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Abstract

A criticism of auction theory was that resales may wash away the impact of auction
design, with bidders able to buy the good later. This paper thus considers a seller’s
auction-design problem when he cannot prohibit resales. The “optimal” auction in
the existing theory—which does not consider resales—would subsidize a disadvantaged
bidder to intensify the bidding competition. The paper proves that this “optimal”
auction fails to be optimal, and then designs a new mechanism that is optimal. The
“optimal” auction fails for two reasons. First, a bidder can distort his bid to manipulate
prices at resales. Second, a bidder can buy the good from the subsidized bidder instead
of competing with him. To fix these problems, the new mechanism designed here uses
a novel payment scheme to cut off the unwanted information linkage between auctions
and resales, and it subsidizes the disadvantaged bidder—even more than the “optimal”
auction would do—so that he will choose to resell the good at prices desirable for
the initial seller. Expecting such prices, the advantaged bidder cannot profit from
distorting bids. Motivating the disadvantaged bidder by the subsidy and resale profit,
the new mechanism intensifies the bidding competition and optimizes for the initial
seller. Due to the subsidy, with a positive probability the good ends with a bidder
who values it less than others. Consequently, an optimally designed auction can still
manipulate where a good will eventually go, despite bidders’ free access to resales.
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1 Introduction

An optimal auction is a mechanism designed to maximize a seller’s expected profit. Although
the literature on optimal auctions has become a basic ingredient of mechanism design, it
assumes that bidders cannot trade among themselves after an auction. While this assumption
may be plausible when a government auctions off non-transferable licenses, it is usually
difficult, if not impossible, for a seller to prevent resales (Internet auctions, U.S. Treasury
bill auctions, etc.).!

Intuitively, the no-resale assumption is crucial to the design of optimal auctions. As
well-known in auction theory, an important feature of an optimal auction is that it subsidizes
a disadvantaged bidder, thereby intensifying the bidding competition and raising revenues.
Specifically, when bidders’ valuations are distributed differently, with positive probability
an optimal auction sells the good to a bidder who values it less than someone else.? With
resales allowed, however, a subsidized low-value bidder can resell the good to others, who
“may want to wait for resales instead of bidding in the auction. If such a scenario turns out
to be an equilibrium, then the “optimal” auction in the existing theory would hurt the seller
instead of optimizing for him.

This paper thus considers optimal auction design when resale cannot be prohibited.
The environment is a two-stage game with one good and two bidders. At stage one, the
initial owner of the good chooses a mechanism to sell the good to at most one of the bidders.
At stage two, the winner—the bidder who bought the good—posts a resale price to resell
the good to the other bidder (the loser). The paper assumes that players’ types—the utilities
from consuming the good—are private and independently drawn from different distributions.
Once a stage-one mechanism is chosen, the continuation game is analyzed according to
perfect Bayesian equilibrium (PBE). A dynamically optimal auction will mean a stage-one
mechanism whose continuation game has a PBE that gives the initial owner the highest
expected payoff among all stage-one mechanisms whose continuation games have PBEs.
In contrast, the “optimal” auction in the existing theory will be called statically optimal
auction. This model departs from the optimal-auction literature by assuming that resale
cannot be prohibited, and it inherits from this literature the assumption that any seller,
initial or secondary, can commit to withholding the good.

The first question is whether resale really matters to optimal auction design. The paper
finds that the answer is “yes.” Specifically, if the initial owner sells the good via the statically
optimal auction, there is no equilibrium that supports truthful bidding (Proposition 5.1);
instead, there is a “collusive” equilibrium where the bidder who is not subsidized buys the
good from the subsidized bidder instead of competing with him. (Proposition 5.2).

1Even if a government prohibits the transfer of licenses, resale can take the form of post-auction mergers
among the bidders.

21t is not uncommon that actual auctions subsidize designated bidders. An example is the U.S. “re-
gional narrowband” spectrum auction in 1994, where the government offered bidding credits to women- and
minority-owned firms.



The reason why this mechanism fails is two-fold, and both are due to the payment
scheme. First, from the amount of his payment a winner learns too much information
about the loser, which the loser can manipulate to reduce resale prices. This leads to the
impossibility of truthful bidding. Second, the mechanism charges a winner according to the
loser’s bid. The subsidized bidder can thus bid high, thereby crowding out the rival and
profiting from resale. The other bidder shies away because he strictly prefers buying the
good from resale to winning in the auction. This leads to the collusive equilibrium.

The next and more fundamental question is what an optimal auction looks like when
resale cannot be prohibited. With the failure of the statically optimal auction, one might be
tempted to conclude that it is no good for a seller to subsidize a bidder. The aforementioned
reason for its failure, however, points to a different suspect, the payment scheme. A tentative
idea is therefore to restructure the payment scheme to implement the subsidization rule. The
trouble is how to strike a balance between subsidizing a disadvantaged bidder on one hand
and providing sufficient incentive for the other bidder to participate on the other hand. With
. resale allowed, it seemed difficult to attract the other bidder away from the resale.

Yet the above idea worked. This paper designs a mechanism, called MZ, and proves
that it is optimal when resale cannot be prohibited (Proposition 6.1). The mechanism has
two features. First, the subsidized bidder enjoys even more subsidies than he does in the
statically optimal auction. Specifically, it is more probable for MZ to sell the good to
the subsidized lower-type bidder than it is for the statically optimal auction. Second, the
payment scheme looks a little bit like a hybrid of the first-price and second-price auctions:
On one hand, if the subsidized bidder wins, his payment depends only on his own bid; on
the other hand, the payment from the other bidder, if he beats the subsidized rival, depends
only on the bid from the subsidized bidder.

To understand this mechanism, let us analyze an example.

Example 1 Bidder 1’s type is uniformly distributed on [0,10] (in dollars), bidder 2’s type
is commonly known to be $2, and the initial owner’s type is commonly known to be zero.

The statically optimal auction in this example, which can be calculated easily (Egs. (2),
(3), and (4)), is: offer the good to bidder 1 at price $6; if bidder 1 rejects, sell the good to
bidder 2 at price $2. Notice that the mechanism subsidizes bidder 2 by selling him the good
when bidder 1’s bid is between $2 and $6.

This mechanism would have generated an expected revenue of $3.6 had resale been
prohibited. With resale allowed, it is obvious that there is no equilibrium that supports
truthful bidding. Otherwise, upon winning in the auction, bidder 2 would learn that bid-
der 1’s type is at most $6 and would therefore offer a resale price $4, but then bidder 1
with types in (4, 10] would rather lie in the auction and buy the good at resale. To induce
truthful bidding from bidder 1, we need bidder 2 to set a resale price at least as high as $6.
But how can we induce bidder 2 to do that? The solution is to subsidize him further—sell
the good to him whenever bidder 1’s bid is below $10. Then, upon winning, bidder 2 learns
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only that bidder 1’s type is bounded above by $10, and his optimal resale price is $6, which
is exactly the price we want to charge bidder 1. Thus, the purpose of the first feature of the
mechanism M? is to induce the subsidized bidder, who acts as a middleman, to charge the
other bidder the price we desire.

Obviously, the above technique of further subsidization would not achieve its purpose
if bidder 2 can infer bidder 1’s type from the amount of his payment. This brings us to one
aspect of the second feature: the subsidized bidder’s payment should be independent of the
bid from the other bidder. In Example 1, bidder 2’s payment, if he wins, is $3.6, regardless
of bidder 1’s bid. Here the number 3.6 comes from bidder 2’s expected profit from resale.’
To induce truthful bidding from bidder 1, the mechanism sells the good to him at the price
$6 if he does bid $10. Offered the same price in the auction and in the anticipated resale,
bidder 1 cannot profit from lying in the auction. This brings us to the other aspect of the
second feature of the mechanism: the payment from the bidder who is not subsidized should
be independent of his own bid. (When the type of the subsidized bidder is nondegenerate,
. the construction of the payment scheme becomes nontrivial. That is because bidder 2’s
expected profit from resale is unknown to others, and bidder 1, who is not supposed to act
as a middleman, may want to win and profit from resale.)

Example 1, while trivial, illustrates how the new mechanism M?Z works: It restructures
the payment scheme to cut off the unwanted information linkage between auction and resale,
and it subsidizes a bidder so that he, through optimally choosing a resale price, implements
the allocation rule intended by the statically optimal auction.

Why is the mechanism M# optimal? The reason is that the initial owner cannot do bet-
ter when resale cannot be prohibited than he could have done when resale can be prohibited
(Lemmas 3.1 and 3.2). Thus, the expected revenue ($3.6 in Example 1) the statically optimal
auction generates when resale can be prohibited is an upper bound for the incentive-feasible
expected revenues in our environment. The mechanism M? is therefore optimal because the
expected revenue it generates is equal to that upper bound. In Example 1, it is obvious that
M? yields an expected revenue $3.6. In general, MZ attains to the upper bound because
the mechanism, coupled with the equilibrium path in resale, selects the final owner of the
good and allocates surplus across bidders in exactly the same way as the statically optimal
auction does in the setting where resale can be prohibited. Then the revenue equivalence
theorem applies. (See Lemmas 3.4 and 6.3 for a proof.)

The literature on auctions with resales is scarce. The only other paper about optimal
auctions with resales that I know is Ausubel and Cramton [1]. They assume that resale
always achieves Pareto efficiency. This paper studies an environment where this assumption
need not hold, and it proves that resale does not achieve efficiency whether the initial owner
uses the statically optimal or the dynamically optimal auctions.®> The other analytical works

3 Interestingly, when the statically optimal auction is used, resale not only reinforces the misallocating rule
intended by the statically optimal auction, but also misallocates with a greater probability than the intended
level. In Figure 3, for instance, the statically optimal auction intends to misallocate the good to the lower-
type bidder 2 when the type profile belongs to the area ABLH, while the collusive equilibrium misallocates



on auctions with resales have provided only positive analyses of several auction forms. These
works include Haile (5, 6, 7], Bikhchandani and Huang [2], Bose and Deltas [3], Gupta and
Lebrun [4], Milgrom [9], and Kamien, Li, and Samet [8].

