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Abstract

We prove that the undiscounted value of a stochastic game, as a
function of the transition, is continuous in the relative interior of the
set of transition functions.
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1 Introduction

A two-player zero-sum stochastic game is a tuple G = (S, A,B, r, q), where
(i) S is a finite set of states, (ii) A and B are finite sets of actions of the
two players, (iii) r : S × A × B → R is a daily payoff function and (iv)
q : S × A × B → ∆(S) is a transition function, where ∆(S) is the space of
probability distributions over S.

The game is played as follows. At every stage k ∈ N, given the past
play (including the current state), each player chooses an action. The pair
of chosen actions (ak, bk), together with the current state sk, determine the
daily payoff r(sk, ak, bk) player 2 pays player 1, as well as the probability
distribution q(· | sk, ak, bk) according to which a new state sk+1 is chosen.

Shapley (1953) proved that every λ-discounted stochastic game G ad-
mits a discounted value vλ(G), and, moreover, both players have optimal
stationary strategies.

A fundamental question is whether, fixing the sets of states and actions,
the value of the game is continuous in the payoff and transition functions.

Since the discounted payoff is continuous in the daily payoff and in the
transition function, one can verify that the discounted value of a game is
indeed continuous in these two parameters.

Mertens and Neyman (1981) showed that every stochastic game G admits
an undiscounted value v(G), and, moreover, v(G) = limλ→0 vλ(G).

One can easily verify that, fixing the transition function, the undiscounted
value is continuous in the payoff function. Indeed, if r and r′ are two payoff
functions that satisfy ‖r − r′‖ < δ, then any ε-optimal strategy under r is
ε + 2δ-optimal under r′.

Simple examples show that the undiscounted value is not continuous in
the transition function. For example, define S = {s, t}, |A| = |B| = 1,
and r(s) = 0, r(t) = 1. Define transition functions q and qn, n ≥ 1 by:
q(s | s) = q(t | t) = 1, and qn(s | s) = 1 − 1/n, qn(t | t) = 1. If the initial
state is s, the undiscounted value under q is 0, while the undiscounted value
under qn is 1 for every n ∈ N.

In the present paper we show that, fixing the payoff function, the undis-
counted value is continuous in the relative interior of the set of transition
functions. Formally, define supp(q) =

∏
(s,a,b)∈S×A×B supp(q(· | s, a, b)) ⊆

S × A×B × S. Our result is:

Theorem 1.1 Let G = (S, A,B, r, q) be a stochastic game. For every n ∈ N
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let qn : S ×A×B → ∆(S) be a transition function that satisfies supp(qn) =
supp(q). Assume that qn → q; that is, for every (s, a, b, t) ∈ S × A × B ×
S, qn(t | s, a, b) → q(t | s, a, b), and define Gn = (S, A,B, r, qn). Then
limn→∞ v(Gn) = v(G).

2 The Proof

To prove the result, we relate the discounted payoff to the transition function.
Such a relation was developed by Vieille (2000) for undiscounted recursive
games, and it can be used here, since any discounted game is equivalent to
an undiscounted recursive game.

From now on we fix the set of states S, the sets of actions of the two
players A and B, and the daily payoff function r.

For every discount factor λ ∈ (0, 1), every initial state s ∈ S, every pair
of stationary strategies (x, y) ∈ (∆(A))S × (∆(B))S and every transition
function q, denote by γλ(s, x, y; q) the expected λ-discounted payoff under
(x, y) if the initial state is s, provided the transition function is q:

γλ(s, x, y; q) = λ
∞∑

k=1

(1− λ)k−1Es,x,y,qr(sk, ak, bk).

Lemma 2.1 For every initial state s the function γλ(s, x, y; q) is the ratio of
two polynomials in λ, x, y and q. Moreover, the coefficients in the denom-
inator are non-negative, and, if the daily payoffs are strictly positive, the
coefficients in the numerator are non-negative as well.

Proof: This result is an easy corollary of the study of Vieille (2000) on
recursive games, or of a result due to Freidlin and Wentzell (1984) on Markov
chains.

