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Abstract

We consider discrete versions of independent, private-value, …rst-price auc-

tions. We show for any …xed …nite set of possible bids, if the number of

participants is large enough, then the set of rationalizable bids involves all

players bidding the highest bid that is lower than their private value.



1 Introduction

Most results on auctions rely on Nash equilibria as the solution concept.

These equilibria in turn rely on the assumption that the values among the

bidders are determined according to some commonly known probability dis-

tribution. Moreover, the equilibria are typically sensitive to this distribution.

Because of this sensitivity, and more generally the strong assumptions un-

derlying Nash equilibrium, theorists often doubt the power of auction theory

in providing …ne predictions of behavior in actual auctions. Recently, the

popularity of the auction mechanism in both private and public sales has

increased. As positive as this development might be for the actual conduct

of business a¤airs, it does not provide support for the conclusions that equi-

librium theory yields in the analysis of auctions. An important task for this

literature is therefore to identify robust results that can be obtained under

less demanding assumptions than those employed in standard equilibrium

models.

The work reported here is a small step within this agenda. We con-

sider …rst-price auctions with private and independent values and with many

players. It is well known that in the unique equilibrium of the symmetric

model the bids converge to the true values as the number of bidders is made
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large and hence the price converges to the highest value. Our analysis here

presents a sense in which this result is robust to relaxing the solution concept.

We assume that the set of valuations and the set of allowable bids are …nite

and show that the result that bidders bid (almost) their true value holds for

all interim rationalizable outcomes when it is only common knowledge that

all values have likelihood bounded above zero. Thus, with many bidders (in

this discrete environment), the object goes to the bidder with the highest

value (e¢ciency), and almost surely the price is (almost) the highest value,

even without imposing the equilibrium assumptions.

The most closely related work is Battigalli and Siniscalchi (1999). They

also study interim rationalizable outcomes in a …rst price auction with private

independent values. Unlike our model, they adopt the standard (for auction

theory) set-up of continuum sets of bids and values. They show that any

positive bid up to some level above the Nash equilibrium bid is interim ratio-

nalizable. Therefore, in particular, the set of interim rationalizable strategies

in their model does not approach the competitive equilibrium when the num-

ber of bidders becomes large. Thus, their result stands in sharp contrast to

ours. We will explain the reason for the di¤erence between these results in

the discussion section at the end.
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A more distantly related literature explores the eductive justi…cation of

the competitive Equilibrium. Guesnerie (1992) looks at the set of rational-

izable equilibria in a game in which a continuum of suppliers decide simul-

taneously on the quantities of a homogenous product that they supply and

then the price is determined by an exogenously given demand function. He

shows that when the supply curve is steeper than the demand curve (in the

traditional labeling of price on the vertical axis), then the rationalizable set

contains only the competitive equilibrium. One may think of course of the

mirror image of that model in which the supply curve is …xed and the buy-

ers decide strategically on their quantities. The corresponding condition in

that variation is that the demand curve is steeper than the supply curve.

The auction model is not a special case of that variation, since it designates

prices rather than quantities as the strategic variables. But, in any case, the

condition on the relative slopes does not hold in the auction model, since

the supply curve is inelastic at one unit. Thus, the competitive prediction of

Guesnerie’s model does not apply in the auction model.
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2 The Model

As mentioned, we consider a …rst-price auction with independent and private

values. Each player i 2 f1; 2; :::; ng is informed of her private value, vi, of the

object, and then submits a bid. The object is awarded to the highest bidder

who then pays his or her bid; in the case of ties, the object is awarded with

equal probability to one of the tied highest bidders (and only the winner pays

the winning bid). We assume that values and bids are on a discrete grid,

say V = f0; 1=m; 2=m; :::; 1¡ 1=m; 1g, and that values are believed to be

drawn independently according to some distribution that is not necessarily

commonly known. We do assume, however, that it is commonly known that

the distribution assigns each value a positive probability. An ex ante strategy

for a player in this environment is then a function from a player’s possible

values, V , into the possible bids, V , and a strategy pro…le is an n–tuple

of such functions. For our purposes it is more useful to think of interim

strategies that specify the bid of a player with a particular value, so it is an

element of V , and an interim strategy pro…le is then a (m+ 1) £ n–tuple

specifying what bid each type of each player chooses. As is well known,

interim rationalizability is a weaker solution concept (i.e., allows for larger

sets) than ex ante rationalizability (since the latter imposes the same beliefs
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on all types of a given player, while the former does not). We therefore

consider interim rationalizability as then our result that the set is a singleton

is stronger.