Section 2 first formulates an auction environment where resale cannot be prohibited—a
busy ready is advised to skip to Section 7 after the first four paragraphs of Section 2—and
then formulates the equilibrium concept and the auction-design problem. Section 3 examines
the relationship between the auction-design problem in our environment and that in the
“textbook” environment where resale can be prohibited. Section 4 calculates the optimal
resale price for a winner of an auction. Section 5 answers why the “optimal” auction in the
literature fails in our environment. Section 6 constructs a new mechanism and proves that
it is optimal in our environment. Section 7 analyzes a nontrivial example.

2 The Model

There are three players and one indivisible good. The good is initially owned by player 0,
called initial owner. The other players, denoted by 1 and 2, are the bidders for the good.
For each bidder i, the other bidder is denoted by —:.

For each 7 = 0,1,2, player ¢’s utility from consuming the good is t;. If he makes a
money payment p (a negative p means receiving the payment), then his payoff is

tilconsume )

where 1.onsume 1S One if he consumes the good and zero if otherwise. We will call ¢; player 7’s
type. The initial owner’s type t, is common knowledge. For each ¢ = 1,2, bidder ¢’s type ¢;
is his private information; players other than ¢ have a common prior that ¢; is independently
drawn from a distribution F;, with density function f; and support [¢t,, %;].

We model the environment as the following two-stage game. At stage 1, the initial
owner chooses a mechanism, say M, to sell the good to at most one bidder. Such a bidder
will be called winner, and the other bidder will be called loser. Each bidder chooses an action,
called bid, allowed by the mechanism. In addition to being resource-feasible, the mechanism
must allow non-participation and cannot have allocations contingent on the events after the
initial owner exits the game. We will call such a mechanism stage-one mechanism. The
identity of the winner is the only new common knowledge after M is carried out.

a. If the mechanism M does not pick any winner, then the initial owner consumes the
good and the game ends.

throughout the larger area AEDH. The reason is that the collusive equilibrium eliminates the competition
between bidders. If they were competing, the initial owner’s incentive to subsidize bidder 2 would be curbed
by his uncertainty about bidder 2’s type, because raising bidder 2’s winning probabilities requires raising
the bidder’s informational surplus. This brake against misallocation is gone, now that bidder 2 becomes the
monopolistic middleman.



b. If the mechanism M picks a winner, say w, then the initial owner trades with the
winner according to M and exits the game. Each bidder i’s net payment p} to others
at stage one, called stage-one payment, adds to 4’s private information. This ends stage
one. At stage two, the winner w posts a resale price p; for the good. The loser, denoted
by [, can either accept or reject the resale price. The two players trade according to the
price p; if [ accepts it, and otherwise no trade occurs. The final owner then consumes
the good and the entire game ends.

The game modeled above reflects two important features. One is that the initial owner
cannot prohibit resales. This is captured by the assumption that the allocation of a stage-one
mechanism cannot be contingent on the events after stage one. The other feature is that
each owner, whether initial or secondary, can commit to withholding the good.* (A busy
reader is advised to skip to Section 7 from here.)

2.1 Strategies and Beliefs

Once the initial owner has chosen any stage-one mechanism M, a strategy profile of the
continuation game in our two-stage game is a list (s1, s2, p2,7), and a belief system is a pair
g := {fa, 1), with the following meaning:

e Bidder i (1 = 1,2) bids s;(¢;) in the stage-one mechanism M given his type t;.

e A winner w chooses a resale price gpo(w, by, p¥,tw) given his type ¢, and the history
that he won at the stage-one mechanism M by action b,, and paid py’.

e The loser I chooses a response r(b;, p}, p2, ;) € {accept, reject}, given his type t; and
the history that he had bid b, and lost at stage one, paid p}, and the winner has offered
a price ps.

e The cumulative distribution function (cdf) g, (by,p}’) denotes a winner w’s updated
belief about the loser I’s type, given the history that he has bid b,,, won at stage one,
and paid p}.

e The cdf (b, p}) denotes a loser I’s updated belief about winner w’s type, given the
history that he has bid b;, lost at M, and paid p}.5

40One would wish to allow a secondary owner to choose any resale mechanism in addition to take-it-or-leave-
it offers. Such a generalization would complicate the equilibrium concept. The reason is that a secondary
owner may choose a mechanism whose continuation game has no equilibrium, while an equilibrium that
respects the multistage structure of our game should specify players’ best responses at all possible scenarios.
Equilibrium-lacking mechanisms cannot be ruled out a priori, because the sequential rationality of a strategy
profile depends on the belief system, which in turn should follow Bayes’s rule according to the strategy profile,
while the strategy profile must specify players’ actions at each event. The set of resale mechanisms is thus
restricted to take-it-or-leave-it offers.

5The loser’s updated belief after seeing a resale price plays no role, with types independent across bidders.



We say that a belief system p is Bayesian with respect to a strategy profile (sy, sq, p2,7)
if Bayes’s rule is followed whenever possible, for any possible winner w, any type t; of any
bidder i, any bid b; and any stage-one payment pi possible in the mechanism M, and any
resale price ps:

a. After mechanism M is carried out, winner w forms belief u,,(b,,pY) from the prior
belief F; about loser I’s type, the fact that w’s bid b,, beats I’s bid s;(#;) in mechanism
M, and the fact that M mandates w to pay p} according to the bids (b, si(t;)).

b. After mechanism M is carried out, loser I forms his belief 44;(b;, p}) from the prior belief
F,, about w’s type, the fact that w’s bid s,(t.,) beats I’s bid b; in mechanism M, and
the fact that M mandates [ to pay p} according to the bids (s, (ty), b1)-

Notice that a player’s belief updated in the above manner does not depend on his type. The
. reason is that a player learns about the other’s type from the observed allocation outcomes
mandated by the mechanism, which receives only the bids (by, b2) from the bidders. This
paper therefore denotes a player i’s updated belief by wu;(b;, p}).

2.2 The Definition of Equilibrium

Some notations are needed before we define the equilibrium concept. Denote a stage-one
mechanism by a list

M := (Bi, ¢, p1i)3=y;

bidder s is allowed to submit bids from the set B;; given any profile (b;, b_;) of bids, bidder i
wins at stage one with probability ¢;(b;,b_;); at stage one, his net payment to others is
©1:(b;, b_;, win) if he wins at stage one, and is f1;(b;, b_;,lose) if otherwise. (Hence the
initial owner’s revenue is > _[1:(bi, b—i, win) + g1;(b;, b_;, lose)].) For the continuation game
following the choice of a stage-one mechanism, denote a strategy-belief profile by a list

€= (<31a S2, 2, T)) ,u') .

Given a pair (M, e) of mechanism and strategy-belief profile, one easily calculates:

e Bidder i’s expected stage-one payment PF(b;), calculated at the beginning of stage one
and given the prior belief F_;, if he bids b; and bidder —: plays strategy s_;.

e A type-t, winner w’s expected profit W& (ps; by, pY, tw) from resale, calculated at the
end of stage one, if at stage one he bid b, won, and paid p}y’, and at stage two he posts
a resale price p, and has updated belief p,,(b,, p¥) about the loser’s type.

e A type-t; loser I’s expected profit L§(x, p2,t;) from resale, given his response x to the
resale price p, at stage two.



e A type-t; bidder i's expected payoff w£(b;, b, 7'; t;), calculated at the beginning of stage
one, if he bids b; at stage one and plays strategies g} (if he wins) and ' (if he loses),
and if bidder —: abides to the strategy profile in e.

To calculate w¢(b;, ph, 7'; t;), we subtract i’s expected stage-one payment Pf(b;) and add:

e The expected value (based on the prior F_;) of the winning probability g;(b;, s_;(¢_;))
times bidder i’s expected gain upon winning, which is

ti + me(p;[z, bi,Pi(e, +)’ tl]) bi,pi(& +)7 ti))
where pi (e, +) := p1:(b;, s_i(t_;), win) denotes i’s stage-one payment if he wins.

e The expected value (based on the prior F_;) of (1—g;(b;, s—i(t_:)))gq—i(bi, s—i(t_;)) times
bidder 7’s expected gain when he loses the good to bidder —i at stage one, which is
the expected value (based on the updated belief u;(b;, pi(e, —))) of

Li('r,[bi,pi(e, —),p2(e, =), til; p2(e, ), i),

where p (e, —) := p1:(b;, s—i(t—s), lose) is i’s stage-one payment if he does not win, and
pa(e, =) := pa(—1, s—i(t_;), pi *(e, +),t-;) is the resale price posted by winner —i.

We are now ready to define the equilibrium concept. Once a stage-one mechanism M
is chosen, a perfect Bayesian equilibrium (PBE) of the continuation game is a strategy-belief
profile e := ({s1, $2, 2, 7), u) that satisfies the following conditions:

1. The belief system p is Bayesian with respect to the strategy profile (s;, 32; 02,7).
2. The strategy profile (sq, s2, 2, 7) is sequentially rational with respect to u:
a. Given any resale price p, at stage two, a loser | with any type t; accepts the offer

if po < t; and rejects it if otherwise.

b. Given any stage-one winner’s bid b,,, stage-one payment p}y’, and type ¢,,, the re-
sale price po(w, by, DY, t,,) maximizes the winner’s expected profit WE(+; by, p¥, tw)
from resale, given his updated belief u(b,, py).

c. For each i € {1,2} and given any type t;, bidder ¢’s strategy (s;(t;), g2, 7) maxi-
mizes his expected payoff 7¢(b;, ph, r'; t;) over all possible stage-one bids b;, resale
price strategies g5, and response strategies 7.