The λ-discounted game is equivalent to an undiscounted recursive game,
where the set of non absorbing states is S, at stage k the game is absorbed
with probability λ regardless of the current state or chosen actions, and the
absorbing payoff is r(sk, ak, bk), while with probability 1 − λ transitions are
as in the original discounted game. This representation is actually Shapley’s
(1953) original description of a discounted stochastic game.

Note that in this representation, the play eventually reaches an absorbing
state with probability 1.
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The lemma now follows by Vieille (2000, Eq. (3) and first equation in
section 7.2)). Alternatively, one can consider the function that assigns to
every s, t ∈ S the probability that t ∈ S is the last non absorbing state in the
equivalent recursive game that the play visits before absorption, provided the
initial state is s. It follows from Freidlin and Wentzell (1984, Lemma 6.3.3)
that this function is the ratio of two polynomials in λ, x, y and q, and the
coefficients in the denominator are non-negative.

Lemma 2.1 implies the following.

Corollary 2.2 Assume payoffs are strictly positive. For every ε ∈ (0, 1),
every transition function q, and every transition rule q′ that satisfies (i)
supp(q) = supp(q′), and (ii) 1 − ε < q(t | s, a, b)/q′(t | s, a, b) < 1 + ε
for every (s, a, b, t) ∈ supp(q), we have

1− ε < γλ(s, x, y; q)/γλ(s, x, y; q′) < 1 + ε,

for every discount factor λ ∈ (0, 1), every initial state s, and every pair of
stationary strategies (x, y).

Proof: By Lemma 2.1 it is sufficient to prove the following. Let f(u, v) =∑I
i=1

∑J
j=1

∑K
k=0

∑L
l=0 aijkl(ui)

k(vj)
l be a polynomial in u ∈ [0, 1]I and in v ∈

[0, 1]J with non negative coefficients. Then for every ε ∈ (0, 1) we have
1 − ε < f(u, v)/f(u, v′) < 1 + ε for every u ∈ [0, 1]I , every v ∈ [0, 1]J and
every v′ ∈ [0, 1]J that satisfies for every j = 1, . . . , J (i) vj > 0 if and only
if v′j > 0, and (ii) 1− ε < vj/v

′
j < 1 + ε whenever the denominator does not

vanish. (By convention, 0/0 = 1.)
This latter claim follows easily from the following fact. If (ai)

N
i=1 and

(bi)
N
i=1 are two sequences of positive real numbers such that 1− ε < ai/bi <

1 + ε for every i, then 1− ε <
∑N

i=1 ciai/
∑N

i=1 cibi < 1 + ε, for every sequence
(ci)

N
i=1 of positive real numbers.

Proof of Theorem 1.1: Assume w.l.o.g. that daily payoffs are strictly
positive and bounded by 1; that is, 0 < r(s, a, b) ≤ 1 for every (s, a, b) ∈
S × A×B.

Assume to the contrary that the theorem is not true, and w.l.o.g. lim infn→∞ v(Gn) <
v(G). Fix ε > 0 sufficiently small that satisfies v(G)− lim inf v(Gn) > 3ε.
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Since supp(qn) = supp(q) for every n ∈ N, and by Corollary 2.2, there is
n0 sufficiently large such that for every n > n0,

1− ε <
γλ(s, x, y; qn)

γλ(s, x, y; q)
< 1 + ε, (1)

for every discount factor λ, every initial state s, and every pair of stationary
strategies (x, y).

Fix n > n0 such that v(Gn) < v(G) − 3ε. Fix now λ ∈ (0, 1) sufficiently
small such that ‖vλ(Gn)− v(Gn)‖ < ε and ‖vλ(G)− v(G)‖ < ε.

Let xλ be an optimal strategy of player 1 in the λ-discounted version of G,
and let yλ be a best reply of player 2 against xλ in the λ-discounted version
of Gn. In particular,

γλ(s, xλ, yλ; qn) ≤ vλ(Gn) < v(Gn) + ε < v(G)− 2ε

< vλ(G)− ε ≤ γλ(s, xλ, yλ; q)− ε.

Since payoffs are strictly positive and bounded by 1,

γλ(s, xλ, yλ; qn)

γλ(s, xλ, yλ; q)
< 1− ε,

contradicting (1).
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