We say that an (m +1)£ n–tuple of sets of interim strategies is interim

correlated rationalizable with weight ±, or rationalizable(±) for short, if the

bid b speci…ed for type vi of player i is a best reply to some admissable belief

by that type over bids by other players. The belief is admissable if it can be

derived as follows. Each type vi can have any belief over the strategies chosen

by each possible n ¡ 1–tuple of other players’ types, restricted of course to

their rationalizable(±) sets. Each type vi also has a belief over the likelihood

of each such pro…le of n¡1 types, which is obtained from a belief that players’

types are drawn independently according to some probability distribution

over V that assigns weight at least ± to each type1. The distribution over

bids is then the sum, over all possible pro…les of types, of the beliefs on

the bids chosen by each pro…le of types, weighted by the probability of that

pro…le of types. Since we only use bounds on these probabilities, we do not

1Obviously 1
m+1

¸ ± ¸ 0; we consider only the case where ± > 0. Note that the
set of rationalizable(±) outcomes is decreasing in ±; for ± = 0 there are no restrictions
on players beliefs over opponents’ types, whereas for ± = 1

m+1
it is the same as interim

correlated rationalizability in the game of incomplete information in which the prior assigns
probability ± to all types.
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develop notation for stating the above formally, and present within the proof

below only the notation needed for our bounds.

The symbol ± in the term rationalizability(±) is meant to emphasize that

this notion is not standard; it allows players substantial freedom in forming

their beliefs. First, not only may a player have correlated beliefs about the

opponents, but she may even believe that the play of every opponent depends

on the realization of the types of all opponents. It is not clear whether the

latter feature has an interesting interpretation, but our result will just be

stronger with it.2 Second, we do not have a common prior (or even a

commonly known but di¤erent prior for each player) over the type space.

All we require is (that it be common knowledge) that there is a lower bound

of ± on the probability of each type. Extensions of rationalizability that do

not impose common priors are given in Battigalli (1998).3

2However, we do not claim that allowing this generality is interesting in itself. At
…rst glance one might think that it allows for communication among the players, which
could create correlation in their actions. However such communication might reveal types,
whereupon players’ beliefs need not correspond to assigning probability at least ± to every
type. We believe the result will hold even when allowing for cominucation, but have not
proven this.

3We believe that our notion is equivalent to the correlated extension of his weak ¢-
rationalizability where ¢ denotes the restriction to beliefs that assign probability at least
± to all types (see Battigalli (1998, Section 3.1 and 4).
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3 The Result

Theorem 1 For any m and any ± there exists N(m; ±) such that for any n >

N(m; ±) the set of rationalizable(±) strategies for any type v is fv ¡ 1=mg.

The intuition for this result is as follows. Consider the type v = 1 and

assume that some bids below 1¡ 1=m are rationalizable(±) for this type. Let

b be the lowest such bid. To justify this bid, the player with type v = 1

making it must believe it to be best. It is clearly not best if other players

of type v = 1 are around and are bidding more than b. It is also not best

if there are many other players of type v = 1 who are bidding b. It may

be best otherwise. We show that, for n large enough, the loss in expected

payo¤ from bidding 1 ¡ 1=m instead of b in the otherwise event is smaller

than the gain in expected payo¤ from bidding 1 ¡ 1=m instead of b in the

preceding two events.

Proof: The proof is via a sequence of steps which we now develop. Each

step describes strategies that are dominated in the game that remains after

the dominated strategies described in preceding steps are deleted. We do

not repeat the caveat that the domination is in this reduced game. Also,

since the game is symmetric, we consider bids of types of a generic player
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with value v 2 V , dropping the subscript i. Finally, to simplify notation,

let ¢ ´ 1=m.