This definition remains unchanged if Condition 2c is replaced with the following condition:

2¢' For each ¢ € {1,2} and given any type t;, bidder i’s stage-one bid s;(¢;) maximizes his
expected payoff 7§(b;, 2, 7;t;) over all possible stage-one bids b;.
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One readily sees that “Conditions 2a, 2b, and 2c” (sequential rationality) is equivalent to
“Conditions 2a, 2b, and 2¢”” (myopic rationality).® This paper will therefore use Conditions
2¢ and 2c’ interchangeably.

2.3 The Initial Owner’s Problem

When the continuation game following the choice of a stage-one mechanism M has a perfect
Bayesian equilibrium (PBE) e, we call (M,e) mechanism-PBE pair. The initial owner’s
problem is to maximize his expected payoff over all possible mechanism-PBE pairs. The
stage-one mechanism in such a seller-optimal pair is said to be dynamically optimal.

Removing the resale stage from our auction-resale game, which we call dynamic envi-
ronment, one obtains an auction environment where the initial owner can prohibit resales.
~ We call it the static environment. Given a mechanism in a static environment, its Bayesian
Nash equilibrium (BNE) is defined as usual. The initial owner’s problem in a static envi-
ronment is to maximize his expected payoff over all possible mechanism-BNE pairs. This
is the problem considered in the existing optimal-auction theory. The mechanism in such a
seller-optimal mechanism-BNE pair is said to be statically optimal.

3 Preliminary Analysis

Let us start by examining the relationship between the initial owner’s problem in our dynamic
setting and that in the static setting. In the spirit of the revelation principle in multistage
games (Myerson [11]), the first observation is that any incentive-feasible mechanism in the
dynamic environment is also incentive-feasible in the static environment.

Lemma 3.1 For any mechanism-PBE pair (M, e) there exists a mechanism-BNE pair (M', s')
that induces the same final allocation (the final owner of the good, and the transfers among
the players) in the static environment as (M, e) does in the dynamic environment.

Proof: If (M, e) is a mechanism-PBE pair, then its allocation outcome is equivalent to the
following two-phase revelation game M’ coupled with truth-telling: At phase one, each bidder
secretly reports his type to a neutral mediator, who then plays the stage-one mechanism M
on the bidder’s behalf according to the strategy in e, and then allocates according to M. At
phase two, each bidder reports his type again to the neutral mediator; this report is allowed

6Sequential rationality implies myopic rationality because 2c implies 2¢’. For the converse, “2a and 2b”
implies that, given any history up to the beginning of stage two, a myopically rational strategy profile
maximizes a player’s expected payoff from then on. Thus, if a myopically rational strategy profile is not
sequentially rational, then it must have prescribed a dominated stage-one bid for a bidder with some type.
But that would violate Condition 2c’.



to differ from the previous one. The mediator, remembering each bidder’s phase-one report
and phase-one allocation, sets a resale price and a response according to the strategy in e, and
then allocates accordingly. Obviously, truth-telling is supported by a PBE of this revelation
game M'. Consequently, the sequential rationality of PBE implies that truth-telling is a
BNE of M'. m

The above lemma implies that the initial owner cannot do better in our dynamic
environment than in the corresponding static environment.

Lemma 3.2 An upper bound of the initial owner’s expected payoff from any mechanism-PBE
pair in the dynamic environment is his mazimum ezpected payoff over all mechanism-BNE
pairs in the static environment.

Proof: This follows from Lemma 3.1 and the initial owner’s problems defined in Subsec-
_tion 2.3. ®

The above lemma indicates a sufficient condition for a mechanism to be dynamically
optimal: delivering an expected revenue equal to the level achieved by the statically optimal
auction in the static environment. We hence review the statically optimal auction here.

For each bidder ¢ € {1, 2}, define the virtual utility by

YRS St 1) NS
Vit =t = 55 € [, B (1)

We denote the following mechanism (Myerson [10]) by M* := (B!, ¢}, 0};)%_;:

1. Each bidder i’s message space B} is the support of his type.

2. Given any message profile (;,1;), a bidder 4 (Vi = 1, 2) wins the good with probability

1 if V;(f,) > V_i(f_,') and V;(tA,) Z to
q:(£1,£2) = 0 if V;(f,) < V_i(i_i) or ‘/—,,(tAz) < tp (2)
1-g*;(t1,t2) € (0,1) if Vi(£;) = V(=) > to

and pays the initial owner
p1;(t1,t2, win) := inf {{; € support (F}): V;({;) > ma.x{V_,-(f_i),to}}; (3)
o} (t1,13,10se) = 0. (4)
As well-known in auction theory, the mechanism M™* is statically optimal, given the monotone-

hazard-rate assumption that each virtual utility function V; is strictly increasing. We there-
fore call M* the statically optimal auction.

The following lemma spells out the allocation rule of the statically optimal auction.
Figure 1 illustrates the case of t; = 0 (Vi = 1,2). The auction offers bidder-specific reserve
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prices: V, *(t,) for bidder . If bidder #’s bid is below the reserve price offered to him, then he
is not picked as the winner. If both bidders bid above their reserve prices, then the good is
allocated according to the dividing curve HL: bidder 1 wins if the bid profile lies to the right
of the curve, and bidder 2 wins if otherwise. Notice that, with a positive probability, the
good goes to the bidder who values it less than the other. In Figure 1, this event corresponds
to the area K LHI, where bidder 2 wins despite his lower types. For simplicity, we assume:

A

t2 {\2,= ty Vz({\z) =V ({\1)
_ 1. :
t2 ,I" H/ G
2-wins

2wins  |price =V I(Vi(£))
K

1 vg}ns A
price =V1 (Va(12))

1 wins
price =Vi'\(to) A

V,(t0) 6

price =\72](,F0’)”
V5 (to) J~ L

_io sale

Figure 1: The Statically Optimal Auction M*

Assumption 1 (Nontriviality) For each bidder i € {1,2}, t; >ty > Vi(t,).

The first inequality in this assumption says that there are gains from trade between the
initial owner and the bidders. The second inequality implies that the reserve price for a
bidder in the statically optimal auction M* is not below the bidder’s lowest possible type.
Consequently, for each i = 1,2, the point V,7!(¢,) exists and is equal to the reserve price M*
offers to bidder :.

Lemma 3.3 Assume for each i € {1,2} that the function V; is strictly increasing. For any
profile (£1,1) of reported types, the mechanism M* allocates according to exactly one of the
following six cases:

[f < Vi to) 812 < V3 (to)] = no trade; (5)
[t > Vi (to) 812 < V5 '(to)] = bidder 1 wins & pays V" (to); (6)
[t < Vi l(to) Bt > V5 (to)] = bidder 2 wins & pays V3 '(to); (7)
Vil (te) <6 < ViH(Va(fs)) = bidder 2 wins & pays V; ' (Vi(t1)); (8)
Vil(te) <ty < Vi Y (Vi(t1)) = bidder 1 wins & pays Vi (Va(Ea)); (9)
Vi(f) = Va(f2) > to = a randomly picked winner i pays V;"*(V_;(t_;))(10)

Proof: Since V; are strictly increasing, the inverse functions V™! exist and the function
V, oV is strictly increasing. This, coupled with the fact that the point (V;™}(to), V5 (o))
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lies on the curve £, = V, 'oVj (1), implies that the six cases listed above constitute a partition
of the message space [t;,%1] X [ty,f2]. Thus, the allocation outcome of the mechanism M*
falls into exactly one of the six cases. The payments in that list follow from Eq. (3). This
proves the lemma. W

The statically optimal auction M* is important in our context, because a stage-one
mechanism will be dynamically optimal if its continuation game has a PBE that induces the
same allocation rule and the same surplus for lowest types in the dynamic setting as M*
does in the static setting.

Lemma 3.4 Assume that the functions V; are strictly increasing. Let (M, e) be a mechanism-
PBE pair. Let the pair induce the probability §;(t1,ts) with which bidder i becomes the final
owner of the good given the type profile (t1,t3) (Vt1Vts). Let the pair induce the surplus U;(t;)
for bidder i with typet, (1 =1,2).

a. If Gi(t1,t2) = ¢} (t1,t2) for almost all type profiles (t1,t3) (Vi = 1,2) and if Uit,) =0
for each i € {1,2}, then the stage-one mechanism M is dynamically optimal.

b. The initial owner’s expected payoff generated by (M, e) is below the upper bound in
Lemma 3.2 unless G;(t1,t2) = ¢} (t1,t2) for almost all type profiles (t1,t2) (Vi =1,2).

Proof: Let IT* denote the expected payoff generated by the statically optimal auction
M* in the static environment. Lemma 3.1 implies that a mechanism-PBE pair (M, e) in
the dynamic setting is allocation-equivalent to a mechanism-BNE pair (M’', ¢’) in the static
environment. Thus, (M', e') induces the winner-selection rule ()%, and yields surplus U;(t;)
for bidder ¢ with type t; (i = 1,2). Given the hypotheses in Part (a), the revenue-equivalence
theorem in the static setting implies that (M’ e’} and hence (M, e) yield an expected payoff
IT* to the initial owner. By Lemma 3.2, II* is the highest expected payoff the initial owner
can possibly obtain in the dynamic environment. Thus, the mechanism-PBE pair (M, e)
maximizes his welfare in that environment, so M is dynamically optimal. This proves (a).
For Part (b), by the standard proof in the optimal-auction theory and the strict monotonicity
of V;, the upper bound in Lemma 3.2, which is II*, is equal to the maximum value of

2
B ity t2)Vilt:) (11)
=1

among all possible mappings (g;)2_, : (t1,t2) — (gi(t1,%2))2.; of winning probabilities. Since
(11) is maximized only if the weighted sum 37, ¢;(t1,12)Vi(t;) is maximized for almost all
type profiles (t1,t>), and the weighted sum is maximized only if the winning probabilities ¢;
are identical to g}, Part (b) follows. m
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4 The Choice of Resale Prices

Let us start with the bottom of the auction-resale game and characterize a winner’s choice
of resale prices. We make the following assumption of monotone hazard rate.

