k1��+")

1�F (p�+") + (G0(p�)+�5�")�(�+")
1�G(p�+2�")

6

6 lim inf
m!1

E(m � (pm � pm)) 6 lim sup
m!1

E(m � (pm � pm)) 6

6
1

(F 0(p�)��5�")�(k1���")
1�F (p��") + (G0(p�)+�5�")�(��")

1�G(p��2�")

As the above analysis holds for arbitrary small " > 0 we can conclude that the limit

lim
m!1

E(m � (pm � pm)) exists and is equal to

lim
m!1

E(m � (pm � pm)) =
1

(F 0(p�))�(k1��)
1�F (p�) + (G0(p�))��

1�G(p�)

�

A.4. Proof of Theorem 2. By Corollary 5 we can assume without loss of gen-

erality that: (i) the supports of the distributions F and G are identical and equal

to some interval [v; �v]; (ii) F and G are continuous on [v; �v] and twice continuously

di�erentiable on (v; �v); (iii) supp2(v;�v) F
0(p) < 1 and supp2(v;�v)G

0(p) < 1; (iv)

supp2(v;�v)
G0(p)
1�G(p) <1.

Consider a �xed market size m 2 N. Recall that the de�nition of I(V CGm(R))

implies that

I(V CGm(R)) = E(
X

i2B[S

qV CGm(0) (v) � vi �
X

i2B[S

qV CGm(Rm)(v) � vi):

Notice that for any R 2 R:X
i2B[S

qV CGm(R)(v) � vi =
X

i2B[S

qV CGm(R)(v) � v(R)i + � (R) �R;

where � (R) stands for the number of trades in the V CGm(R).

Recall that qV CGm(R) is the allocation rule maximizing
P

i2B[S q(v) �v
(R)

i . As the

distributions F and G are continuously di�erentiable E(
P

i2B[S q
V CGm(R)(v) � vi)

is di�erentiable. Thus the envelope theorem implies that

d

dR
E(
X

i2B[S

qV CGm(R)(v) � vi) = R � d

dR
E(� (R)):

Therefore the fundamental theorem of calculus implies that

I(V CGm(Rm)) = m � E(
X

i2B[S

qV CGm(0) � vi)�E(
X

i2B[S

qV CGm(Rm) � vi)

= �
Z
r2[0;Rm]

r �m � d

dR
E(� (r)) � dr(21)

= �
Z
s2[0;m�Rm]

s

m
� d

dR
E(� (

s
m
)) � ds:

Fix a value s 2 R and consider the mechanisms V CGm( s
m
). Note that, as the

distributions F and G are continuous, the event that two players have the same

valuation has probability zero. In particular, with probability 1 there will be a
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unique player which valuation is equal to pV CG
m(Rm). For any market size m let

im 2 B [ S be a random variable such that vim = pV CG
m( s

m
) with probability 1.

By the above remark im is determined up to a set of probability zero.

We will need the following two lemmas.

Lemma 4. For any m 2 N and s
m
2 R

1

m

d

dR
E(� (R) j �

( s
m
)

m
; pm)R= s

m
=

8<:�Pr(im2S j �
( s
m

)

m
;pm)�a�G0(p+ s

m
)

(1�G(p+ s
m
)) if pm + s

m
< v

0 if pm + s
m
> v

Proof. Note that

d

dR
E(� (R) j �

( s
m
)

m
= a; pm = p) =

= � lim
h!0

1

h
E(� (R) � � (R+h) j �

( s
m
)

m
= a; pm = p)

As � (R) � � (R+h) can take only values in f0; 1; 2; : : : ;min(k1 � m; k2 � m)g we can

rewrite the above expression as

= � lim
h!0

1

h

k1�mX
n=0

n � Pr(� (R) � � (R+h) = n j �
( s
m
)

m
= a; pm = p) =

and exchange the (�nite) sum and the limit

(22) = �
k1�mX
n=0

n � lim
h!0

Pr(� (R) � � (R+h) = n j � (
s
m

)

m
= a; pm = p)

h
:

Consider Pr(� (R+h) � � (R) = n j � (
s
m

)

m
= a; pm = p) for some �xed n 2 N. For

the number of trades to decrease by n it must be that there are n buyers who get

the good under the fee R, but do not get the good under the fee Rm+h. Of course

there must be instead n sellers who get the good under the fee Rm+h and did not

get the good under the fee R. As the distributions F and G are continuous we can

assume that there is just one player which valuation is equal to p. Then a player

i 2 B [ S gets a good under the fee Rm if and only if his valuation vR
m

i is strictly

bigger then pm. Recall that an in increase in the fee R meant that the valuations

vRi of all buyers decrease by h while the valuations of sellers remain constant. Thus

for the number of trades to decrease by n it must be that there are at least n buyers

with valuations v
( s
m
)

i in (p; p+ h] and n sellers with valuations v
( s
m
)

i in [p� h; p].

