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Abstract

Quitting games are n-player sequential games in which, at any
stage, each player has the choice between continuing and quitting.
The game ends as soon as at least one player chooses to quit; player i
then receives a payoff ri

S , which depends on the set S of players that
did choose to quit. If the game never ends, the payoff to each player
is zero.

In this note, we study a four-player game, where the simplest equi-
librium profile is cyclic with period two.
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1 Introduction

Quitting games are I-player sequential games in which, at any stage, each
player has the choice between continuing and quitting. The game ends as
soon as at least one player chooses to quit; player i then receives a payoff ri

S,
which depends on the set S of players that did choose to quit. If the game
never ends, the payoff to each player is 0.

In such a game, a strategy of player i is a sequence xi = (xi
n)n≥0, where

xi
n is the probability that player i continues at stage n, provided the game

has not terminated before. Such a strategy is stationary if xi
n is independent

of i. We denote by ai
n the action played by player i in stage n, and denote

by t = inf {n ≥ 1, ai
n = qi} the stage in which the game terminates. Given a

profile x of strategies, the expected payoff to player i is

γi(x) = Ex

[
ri
St

1t<+∞
]
,

where Ex stands for the expectation with respect to the probability distri-
bution induced by x over the set of plays.

It is not known whether quitting games have an equilibrium payoff. Quit-
ting games therefore form an intriguing class of stochastic games. We recall
briefly existing results before presenting the contribution of this note.

In the case of two players, stationary ε-equilibria do exist. A three-
player example was devised by Flesch, Thuijsman and Vrieze (1997), where
ε-equilibrium strategies are more complex - they have a cyclic structure,
and the length of the cycle is at least 3. However, in this example, there
are equilibrium payoffs in the convex hull of the vectors r{i} ∈ RI , i ∈ I.
These payoffs can be obtained using a profile x that plays in any stage a
perturbation of (ci)i∈I . Therefore, it left open the possibility of finding ε-
equilibrium profiles, by means of analyzing the limit behavior of stationary
equilibria of discounted games, letting the discount factor go to zero. Indeed,
such an analysis was provided by Solan (1999), for the more general class of
three-player games with absorbing states.

The purpose of this note is to provide a four-player example, where all
the ε-equilibrium payoffs involve some kind of cyclic behavior, in which the
probability of quitting in any stage is bounded away from zero. The main
consequence is that all the known tools for proving the existence of equilib-
rium payoffs in stochastic games (see, e.g., Tuijsman and Vrieze (1986), Solan
(1999, 2000), Vieille (2000a,2000b)) seem likely to fail to yield any result in
general I-player quitting games. In a companion paper (Solan and Vieille
(2000)), we introduce new tools and provide sufficient conditions under which
quitting games have an equilibrium payoffs.
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2 The Example

We will study the following four player quitting game:

1

1

1

1

22

3

4

1, 4, 0, 0

continue

1, 1, 1, 1

4, 1, 0, 0

1, 0, 1, 1

0, 0, 4, 1

0, 1, 0, 0

1, 1, 0, 1

1, 1, 1, 0

0, 0, 1, 4

1, 0, 0, 0

0, 1, 1, 1

0, 0, 0, 1

1, 1, 1, 1

−1,−1,−1,−1

0, 0, 1, 0

In this game player 1 chooses a row (top row = continue), player 2 chooses
a column (left column = continue), player 3 chooses either the top two ma-
trices or the bottom two matrices, (top two matrices = continue) and player
4 chooses either the left two matrices or the right two matrices (left two
matrices = continue).

Note that there are the following symmetries in the payoff function: for
every 4-tuple of actions (a, b, c, d) we have:

v1(a, b, c, d) = v2(b, a, d, c),

v1(a, b, c, d) = v4(c, d, b, a) and

v2(a, b, c, d) = v3(c, d, b, a),

where vi(a, b, c, d) is the payoff to i if the action combination is (a, b, c, d)
(vi(c1, c2, c3, c4) = 0).

In section 2.1 we prove that this game admits an equilibrium profile y
that has the following structure:

yn =

{
(x, 1, z, 1) n odd
(1, x, 1, z) n even

where x, z ∈]0, 1[ are independent of n; that is, at odd stages players 2 and 4
continue, while 1 and 3 quit with positive probability, whereas at even stages
1 and 3 continue, while 2 and 4 quit with positive probability.