Assumption 2 (Hazard Rate) For each player i € {1,2} such that t; > t;, the density
function f; is positive on [t;,T;] and

| 1—- F(t:)

) filt) > -1, Vt; € (¢, ). (12)

1

Define
Fi(a) — Fi(t;)

fi(ts)

" Obviously, Viz, =V, for each i = 1,2. Assumption 2 immediately implies:

V;’a(ti) = t,' - y Ya S f,-,‘v’t,- S a. (13)

V},a(a) = g and V;,a(ti) <t, Vie {1, 2},\7’a < t_,-,Vt,- < a. (14)

Assumption 2 allows an easy characterization of a winner’s optimal resale price. Denote
F;(-|E) for the distribution of type ¢; conditional on the event E.

Lemma 4.1 Suppose Assumption 2. Let i € {1,2} and take any interval [z,a] C [t;, %]

a. The function V, 4 is strictly increasing for each i =1,2.

b. If a winner w’s posterior belief about the stage-one loser l’s type is Fi[-|z < (or <) i <
(or <) a], then w’s profit-mazimizing resale price, given his type t,,, is
Via (tw) if Via(z) <ty < a
z if ty < Via(2) (15)
any number in [t,,00) ift, > a.

Proof: To prove Part (a), calculate that
_ Fi(a) - Fi(t) 1 - F(t)

d Fi(a) - Fi(t) ,
—Via(t) = 2+ 222 i) > 2= ——1fi@)l.
2" 0L fep 0122 T 1O

If f{(t) > 0, the equality of the above calculation implies the strict monotonicity of function

Via- I fI(t) < 0, the above calculation, coupled with Eq. (12), implies the strict monotonicity

of Vi o. Thus, Part (a) follows and the inverse V! exists.

fit) > 2

We next prove Part (b), which says that the resale price (15) maximizes the winner’s
expected profit

(P2 = tw) (1 — [t (bu, PY)(P2)) (16)
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from resale, over all resale prices p, > t,,. If t, > a, then the winner knows that there is
no gain from trading with the loser, hence any resale price above or equal to ¢,, is optimal.
This gives the third branch of (15). Consider the other case ¢, < a. By the hypothesis in
Part (b) about the posterior belief, the derivative of (16) with respect to resale price p, is

fz(Pz)

m(tw = Via(p2))-

Obviously, this derivative is positive when V,4(p2) < t,, equal to zero when V,4(p;) = t,,
and negative when Vo(p2) > ty. If Via(2) < t,, < a, then the point V,7'(t,) exists and
is optimal, hence the first branch of (15). If instead Vj,(z) > t,, then the optimal resale
price is the lowest level in the range of the loser’s type, which is z, hence the second branch
of (15). m

5 Why the Statically Optimal Auction Fails

Does resale possibility matter to optimal auction design? To answer this question, we inves-
tigate the performance of the statically optimal auction M* in our dynamic setting. This
section shows that M* fails to be dynamically optimal. The reason is two-fold. First, bidders
do not bid truthfully in the auction M*, because it gives a winner some information that
bidders want to manipulate (Subsection 5.1). Second, the option of resales motivates bidders
to collude in M*, resulting in low revenues (Subsection 5.2). Thus, resale possibility requires
a new design of optimal auctions.

5.1 Manipulating the Information Linkage

To understand why there is no perfect Bayesian equilibrium (PBE) where bidders bid truth-
fully in the statically optimal auction M*, recall the intended allocation rule of M* illustrated
by Figure 1. A crucial feature of the allocation rule is that the winner’s payment depends
on the loser’s bid. Consequently, if truthful bidding were an equilibrium, the winner would
infer the loser’s type from the stage-one payment and then set the resale price accordingly.
Knowing that, the loser would have an incentive to distort his bid, thereby manipulating
the resale price. In Figure 2, for example, bidder 1 gains a payoff represented by the area
EFLN from bidding t] instead of his true type ¢;.

An exception of this negative result is when the bidders have an identical distribution
of types. In that case, the statically optimal auction M* does not misallocate the good,
i.e., the curve GFL coincides with the 45-degree line in Figure 2. One can then show that
a winner who thinks that the loser had bid truthfully would set the resale price to be the
winner’s type (Eq. (15)), so the loser is indifferent between truth and lies. To rule out this
special case, we make the following assumption:

14
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Figure 2: Bidder 2 lies in the statically optimal auction.
Assumption 3 (Partiality) For all t; € [t,,12], t; < t2 < & and Va(ty) > Vi(ts).

This assumption captures the most interesting feature of the statically optimal auction: sub-
sidizing one bidder (bidder 2) in order to intensify the bidding competition. In Figure 2,
Assumption 3 implies that the curve GF'L lies to the right of the 45-degree line. Conse-
quently, the mechanism M* may misallocate the good to bidder 2 when his reported type is
below bidder 1’s, while it never does so for bidder 1.

Proposition 5.1 Suppose Assumptions 1, 2, and 3. If the statically optimal auction M* is
the stage-one mechanism, then the continuation game has no perfect Bayesian equilibrium
(PBE) that induces truthful bidding at stage one.

Proof: Suppose that there is a PBE inducing truthful bidding at stage one. We will show
that bidder 1 would rather lie at stage one, for a positive measure of his types. Pick any
t; € (max{f;, V[ (to)}, V; 1 (Va(f2))). (This interval is nondegenerate by Assumptions 1
and 3.) Consider a bid #; € (V;1(to), ;) for bidder 1 with type t;:

1. Suppose bidder 2’s type t; < V,;"'(Vi(£;)). Since bidder 2 bids truthfully and #; <
t;, bidder 1 wins and pays the same amount whether he bids #; or t; (Egs. (6)
and (9)). Furthermore, no resale occurs in this case, because t; > t; > V"1 (Va(t2))
and V;"}(V(t2)) > t, (Assumption 3). Thus, the bids ¢, and #; are indifferent here.

2. Suppose bidder 2’s type to > V, 1 (Vi(t1)). With t; > V;71(tg), we know V5(tz) > o, so
bidder 2 wins at stage one whether bidder 1 bids ¢; or t; (Eq. (8)). If bidder 1 bids
{1, then bidder 2’s stage-one payment is V;*(Vi(£,)) (Eq. (8)), from which bidder 2
infers that bidder 1’s type is £; (V; ' o V} is strictly monotone by Assumption 2); the
resale price will then be #; and bidder 1’s payoff from the bid ¢; will be ¢; — #;. If
instead bidder 1 bids truthfully ¢;, by the same token, the resale price will be ¢; and
so bidder 1’s payoff will be zero. Since ¢, > t1, the truthful bid ¢; is dominated here.
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3. Suppose bidder 2’s type t, € (V;7Y(Vi(t1)), Vo 2(Va(t1))). If bidder 1 bids £, by the
reasoning in the previous case, he will lose at stage one and buy the good from bidder 2
at price ;. If instead bidder 1 bids truthfully ¢;, then he will win at stage one and buy
the good at price V;"}(Va(t2)) (by Eq. (9), where t, > V,71(to) because t, > V, 1(V; (1))
and 1 > V; (%)) Since t; < V;7!(Va(ts)) here, the truthful bid ¢, is again dominated.

As the other cases (e.g., t = V; !(Vi(t1))) are probability-zero events to bidder 1, it is
dominated for him to bid truthfully. This contradicts the supposition that truthful bidding
is an equilibrium. =

5.2 Collusion in the Statically Optimal Auction

Now that the equilibrium for which the statically optimal auction M* is intended cannot
- survive when resale is allowed, we need to evaluate the performance of this auction by finding
an equilibrium. This section shows that M* has a an equilibrium where bidders lie at stage
one and trade subsequently, resulting in low revenues for the initial owner.

The driving force behind this “collusive” equilibrium is the resale option, which allows
the bidders to trade after the auction M* if they could collude in M*. They can collude in
M* because the mechanism M* determines a winner’s payment by the rivals’ bids. Thus,
one bidder (say bidder 2) can bid his highest possible type, unless his actual type is so low
that the loss at stage one exceeds the profit from resales. Knowing that, bidder 1 would
shade his bid down to the stage-one reserve price offered to him—just to assure a sale at
stage one—and further shade his bid if his type is below that reserve price. He could have
competed with bidder 2 at stage one, by bidding sufficiently high. But doing so is dominated,
because if he wins at stage one, bidder 1 must pay a price determined by bidder 2’s bid,
which is 2’s highest possible type. If bidder 1 waits until stage two, then he can win at a
lower price. Knowing bidder 1’s reaction, bidder 2 has no incentive to shade his bid from
the highest possible type, since 2 is going to pay only his stage-one reserve price if he wins.
Inducing an allocation rule different from the one intended by the mechanism M* (Figure 3),
this equilibrium gives the initial owner a lower expected payoff in the dynamic setting than
it does in the static setting (Lemma 3.4 (b)).

We emphasize here that it is the resale option that drives this collusive equilibrium. As
well-known, a Vickrey auction in the static environment also has a “static” collusive equi-
librium, where one bidder bids high and the others bid low, regardless of their types. That
static collusive equilibrium, however, does not survive in our environment when the reserve
price offered to the high bidder is nontrivial (the case “V;"(¢5) > t,” in Assumption 1), for
then a low-type high bidder will get a negative payoff. In contrast, the collusive equilibrium
here survives nontrivial reserve prices, because the high bidder expects a profit from resale.
The static collusive equilibrium also relies on the assumption that the high bidder can submit
a bid above all possible types of others. This assumption does not hold in our environment,
because bidder 2’s highest bid #, can fall below bidder 1’s highest bid #; (the case “f; < £;”
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Figure 3: Collusion in the Statically Optimal Auction M*

in Assumption 3). In contrast, the collusive equilibrium here does not need that assumption,
because the low bidder, even with extremely high types, gets a lower price from the high
" bidder at resale than from the initial owner. Here, the incentive of collusion comes from the
option of resales.

Our collusive equilibrium requires a weaker assumption than Assumption 3:
Assumption 4 (Weak Partiality) For all t; € [t5,12], t; < t2 < T, and Va(tz) > Vi(ta).