Consider �rst the case where the player with valuation pm which we denoted im

is a buyer. As there must be at least n buyers with valuations v
( s
m
)

i in (p; p + h]

and n sellers with valuations v
( s
m
)

i in [p � h; p] assumption (iii) (see beginning of

the proof of the theorem) implies that

(23) Pr(� (R) � � (R+h) = n j im 2 B;
� (

s
m
)

m
= a; pm = p) 6 O(h2�n):

Now consider the case where im 2 S. Again there must be at least n buyers

with valuations v
( s
m
)

i in (p; p + h] and n sellers with valuations v
( s
m
)

i in [p � h; p].
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As im is a seller with a valuation in [p� h; p] we get

(24) Pr(� (R) � � (R+h) = n j im 2 S;
� (

s
m
)

m
= a; pm = p) 6 O(h2�n�1)

Clearly Pr(� (R+h) � � (R) = n j � (
s
m

)

m
; pm) can be rewritten as a the sum

Pr(im 2 B j �
( s
m
)

m
; pm) � Pr(� (R) � � (R+h) = n j im 2 B;

� (
s
m
)

m
; pm)+

+Pr(im 2 S j �
( s
m
)

m
; pm) � Pr(� (R) � � (R+h) = n j im 2 S;

� (
s
m
)

m
; pm):

Thus we can use Equations (23) and (24) in Expression (22) to get that

d

dR
E(� (R) j �

( s
m
)

m
= a; pm = p) =

= �Pr(im 2 S j �
( s
m
)

m
; pm) � lim

h!0

Pr(� (R) � � (R+h) = 1 j im 2 S; �
( s
m

)

m
; pm)

h

= �Pr(im 2 S j �
( s
m
)

m
; pm) � lim

h!0

Pr(� (R) � � (R+h) > 1 j im 2 S; �
( s
m

)

m
; pm)

h

Let us look at Pr(� (
s
m
)� � (

s
m
+h) > 1 j im 2 S; �

( s
m

)

m
= a; pm = p). As i is a seller

the number of trades will decrease by at least 1 if and only if there is a buyer with

a valuation in [p; p+ h]. Therefore

Pr(� (
s
m
)�� ( sm+h) > 1 j im 2 S;

� (
s
m
)

m
; pm) =

(
1� (1�G(p+ s

m
+h))am

(1�G(p+ s
m
))am if pm + s

m
< v

0 if pm + s
m
> v

The statement of the lemma follows. �

Lemma 5. The probabilities Pr(im 2 S) converge to

� � F 0(p�)
F (p�)

(� � F 0(p�)
F (p�) + (k2 � �) � G0(p�)

G(p�) )
:

as m!1.

Proof. De�ne pm
b

to be the highest valuation v
(Rm)
i among all of the buyers with

valuations v
(Rm)
i < pm, i.e.

pm
b
(v) = supfv(Rm)

i : i 2 B and v
(Rm)
i < pmg

Similarly de�ne pm
s
to be the highest valuation v

(Rm)
i among all of the sellers with

valuations v
(Rm)
i < pm, i.e.

pm
b
(v) = supfv(Rm)

i : i 2 S and v
(Rm)
i < pmg

As pm is the highest valuation v
(Rm)
i among all players with valuations v

(Rm)
i < pm,

i.e.

pm(v) = supfv(Rm)
i : i 2 B [ S and v

(Rm)
i < pmg

the following equivalence holds almost surely

(25) im 2 S , pm
s
> pm

b
, m � (pm � pm

s
) < m � (pm � pm

b
):
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Note however that the de�nition of pm
s

and pm
b

immediately allows us to write

down formulas for the conditional probabilities

Pr(m � (pm � pm
b
) < x j p; �

m

m
) = 1� G(pm � x

m
)k2�m��m

G(p)k2�m��m

and

Pr(m � (pm � pm
s
) < x j p; �

m

m
) = 1� F (pm � x

m
)�

m

F (p)�m

Note that therefore m � (pm � pm
b
) and m � (pm � pm

s
) conditional on p = p and

�m

m
= a converge in distribution to exponential distributions with means G(p)

(k2�a)�G0(p)

and F (p)
a�F 0(p) . Using the same methods as in the proof of Lemma 3 we can conclude

that

lim
m!1

Pr(pm
s
> pm

b
j p = p;

�m

m
= a) =

a�F 0(p)
F (p)

(k2�a)�G0(p)
G(p) + a�F 0(p)

F (p)

Applying Corollary 4 for arbitrary small " > 0 we get the hypothesis. �

Consider a �xed m 2 N. Note that Lemma 4 together with assumption (v) on

the distribution G (see the beginning of the proof) guarantee that

1

m

d

dR
E(� (R)) =

1

m
E(

d

dR
E(� (R) j �

( s
m
)

m
= a; pm = p)):

Lemma 4 therefore implies that
1

m
� d
dR
E(� (R)) is uniformly bounded for all m 2 N.