Thus, the game admits a cyclic equilibrium with period 2.
We then prove the following:

Proposition 1 The game does not admit a stationary 0-equilibrium.
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Proposition 2 For ε small enough, the game does not admit an ε-equilibrium
x such that ||xn − c|| < ε for every n.

It follows from Propositions 1 and 2 that the game does not admit a
stationary ε-equilibrium, provided ε is small enough. Indeed, let us argue
by contradiction, and assume that for every ε there exists a stationary ε-
equilibrium xε. Let x? be an accumulation point of {xε} as ε → 0. If x? is
terminating (x∗ 6= c) then it is a stationary 0-equilibrium, which is ruled out
by Proposition 1. Otherwise, x? = c, and then, for ε sufficiently small, there
is an ε-equilibrium x where ‖ xn − c ‖< ε, which is ruled out by Proposition
2.

Proposition 1 is proved in section 2.2, while Proposition 2 is proved in
section 2.3.

2.1 Cyclic equilibrium

We prove that the game possesses a cyclic equilibrium, where the length of
the cycle is 2. At odd stages players 2 and 4 play c2 and c4 respectively, and
players 1 and 3 continue with probability x and z respectively, both strictly
less than 1. At even stages players 1 and 3 play c1 and c3 respectively, and
players 2 and 4 continue with probability x and z respectively.

Formally, we study now profiles y that satisfy:

yn =

{
(x, 1, z, 1) n odd
(1, x, 1, z) n even

where x, z ∈]0, 1[ are independent of n.
The one-shot game played by players 1 and 3 at odd stages is

1

3

1− x

x

z 1− z

1, 0

γ1
c , γ

3
c

1,1

0,1

Figure 3: The game of players 1 and 3 at odd stages

In this game player 1 is the row player, player 3 is the column player, and γi
c

is the continuation payoff of player i = 1, 3. The payoffs received by players 2
and 4 if termination occurs in an odd stage are given by the matrix below, in
which the first coordinate of each entry is player 2’s payoff, and the second
coordinate is player 4’s payoff.
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0, 4
4, 0 1, 0

(1)

The one-shot game played by players 2 and 4 at even stages is

2

4

1− x

x

z 1− z

1, 0

γ2
c , γ

4
c

1,1

0,1

Figure 4: The game of players 2 and 4 at even stages

where player 2 is the row player, player 4 is the column player, and the
payoffs that are received by players 1 and 3 if termination occurs are given
by matrix (1). The two situations are identical (up to the continuation pay-
offs).

We now find necessary conditions on (x, z). First, (x, z) is a fully mixed
equilibrium of the matrix game in Figure (3), so that

xγ3
c = 1 and zγ1

c = 1,

and both players 1 and 3 receive 1 in this equilibrium.
By the symmetry of the profile, the continuation payoffs (resp. initial

payoffs) of players 2 and 4 must coincide with the initial payoffs (resp. con-
tinuation payoffs) of players 1 and 3. That is, (γ1

c , γ
3
c ) is the payoff received

in the matrix game (1), when the empty entry is filled with (1, 1) and the
row and column players play according to x and z respectively, so that{

γ1
c = xz + 4z(1− x) + (1− x)(1− z)

γ3
c = xz + 4z(1− x)

Set g = γ1
c and h = γ3

c . Since x = 1
h

and z = 1
g
, one gets{

g2h = 1 + 4(g − 1) + (g − 1)(h− 1)
gh2 = 1 + 4(g − 1)

which is equivalent to{
g = 3

4−h2

h root of (h− 1)(h4 + 3h3 − 2h2 − 9h + 4) = 0
(2)

Conversely, let (g, h) be a solution to (2) with g, h > 1, and define a cyclic
profile by x = 1

h
, z = 1

g
. Given the above properties, in order to prove that it

5



is an equilibrium, we need only prove that neither player 2 nor 4 can find it
profitable to quit in the first stage. This is clear, since players 2 and 4 would
receive at most 1 by quitting, whereas they get strictly more than 1 under
the cyclic profile.

Thus, the existence of such a cyclic equilibrium is equivalent to the ex-
istence of a solution (g, h) to system (2) with g, h > 1. If 1 < h < 2 then
1 < 3/(4 − h2). Hence we need to assert the existence of a root in ]1, 2[ of
the polynomial

Q(X) = X4 + 3X3 − 2X2 − 9X + 4.