Bidding 1 is dominated by bidding 0 for all types v < 1 since a bid of 1

may win, and then such a type will end up with a negative payo¤.4 Next,

bidding 1 is dominated by bidding 1¡¢ for v = 1, because bidding 1 yields

a payo¤ of 0 and bidding 1 ¡¢ can yield a positive payo¤. (It is possible

that all other players have types less than 1 in which case they bid less than

1.) Now bidding 1¡¢ is dominated by bidding zero for all types v < 1¡¢,

and therefore bidding 1¡¢ is dominated by bidding 1¡ 2¢ for v = 1 ¡¢.

Iterating we conclude that it is dominated for any type v to bid more than

v¡¢, except type zero who bids zero.

Let bn be the lowest rationalizable strategy for type v = 1. We now

argue that for n large enough bn = 1 ¡ ¢. Assuming not, we show that

for any belief it is better to bid 1 ¡¢ than to bid bn < 1¡ ¢ for n large.

Let q (jj`) denote the probability that j players with value v = 1 bid bn

conditional on there being ` players of type v = 1. For now, assume that

Pr (v = 1) = ±; below we explain why our argument extends the result to

any F with Pr (v = 1) ¸ ±:

4Bidding more than v is not necessarily dominated since one can believe that all types
are bidding even more, so that one gets a payo¤ of zero in any case.
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The pro…t to type v = 1 from bidding 1 ¡¢ is at least

L ´ ¢£
Ã
(1¡ ±)n¡1 +

n¡1X

`=1

µ
n¡ 1
`

¶
(1 ¡ ±)n¡1¡` ±`

ÃX̀

j=0

q (j j`) 1

`¡ j +1

!!
.

(1)

This is the bene…t from winning with bid 1 ¡ ¢ times a lower bound of

the probability of winning with this bid. The probability of winning is at

least the probability (1¡ ±)n¡1of everyone else having value v < 1 plus a

lower bound on the probability of winning in the event that there are some

players with type v = 1: The latter bound is a sum of probabilities of the

form
¡
n¡1
`

¢
(1 ¡ ±)n¡1¡` ±`q (j j`) 1

`¡j+1 . This is the probability of there being

` players with type v = 1 times the probability q (jj`) that j of those players

bid bn times the probability of winning if the remaining `¡j are also bidding

1¡¢. This is a lower bound since some of those `¡j players who bid above

bn may still bid below 1 ¡¢.

The pro…t from bidding bn is at most

U ´ (1 ¡ bn)£
Ã
(1¡ ±)n¡1 +

n¡1X

`=1

µ
n¡ 1
`

¶
(1 ¡ ±)n¡1¡` ±`q (`j`) 1

`+ 1

!
.

(2)
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Again this is the bene…t of winning times an upper bound of the probability

of winning. The probability of winning is at most the probability that

everyone else has value v < 1 plus the probability of there being ` players

with type v = 1 times the probability that all those players bid bn, divided

by `+ 1 and summed over all possible values of `. This is an upper bound

because even when everyone has value v < 1, they may bid more than bn.

We want to argue that L > U for large n.

Let k be the largest integer j that solves 1¡(1¡¢) � (1 ¡ bn) =j . When

everyone bids no more than bn and no more than k players bid exactly bn,

then it is better to bid bn and share it than to bid 1 ¡¢ and win for sure.

We now partition the summations in (1) and (2) into `’s that are no more

than k, and those that are greater than k, and weaken the bounds further.

First, since q (`j`) 1
`+1 <

P`
j=0 q (jj`) 1

`¡j+1, we have

¢

Ã
(1¡ ±)n¡1+

kX

`=0

µ
n¡ 1
`

¶
(1¡ ±)n¡1¡` ±`

ÃX̀

j=0

q (j j`) 1

`¡ j + 1

!!
>

L1 ´ ¢

Ã
(1¡ ±)n¡1+

kX

`=0

µ
n¡ 1
`

¶
(1¡ ±)n¡1¡` ±`q (`j`) 1

`+ 1

!
: (3)
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Second, since q (`j`) + (1¡ q (`j`)) 1
`+1 <

