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ABSTRACT

The problem is to dynamically store different information
items in different storage devices in each period so as tc minimize
the total expected discounted cost over a planning horizon. Each
device has a fixed total capacity, each item has a given storage
space requirement, while the number of requests for each item per
period is changing stochastically through time. Given an alloca-
tion, the total cost per period consists of the storage cost (de-
pending on the storage requirements), the access cost (depending
on the number of requests) and the transfer cost (depending upon
the change of allocation from the previous period). A dynamic
programming model is presented to yield optimal strategies. The
special case of independent identically aistributed demands is com-
pletely solved, using a generalized transportation algorithm while
a heuristic procedure is indicated for the general problem using

parametric analysis.



OPTIMAL INFORMATION STORAGE SYSTEMS

1. Introduction

Complexities of managing modern indhstrial as well as service oriented
operations has ncecessitated the utilization of sophisticated information
storape and retrieval systems. Considering the high costs of operating
such systems, the information systems manager is concerned with the efficient
utilization of the storage devices. Thus in a computer-based data manage-
ment system, a pilece of information may be stored either in a primary
device such as the extended core storage or in an auxiliary de;ice such
as a drum, a disc or a tape. The allocation of different pieces of
information to d}ffcrcnt storage devices should be based on the frequency
of demand for the information and the associated access costs, the
storage requirements, capacities and costs. In addition, the demand patterns
for such information are probabilistic in practice, so that periodic
review and storage reallocations may be necessary through time, resulting
in additional costs of information transfer among the storage devices.

Thus the information systems manager is faced with the problem of
dynamically allocating information items to the storage devices, so as
to minimize the total expected cost over a given planning horizon.

Some related problems in data base management and hierarchical in-
formation storage and retrieval have been investigated in the literature.
Severence | 11] presents a model which can parametrically describe various

methods of file organization. Salasin [9] has considered expected time



required to access data stored in hierarchical memories, using different
file organizations, given the probability distribution of requests.
Ramamoorthy and Chandy [7] consider the problem of selecting optimal memory
hicrarchy so as to minimize the average access time given a budget con-
straint on the total cost. Kennedy |5] and Sepalla [10] have considered
some integer programming models [or optimal file partitioning of infor-
mation records located on random access devices, so as to minimize the data
transmitted to the main memory. Babad, Balachandran, Stohr [1l] have
considered the combined problem of optimal file partitioning and storage
among memory hierarchies so as to minimize total access and storage

custs.

Most of these models depend upon integer programming formulatiocn of
the optimal {ile partitioning and storage decisions. Since our problem
involves a large number of variables, the current integer programming
algorithms are generally not capable of handling them. Here we will pro-
vide a more efficient algorithm. Furthermore, all of the above models
are static and can not be extended to investigate the problem of dynamic
storage allocation described earlier in this section. Such a problem
arises frequently in practice. Computarized inventory management (in
manufacturing, retail distribution centers, spare parts warehouses, etc.)
requires dynamically storing the information about different items in
ditferent storage devices depending upon the changes in the demand distri-
bution through time. Similar dynamic decisions have to be made in the
context of information systems used in the libraries, banks and hospitals.
The problem is particularly relevant to those managers who rent the com-
puter storage and time from commercial tomputer centers.

In the next section we present the dynamic storage allocation model



for given file partitions, so as to minimize the total expected discounted

cost wver a given planning horizon,

Y. Model Formulation:

In cach one of the applications described in the previous section we
can identify various physical units about which information has to be
stored. The entire information record can be partitioned into data items
according to some file partitioning procedure. In this section we are
concerned with the optimal storage of these data items. Suppose there are
m data items indexed by i ¢ I = {1,2,...,m}, each of which has to be
stored in one ot the n storage devices indexed by jJ £ J = {1,2,...,n}.
Eich complete data item is required to be stored in one deviece, since
information splitting among devices is not practical. Let e, be the
number of elementary storage units (e.g. bits), abbreviated as esus,
required to store the ith data item. Let bj denote the total capacity in
esus of the jt6 storage device.