Such a root exists since Q(1) < 0 < Q(2).

2.2 No Stationary Equilibria

We check that there is no stationary equilibrium. We do it according to the
number of players who play both actions with positive probability.

It is immediate to check that there is no stationary equilibrium in which
at least three players play pure strategies.

We shall now verify that there is no stationary equilibrium where two
players play pure stationary strategies. Indeed, assume that players 3 and
4 play pure stationary strategies. If such a case arises, players 1 and 2 are
playing a 2× 2 game. We will see that all the equilibria in these games are
pure, and therefore they cannot generate an equilibrium in the four-player
game.
Case 1: Players 3 and 4 play (q3, q4)
The unique equilibrium is (c1, c2, q3, q4).
Case 2: Players 3 and 4 play (c3, q4)
The unique equilibrium is (c1, q2, c3, q4).
Case 3: Players 3 and 4 play (q3, c4)— symmetric to case 2.
Case 4: Players 3 and 4 play (c3, c4)
There are two equilibria: (q1, c2, c3, c4) and (c1, q2, c3, c4).

We shall now see that there is no stationary equilibrium where players 2
and 4 play pure actions.
Case 1: Players 2 and 4 play (c2, c4)
The unique equilibrium is (q1, c2, q3, c4).
Case 2: Players 2 and 4 play (q2, c4)
The unique equilibrium is (1

2
c1 + 1

2
q1, q2, 1

4
c3 + 3

4
q3, c4). In this equilibrium

player 2 receives 5
8
, but if he plays c2 he gets 1.

Case 3: Players 2 and 4 play (c2, q4)
The unique equilibrium is (q1, c2, c3, q4).
Case 4: Players 2 and 4 play (q2, q4)
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The unique equilibrium is (c1, q2, q3, q4).
All the other cases are symmetric to these 8 cases.
Next, we check that there is no stationary equilibrium where one player,

say player 4, plays a pure strategy, and all the other players play a fully mixed
strategy. We denote by (x, y, z) the fully mixed stationary equilibrium in the
three-player game when player 4 plays some pure stationary strategy.

Assume first that player 4 plays q4. Then, in order to have player 2
indifferent, we should have

x(1− z) = z − (1− x)(1− z)

which implies that z = 1/2. In order to have player 1 indifferent, we should
have

(1− y)z + y(1− z) = yz − (1− y)(1− z)

which solves to yz = 1/2, and therefore y = 1, which is pure.
Assume now that player 4 plays c4. First we note that x < 1/2, otherwise

player 3 prefers to play q3 over c3. Next, if player 2 is indifferent between his
actions, then

(1− x)(1 + 3z)

1− xz
= x + (1− x)z

or equivalently,
(1− x)(1 + 2z + xz2) = (1− xz)x.

Since x < 1/2, it follows that 1− x > x. Therefore it follows that

1 + 2z + xz2 < 1− xz

or equivalently 2 + xz < −x, which is clearly false.

2.2.1 No fully mixed stationary equilibrium

We prove now by contradiction that there is no fully mixed stationary equi-
librium. Let (x∗, y∗, z∗, t∗) be such an equilibrium, where 0 < x∗ < 1 is the
probability player 1 puts on c1. Set (a∗, b∗, c∗, d∗) = γ(x∗, y∗, z∗, t∗). Notice
that 0 < a∗, b∗, c∗, d∗ < 1.

Let 0 < y, z, t < 1. Assume that a ∈]0, 1[ is the payoff of player 1 if
quitting does not occur at the first stage. Then, by playing c1 at stage 1,
player 1 gets

α(a; y, z, t) = yzt(a− 2)− 2yz + 3zt− yt + y + z,

whereas by playing q1 he gets

β(y, z, t) = t + (1− t)(y + z − 1).
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By the equilibrium condition for player 1,

a∗ = β(y∗, z∗, t∗) = α(a∗; y∗, z∗, t∗).

Therefore, the polynomial

∆1(y, z, t) = α(β(y, z, t); y, z, t)− β(y, z, t)

vanishes at (y∗, z∗, t∗). For simplicity, we write

∆1(y, z, t) = (a− 2)yzt− 2yz + 4zt + 1− 2t,

with the understanding that a stands for β(y, z, t). ∆2(x, z, t), ∆3(x, y, t) and
∆4(x, y, z) are defined in a symmetric way.