Weaker than Assumption 3, this assumption allows the curve HL to coincide with the 45-
degree line AB in Figure 3. An immediate consequence of Assumption 4 is that the statically
optimal auction M* offers a lower reserve price to bidder 2 than to bidder 1.

Lemma 5.1 By Assumptions 2 and 4, V5 *(to) < Vi (to).

Proof: Suppose not, then
to = Va(Vy ! (t0)) 2 Vi(V5 ' (to)) > Vi(Vy 7 (t0)) = to,

where the first inequality follows from Assumption 4 and the second inequality follows from
the monotonicity of V; (Assumption 2). This contradiction proves the lemma. ®

The rest of this section constructs the equilibrium via four steps. Step 1 constructs
a strategy profile. Step 2 derives the belief system from the strategy profile according to
Bayes’s rule. Step 3 proves that bidder 2’s best response is to abide to the strategy profile.
Step 4 proves the analogous claim for bidder 1. Proposition 5.2 wraps up the result.
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5.2.1 Step 1: The Strategy Profile

We first define bidder 1’s bidding strategy:

t if t; < V7 (to)

st ={ Py it > vt an

A winner’s resale price strategy p$ and a loser’s response strategy r° are easily defined by
Conditions 2a and 2b of Subsection 2.2, once the belief system is defined.
To define bidder 2’s bidding strategy, look at the function

g(t) ==t = Vy H(to) + [1 = RV ()T (8) — 8], VE € [ty, Ta]. (18)
Lemma 5.6 will show that g(t) is a type-t bidder 2’s surplus if he bids above the reserved
 price V, 1(ty) offered to him by M*. Until then, we need only to notice the following fact:
Lemma 5.2 By Assumptions 2 and 4, the function g is well-defined, and there exists a
unique point t, € [ty, Vs '(to)], with

t. := inf{t € [ty, V5 '(t0)] : g(t) > 0}, (19)

such that g(t) > 0 if t € [t., 2] and g(t) < 0 ift € [t,, t.).
Proof: The function g is well-defined if any t; € [t,, %] belongs to the range of V!, i.e.,
Vi(t;) < ta < Vi(f1). The first inequality follows from the fact that Vi(¢;) < t; < t2 (Eq. (14)
and Assumption 4); the second inequality follows from the fact that Vi(¢,) = t; > t; (Eq. (14)
and Assumption 4). Thus, the function g is well-defined. To prove the rest of the lemma, one
can show that the derivative ¢'(t) = Fy(V;1(t)) > 0, so g is strictly increasing. Furthermore,

g(V5 ' (te)) > 0 by Eq. (18). Thus, the point t, defined by Eq. (19) is either the unique root
of the equation g(t) = 0 in [t,, V5 }(¢)] or the end point ¢,. ®

Lemma 5.2 implies that the following bidding strategy of bidder 2 is well-defined:

oy [ ta ifty<t,
s3(t2) = { £, ifty > t.. (20)

The next lemma highlights some properties of the bidding strategies (s{)Z;.
Lemma 5.3 Denote t; (Vi = 1,2) for bidder i’s bid in M*. Assumption 2 implies:

a. If ty > V5 H(to) and bidder 1 plays s3, then bidder 2 wins and pays Vy '(to) in M*.

b. If bidder 2 wins in M* and bidder 1 plays s3, then bidder 2 pays V; '(ty) at stage one.

18



c. If bidder 1 wins in M*, his payment p} # V" !(to), and bidder 2 plays s3, then bidder 2’s
bid s t—z.

Proof: To prove Part (a), we calculate that
Vi(si(t1)) < i(ViH(to)) = to < Va(a),

where the first inequality follows from Eq. (17) and the monotonicity of V; (Assumption 2),
and the last inequality follows from ¢, > V,!(y) and the strict monotonicity of V; (Assump-
tion 2). By Eq. (8), the above calculation implies Part (a). Part (b) follows from the fact
that s3(t;) < Vi (o) (Vt1) and Egs. (7), (8), and (10). For Part (c), notice from “Egs. (6),
(9), and (10)” that “bidder 1 wins and p! # V;7!(to)” implies bidder 2’s bid £, > V, }(to).
If {, # ,, then Eq. (20) would imply that &, = t, < t. < V;7'(to), a contradiction. Thus,
bidder 2’s bid ; must be £, if he plays strategy s3. This proves Part (c). ®

" 5.2.2 Step 2: The Belief System

The following lemma calculates the posterior belief y,, of a winner w € {1,2}. A loser’s
posterior belief uf plays a minor role (needed only when the loser calculates his expected
payoff upon losing at stage one) and can be calculated likewise.

Lemma 5.4 For any stage-one winner w and any of his reported type t, > V- 1(ty) and
stage-one payment pY, define

o (3 wy . __ F2('|t2 < t*) if'w =1 and piv = ‘/l_l(to)
bt PY) =Y Bty > 1) ifw=1 and p? = Vi (Va(E) ()
F, if w=1 and p? & {Vi (o), Vi ' (Va(f2))}.

By Assumptions 1, 2, and 4, the belief system u® is Bayesian with respect to the strategy
profile containing (s?)2_,, provided that M* is the stage-one mechanism.

Proof: When bidder 2 wins at stage one (w = 2), there are two possibilities:

1. Bidder 2’s stage-one payment p? # V, '(t;). From this payment, bidder 2 learns
that bidder 1 must have deviated from s{ (Lemma 5.3 b). Thus, Bayes’s rule has no
restriction on bidder 2’s posterior belief in this case.

2. Bidder 2’s stage-one payment p? = V,;}(¢;). Since bidder 1 is expected to play the
strategy s3, “Egs. (7), (8), and (10)” implies that bidder 1 cannot beat bidder 2 and
that bidder 2’s stage-one payment is V; '(t;), regardless of bidder 1’s type. (This
statement depends on the assumption that bidders do not know whether the winner
is chosen by a tie. Dropping this assumption would merely add one case to Eq. (21).)
Consequently, bidder 2 learns nothing new from his winning status and payment in
this case.
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Thus, the first branch of Eq. (21) obeys Bayes’s rule. Let us turn to the case when bldder 1
wins at stage one (w = 1). Again there are two possibilities:

1. Bidder 1’s stage-one payment p! = V;7!(¢;). The fact that he won implies that bid-
der 2’s bid did not exceed V;'(¢y) (Lemma 5.3 a). By Assumption 1 and the strict
monotonicity of V3 (Assumption 2), V;7'(ty) < f,. Thus, the definition (20) of s5
implies that ¢, < t,, hence the second branch of Eq. (21).

2. The stage-one payment p! # V;"!(to). From his winning status and payment, bidder 1
learns that bidder 2, if playing s$, must have bid #, (Lemma 5.3 c), hence the third
branch of Eq. (21). In this case, bidder 1’s payment must be V;"!(Vy(#;)). If not,
then bidder 1 knows that bidder 2 must have deviated from s3, so Bayes’s rule has no
restriction on bidder 2’s posterior belief, hence the last branch of Eq. (21).

With all cases exhausted, we have shown that the posterior belief u obeys Bayes’s rule. m

Lemma 5.5 Suppose Assumptions 1 and 2. Given M* as the stage-one mechanism and
given the belief system characterized by Eq. (21), if bidder 2 wins at stage one then he will
set the resale price as V" (t2) for any type ty of his.

Proof: Winning at stage one, bidder 2 updates his belief about bidder 1's type as F}
(Eq. (21). Thus, by Eq. (15), bidder 2 will set the resale price to be V™! (¢,) if Vi(t;) < t, < #y,
while the negation of “Vi(¢;) < t, < #,” is impossible by Assumption 1. m

5.2.3 Step 3: Bidder 2’s Best Response

This subsection shows that bidder 2’s strategy s3 is a best response to the strategy-belief
profile e® := ((s3, s3, p°,7°, ), u°).

Lemma 5.6 Suppose Assumptions 1, 2, and 4. If bidder 1 plays s, then bidder 2’s expected
payoff from bidding above Vy ' (to) in mechanism M* is equal to g(t2), given any of his type
ty € [t5,t2] and the belief system p°.

Proof: Bidding above V;'(t,), bidder 2 buys the good at price V,'(t,) at stage one
(Lemma 5.3 a). By Lemma 5.5, bidder 2 will set the resale price to be V;7'(t;) if his type
is t5. Thus, bidder 2’s expected profit at the resale stage is [1 — Fy (V; 7} (£2))][Vi 2 (22) — t2),
and so his expected payoff from bidding above V; !(t5) is equal to g(t,). m

Lemma 5.7 Suppose Assumptions 2 and 4. If bidder 1 plays the strategy s and wins in
M?*, then he will set the resale price to be equal to his type, and no resale occurs at stage two
if bidder 2’s type ty < Vy L(to).
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Proof: Since bidder 1 plays the strategy s} and wins, both his bid and payment must be
Vi Y(ty) (Lemma 3.3 and Eq. (17)). His posterior belief is therefore Fy(-|t, < t.) (Eq. (21)).
As he bids V;"(¢y) according to s§, his actual type must be ¢; > V;"!(ty). Since V7 (ty) >
V, 1(to) (Lemma 5.1) and V; !(to) > t. (Eq. (19)), we have t; > t,. It thus follows from
Eq. (15) that bidder 1 sets his resale price to be equal to his type ¢;. Consequently, if
bidder 2’s type is below V; '(t;), and hence below t;, no resale will occur.

Lemma 5.8 Suppose Assumptions 1, 2, and 4. Given the stage-one mechanism M*, the
strategy s5 (Eq. (20)) is bidder 2’s best response to the strategy-belief profile e°.

Proof: First, suppose that bidder 2’s type is to < t.. If he bids s3(¢2), then he loses at
stage one, since s3(t3) < t. < V5 '(to) (Eqgs. (20) and (19)); furthermore, bidder 2’s expected
payoff is zero, since there will not be any resale in this case (Lemma 5.7). If instead he
deviates from sj(t;), then the only deviation that can make a difference is to bid above
 V, (o), thereby obtaining an expected payoff g(t2) (Lemma 5.6), which is negative since
to < t.. Thus, deviation from the strategy s5 is dominated for any type t; < t,.