The problem is that of dynamic allocation of tﬁe data items to storage
devices over a given planning horizon of duration T < ». For simplicity,
the allocation decisions are assumed to be made at equally spaced discrete
points in time denoted by t = 0,1,2,...,T. Thus, for.example, every
Monday morning, based on the past week's number of requests for informa-
tion contained in a data item, we may decide to move it from the drum
to the tape or vice versa, depending upon the predicted demand for the
present week. Let xij(t) be the binary decision variable with value 1 if
the data item i is stored in the storage device j in period t and 0O
otherwise. Let X(t) be the m x n matrix of allocation decisions fér

period t. Denote by di(t) the random variable representing the number of

Lth . . . . .
requests for the i item in period t, thus taking valuces in § = 10,0,2,...1.
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Let D(t) be the random vector of demands at time t having a given multi-
variate distribution. For simplicity, we will assume that [D(t):t=0,1,2,...}
. . m . s Pl
is a Markov process with the state space S, given transition probabilities
which are time invariant and a given initial distribution of D(0).
ve

The costs which are relevant for optimal decisions {X (t):t=0,1,2,...}
are the costs of storing, accessing and moving information among storage

. . .th . .th .
devices. Let CSij be the cost of storing the 1 item in the j device
per period. This storage cost includes the physical cost of storing e,
esus (e.g. the rental cost) as well as the opportunity cost due to limited

. .th . .
storage capacity of the j device. Let CAij be the cost of accessing the
cth | .th . s . .
i item at the j device and shifting it to the core. This access cost
includes a fixed and a variable component. The fixed cost is due to the
time delay required for calculating the address, moving the arm to that
address and other possible rotational delays. The variable component of
. . o .th .

CAij is the cost of bringing ¢, esus from the j device to the core.

. - . .th | .
Finally, let CTi be the cost of transferring e, esus of the 1 item imo

k]
device k to device j (CTijj = 0 for all j € J). This transfer cost con-
sists of fixXed and variable components similar to the access cost, the only
difference being that the transfer takes place between the storage de-
vices rather than from a device to the core. The costs will be assumed to
be discounted by a factor B €{0,1) per period, i.e. B is the present worth
of one dollar spent in the next period.

The problem of minimizing the total expected discounted cost over the

infinite time horizon can be formulated in the stochastic dynamic pro-

gramming framework (see Ross [ 8 |) as follows. Denote by V(X(t-1), D(t-1))
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the total crpected discounted cost from period t onwards following the
optimal policy, given that the storage allocation decision in the previous
period (t-1) was X(t-1) and the vector of demands occurring in that
period was D(t-1). Note that the decision X(t) has toc be made at the
beginning of period t, while the random demand D(t) takes place during
that period. Let o denote a stationary policy for choosing the decisions
X(t) dynamically, so that a(X(t-1), D(t-1)) yields X(t) for all values of
X(t-1) and D(t-1), t > 1, It is well known (Ross [ 8 ]) that in search of
an optimal policy we may confine ourselves only to stationary policies
and the optimal stationary policy specifies that X(t) which yields the
minimum in the following recurrence relation,

n m ’

-
V(X(t-1),D(t-1)) = Min CcS,.x..(t) +
X (&) €F _J,);l i;[ tlot

CAijE[Di(t)\D(t—l)]xij(t) +

?,-'
N e =

xij(c-l)CTikj xij(t)] +

B E[V(X(t),D(t)|D(t-1)]

‘where

n m
F= X: z Xij=1, iéI;EeiXiijj,jEJ; xij=00r liiel,jEJ
j=1 i=1

denotes the feasible set of decision variables. 1In the expression on the
right hand side of (1) the first threce terms give '‘the storage cost, the

) th . .
expected access cost and the transfer cost in the t period, while the

last term denotes the total optimal expected discounted cost from the
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period (t+1) onwards. Note that the summation in the transfer cost term

yiclds at most one positive contribution, namely CTi when k # j and

kj
xik(t-l) = xij(t) =1,

In principle, the solution of the functional equation (1) completely
solves the multiperiod information storage problem. However, in practice,
there are thousands of data items to be stored in p?obably few devices
but resulting in a high dimensional state matrix X(t) and vector D(t),
which is unsolvable with the current state of art in dynamic programming.
Similarly, currently available integer programming codes may not be
adequate to handle the ''curse of dimensionality" existing even in the
single period version of this problem. Further complication arises due
to the stochastic nature of the requests for data items. In the remainder

of the paper we provide optimal strategies under certain conditions and a

heuristic procedure for the general problem.