Observe that the four polynomials ∆1, ∆2, ∆3, ∆4 should vanish at (x∗, y∗, z∗, t∗).
The proof goes as follows. First we prove that (x∗, y∗, z∗, t∗) is not on the

diagonal of the unit four-dimensional square. We then define D = {y ≤ z ≤
t} and prove that ∆1 does not vanish on D ∩ {z ≥ 1

2
} whereas ∆4 does not

vanish on D ∩ {z ≤ 1
2
}.

Lemma 3 (x∗, y∗, z∗, t∗) is not on the diagonal of [0, 1]4; that is, it cannot
be the case that x∗ = y∗ = z∗ = t∗.

Proof. Assume to the contrary that (x, x, x, x) is a stationary equilib-
rium, where 0 ≤ x ≤ 1. Note that x = 1 (everyone continues) and x = 0
(everyone quits) do not correspond to an equilibrium. Thus, all players play
a fully mixed action at every stage.

In an equilibrium player 1 is indifferent between continuing and quitting,
hence we should have

4x2(1− x) + 2x(1− x)2

(1− x)3
= x + x2(1− x)− (1− x)3.

Simplifying both sides yields

2x + 2x2

1− 2x + x2
= −1 + 4x− 2x2.

Multiplying both sides by 1− 2x + x2 and rearranging the arguments yields

0 = 1− 4x + 13x2 − 8x3 + 2x4 = (1− x)(1− 3x + 10x2) + 2x3 + 2x4.

But the polynomial on the right is positive on ]0, 1[.

Without loss of generality, we assume y∗ = min(x∗, y∗, z∗, t∗). We now
point out several facts that will be used extensively:
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1. ∂a
∂t

(y, z, t) = 2− y − z > 0; ∂a
∂y

(y, z, t) = ∂a
∂z

(y, z, t) = 1− t > 0;

2. ∂∆1

∂y
(y, z, t) = (a− 2)zt + yzt(1− t)− 2z < 0;

3. ∂∆1

∂z
(y, z, t) = (a−2)yt+yzt(1−t)−2y+4t is decreasing in y: therefore,

on the region y ≤ t, ∂∆1

∂z
(y, z, t) ≥ ∂∆1

∂z
(t, z, t) = (a− 2)t2 + t2z(1− t) +

2t > 0.

Thus, on the region y ≤ t ≤ z,

∆1(y, z, t) ≥ ∆1(t, t, t) > 0.

Therefore, (x∗, y∗, z∗, t∗) belongs to the region D = {y ≤ z ≤ t}.

Lemma 4 The polynomial ∆1 does not vanish on {y ≤ z ≤ t} ∩ {z ≥ 1
2
}.

Proof. We argue by contradiction, and denote by (y∗, z∗, t∗) a root of
∆1. Notice that

y ≤ 1

2
≤ z ≤ t ⇒ ∆1(y, z, t) ≥ ∆1(

1

2
,
1

2
, t) =

1

2
− t

2
+ a

t

4
> 0.

Thus, y∗ ≥ 1
2
.

Claim: t∗ ≥ 2
3
.

We study ∆1 on the domain D1 = {1
2
≤ y ≤ z ≤ t ≤ 2

3
}. Notice first that

a is maximized at (2
3
, 2

3
, 2

3
), where it equals 7

9
< 5

6
.

On D1, ∆1(y, z, t) ≥ ∆1(z, z, t) = f(z, t) = (a−2)z2t−2z2 +4zt+1−2t.
One has ∂f

∂z
(z, t) = 2zt(a− 2)+2z2t(1− t)− 4z +4t. It is easily checked that

∂
∂t

(∂f
∂z

)(z, t) = 2z(a− 2) + 2zt(2− y− z) + 2z2(1− t)− 2z2t + 4 is positive on
D1. Therefore,

∂f

∂z
(z, t) ≤ ∂f

∂z
(z,

2

3
) =

4

3
z(a− 2) +

4

9
z2 − 4z +

8

3
.

The latter quantity is maximized at z = 1
2
. It is then equal to 2

3
(a− 1) + 1

9
.

Since a < 5
6
, this is negative.

Thus, ∂f
∂z

< 0 on D1. Therefore,

∆1(z, z, t) ≥ ∆1(t, t, t) > 0.

The claim is established.
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Claim: One has z∗ < 2
3
.