Second, suppose that bidder 2’s type is £, > t.. We claim that he prefers winning
the good at stage one to buying it at stage two. The reason is that his payment is equal to
V, (to) if he wins at stage one (Lemma 5.3 b) and equal to ¢, (bidder 1’s type) if he buys the
good at stage two (Lemma 5.7). Since V, *(¢y) < V;" (o) < t; (Lemma 5.1 and Eq. (17)),
bidder 2 will pay less at stage one than at stage two (except for the probability-zero event
“t; = V;}(tp)”). Thus, it is dominated for bidder 2 to bid less than or equal to V;(to).
(The bid V;(t,) leads to a tie when bidder 1 bids V"' (¢o), by Eq. (10).) For any bid above
V, (ty), bidder 2’s expected payoff is constantly g(¢;) (Lemma 5.6). Thus, bidding ?, is
optimal for him. B

5.2.4 Step 4: Bidder 1’s Best Response

This subsection shows that bidder 1’s strategy s} is a best response to the strategy-belief
profile e°.

Lemma 5.9 Suppose Assumptions 1, 2, and 4. If bidder 2 plays strategy s5, then bidding
t; > VY (Va(ty)) is dominated for bidder 1, given the belief system p° in Eg. (21).

Proof: Let t; denote bidder 1’s type and suppose that he bids £; > V;7*(Va(£)). If he loses,
then the bid ¢; makes no difference from the bid prescribed by s3, since bidder 2 will update
to F in either case (Eq. (21)). If bidder 1 wins and bidder 2’s type is below ., again the
bid £, makes no difference, for his payment will be V;"!(¢,) whether he deviates or not.

The only case left is that bidder 1 wins and bidder 2’s type is at least f,. By the
definition of s3, bidder 1’s payment is V' (V(£,)). From this amount, bidder 1 updates his
belief into Fy(-|t2 > t.) (Eq. (21)). By Eq. (15), he will set the resale price as follows:
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1. If V5(t.) < t; < %2, then the resale price is V; Y (t1). By Eq. (14) and Assumption 4,
Vi Ht) < B < ViH(Ve(E2)), so bidder 1's stage-one payment exceeds his stage-two rev-
enue. Thus, he gets negative expected payoff from bidding #;, while bidding according
to s$ guarantees a nonnegative payoff.

2. If V(t,) > t1, then the resale price is ¢t,. By Eq. (19), t, < Vo (to); since V3 () <
Vil (to) (Lemma 5.1) and Vi ' (to) < V;"'(%2) (Assumption 1), the resale price ¢, is less
than the stage-one payment V;"}(V,(£2)). Thus, the bid #; yields a negative expected
payoff for bidder 1 and hence is dominated.

3. If t; > t,, then the resale price is t;, so bidder 1’s profit from resale is zero. Thus,
his overall expected payoff is t; — V;"}(Va(£;)). In contrast, if he bids according to
s¢, which is V;7'(¢o) in this case, bidder 2 of type ¢, would have won at stage one
and would resell the good at the resale price V;'(t;) (Lemma 5.5), thereby giving
bidder 1 a payoff t; — V;"(tz). Since t, < &, V71 (t2) < Vi 1(Va(f2)) (except for the
zero-probability event “¢; = #,”), so bidder 1 could have paid less for the good than
the amount V;"1(Va(£;)). Thus, the bid {; is again dominated.

With all cases considered, we have proved the lemma. W

Lemma 5.10 Suppose Assumptions 1, 2, and 4. Given the stage-one mechanism M*, the
strategy s (Eq. (17)) is bidder 1’s best response to the strategy-belief profile e°.

Proof: First, suppose that bidder 1’s type t; < V{"'(to). According to the strategy s3, he
would bid below V;~(t,) and lose at stage one. Suppose that he deviates to a bid £ > Vi (to).
By Lemma 5.9, we need only to consider < V"' (Va(£;)). If bidder 2’s type t; > t., he will
bid %, (Eq. (20)) and beat bidder 1 at stage one ({ < V;7'(Va(£2))), so bidder 1’s deviation
to , will make no difference. If instead bidder 2’s type t; < t., he will bid below V5 '(%o),
so bidder 1 will win and pay V;!(to) at stage one (Eq. (6)). Bidder 1 will then update to
the belief Fy(-|t; < t.) (Eq. (21)). Consequently, his revenue from resale is below t,, while
t. < V5 (to) < Vi (o) (Eq. (19) and Lemma 5.1). Thus, bidder 1 pays more than he will
receive, so the deviation £; is dominated.

Second, suppose that bidder 1’s type t; > V; }(t5). The strategy s$ prescribes bidding
Vi '(to). Suppose that he deviates to a bid t # Vi '(ty). By Lemma 5.9, we need only to
consider # < V;"}(V,(%,)). Furthermore, deviating to a bid £ € (V;*(to), Vi *(Va(f2))) makes
no difference, since bidder 2 plays the strategy s5. Thus, the only deviation that can make
a difference is £ < V;}(to). We hence consider such a deviating bid #. If bidder 2’s type
ty > t., then bidder 2 will win whether bidder 1 deviates or not, so the deviation will make
no difference. If instead t, < t,, then the deviation # results in no sale at stage one (Eq. (5)),
thereby yielding zero payoff for bidder 1. In contrast, bidding according to s7 would give
him a positive payoff whenever t; > V;"!(¢p). Thus, the deviation is dominated. ®
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5.2.5 The Collusive Equilibrium

Having completed the above steps, we obtain a collusive equilibrium of the mechanism M*.
Here bidder 1 bids at most the reserve price offered to him by M*, bidder 2 bids his highest
possible type, and with a positive probability the bidders trade with each other after stage
one. The following proposition summarizes this result and further asserts that the auction
M* gives the initial owner a lower expected payoff in our setting than it does in the static
setting. The latter claim, coupled with a dynamically optimal auction constructed next
(Proposition 6.1), implies that the statically optimal auction M* is dynamically suboptimal.

Proposition 5.2 Suppose Assumptions 1, 2, and 4. If the statically optimal auction M*
is the stage-one mechanism, then the continuation game has a perfect Bayesian equilibrium
(PBE) ¢°, characterized by Egs. (17), (19), (20), and (21), such that the pair (M*, e°)
induces a positive probability of resale and gives the initial owner a lower expected payoff
. than M* would give in the static environment.

Proof: By Lemmas 5.4, 5.8, and 5.10, the strategy-belief profile e® constructed by Egs. (17),
(19), (20), and (21) is a PBE. We first prove that this equilibrium induces the allocation rule
illustrated by Figure 3. If bidder 2’s type t; > t., then by the strategies s7 and s3, bidder 2
buys the good at price V; *(ty) at stage one. He will then set the resale price as V;!(t;)
(Lemma 5.5), so bidder 1 will be the final owner of the good if his type is above V;7!(t2).
If t, < t, and bidder 1's type t; < V{"!(t;), then the bidding strategies imply that neither
bidders get the good. If t; < t, and t; > V; !(ty), then bidder 1 buys the good at price
Vi l(to) at stage one; no resale will occur in this case (Lemma 5.7 and t, < V;7'(t5)). The
allocation rule illustrated by Figure 3 hence follows.

We next prove that this equilibrium induces resales with a positive probability. Ac-
cording to the allocation rule verified above, a resale occurs whenever the type profile (¢1, t3)
is in the area HNFG of Figure 3. Furthermore, the interval [V;(t), £s] is nondegenerate
(Assumption 1) and hence has positive probability (F; has no gap by Assumption 2). This,
coupled with the strict monotonicity of the function V; (Assumption 2), implies that the
area HN F'G has a positive probability with respect to F} x F5. Thus, the equilibrium leads
to a positive probability of resales.

We finally prove that the mechanism-PBE pair (M*,e°) gives the initial owner an
expected payoff lower than M* would have done in the static setting. By Lemma 3.4 (b),
it suffices to prove that the rule by which (M* e°) selects the final owner is different from
(g?)2_, (Eq. (2)) on a set of positive probability measure, which is obvious from an inspection
of Figures 1 and 3. (The area HCD in Figure 3 suffices.) ®
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6 A Dynamically Optimal Auction

The previous section has shown that the statically optimal auction M* fails when resale
cannot be prohibited. Then what is an optimal auction here? To answer this question,
recall the two problems, besides resale option, that cause the failure of M*. The first is
that the payment scheme in M* gives a winner too much information about the loser. The
second problem is that M* charges a winner according to the loser’s bid, thereby allowing
collusive bidding, as in a Vickrey auction. One idea to fix these problems is to change the
payment scheme so that a bidder’s payment depends only on his own bid. That would stop
the information linkage and make a bidder pay for his own bid.

Even if an auction could fix the above problems, how do we know that it is dynami-
cally optimal (i.e., optimal when resale cannot be prohibited)? The answer comes from the
revenue-equivalence theorem, which corresponds to Lemma 3.4 (Section 3). By that lemma,
it suffices to design a stage-one mechanism that has an equilibrium inducing the allocation
rule (q})2_, intended by M* and giving zero surplus to the lowest type of each bidder.