3, Independent Identically Distributed Demands

In this section we assume that the multivariate distribution of D(t)
is independent of t for all t > 1. Note that the random variable Di(t)
and Dj(t), i # j, need not be independent, so that we take into con-
sideration the possibility that a request may require a simultaneous
access to a block of interrelated data items. In this case of D(t)
independent of D(t-1), the state variable in the functional equation (L)
reduces to X(t-1), with the same definition of F as in (2), thus yielding

- = -l T \i_ . -+
V(X (t-1)) X(b:;;F L /) [Csijxij(t) + CAij E(Di(t))xij(t)

n
Yy (£ curiijij(o] + B VR(E)

Let us consider the following auxiliary time independent problem:
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n m

<o
Minimize ZJ Z' Cijxij

j=1 i=1
m
t N <b cJ
S ) e, X..
L% %13 =0 J
i=1
n
<
)i x.. =1 iel
L, ij
j=1
Xij =Qorl, i €1, j€&J, where
C.. =CS,, +CA,, E(D,)
ij ij ij i

The auxiliary problem (4) is a generalized transportation problem
*
[ 4,5] with the added 0-1 constraints. Let X be the optimal solution to

*
(4) and let .C be the corresponding optimal value. The relevance of con-

sidering this problem is exhibited in the following

ate

Theorem 1: The optimal strategy for the dynamic problem (3) is X(t) = X

* *
independent of t and V(X ) = C /(1-B).

Proof: Consider the version of problem (3) truncated at T < =. TFor this
finite planning horizon problem the functional equation (3) remains

the same with Vt(X(t-l)) and V (X(t)) replacing v(X(t-1)) and

t+l
V(X(t)) respectively and VT+1(X(T)) = 0. Note that the original
problem and the functional equation (3) are obtained by letting
T + «». We prove that if any period t starts with the storage con-
figuration X(t-1) = X*, then the optimal decision is not to change
it, i.e. a*(x*) = X*. Then we prove that the best configuration

*
with which to start any period t is X(t-1) = X . 'These two facts

together yield the optimal policy as being the one which selects

e

£ *
X(0) = X and yiclds for any t > 1 o (X(t-1)) = X



It suffices to show these results by induction in the truncated ver-

)

sion ol the problem., Suppose X(T-1) = XK, the r in the Tth period
n m n
% ) T3 T %
v (X)) = o . T b
(&) Mln{ Lo [CljxlJ % CTag %332 C
j=1 i=1 k=1

since

On the other hand, since X 1is a particular feasible solution in F, the

right hand side of the above equality is less than or equal to C", since

e
W

% % * *
ik ik Xij = 0. Thus, VT(X ) = C and aT(X ) = X . Also note that for

=
w1
%
Q)
]

n m n m n
any X(T-1)€F, V. (X(T-1)) > Min] ¥ . c..x. S+ Min{ 5 & 5 x. (T-1) CT.. .x
T = Lo L7101 L LTk ikj'ij

————
>4
M
]

X€Flj=1 1=1 j=1 i=1 k=1
* * *
=C +0, i.e. VT(X(T-l)) >Cc = vT(x ).
kS * l-sT-t—l * X~ *
S 5 / = « ——= =
Suppose \t+l(X(t)) 2_Vt+l(X ) =¢C 1°8 and at+l(x ) X .
n n
YRR ANy S o
v X ?T{Q DG T L %k Tk iy ] PR Ve &
S=1 = k=1
n m n
>M'{TT }+M'n{\- *oer + B Min V_ . (X)
in X, . 1 X. R S in
Lo T13Tij L. Tik ikjTij t+1
XF =1 i=1 REF L=y XeF
T-t
* * * 1-@
= + -
C *B V&) =C I3
But
n m n T-t
* < * < * * * * 1-8
.. + 3 + =
vt(x ) £ /. \q (cijxij L %k CTikj Xij] B vt+l(x ) =C —
j=1 i=1 k=1 B



Thus v, (x'y = ¢ —————i
n m
X{t-1 = Mi ) , XL+ - -
v (x(-1)) Mln{ il [LU g G CT 4\ 5 xij:l +8 v &
o % Yo
, - + i = =
5 / : Cijxij} B Min {Vt+1(x)} C +B Vt+1(X ) v (X )

X€F

Finally, as T + = we get

V(X) V(X) for all X € F

v

* % . % C*N * %
C +8 VX ), i.e. VX ) = Ijg and (X ) = X

B

*
V(X )
Q.E.D.