We shall prove that ∆1 > 0 on D2 = {1
2
≤ y, 2

3
≤ z ≤ t}. Notice first

that a ≥ 2
3

on D2.
Set first D3 = D2 ∩ {y < 2

3
}. On D3, ∆1(y, z, t) ≥ ∆1(

2
3
, 2

3
, t) = (a −

2)4
9
t + 1

9
+ 2

3
t. Now, ∀t ≥ 2

3
, β(2

3
, 2

3
, t) ≥ 7

9
≥ 3

4
. Therefore,

∆1(y, z, t) ≥ ∆1(
2

3
,
2

3
, t) ≥ −5

9
t +

1

9
+

2

3
t =

t + 1

9
> 0.

Set now D4 = D2 ∩ {y ≥ 2
3
}. On D4, one has

∂∆1

∂t
= (a− 2)yz + yzt(2− y − z) + 4z − 2 ≥ (a− 2)yz + 4z − 2.

The function (a− 2)yz + 4z− 2 is increasing in z. Therefore, it is minimized
on the diagonal {y = z}, where it is at least −5

4
y2 + 4y− 2: this minorant is

minimized at y = 2
3
; it is then equal to 1

9
. Therefore, ∆1 is increasing in t,

and
∆1(y, z, t) ≥ ∆1(z, z, z) > 0.

To conclude the proof of Lemma 4, we prove that ∆1 > 0 on D5 =
(
[1
2
, 2

3
]× [1

2
, 2

3
]× [2

3
, 1[
)
∩

{y ≤ z}.
On D5, a ≥ 2

3
, thus

∆1(y, z, t) ≥ ∆1(z, z, t) ≥ −4

3
z2t− 2z2 + 4zt + 1− 2t = h(z, t).

First,

h(
1

2
, t) = − t

3
− 1

2
+ 2t + 1− 2t =

1

2
− t

3
>

1

6
, and

h(
2

3
, t) = −16

27
t− 8

9
+

8

3
t + 1− 2t =

2

27
t +

1

9
>

1

7
.

Now, each z ∈ [1
2
, 2

3
] satisfies |z− 1

2
| ≤ 1

12
, or |z− 2

3
| ≤ 1

12
. Therefore, we need

only prove that |∂h
∂z

(z, t)| ≤ 12
7

on D5. The function

∂h

∂z
(z, t) = −8

3
zt− 4z + 4t

is increasing in t and decreasing in z. Thus, it is minimal at (2
3
, 2

3
), where it

equals −32
27

, and maximal at (1
2
, 1), where it equals 2

3
.

Lemma 5 The polynomial ∆4 does not vanish on {y ≤ z ≤ t} ∩ {z ≤ 1
2
}.
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Proof. We argue by contradiction and denote by (x∗, y∗, z∗) a root of
∆4. Recall that d∗ > 0. Therefore

0 = ∆4(x
∗, y∗, z∗) > −2x∗y∗z∗ − 2x∗z∗ + 4x∗y∗ + 1− 2y∗.

Hence, the polynomial P (x, y, z) = xyz + xz − 2xy + y − 1
2

is positive at
(x∗, y∗, z∗).

We prove now that P is negative on D6 =
(
[0, 1]× [0, 1

2
]× [0, 1

2
]
)
∩ {y ≤

z}.

1. on D6 ∩ {x ≤ 1
2
}, ∂P

∂y
(x, y, z) = xz − 2x + 1 ≥ 0; thus, P is maximized

at y = 1
2
; it is then equal to xz

2
+ xz − x = x(3

2
z − 1) < 0;

2. on D6 ∩ {x ≥ 1
2
}, ∂P

∂z
(x, y, z) = xy + x > 0; thus, P is maximized at

z = 1
2

and equals

Q(x, y) = y − 3

2
xy +

x

2
− 1

2
.

(a) on {y ≤ 1
3
}, ∂Q

∂x
(x, y) = 1

2
− 3

2
y < 0; thus, Q is maximized at x = 1,

and then equals y − 3
2
y < 0;

(b) on {y ≥ 1
3
}, ∂Q

∂x
(x, y) ≥ 0; thus, Q is maximized at x = 1

2
, and

then equals Q(1
2
, y) = 1

4
(y − 1) < 0.

2.3 Proof of Proposition 2

In this section we prove that there is no ε-equilibrium profile x such that
‖ xn − c ‖< ε for every n ∈ N, provided ε is sufficiently small.