The Dominated Convergence Theorem together with Equation (21) and limm!1 Rm�
m = � therefore implies that

lim inf
n!1

I(V CGm(Rm)) = �
Z
s2[0;�]

s � lim inf
m!1

1

m

d

dR
E(� (

s
m
)) � ds

and

lim sup
n!1

I(V CGm(Rm)) = �
Z
s2[0;�]

s � lim sup
m!1

1

m

d

dR
E(� (

s
m
)) � ds:

To complete the proof it is enough to show that for all s 2 [0; �]

(26)
1

m

d

dR
E(� (

s
m
))! k1 � F 0(p�) � k2 �G0(p�)

(k1 � F 0(p�) + k2 �G0(p�))

as m!1.

Consider a �xed s 2 [0; �]. As d
dR
E(� (R) j � (

s
m

)

m
= a; pm = p) is uniformly

bounded Corollary 4 implies that for any " > 0.

lim inf
m!1

1

m

d

dR
E(� (

s
m
)) = lim inf

m!1

1

m
E(

d

dR
E(� (R) j �

( s
m
)

m
= a; pm = p))

= lim inf
m!1

1

m
E(

d

dR
E(� (R) j �

(lim inf
m!1

s
m
)

m
= a; pm = p) jEm

" )

= lim inf
m!1

1

m

d

dR
E(� (

s
m
) jEm

" )

and similarly

lim sup
m!1

1

m

d

dR
E(� (

s
m
)) = lim sup

m!1

1

m

d

dR
E(� (

s
m
) jEm

" )
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Using Lemma 4 together with Lemma 5 and Corollary 4 we therefore get that

� � F 0(p�)
F (p�)

(� � F 0(p�)
F (p�) + (k2 � �) � G0(p�)

G(p�) )
� (�� ") �minp2[p��2";p�+2"]G

0(p)

maxp2[p��2";p�+2"]](1�G(p))
6

6 lim inf
m!1

1

m

d

dR
E(� (

s
m
)) 6 lim sup

m!1

1

m

d

dR
E(� (

s
m
)) 6

6
� � F 0(p�)

F (p�)

(� � F 0(p�)
F (p�) + (k2 � �) � G0(p�)

G(p�) )
� (�+ ") �maxp2[p��2";p�+2"]G

0(p)

minp2[p��2";p�+2"]](1�G(p))

As the above holds for arbitrary small " > 0 we get that lim
m!1

1
m

d
dR
E(� (

s
m
))

exists and is equal to

� � F 0(p�)
F (p�)

(� � F 0(p�)
F (p�) + (k2 � �) � G0(p�)

G(p�) )
� � �G0(p�)

(1�G(p�))
=

k1 � F 0(p�) � k2 �G0(p�)

(k1 � F 0(p�) + k2 �G0(p�))

We proved Equation (26) from which statement of the theorem followed.

Q.E.D.

A.5. Localization revisited. In Section 7.2 we proved some results which allowed

us to `localize' our discussion in the proofs of Theorems 1 and 2 around the point

p�. The following two lemmas will play a similar role in the proof of Theorem 3.

Before we can state the lemmas we need to introduce another de�nition.

In the following we will say that a market mechanism M = (q; t) is symmetric

if the allocation rule treats all buyers and all sellers symmetrically. Formally this

means that if � : B [ S ! B [ S is a permutation, such that �(B) = B (and

therefore �(S) = S) and v = (vi)i2B[S is a pro�le of valuations then

q�(i)((v�(i))i2B[S) = qi((vi)i2B[S)

for all i 2 B [ S.
Before reading the remainder of the appendix the reader might want to have

a look at Section A.1 to see the conventions we use to talk about conditional

expectations.

Lemma 6. Assume (Mm)m2N is a sequence of incentive compatible, symmetric,

not necessarily individually rational mechanisms29 such that

lim sup
m!1

I(Mm) �m <1:

Let " > 0. Then there exists constants C1, C2 and C3 such that

(i) For all p0 6 p� � " and m 2 N
max
i2B[S

E(qmi (v) j vi = p0) �m2 < C1:

(ii) For all p0 > p� + " and m 2 N
max
i2B[S

(1�E(qmi (v) j vi = p0)) �m2 < C2.

29Such that Mm is a mechanism for the environment of market size m.
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(iii) For all m 2 N and for any p0 and p00 such that either p0 6 p� � " and

p00 6 p� � " or p0 > p� + " and p00 > p� + "

max
i2B[S

jE(t(v�i; vi) j vi = p0)�E(t(v�i; vi) j vi = p00)j �m2 < C3:

Proof. We start with the proof of (i).