Motivated by the above ideas, this section constructs a dynamically optimal auction
M?. Figure 4 illustrates its rules. The main idea of this design is that bidder 2, whom M*
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Figure 4: The Dynamically Optimal Auction M?%

intends to subsidize, is expected to be a middleman sometimes. This motivates the following
features of the mechanism MZ. The first is that, when both bidders bid above their reserve
prices, the good goes to bidder 2 if and only if the bid profile lies to the left of curve GK
in Figure 4, while in M* the dividing curve would have been HL. We choose the curve GK
such that, when bidder 2 wins, he will sell the good to bidder 1 if and only if the type profile
lies between curves HL and GK. This feature is to assure that the final owner of the good
is selected in the way intended by M*. The second feature is that bidder 2’s payment 3(f;)
depends only on his own bid ;. This is to cut off the unwanted information linkage across
stages. We design the payment function § to induce truthful bidding from bidder 2. The
third feature is that, when beating bidder 2 at stage one, bidder 1 pays as much as the resale
price had bidder 2 won. This makes bidder 1 indifferent between winning the good at stage
one and buying it from resale, thereby inducing truthful bidding from him.
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The rest of this section presents the result in four steps. Step 1 constructs the mecha-
nism MZ. Step 2 defines a strategy-belief profile eZ. Step 3 proves that truthful bidding in
MZ is bidder 1’s best response to eZ. Step 4 proves that truthful bidding in M7 is bidder 2’s
best response to eZ. Proposition 6.1 wraps up the result.

6.1 Step 1: Constructing the Mechanism M?%

To construct the mechanism, we first specify the dividing curve GK in Figure 4, and then
specify the payment function 8. As introduced above, the dividing curve is represented by
the equation #; = a(f;), where we want to define the function a : [t,, %] — [t;,1] by
Vi (@ = Vi (Va(2)), Vz € [ts, B). (22)
We will see from Lemma 6.5 that this equation says that a type-z bidder 2 who has bid

" truthfully and won at stage one will set V;7}(V3(z)) as the resale price. Until then, we need
only to know that a(z) is well-defined by Eq. (22):

Lemma 6.1 By Assumptions 2 and 3, for any z € [t,,15] there exists ezactly one a(z) €
[Vi ' (Va(z)), t1] such that Eq. (22) holds.

Proof: Pick any z € [t,,f,]. For any a € [V '(Va(2)), %], we have V) 4(¢;) < z (Eq. (14)
and Assumption 3) and z < V;}(Va(z)) < a (Assumption 3). The strict monotonicity of
Vi (Lemma 4.1 (a)) hence implies that V;'(z) exists and is unique. Thus, we can define a

function v, by
12(a) = Vi (2), Va € [V} (Va(a)), 1] (23)

Eq. (22) then becomes v,(a(z)) = Vi ' (Va(z)). To prove the existence of a(z), we apply
the Intermediate-Value Theorem to function 7,: First, the function v, is continuous by
Assumption 2. Second, “y,(V; (Va(z))) < Vi H(Va(z))” is equivalent to “z < Vi *(Va(z))”
(by the definition of 7, and Eq. (14)), which is equivalent to “Vi(z) < V,(z),” which is true
by Assumption 3. Third, “v,(,) > V;"}(Va(z))” is equivalent to “V;"}(z) > V; }(Va(z))” (by
the definitions of v, and V}), which is equivalent to “z > V2(z),” which is true by Eq. (14).
Thus, a(z) exists. To prove the uniqueness of a(z), we show that <y, is strictly monotone:
Pick any a,a’ € [V;}(Vz(z)), %] such that @ > a’. Denote ¢ := Vi /(z) and t' := V }(z).
Suppose t < t'. Then
2= Via(t) < Viw(t) < Viw(#) =

here the first inequality used Eq. (13), Assumption 2, and a > o/, and the second inequality
used Lemma 4.1 (a) and “¢t < ¢'.” This contradiction implies ¢t > ¢, as desired. B

We next construct a function 3 : [V, (to),%2] — R, which will determine bidder 2’s
payment if he wins at stage one. Define

P(z,t) := [Fi(efz)) — Fi(ve(e(z))ln(alz)) -], Vz,t € [ty, o] (24)
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We want to define 3 by the following differential equation system:

vt € Vit (to), B, [t — B@I(F: 0 @) (t) — B (H)Fi(a(t)) + 5%¢<y,t> =0 (@)

[Va(to) = B(Vy (b)) Fi(a(Vy ' () + 9(V5 ' (o), V' (20)) = 0. (26)

Subsection 6.4 will show that Eq. (25) is the first-order necessary condition for bidder 2
to bid truthfully, and Eq. (26) the condition that bidder 2 gets zero surplus if his type is
equal to the minimum bid V5 '(%y). Until then, we need only to know that the function 3 is
well-defined by Egs. (25) and (26).

Lemma 6.2 By Assumptions 2 and 3, there exists a unique solution 3 : [V; ' (to), %] = R
for Eqs. (25) and (26).

- Proof: By Assumptions 2 and 3, the function « is well-defined (Lemma 6.1). Furthermore,
the function is differentiable by Eq. (23) and the differentiability of the virtual utility func-
tions (Assumption 2). Thus, Eq. (25) is meaningful. As Eqgs. (25) and (26) comprise a linear
ordinary differential equation system, the lemma follows. &

With functions o and 3 well-defined, we define the stage-one mechanism MZ by the
following rules for any profile (£1, ;) € []_, [t;, ;] of bids, which are independently submitted:

1. If &y < V; (to) and 3 < V; *(tp), then the initial owner withholds the good.

2. If & > VY (to) and {5 < V5 '(to), then bidder 1 wins and pays Vi ' (to).

3. If {, > a(fy) and £, > V; }(tp), then bidder 1 wins and pays V; ' (Va(fs)).
) )

4. If t; < a(ts) and £, > V5 '(to), then bidder 2 wins and pays ﬂ(t}).

Figure 4 illustrates the above rules.

6.2 Step 2: The Strategy-Belief Profile

Let us start by defining a strategy-belief profile eZ := ((sZ, sZ, pZ,rZ), u?) for the continua-
tion game once the stage-one mechanism M? is chosen. Define the response strategy r? by
Condition 2a for perfect Bayesian equilibrium (Subsection 2.2). For any bidder ¢, any win-
ner w, any type t; € [t;, %], any possible bid t, from the winner, and any possible stage-one

payment p} from him, define:

S-Z(t,') = ti; (27)

1

@2Z(2, 527 pi, t2) = ‘/]:al(fz)(tZ)v (28)
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t_l if tl > pl or “tl > ‘/'2_ (to) & pl = L’_l(t )”

oE ik = | i) <n e Vo) 2=V

ma.x{V (Wi(ph),t) it <pl & > V3 (to) & P1 > V1 Y(to);

Fi(-th < alty)) ifw=2
pi(tu,p?) = { Fa(lts <V5'(to)) if w=1andp¥ <V }(to) (30)
(sz_l(vl(p;_”)) if w = 1 and ptll) > ‘/1_1 (to)

Here 6, denotes the Dirac measure at the point a.

The above strategy-belief profile means: Each bidder bids truthfully at stage one. If
bidder 2 bids #, and wins, then he updates that bidder 1’s type is bounded from above by
a(ty), and he sets the resale price as Vl_;(t‘,)(t?) if his own type is t5. If bidder 1 wins, then

he updates that bidder 2’s type is equal to V; ! (V;(p¥)) if the stage-one payment p¥ is above
Vi }(to), and otherwise will infer that bidder 2’s type is bounded from above by V™' (to);
bidder 1 will set the resale price according to Eq. (29).” A loser accepts an offer from the
winner if and only if the former’s type is above the latter’s resale price. (As in Section 5, a
loser’s posterior belief uZ plays a minor role and can be calculated likewise.)

If eZ is a perfect Bayesian equilibrium (PBE), then the pair (MZ,e?) will select the
final owner in exactly the same way as the statically optimal auction M* intends but fails
to do:

Lemma 6.3 Suppose Assumptions 1 and 3. If the strategy-belief profile eZ characterized by
Eqgs. (27), (28), (29), and (80) is a PBE of the continuation game once MZ is chosen, then
(MZ,e%) gives zero payoff to the lowest type of each bidder, and the way in which it selects
the ﬁnal owner is (q})2_, (defined in Eq. (2)), the same as the rule intended by the statically
optimal auction M*.

Proof: By construction, the final-owner-selection rule of MZ is the same as (¢})2_; unless
the profile of bids (tl, t2) belongs to

§:={(z,y) € [tr, B] x [ta, F] 1 y 2 V5 (t0); Vi (Val) < 7 < ()}

Since eZ prescribes truthful bidding (Eq. (27)), at the end of stage one the winner is chosen
according to (qf)?_; unless the profile (¢;,%2) of types belongs to S. If (¢1,t2) € S, then
bidder 2 wins the good at stage one (Rule 4 of M%) and will set the resale price to be
Vl'a tz)( 2) (Eq. (28)), which is equal to Vi '(Va(t2)) by Eq. (22). Consequently, bidder 1
ends up being the final owner, the same as (g})2_,. Thus, the winner-selection rule (g})Z_,

is implemented if (MZ,e?) comprise a mechanism-PBE pair.

7 In cases of the first branch of Eq. (29), Lemma 6.5 will show that any resale price above or equal to
bidder 1’s type t, including the prescribed %;, is optimal. If instead Eq. (29) prescribes the resale price to
be t;, then bidder 2 with sufficiently high types might want to bid low and buy the good from bidder 1.

27



We next examine the payoff to the lowest type t; of each bidder ;. By Assumption 1,
t; < Vi M to). If t; < V;"Y(to), then bidder ¢ cannot win at stage one (Rules 1, 2, and 4).
Neither can i buy the good from resale, because the resale price will be at least V,7(t,),
given truthful bidding at stage one (Egs. (27), (28), and (29)). Thus, ¢ has zero expected
payoff. Consider the other case, t; = V. }(ty). It suffices to prove that bidder i’s expected
payoff conditional on winning at stage one is zero. First, suppose that bidder 1 wins at stage
one, then he breaks even at stage one (Rule 2), and he gains no profit from resale, since resale
will not occur (the first branch of Eq. (29) and ¢; > t, by Assumption 3). Second, suppose
that bidder 2 wins at stage one, then he will set the resale price to be V" (o) (Eq. (28)),
hence his expected profit from resale is '

Vit (t) = Vo (to)][F1(e(V5 7 (1)) — Fu(Vi (80)I/ Fa(a(Vy " (t0))),

which is exactly his stage-one payment 8(V5 '(¢9)) (Eq. (26)). Thus, conditional on winning
at stage one, each bidder i with type V;7!(¢;) breaks even, as claimed. ®

The above lemma, coupled with Lemma 3.4 (a), implies that the mechanism M? will
be dynamically optimal if eZ is a PBE. The rest of this section will prove that. Let us begin
by checking Bayes’s rule and the resale prices in e? defined above.