We first introduce a few notations. Given a profile x, and a stage n∈ N,
we denote by xn = (xn, xn+1, ...) the profile induced by x in the subgame
starting from stage n. We let c denote the profile of actions (ci), and by ci

the pure stationary strategy that plays repeatedly ci.
Observe first that, x being an ε-equilibrium,

Px(t < +∞) ≥ 1− 2ε. (3)
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(Otherwise, any player i would benefit by playing according to xi for many
stages, before switching to qi). Since ||xn − c|| < ε for every n,

Px(t < +∞, |St| > 1) < 5ε. (4)

It follows that Px(t < +∞, |St| = 1) ≥ 1 − 7ε, hence
∑

i∈N γi(x) ≥
5(1− 7ε)− 4× 5ε = 5− 55ε. In particular, there exists a player i such that
γi(x) ≥ 5

4
− 55

4
ε ≥ 5

4
− 16ε.

Define ri = Px(St = {i}).
We now show that

ri ≥ 2

15
− 49

15
ε ≥ 2

15
− 4ε ∀i ∈ N . (5)

Indeed, γi(x) ≥ 1 − (ρ + 1)ε ≥ 1 − 2ρε for each i ∈ N (otherwise,
player i can quit at stage 1 and get at least 1−ρε.) By (4) we get r1 +4r2 ≥
γ1(x)−5ρε ≥ 1−7ρε, and similarly 4r1+r2 ≥ 1−7ρε. Thus, r1+r2 ≥ 2

5
−14

5
ρε.

In a similar way one gets r1+r2 ≤ 1−r3−r4 ≤ 3
5
+ 14

5
ρε. The set of solutions

(r1, r2) of these equations is a triangle in the positive quadrant, and one may
check that (5) holds for any such solution.

The rest of the proof goes as follows. In an equilibrium, as long as the
continuation payoff of some player is more than 1, he does not quit (since by
quitting he gets at most 1). In an ε-equilibrium this is no longer true, since
a player may quit with small probability even when quitting yields him low
payoff. We first prove that as long as the continuation payoff of some player
is more than 1 +

√
ε, the overall probability he quits cannot exceed O(

√
ε).

Assume w.l.o.g. that γ1(x) ≥ 5/4 − 16ε, then, since q1 ≥ 2/15 − 4ε
it follows that for some n1, γ1(xn) < 1 +

√
ε. Moreover, if n1 is the first

such stage, then player 1 quits with negligible probability until stage n1.
Since the continuation payoff of 1 decreases only when 2 quits, it follows that
player 2 quits with a non-negligible probability before stage n1. Since the
probability that 1 quits before stage 1 is negligible, it must be the case that
the probability that 3 and 4 quit before stage n1 is also negligible. Indeed,
otherwise the continuation payoff of 2 would increase, and, as for 1, once his
continuation payoff is more than 1+

√
ε, he would stop quitting. Thus, until

stage n1 only player 2 quits with a non-negligible probability. But that means
that at stage n1, the continuation payoff of 3 and 4 is high. However, as long
as their continuation payoff is high, they do not quit, and the only way the
continuation payoff of player 3 (resp. 4) can decrease is that player 4 (resp.
3) quit with non-negligible probability. That makes such an ε-equilibrium
impossible.

We now formalize these ideas.
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For every strategy xi of player i and every n ≥ 0 let x̃i(n) be the strategy
which plays ci up to stage n, and coincides with xi after stage n, and let
pi

n = pi
n(x) = Px(t < n, i ∈ St) be the probability that player i quits up to

stage n, and let pi
∞ = limn→∞ pi

n. Note that 2/15− 5ε ≤ ri ≤ pi
∞ ≤ ri + ε.

Lemma 6 Let x be a profile that satisfies (i) ‖ xn−c ‖< ε and (ii) γi(xn) ≥
1 +

√
ε for some player i and every n ≤ n0. Then

γi(x−i, x̃i(n)) ≥ γi(x) +
√

εpi
n − (2N + 3)ρε.

Proof. Fix a player i ∈ N . We first assume that in x only one player
quits at every stage; that is, for every n ∈ N, xj

n 6= 1 for at most one player
j. We prove by induction that for such profile x, for every n ≤ n0,

γi(x−i, x̃i(n)) ≥ γi(x) +
√

εpi
n. (6)

Assume n = 1. If i continues at stage 0, then x̃i(1) = xi and pi
1 = 0, and

(6) holds. If i quits with some positive probability at stage 0 then pi
1 = 1−xi

1,
hence

γi(x) = pi
1 + (1− pi

1)γ
i(x−i, x̃i(1)).