Notice that the incentive compatibility conditions imply that for any player

i 2 B [ S the conditional expectations E(qmi (v) j vi) are increasing. This means

that to prove (i) it is suÆcient to show that for any p0; p00 6 p� � " the sequence

maxi2B[S E(q
m
i (v) � 1[p0;p00](vi)) �m2 is bounded. Suppose this is not true. Than

for some p0; p00 6 p� � " either

(27) the sequence max
i2B

E(qmi (v) � 1[p0;p00](vi)) �m2 is unbounded

or

the sequence max
i2S

E(qmi (v) � 1[p0;p00](vi)) �m2 is unbounded.

For the sake of concreteness assume the �rst alternative.30 De�ne the sequence Qm

to be equal to the expected number of goods distributed to buyers with valuations

in [p0; p00], i.e.

Qm = E(
X
i2B

qmi (v) � 1[p0;p00](vi)):

As the mechanism are assumed to be symmetric E(qmi (v) �1[p0;p00](vi)) �m2 takes the

same value for all buyers i 2 B. Therefore (27) implies that the sequence Qm �m
is also unbounded. De�ne Rm = 0 for all m 2 N. Next de�ne Em

" for any " > 0

and m 2 N as in Section A.2. Using Corollary 4 we conclude that if we de�ne the

sequence ~Qm by
~Qm = E(

X
i2B

qmi (v) � 1[p0;p00](vi) jEm
"
3
):

then the sequence ~Qm �m is also unbounded.

Notice that conditional on Em
"
3
the eÆcient allocation rule assigns all goods to

players with valuations bigger than p�� "
3 . On the other hand, conditional on Em

"
3
,

the rule qm assigns on average ~Qm goods to players with valuations in [p0; p00]. This

implies that, conditional on Em
"
3
, the absolute ineÆciency of the mechanism Mm

must be at least
~Qm � ((p� � "

3
)� p00) > ~Qm � 2

3
":

But than the fact that ~Qm �m is unbounded implies that the sequence

E(
X

i2B[S

(qeffi � qmi ) � vi jEm
"
3
) �m

is also unbounded. Using Corollary 4 we get that the sequence

E(
X

i2B[S

(qeffi � qmi ) � vi) �m = I(Mm) �m

is unbounded which contradicts assumption that lim sup
m!1

I(Mm) �m <1.

The proof of part (ii) is analogous to the proof of part (i).

30The other case is identical.

38



To prove (iii) de�ne the constant C3 to be equal to

C3 = 2 �max(C1; C2) �max(jvsj; jvsj; jvbj; jvbj);
where C1 and C2 are the constants from parts (i) and (ii) of the lemma, and vs,

vs, vb and vb are respectively the highest and lowest valuations in the supports of

F and G. Next, rewrite the incentive compatibility constrains as

(E(qmi (v) j vi = p0)�E(qmi (v) j vi = p00)) � p00 6
6 E(t(v�i; vi) j vi = p0)�E(t(v�i; vi) j vi = p00) 6

(E(qmi (v) j vi = p0)�E(qmi (v) j vi = p00)) � p0
and apply part (i) and (ii) of the lemma to conclude that

jE(t(v�i; vi) j vi = p0)�E(t(v�i; vi) j vi = p00)j 6 C3

m2
:

�

As an application we get the following lemma.

Lemma 7. Assume co; do 2 R are arbitrary numbers and (Mm)m2N is a sequence

of incentive compatible, individually rational mechanisms31 such that

lim sup
m!1

I(Mm) �m <1

Assume moreover, that ~F and ~G is a pair of distributions on [0;1) with bounded

and convex supports such that ~F and ~G are equal to F and G in some neighborhood

of p�,

F (x) 6 ~F (x) and G(x) 6 ~G(x) for x 6 p�

and

F (x) > ~F (x) and G(x) > ~G(x) for x > p�:

Consider sequences ( ~Mm)m2N such that ~Mm is a symmetric, incentive compatible

and individually rational mechanisms in the environment of market size m where

the distributions of buyers and sellers are distributed according to the distributions
~F and ~G. Then there exists such a sequence ( ~Mm)m2N satisfying

lim sup
m!1

I( ~Mm) �m 6 lim sup
m!1

I(Mm) �m

and

lim inf
m!1

Expected De�cit( ~Mm) = lim inf
m!1

Expected De�cit(Mm):

Proof. The proof proceeds in several steps.