. %
Thus the optimal storage policy is to choose X 1in the first period
and to stay there forever. Next, we deal with the procedure for solving

* *
the auxiliary problem (4) yielding X and C .

(9 ate

To obtain Xh and C we first convert problem (4) into the standard for-
mat of the Generalized Transportation Problem (GTP). Let us introduce a

fictitious device (n+l) with an abundant capacity bn = M1 (a large

+1

positive constant) and also a fictitious data item (mtl) to be stored

among the devices to fill up any unused capacity available. Let

1" =10 {m1} and J' = J U {n+l}. Set C. .41 ~ M, (a high penalty cost),
, 2

i €I, so that no item will be assigned to the fictitious device in

= 0 and em = 1. With these addi-

the optimal solution, let Cm+ +1

1,n+l

tional definitions the problem (4) is equivalent to the following zero-one

Generalized Transportation ptoblem.

m+l n+1
AN
) Min oy Ciy %

i=1 j=1
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m+1
(6) s.t, T' e,. X,, =b jed’
VA W T N j
i=1
n+l
y ok =1 i
(7) L i iel
i=1
(8) X, >0 ie1’, jed’
J
(N X4 =0 or 1 ier, jeJ’
n+l
. . <
\(It is to be noted that xm+1,j can be fractional and / xm+1,j need
i=1

not be equal to 1.)

Let us call the problem (5)-(8) as a GTP and (5)-(9) as IGTP (Integer
GIP). The GTP can be solved by the generalize& stepping stone method
[ 4,5] or by the Four index algorithm [3 ]. 1In the GIP format the (mtl)
rows correspond to the data items and the (n+l) columns represent the
storage devices, thus yielding a matrix of cells (i,j), i € I', j ¢ J’.
A basis B of the GTP is a collection of (m+n+l) linearly independent cells.
A solution X = [xij} is basiec if x.lj =0 for (i,j) € B. A basic solu-
tion X is feasible if it satisfies constraints (6)-(8). Due to the
creation of the fictitious device (n+l) there always exists a basic
feasible solution and hence a basic optimal solution. The original prob-
lem (4), even without the zero-one constraints, has no feasible solution
if and only if in the optimal solution of the GTP at least one cell
(i,n+l) is in the basis at a positive level, i.e. X 4l 0, [3].

]

In the special case where o is the same for all i, the GUP reduces

i

to an ordinarvy traasportation problem and, due to total unimodularity,
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the zero-vne constraints (9) are automatically satisfied. Then the IGIP
and CPP are identical. Hereafter we will assume that ei’s are different.
Since the number of basic cells is (mtn+l) and since there are (m+l)
rows, cach row having at least one cell in the basis, the total number of
rows that can have more than one cell in the basis is at most (mtn+l) - (m+l) = n.
For example, if the number of data items m = 1000 and the number of storage
devices are n = 3 (drum, disc and tape), then at most 3 items will be stored
in more than one device each, so that the zero-one constraint (9) will
be violated for atmost 3 variables {xij}. Therefore, a heuristic pro-
cedure for constructing a good solution to the IGTP from the optimal solu-
tion to the GTP would be to increase (if necessary) the capacity of a
storage device (in practice, this is easy to do in case of tapes) and
assign those data items (at most n) which were originally split among
devices to the device with increased capacity. In the remainder of this
section we provide a branch and bound algorithm for obtaining an optimal
solution to the IGTP

Algorithm for IGTP

Step 1: Let Pl denote the GTP given by (5)-(8). Obtain an optimal solution
to P1 according to the procedures in [ 3, 4, 5). If the solution

satisfies constraint (9), then we are done. Otherwise go to step (2).