P`
j=0 q (jj`) 1

`¡j+1,

¢

Ã
n¡1X

`=k+1

µ
n¡ 1
`

¶
(1¡ ±)n¡1¡` ±`

ÃX̀

j=0

q (jj`) 1

`¡ j +1

!!
>

L2 ´ ¢

Ã
n¡1X

`=k+1

µ
n¡ 1
`

¶
(1¡ ±)n¡1¡` ±`

µ
q (`j`) + (1 ¡ q (`j`)) 1

`+1

¶!
:(4)

De…ne

U1 ´ (1¡ bn) £
Ã
(1 ¡ ±)n¡1 +

kX

`=0

µ
n¡ 1
`

¶
(1¡ ±)n¡1¡` ±`q (`j`) 1

`+1

!

(5)

and

U2 ´ (1 ¡ bn)£
Ã

n¡1X

`=k+1

µ
n¡ 1
`

¶
(1 ¡ ±)n¡1¡` ±`q (`j`) 1

`+ 1

!
: (6)

Clearly L ¡ U > (L1 ¡ U1) + (L2 ¡ U2). Moreover, if bn < 1 ¡ ¢, then

L1¡U1 < 0. On the other hand, we now show that L2¡U2 > 0. Moreover,

L2¡U2 is minimized when q (`j`) = 0, and even in this case it outweighs the

negative term L1 ¡ U1 for n large.
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L2 ¡ U2 = ¢

Ã
n¡1X

`=k+1

µ
n¡ 1
`

¶
(1¡ ±)n¡1¡` ±`

µ
q (`j`) + (1¡ q (`j`)) 1

`+ 1

¶!
¡

(1¡ bn) £
Ã

n¡1X

`=k+1

µ
n¡ 1
`

¶
(1¡ ±)n¡1¡` ±`q (`j`) 1

`+1

!
=

n¡1X

`=k+1

µ
n¡ 1
`

¶
(1 ¡ ±)n¡1¡` ±` 1

`+1

µ
¢ + `q (`j`)

µ
¢ ¡ 1¡ bn

`

¶¶
.

Since ` > k, it follows from the choice of k that ¢ ¡ 1¡bn
` > 0. Therefore,

L2 ¡ U2 > 0 and L2 ¡ U2 is minimized when q (`j`) = 0. So we have

0 < ¢

Ã
n¡1X

`=k+1

µ
n¡ 1
`

¶
(1 ¡ ±)n¡1¡` ±` 1

`+1

!
< L2 ¡ U2

0 > L1 ¡ U1 > [¡1 + bn + ¢]
Ã
(1¡ ±)n¡1 +

kX

`=0

µ
n¡ 1
`

¶
(1 ¡ ±)n¡1¡` ±`

!

We want to show that if bn < 1¡¢ then the deviation to 1¡¢ is pro…table,

i.e., that the L2 ¡ U2 term dominates. To do this we show that the ratio of

the terms in large parentheses converges to 1 as n grows. Let

P1 = (1¡ ±)n¡1+
kX

`=0

µ
n¡ 1
`

¶
(1¡ ±)n¡1¡` ±` < (k +2) nk+1 (1¡ ±)n¡k
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and

P2 =
n¡1X

`=k+1

µ
n¡ 1
`

¶
(1 ¡ ±)n¡1¡` ±` 1

`+1
=
1

±n

nX

`=k+2

µ
n

`

¶
(1¡ ±)n¡` ±`

>
1

±n

³
1¡ (k +2) nk+1 (1 ¡ ±)n¡k

´
:

Therefore

P2
P1

>

1
±n

³
1¡ (k +2) nk+1 (1¡ ±)n¡k

´

(k + 2) nk+1 (1¡ ±)n¡k :
=
1

±

Ã
1

(k +2) nk+2 (1 ¡ ±)n¡k
¡ 1

n

!

and lim
n!1

Ã
1

(k + 2) nk+2 (1¡ ±)n¡k
¡ 1

n

!
=1

To verify this limit, observe thatnk+2 (1¡ ±)n¡k can be rewritten asnk+2=[1= (1 ¡ ±)]n¡k.