Then

γi(x−i, x̃i(1)) = γi(x) +
pi

1

1− pi
1

(γi(x)− 1) ≥ γi(x) +
√

εpi
1,

where the last inequality holds by condition (ii).
Assume now that 1 < n ≤ n0. If i continues at stage n then x̃i(n) =

x̃i(n− 1) and pi
n = pi

n−1. In particular, by the induction hypothesis,

γi(x−i, x̃i(n)) = γi(x−i, x̃i(n− 1)) ≥ γi(x) +
√

εpi
n−1 = γi(x) +

√
εpi

n,

and (6) holds.
If i quits at stage n then, applying the case n = 1 to the profile xn−1 we

get
γi(x−i

n−1, x̃
i(n)n−1) ≥ γi(x−i

n−1, x̃
i(n− 1)n−1) +

√
ε(1− xi

n).

Using the induction hypothesis we get:

γi(x−i, x̃i(n)) ≥ γi(x−i, x̃i(n− 1)) + Px−i,ci(t ≥ n− 1)
√

ε(1− xi
n)

≥ γi(x) +
√

ε(pi
n−1 + Px−i,ci(t ≥ n− 1)(1− xi

n))

≥ γi(x) +
√

εpi
n.

Thus, (6) holds for every n ≤ n0.

13



Let now x be an arbitrary profile that satisfies (i) and (ii). We are now
going to define a new profile y that approximates x, and satisfies that at every
stage at most one player quits with positive probability. We then apply (6)
to y to get the desired estimate for x.

For each i and n, define αi
n = (1− xi

n)
∏

j 6=i x
j
n = P(St = {i}, t = n | t ≥

n) < ε.
Define now

βi
n =

{
αi

n i = 1
αi

n/
∏

j<i(1− βj
n) i > 1

Since αi
n < ε for every i, βi

n < Kε for every i, for a sufficiently large K.
Finally, define for every player i a strategy yi as follows:

yi
nN+j =

{
0 j 6= i
1− βi

n j = i

First note that

Py(St = {i} | (n− 1)N + 1 ≤ t ≤ nN)

Py(St = {i + 1} | (n− 1)N + 1 ≤ t ≤ nN)
=

βi
n

(1− βi
n)βi+1

n

=
αi

n

αi+1
n

=
Px(St = {i} | |St| = 1, t = n)

Px(St = {i + 1} | |St| = 1, t = n)

Hence,
Px(St = {i} | |St| = 1) = Py(St = {i}). (7)

Since P(|St| ≥ 2) < ε, it follows that |pi
n(x)− pi

nN(y)| < ε, and therefore

‖ γi(x)− γi(y) ‖< (N + 1)ρε. (8)

By applying (8) to x and (x−i, x̃i(n)) and using (6) we get

γi(x−i, x̃i(n)) ≥ γi(y−i, ỹi
nN)− (N + 1)ρε

≥ γi(y) +
√

εpi
nN(y)− (N + 1)ρε

≥ γi(x) +
√

εpi
n(x)−

√
ε× ε− 2(N + 1)ρε

≥ γi(x) +
√

εpi
n(x)− (2N + 3)ρε,

as desired.

We define the partner ĩ of a player i by : 1̃ = 2, 2̃ = 1, 3̃ = 4, 4̃ = 3.

Lemma 7 Let a, b > 0 and let ε > 0 be sufficiently small. Let y be a bε-
equilibrium such that ||yn − c|| < ε for each n. Let i ∈ N , and assume that
γi(y) ≥ 1 + a. Then there exists n1 such that (i) γi(yn1) < 1 +

√
ε, (ii)

pi
n1
≤ (b + K)

√
ε, for some K and (iii) a ≤ 3pĩ

n1
+ 3

√
ε.