Step 2: (Initialization) Let SI, = @ denote the set of cells (i,j) with

xij = 1 in the optimal solution of IGTP. Let SZ1 = ¢ denote the set
of cells (i,j) with X3 = 0 in the optimal IGTP. Let X, be the
optimal solution to P with optimal basis B, and cost z. Let € = {1}

denote the index set of problems under consideration and let £ =1

denote the total number of problems generated so far.
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Step 3: Choose that problem Pk for which Zk is the smallest for k € &.
If Xk satisfies zero-one constraint (9), go to step 9. Else g0 to

step 4. (This enables one to branch along the current minimum cost

node).
*
Step 4: Find the set of rows I & I such that the basis Bk has more than
“ ¥
one basic cell in each row i ¢ T (I contains at most n rows). For

eaclhh 1 € 1 find two basic cells (i,j) and (i,k) with the smallest

and the second smallest unit costs. Let A, = (C,. - C,.)x.., and
i ik i3771i3
choose r € T with Ar = Max Ai. Select the basic cell (r,s) with
ier*
C = Min C_, for branching. (This branch selection rule is similar
rs . rj .
(r,3)€B,

to the entry criterion heuristic used in the Simplex method.)

Step 5: Let P£+1 be the problem obtained from Pk by fixing X o =1 for

the IGTP. Set SI

241 = SIk U {(r,s)? and sz

241" SZyr Pyyy is

obtained from Pk by eliminating the row r and setting bS = bq -e .

If this by < 0, eliminate this branch £+l and any further branching
from £+1. (This step forces the most promising cell to be in the
basis of the IGTP, thus reducing the size of the GTP).

Step 6: Let P£+2 be the problem obtained from Pk by fixing Xog = 0 for
the IGTP. Set 52,., =52, U {(r,s)? and STy, = ST,. P, is

obtained from Pk by setting Crs = Ml (a high penalty cost). (This

forces ¥ to be = 0).
TS

Step 7: Solve the GTPs P and P obtained in steps 5 and 6, yielding

i1 L+2
the optimal solutions X£+1 and X£+2 with corresponding bases B£+1
. ) = - ‘ ; + N
and B£+2 Let ZE+1 (Optimal cost of P£+1) ji ClJ and

(i,§)€81,,,




- . . < .
Z£+2 (Optimal cost of P£+2) /. Cij' (The solution of P£+1
(i,3)es1,,,

and P£+2 can be genefated from that of Pk parametrically, instead of
resolving, using the operator theory developed elsewhere [3 ].

Step 8: If in step 5b_ > 0 then set € = @ U {(4+1, £42)] - {k} and
£ = 4425 else @ = @ U {4+2} - {k} and £ = 2+1. Go to step 3.

Step 9: The optimal solution of IGIP is Xk and xij =1 for (i,j) ¢ SIk

with the total cost = (Optimal cost of Pk) + EZ Cij' Stop.
(i,j)ESIk

The storage requirement of this algorithm is not high since it is

not needed to store all Pk's k € . Only SIk and SZk need be stored for

all k € ¢. Any Pk can be constructed from the original GTP by setting

Cij =M, (i,j) € SZk, eliminating row i and reducing bj by e, for (i,j) € SI

K
The computational time required for solving IGTP with m = 1000 and

n = 4 using this algorithm is about 3 seconds of CPU time on CDC 6400,

4. The General Problem

Suppose the demands Di(t) are neither independent nor identically
distributed. Then the dynamic multiperiod problem posed in section 2
becomes that of solving the functional equatiqn (1) for the optimal
policy yielding X(t) which maximizes the right-hand side of (1). The
difficulties involved have already been outlined in section 2. Since the
problem in its entirety can not be solved, a heuristic procedure is to
solve a sequence of single period problems. In period t, given X(t-1) and

D(t-1), the problem is
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n+l m+l
| i + CA CT
(10) Mlnz z €5 + Gy (e) + BT ()] %y ()
j=1 i=1

s.t. X(t) € F

where the constants Ezij(t) CAij E[Di(t)lD(t‘l)J and

m
(11) ST, (6) = )y enD) T s
k=1
are computed with known values of D(t-1) and X(t-1). Solving (10) by the
algorithm indicated in section 3 yields X(t), then D(t) is observed in
the tth period and the problem for the period (t+1) is the same as (10)
with new coefficients Ezij(t+1) and EEij(t+1) computed according to (11).
The problem for period (t+l) can then be solved parametrically from the
optimal solution X(t) for period t. Efficient procedures for obtaining
the optimal X(t+l) from the optimal X(t) when the cost coefficients change
using the "area cost operator theory" are available in Balachandran and
Thompson [ 3].
Further research is required in order to solve the complete problem

\

(1) optimally, rather than heuristically, involving the dynamics, the high
dimensionality and the integrality requirements. However, with the

current state of the art in the areas of dynamic and integer programming,

the task appears formidable.
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