By treating n as a continuous variable and applying L’Hopital rule repeat-

edly k + 2 times, we get limn!1 nk+2 (1 ¡ ±)n¡k = 0 and hence the desired

limit. Hence, for n large L2 ¡ U2 > jL1 ¡ U1j.

Therefore, assuming Pr (v = 1) = ±, if n > N(m; ±) then bidding 1 ¡¢

dominates bidding any b � 1 ¡ 2¢. Moreover, it can be shown (by taking

derivatives and simple manipulations5) that, for su¢ciently large n, P2
P1

is

5signfD"
1
"

³
1

(k+2)nk+2(1¡")n¡k ¡ 1
n

´
= sign

n
n[(n ¡ k)" ¡ 1 + "] + (k + 2) nk+2 (1 ¡ ")n¡k+1

o

which is positive for a large n.
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increasing in ±. So, by choosingN (m; ±) appropriately, for any belief resulting

from an F in which Pr (v = 1) > ±, if n > N(m; ±) then 1¡¢ is better than

b � 1¡2¢. Hence, iterated deletion of dominated strategies as above results

in types v = 1 bidding 1¡¢.

Consider next type v = 1 ¡¢. As this type bids less than 1 ¡¢, this

type only wins if no players are of type v = 1, so their bidding behavior can

be analyzed conditional on their being no players of type v = 1. But then

the analysis above implies that for n large enough this type will bid v¡ 2¢.

Continuing in this way shows that iterated deletion yields the sets described

in the theorem.

In this static game of incomplete information the equivalence between the

iterated deletion process used above and our notion of rationalizable(±) out-

comes is standard; for a related result see Battigalli (1998, Theorem 3.11(a)).

¥

4 Discussion

We now discuss some of the assumptions in this paper and the relation with

the previous literature. Perhaps the key assumption for our result is the
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…niteness of the set of possible bids. To understand the role of …niteness,

consider the case where bids must be in B = f1=i : i = 1; 2; :::g, and let the

values be distributed uniformly on the unit interval. In this case it is easy

to see that for any m large enough, it is interim rationalizable for all types

with v > 1= (m¡ 1) to bid 1=m. (Such a type can believe that everyone with

v > 1=m bids 1= (m+ 1), and so on.)

Battigalli and Siniscalchi (1999) analyze the case where the bids and

values are not on a grid (thus are any number in [0; 1]) and allow for any

n (not necessarily large). Using the idea captured by the above example,

they show that any small positive bid is rationalizable. They also go beyond

this intuition and show that the rationalizable set includes any bid between

0 and some bid that is strictly greater than the Nash equilibrium bid, and

they provide methods for calculating the upper bound precisely.

Thus, the …niteness of the possible bids is crucial. However, the …niteness

of the type space does not seem crucial. It seems obvious, though we have

not veri…ed all the details, that our analysis carries through also when only

the bids are restricted to a …nite grid, and it is commonly known that the

values are distributed according to some distribution function with density

at least ± on [0,1]. The result would then be that for any m, ´ 2 (0; 1=m),
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and ± > 0 there exists N(m; ´; ±)such that for any n > N(m; ´; ±) the set of

rationalizable(±) strategies for any type v 2 [k=m+ ´; (k + 1)=m] is (k=m).

The symmetry assumption that all bidders’ types are drawn from the

same distribution is also not crucial for the argument. If we assumed in-

stead that each player’s type is drawn from a di¤erent distribution, then as

long as we assume that the probability of each type is bounded away from

zero uniformly for all players, the analysis will be similar. In such a case,

the probabilities of di¤erent con…gurations of the bidders’ types will not be

expressions like
¡
n¡1
`

¢
(1¡ ±)n¡1¡` ±` but rather sums of products involving

di¤erent ±’s for the di¤erent players. But then the appropriate bounds can

be used to continue the argument as above.

Recall that we impose few restrictions on players’ beliefs, even allowing a

player to believe that the play of every opponent depends on the realization

of the types of all opponents. This means that a player may believe, for

example, that his opponents are sharing information. We also do not assume

commonly known priors on the values. This might be more freedom than is

commonly assumed, but as it makes the result stronger, there is no reason

to limit it.
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