Step 1: Notice that it is enough to prove the theorem for the case where the

mechanisms Mm are symmetric. Indeed, assume a mechanism Mm = (qm; tm) is

not symmetric. Denote the set of all permutations � : B [ S ! B [ S such that

�(B) = B by �: Now, de�ne a new mechanism where allocation rule and payment

rule of a player i 2 B [ S are given respectively by

1

j�j
X

q�(i)((v�(i))i2B[S))

31Such that Mm is a mechanism for the environment of market size m.
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and
1

j�j
X

t�(i)((v�(i))i2B[S)):

It is trivial to verify that the so de�ned mechanism is symmetric, incentive compat-

ible, individually rational and has the same ineÆciency and de�cit as the original

mechanism. As we can substitute all mechanisms in the sequence (Mm)m2N which

are not symmetric with symmetric mechanism having the same ineÆciency and

de�cit it is enough to prove the lemma for the case where the initial sequence

(Mm)m2N consists only of symmetric mechanisms.

Step 2: Consider a �xed market size. Except in Corollary 5 we were never con-

cerned with the way the random valuations of the players were generated as long

as they have the desired joint distribution. Now we will again use the particular

probabilistic structure introduced in Corollary 5, which will allow easy compar-

isons between the environment where the distributions of buyers and sellers are

distributed according to F and G and the environment where they are distributed

according to ~F and ~G.

Let xi for i 2 B [ S be independent random variables uniformly distributed on

(0; 1). De�ne

vi(xi) =

�
inffy : F (y) > xig for i 2 S

inffy : G(y) > xig for i 2 B

and

~vi(xi) =

�
inffy : ~F (y) > xig for i 2 S

inffy : ~G(y) > xig for i 2 B:

Note that vi(xi) are independent and distributed according to F (for i 2 S) and G

(for i 2 B). Similarly ~vi(xi) are independent and distributed according to ~F (for

i 2 S) and ~G (for i 2 B). In the following we will assume that the valuations vi
and ~vi are given by vi(xi) and ~vi(xi) respectively.

For all m 2 N de�ne the mechanism ~Nm = (~qm; ~sm) as follows. For any player

i 2 B [ S the allocation rule ~qm is given by

~qmi ((~vi(xi))i2B[S) = qmi ((vi(xi))i2B[S)

while the transfer payment rule ~sm is given by

~smi (~v) = ~qi(~v�i; p
�) � p� + tmi (~v�i; p

�)� ~qi(~v) � vi +
Z vi

p�
E(~qi(~v) j ~vi = x) � dx:

Step 3: Choose an " > 0 such that (i) in the interval [p��"; p�+"] both F and G

are twice continuously di�erentiable, and have positive densities (ii) F (p) = ~F (p),

G(p) = ~G(p) for all p 2 [p� � "; p� + "]: Note that then our de�nition implies that

for x 2 [p� � "; p� + "]

E(~qmi (~v) j ~vi = x) = E(qmi (v) j vi = x)

and

E(~smi (~v) j ~vi = x) = E(tmi (v) j vi = x):

Step 4: The fact that the mechanisms Mm are incentive compatible implies

that E(qi(v) j vi) is increasing. But then the de�nition of the allocation rule ~qm
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implies that E(~qi(v) j vi) is also increasing. In this situation it is straightforward

to verify that the mechanism ~Nm = (~qm; ~sm) given by the above formulas are also

incentive compatible.

Step 5: We will show that

lim sup
m!1

I( ~Nm) �m 6 lim sup
m!1

I(Mm) �m:

Recall that

I(Mm) = E(
X

i2B[S

qeffi (v) � vi �
X

i2B[S

qmi (vi) � vi)

Consider a pro�le (xi)i2B[S such that (vi(xi))i2B[S lies in the event Em
" , where

Em
" is de�ned as in Section 7.2.32 Consider a �xed player i 2 B [ S. Note that if

vi(xi) 2 [p� � "; p� + "] then vi(xi) = ~vi(xi) and therefore

q
eff
i ((vi(xi))i2B[S) � vi(xi)� qmi ((vi(xi))i2B[S) � vi(xi) =
= ~qeffi ((~vi(xi))i2B[S) � ~vi(xi)� ~qmi ((~vi(xi))i2B[S) � ~vi(xi):

On the other hand, if vi(xi) < p� � " then our assumption that

F (p) 6 ~F (p) and G(p) 6 ~G(p) for x 6 p�

implies that vi(xi) > ~vi(xi). But in this case conditional on the event Em
" both

qeffi ((vi(xi))i2B[S) and q
eff

i ((~vi(xi))i2B[S) are equal to 1. Therefore the de�nition

of ~qm implies

(qeffi ((vi(xi))i2B[S)� qmi ((vi(xi))i2B[S)) � vi(xi) >
> (~qeffi ((~vi(xi))i2B[S) � ~vi(xi)� ~qmi ((~vi(xi))i2B[S) � ~vi(xi):

Finally, if vi(xi) > p� � " a similar analysis gives

(qeffi ((vi(xi))i2B[S)� qmi ((vi(xi))i2B[S)) � vi(xi) >
> (~qeffi ((~vi(xi))i2B[S) � ~vi(xi)� ~qmi ((~vi(xi))i2B[S) � ~vi(xi):