14



Proof. For convenience, assume i = 1. Since p1
∞ ≥ 2/15− 5ε, Lemma 6

implies that there exists a stage n such that γ1(yn) < 1 +
√

ε. Let n1 be the
first such stage. In particular, (i) holds. Observe that γ1(yn1−1) ≥ 1 +

√
ε,

hence by Lemma 6 bε ≥
√

εpi
n1−1 − (2N + 3)ρε, which solves to pi

n1−1 ≤
b
√

ε + (2N + 3)ρ
√

ε.
Since the probability that player 1 quits in stage n1 − 1 is at most ε, (ii)

follows.
We now prove (iii). Since γ1(yn1) < 1 +

√
ε one has

1 + a ≤ γ1(y) ≤ p1
n1

+ 4p2
n1

+ 5ε + (1− p1
n1
− p2

n1
− p3

n1
− p4

n1
+ 5ε)γ1(yn1)

≤ p1
n1

+ 4p2
n1

+ (1− p1
n1
− p2

n1
) + 2

√
ε + 11ε

≤ 1 + 3p1
n1

+ 2
√

ε + 11ε,

and (iii) follows.

Corollary 8 Let b > 0 and a > 3(b + 1)
√

ε. There is no bε-equilibrium y
such that :

• ||yn − c|| < ε for each n

• γi(y), γ ĩ(y)≥1 + a.

Proof. Let y be such a bε-equilibrium. Apply Lemma 7 twice, to players
i and ĩ. Call n1 and n2 the corresponding two stages, and assume, w.l.o.g,
n1 ≤ n2. Thus, one has both pĩ

n1
≥ a/3 −

√
ε, and pĩ

n2
≤ b

√
ε. Moreover,

pĩ
n1
≤ pĩ

n2
since n1 ≤ n2. Thus a/3−

√
ε ≤ b

√
ε — a contradiction.

End of proof of Proposition 2: Assume to the contrary that x is an
ε-equilibrium with ‖ xn − c ‖< ε for every n ∈ N. We assume w.l.o.g. that
γ1(x) ≥ 5/4−16ε. We will exhibit a stage n2 such that xn2 is a 8ε-equilibrium,
and γ3(xn2), γ

4(xn2) ≥ 1 + 1/12. By Corollary 8, we get a contradiction.
Apply Lemma 7 to x and i = 1, and denote n1 the corresponding stage.

Thus, p1
n1
≤ 2

√
ε and p2

n1
≥ 1

3
× (1

4
− 16ε) −

√
ε ≥ 1

12
− 2

√
ε. By Lemma 6,

there exists a stage N2 < n1 with γ2(xN2) < 1 +
√

ε. We set

n2 = max{n ≤ n1, γ
2(xn) ≤ 1 +

√
ε}.

Since p1
n2
≤ p1

n1
≤ 2

√
ε, p1

∞ ≥ 1
11

and supi p
i
∞ ≤ 1+5ε, one has Px(t < n2) ≤

13
15

+ 10ε ≤ 7
8
. Since x is an ε-equilibrium, xn2 is a 8ε-equilibrium.
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Our next goal is to prove that p2
n2
≥ 1

12
−10

√
ε. If n2 = n1 there is nothing

to prove. Assume n2 < n1. This means that γ2(xn1) > 1+
√

ε. Apply Lemma
6 with y = xn2

(thus yn = xn2+n, for each n) and n = n1−n2. The conclusion,
rephrased in terms of x, is that Px(t < n1, 2 ∈ St|t ≥ n2) ≤ 8

√
ε, hence, a

fortiori, p2
n1
− p2

n2
≤ 8

√
ε. Therefore, p2

n2
≥ 1

12
− 10

√
ε.

We use this result to prove that γ3(xn2), γ
4(xn2) ≥ 1 + 1/12.

As previously, one has

1− 2ε ≤ γ2(x) ≤ 4p1
n2

+ p2
n2

+ 5ε +

(
1−

∑
i

pi
n2

+ 5ε

)
γ2(xn2). (9)

By definition of n2, γ2(xn2) ≤ 1 +
√

ε. Since p1
n2
≤ p1

n1
≤
√

ε, one deduces
from (9) that p3

n2
+ p4

n2
≤ 6

√
ε.

On the other hand,

1− 2ε ≤ γ3(x) ≤ 4p4
n2

+ p3
n2

+ 5ε +

(
1−

∑
i

pi
n2

+ 5ε

)
γ3(xn2). (10)

Since p2
n2
≥ 1/12 − 10

√
ε, (10) yields γ3(xn2) ≥ 1 + 1

11
− 26

√
ε ≥ 1 +

1/12. Similarly, γ4(xn2) ≥ 1 + 1
12

. Since xn2 is a 8ε-equilibrium, we get a
contradiction to Lemma 8.
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