Combining the above we get that

E(
X

i2B[S

qeffi (v) � vi �
X

i2B[S

qmi (vi) � vi jEm
" ) >

> E(
X

i2B[S

~qeffi (~vi) � ~vi �
X

i2B[S

~qmi (~vi) � ~vi jEm
" ):

Using Corollary 4 we conclude that

lim sup
m!1

I( ~Nm) �m 6 lim sup
m!1

I(Mm) �m:

Step 6: As the mechanisms Mm were assumed to be symmetric the de�nition

of ~Nm immediately implies that the mechanisms ~Nm are also symmetric. Step 5

therefore implies that we can apply Lemma 6 not only to the sequenceMm, but also

to the sequence ~Nm. Let C1, C2, C3 and ~C1, ~C2, ~C3 be respectively the constants

32Notice that this condition does not depend which of the two environments is used to de�ne

Em" .
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from Lemma 6 for the mechanisms Mm and ~Nm. Now de�ne the payment rule ~tm

by

~tmi (~v) = ~smi (~v)+
2 �max(C3; ~C3)

m2
+
4 �max(C1; C2; ~C1; ~C2)

m2
�max(jvsj; jvsj; jvbj; jvbj)

and set ~Mm = (~qm; ~tm). Note that Step 4 implies that ~Mm is incentive compatible

and Step 5 implies that lim supm!1 I( ~Mm) �m <1.

Step 7: The individual rationality constrains for the mechanisms ~Mm follow

directly from the individual rationality constrains for the mechanisms Mm for the

types p� � " and p� + ", Step 3 and Lemma 6. Similarly

lim inf
m!1

Expected De�cit( ~Mm) = lim inf
m!1

Expected De�cit(Mm)

follows from Lemma 6 and Step 3. �

A.6. Proof of Theorem 3. Notice that by Lemma 7 we can restrict our attention

to the case where F and G have convex supports, are continuous, twice continuously

di�erentiable on the interior of their supports, and have densities which are bound

away from zero on the interior of the respective supports.

We will need the following lemma

Lemma 8. For any market mechanism Mm = (q; t) satisfying the above assump-

tions

Exp. De�fcit(Mm) >

> E(
X
s2S

(qi(v) � (vi + F (vi)

F 0(vi)
)� �vs) +

X
b2B

qi(v) � (vi � 1�G(vi)

G0(vi)
))

In case of Mm = V CGm(Rm) we can substitute the inequality with an equality.

Proof. Standard. �

For each m 2 N let us look at the program of �nding an allocation rule ~q

maximizing:

max
q

E(
X

i2B[S

qi(v) � vi)

subject to the budget constraint

E(
X
s2S

(qi(v) � (vi + F (vi)

F 0(vi)
)� �vs) +

X
b2B

qi(v) � (vi � 1�G(vi)

G0(vi)
)) 6

6 Expected De�cit(Mm)

This is a standard maximization program having a solution ~qm which is uniquely

determined up to set of Lebesque measure zero. Note that Lemma 8 implies that

the ineÆciency of ~qm is at least as small as the ineÆciency of Mm.

Let us describe a solution ~qm in more detail. Denote the multiplier of the budget

constraint by �m. ~qm allocates the k1 �m goods to the k1 �m players with the highest

virtual valuations

(28) vi +
�m

�m + 1
� F (vi)
F 0(vi)
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for sellers (i 2 S) and

(29) vi � �m

�m + 1
� 1�G(vi)

G0(vi)

for buyers (i 2 B).

As already said Lemma 8 implies that the ineÆciency of ~qm is at least as small

as the ineÆciency of Mm. Theorem 1 and 2 therefore imply that

(30) lim inf
m!1

I(~qm) �m 6
1

2

k1 � F 0(p�) � k2 �G0(p�)

k1 � F 0(p�) + k2 �G0(p�)
� �2:

But this means that �m ! 0 as m!1. We will need the following two results.

Lemma 9. Let Rm be a sequence of fees such that Rm �!
m!1

0. Let " > 0 and

de�ne the event Em
" as in Section 7.2. Then there exists an m0 2 N such that for

any m > m0

E(~qm(v) jEm
" ; vi = x) = 0 for x 6 p� � 2"

and

E(~qm(v) jEm
" ; vi = x) = 1 for x > p� + 2":

Proof. De�ne K = supp
F (p)
F 0(p) +supp

1�G(p)
G0(p) <1, where the �rst supremum is over

the interior of the support of F and the second over the interior of the support of

G. Note that the di�erence between the virtual valuations given by (28) and (29)

and the valuations v
(Rm)
i is at most Rm +K � �m. Therefore the statement follows

from the fact that Rm; �m ! 0. �

Lemma 10.

lim sup
n!1

�m �m <1:

Proof. Assume the statement of the lemma is not true. Then there is a sub-

sequence mk such that �mk � mk ! 1. Choose an " > 0 such that F (vi)
F 0(vi)

and 1�G(vi)
G0(vi)

are bounded away from zero on [p� � 2"; p� + 2"] and de�ne K =

infp2[p��2";p�+2"]min( F (vi)
F 0(vi)

;
1�G(vi)
G0(vi)

). Let Rm = 2�
m

for all m 2 N and de�ne the

event Em
" as in Section A.2. As �mk �mk �K !1 and Rmk �mk ! 2� there exists

a number ko such that for k > ko

�mk �K > Rmk

But then, conditional on Emk
" , the ineÆciency of the allocation rule ~qmk is higher

then the ineÆciency of the V CGmk (Rmk).

Using Corollary 4 we conclude that

lim inf
k!1

I(~qmk)�mk > lim inf
k!1

I(V CGmk(Rmk ))�mk =
1

2

k1 � F 0(p�) � k2 �G0(p�)

k1 � F 0(p�) + k2 �G0(p�)
�(2�)2:

As this contradicts (30) the statement of the lemma must be true. �

Choose an " > 0. De�ne

c1" = min
p2[p��2";p�+2"]

F (p)

F 0(p)
+ min

p2[p��2";p�+2"]

1�G(p)

G0(p)
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and

c2" = max
p2[p��2";p�+2"]

F (p)

F 0(p)
+ max

p2[p��2";p�+2"]

1�G(p)

G0(p)
:

Note that for large enough market sizes m 2 N the virtual utility functions given

by (28) and (29) will be strictly increasing in vi.
33 The fact that the virtual utility

functions are strictly increasing (for m > m0) means that the buyers which receive

the good under the allocation rule ~qm correspond to the buyers with the highest

valuations vi. Similarly the sellers which receive the good under the allocation rule

~qm are the buyers with the highest valuations vi. In this sense the allocation rule

~qm (for m > m0) is similar to the eÆcient allocation rule or the allocation rule of

the Vickrey-Clarke-Groves mechanism with a trading fee. Of course the allocation

rule still di�ers in the extend it discriminates between buyers and sellers.

The above observation together with Corollary 4 and Lemma 9 implies that

lim inf
m!1

I(V CGm(c2" �
�m

�m + 1
)) �m 6

(31) 6 lim inf
m!1

I(~qm) �m 6

6 lim inf
m!1

I(V CGm(c1" �
�m

�m + 1
)) �m:

Note that allocating a good to a seller ii 2 S instead to a buyer i2 2 B will decrease

the de�cit if and only if vi1 +
F (vi1 )

F 0(vi1 )
is bigger then vi2 � 1�G(vi2 )

G0(vi2 )
. This together

with Corollary 4 and Lemma 9 implies that

lim sup
m!1

Expected De�cit(V CGm(c1" �
�m

�m + 1
)) 6

6 lim sup
m!1

Expected De�cit(Mm) 6

6 lim sup
m!1

Expected De�cit(V CGm(c2" �
�m

�m + 1
)):

The last inequality together with Lemma 10 and Theorem 2 implies that

�(c1" � lim sup
m!1

�m

�m + 1
� 1

k1 � F 0(p�) + k2 �G0(p�)
) 6

6 �(�� 1

k1 � F 0(p�) + k2 �G0(p�)
) 6

6 �(c2" � lim sup
m!1

�m

�m + 1
� 1

k1 � F 0(p�) + k2 �G0(p�)
)

33The derivatives

(
F (p)

F 0(p)
)0 and (

1�G(p)

G0(p)
)0

are bounded. Indeed, F 0 and G0 are bounded away from zero and the �rst and second order

derivatives of F and G are bounded.

Therefore the virtual utility functions

vi +
�m

�m + 1
�
F (vi)

F 0(vi)
and vi �

�m

�m + 1
�
1�G(vi)

G0(vi)

will be strictly increasing as long as �m is chosen small enough.
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As the above equation has to hold for all " we get (by taking "! 0) that

lim sup
m!1

�m

�m + 1
=

�

lim
"!0

c1"
=

�
F (p�)
F 0(p�) +

1�G(p�)
G0(p�)

:

Now we can use equation (31) together with Theorem 3 to get that

1

2

k1 � F 0(p�) � k2 �G0(p�)

k1 � F 0(p�) + k2 �G0(p�)
� ( c1"

F (p�)
F 0(p�) +

1�G(p�)
G0(p�)

� �)2 6 lim inf
m!1

I(qm) �m

Noticing again, that the above inequality must hold for all " and taking the limit

as "! 0 we get that

1

2

k1 � F 0(p�) � k2 �G0(p�)

k1 � F 0(p�) + k2 �G0(p�)
� �2 6 lim inf

m!1
I(qm) �m

This together with

lim inf
m!1

I(~qm) �m 6 lim inf
m!1

I(Mm) �m
implies the statement of the theorem.

Q.E.D.

A.7. Corollaries. In this section we prove several corollaries and propositions

which follow from Theorems 1, 2 and 3.

Proof of Proposition 1. The statement of the proposition follows immediately from

Theorem 1 (see Section 4.3) for the case where � = 0 and Rm = 0 for allm 2 N. �

Proof of Proposition 3. We will show that proposition 3 follows from Theorem 3.

Assume the statement of the proposition is not true. Then there exists a sequence

of mechanisms Mm satisfying the assumptions of the proposition such that

lim inf
m!1

Expected De�cit(Mm) <
k1 � F (p�)

k1 � F 0(p�) + k2 �G0(p�)
:

Choose a c <
k1�F (p�)

k1�F 0(p�)+k2�G0(p�)
and a subsequence mk such that the expected

de�cit of the subsequence Mmk converges to c.

Now de�ne ~Mm to be the following sequence of market mechanisms. For all m

appearing in the subsequence (mk)k2N the mechanism ~Mm is equal to Mm. For all

m 2 N, which do not appear in the sequence (mk)k2N the mechanism ~Mm is de�ned

to be the mechanism for market size m which `does not do anything', i.e. allocates

all the goods to the sellers and does not make any transfer payments. Clearly ~Mm is

a sequence of individually rational, incentive compatible mechanisms. Notice that

for all m 2 N which do not appear in the sequence (mk)k2N the expected de�cit of

the mechanisms ~Mm is equal to zero. Therefore

lim sup
m!1

Expected De�cit( ~Mm) = max(0; c) <
k1 � F (p�)

k1 � F 0(p�) + k2 �G0(p�)
:

De�ne � = 1
k1�F 0(p�)+k2�G0(p�)

� max(0;c)
k1�F (p�) > 0. Apply Theorem 3 to the sequence

~Mm to conclude that

lim inf
m!1

I( ~Mm) �m >
1

2

k1 � F 0(p�) � k2 �G0(p�)

k1 � F 0(p�) + k2 �G0(p�)
� �2 > 0:
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This, however, contradicts the assumption that the mechanisms ~Mmk =Mmk were

eÆcient. �

Proof of Corollary 1. De�ne

Qm = inffR 2 [0;1) : Expected Surplus(V CGm(R)) > 0g:
Next choose sequences Rm and Sm, such

Qm � (1 + 1

m2
) > Rm > Qm > Sm > Qm � (1� 1

m2
)

and Expected SurplusV CG
m(Rm) > 0 for all m 2 N.

Consider the sequence V CGm( 2
m�(k1�F 0(p�)+k2�G0(p�))

). Note that Theorem 1 im-

plies that the expected surplus of the Vickrey-Clarke-Groves mechanism with a

fee 2
m�(k1�F 0(p�)+k2�G0(p�))

converges to 1
k1�F 0(p�)+k2�G0(p�)

as m goes to in�nity. As
1

k1�F 0(p�)+k2�G0(p�)
is strictly bigger then zero this implies that the sequence m �Qm

is bounded.

We will prove that

(32) m �Qm ! 1

k1 � F 0(p�) + k2 �G0(p�)
:

Suppose this is not the case. Then, the fact that m � Qm is bounded implies the

existence of a subsequence Qmk and a number c 6= 1
k1�F 0(p�)+k2�G0(p�)

such that

mk �Qmk ! c as k !1:

The de�nition of Rm and Sm imply that mk � Rmk and mk � Smk also converge to

c. Using Theorem 1 we therefore get that

lim
m!1

Expected Surplus(V CGmk (Rmk)) =

=
�

k1 � F 0(p�) + k2 �G0(p�)
� � � c =

= lim
m!1

Expected Surplus(V CGmk (Smk))

As the de�nition of Rm and Sm imply that the mechanisms V CGm(Rm) do not

run a de�cit and the mechanisms V CGm(Sm) do not run a surplus we get that the

above limits must be both equal zero. But this means that c = 1
k1�F 0(p�)+k2�G0(p�)

.

The contradiction proves that (32) indeed has to be true.

For the discontinuous case it is clear that the numbers Rm satisfy both conditions

stated in the theorem. In the continuous case the de�nition of the numbers Qm

implies that the mechanisms V CGm(Qm) are budget balanced. Therefore the fees

Qm ful�ll the conditions of the theorem. �
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Figures and Tables

Figure 1. An informal derivation of Theorem 2.

Market Size De�cit of V CGm m � I(V CGm(Rm)) m � I(Optm)
m=1 $18:1 $2:3 $2:2

m=2 $19:7 $2:7 $2:6

m=3 $20:1 $2:8 $2:7

m=5 $20:4 $2:9 $2:9

m!1 $20:77 $3:03 $3:03

Table 1. Convergence of some values of interest
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Figure 2. The densities F 0 and G0 in the example.
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