Lemma 6.4 By Assumption 2, the belief system u? defined by Eq. (80) is Bayesian with
respect to the strategy profile (sZ,sZ, pZ rZ).

Proof: If bidder 2 wins after bidding #, at stage one, then from his winning status and
Rule 4 of mechanism M?Z he learns that bidder 1’s type does not exceed a(f;). That is
all he can infer, since his stage-one payment 3(f;) contains no information about bidder 1.
Hence the first branch of Eq. (30) follows Bayes’s rule. When bidder 2 wins and needs to
pay p¥ at stage one, there are two possibilities. Either p¥ = V;7!(to) when bidder 2’s bid
is below V; (o) (Rule 2 of M?), or p¥ = V;(Va(f;)) when bidder 2’s bid ¢, > V;*(¢o)
(Rule 3). From his stage-one payment p}’, bidder 1 can tell these two cases apart, because
“fo > V7 1(to)” is equivalent to “Vi1(Va(£2)) > Vi }(to)” (Lemma 4.1 (a)), which is equivalent
to “p¥ > Vi }(to)” (Rule 3). Furthermore, when p¥ > V;”!(¢,), bidder 1 not only knows that
bidder 2’s bid is above V; (t,), he also knows that bidder 2’s bid is equal to V5 (V4 (p¥))
by Rule 3 of MZ and the strict monotonicity of ;! o V; (Lemma 4.1 (a)). Since bidder 1
assumes that bidder 2 bids truthfully, the second and third branches of Eq. (30) follows
Bayes’s rule. @

Lemma 6.5 By Assumptions 2 and 3, the resale price strategy defined by Egs. (28) and (29)
is a best response to the strategy-belief profile eZ defined by Eqs. (27), (28), (29), and (30).

Proof: As proved in Lemma 4.1 (b), a winner’s resale price is determined by Eq. (15). If
bidder 2 bids ¢, and wins, then his posterior belief is Fy(-|t; < a(f2)) (Eq. (30)), so Eq. (15)
implies that the resale price is V1_al(t‘2) (t2), unless his type ¢, is below V] ,;,)(t;) or above a(ty).
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The first case is impossible by Assumption 3 and Eq. (14). The second case is impossible
because a(fy) > V! )(tz) > t; (Eq. (14) and the definition of V;,). Thus, Eq. (28) gives

l,a(fz
bidder 2’s optimal resale price. If bidder 1 bids ¢, and wins, there are two cases.

a. The stage-one payment p} does not exceed bidder 1’s type t;. This contains two
possibilities. First, p! = V;7!(¢;). Then bidder 1 learns that t, < V; (o) (Rule 2 of
M?); since V5 (ty) < Vi (to) (Lemma 5.1) and V;}(¢g) = p! < t;, bidder 1 knows
that ¢; > ¢, i.e., there is no gain from trade with bidder 2. Second, pi > V;7!(ty)
(always p} > V;"!(to) by the rules of MZ). Then bidder 1 learns that p} = V" (Va(t,))
(Rule 3); since ¢, > p} and V' (Va(tz)) > t, (Assumption 3), again bidder 1 knows
that there is no gain from trade with bidder 2. Thus, any resale price above t;, hence

{1, is optimal for bidder 1.
b. The stage-one payment p! > ¢;. This contains three alternatives:

i. Suppose t; > V; }(ty) and p! = V}(tp). From “p} = V;7}(¢;)” bidder 1 learns
that V5 '(ty) > to, hence t; > t,: zero gain from trade. Thus, the resale price f;
is optimal.

ii. Suppose t; < V; 1(to) and p} = Vi (o). From p} = V;"}(¢,) bidder 1 learns that
Vy (to) > t;. Consequently, “t; < V; '(tp) and (15)” implies that the optimal
resale price is Vz;z_l (to)(tl) ift; > 1/'27‘,2—1“0)(;2) and is ¢, if otherwise.

iii. Suppose t; > V;7}(to) and p} > V" (t,). From p} > V;7!(¢) bidder 1 learns that
t, = V, 1 (Vi(p?)), so an optimal resale price is either V5~ (V;(p}) or t;, whichever
is higher.

Exhausting all cases, we have proved that Eq. (29) gives bidder 1’s optimal resale price. ®

6.3 Step 3: Bidder 1’s Best Response

Lemma 6.6 By Assumptions 2 and 3, truthful bidding is bidder 1’s best response to the
strateqy-belief profile €? defined by Eqs. (27), (28), (29), and (30).

Proof: Let ¢; denote bidder 1’s type and ¢; his deviating bid. Notice that his bid affects
only his winning status at stage one (Rules 2 and 3 of M?), and affects bidder 2’s posterior
belief only through the winning status (the first branch of Eq. (30)). Thus, bidding #; instead
of t; does not make a difference when both lead to the same winning status at stage one.

First, consider the case t; > V{7 (t,).

i. Suppose ¢; < t;. Then the deviation can possibly make a difference only when bidding
¢ leads to a win and £, leads to a loss at stage one. Losing at stage one gives bidder 1
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a payoff max{0,t; — V; !(Va(t2))} via resale (the first branch of Eq. (28)), while win-
ning at stage one gives bidder 1 a nonnegative resale profit plus the stage-one profit
t; — V71 (Va(t2)), which is positive because his winning status implies ¢t; > a(t;) >
Vi 1(Va(tz)) (Rule 3 of MZ and Lemma 6.1). Thus, bidding {; < t; cannot improve
upon truthful bidding.

ii. Suppose ¢; > t;. Then the deviation can make a difference only when bidding ¢; leads
to a loss and £; leads to a win at stage one. Again, losing at stage one gives bidder 1 a
payoff max{0,¢; — V"' (V(t2))} via resale. In contrast, winning at stage one gives him
at most t; — V; 1 (Va(t2)) + max{0,ts — t;}. If £, — ¢; < 0, then the deviation is not
better than truthful bidding. If instead ¢, —t; > 0, then the deviation yields a negative
payoff, since V;"'(V;(tz)) > t, by Assumption 3. Thus, the deviation is dominated.

Second, consider the case t; < V;}(tp). Suppose that he deviates to bid #; > V7 (t,),
which is the only deviation that can possibly make a difference. If bidder 2’s type ¢, is below
- V57 (o), then at stage one bidder 1 buys the good at a price V; '(to), which is above his
type t;. This loss cannot be recovered at stage two, because the resale price cannot exceed
to, while t, < V; 1(to) (the second branch of Eq. (30)) and V; !(to) < Vi !(to) (Lemma 5.1,
which holds since Assumption 3 implies Assumption 4). Thus, the deviation gives bidder 2
a negative expected payoff. If instead bidder 2’s type ¢, > V2‘1(t0), then the only case
where bidder 1’s deviation can make a difference is that he beats bidder 2 at stage one, i.e.,
1 > a(ty). But then bidder 1 has to pay V; '(Va(t2)) at stage one, while the resale price is
at most t,, which is below V;"(V5(t;)) (Assumption 3). The deviation again gives bidder 2
a negative expected payoff. Thus, the deviation is dominated. ®

6.4 Step 4: Bidder 2’s Best Response

Finally, we turn to the bidding strategy of bidder 2. We will first calculate his expected payoft
as a function of his bid, and then prove that truthful bidding maximizes that function. Recall
the function ¢ defined by Eq. (24).

Lemma 6.7 Suppose Assumptions 2 and 3. Given the strategy-belief profile e and given
any type t € [t,, 2], bidder 2’s expected payoff u(z,t) from bidding any z € [t,,12] at stage
one is

0 ifz < ‘/2_1(t0)

umt) = { (t = B@) Fa(a(2) + ¥(z,t) if > V3 (t). ey

Proof: If he bids below V, '(t,), then bidder 2 does not win at stage one. His payoff is zero
if bidder 1 does not win either. If bidder 1 wins, then bidder 2 knows that bidder 1’s type ¢;
is at least V;"%(¢y) and stage-one payment p¥’ = V;"!(¢;) (Rule 2 of M%), and hence bidder 2
knows that the resale price will be ¢; (the first branch of Eq. (29)), which is above his type
(Assumption 3). Consequently, bidder 2’s expected payoff is also zero when bidder 1 wins.
This gives the first branch of Eq. (31).
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Now consider the case when bidder 2’s bid z is at least V; !(¢y). This contains two
alternatives. First, bidder 1 wins at stage one, ie., t; > a(z) (Rule 3 of M%). Since
a(z) > V7 }(Va(z)) (Lemma 6.1) and bidder 1’s stage one payment is p} = V7' (Va(z))
(Rule 3), bidder 2 knows that ¢; > p] and hence the resale price will be ¢; (the first branch
of Eq. (29)), giving bidder 2 a zero payoff. The second alternative is that bidder 2 wins at
stage one, i.e., t; < a(z). Then his stage-one profit is t—3(z) (Rule 4 of MZ), and his optimal
resale price is V| 1 (tz) (Eq. (28)). This results in a resale if and only if ¢; > VL 1( i, )(tg).
Thus, bidder 2’s expected stage-two profit, conditional on winning at stage one, is equal to
Y(z,t)/Fi(a(z)) defined in Eq. (24), where function 7, is defined by Eq. (23). Bidder 2’s
overall payoff is therefore equal to the second branch of Eq. (31). m

Notice from Eq. (31) that Eq. (25) assures the first-order necessary condition for bid-
der 2 to bid truthfully if his type is above V;'(¢;). We next examine the second-order
sufficient condition for truthful biding. Denote o(z,t) for bidder 2’s optimal resale price if
his stage-one bid is z and type is ¢, hence by Eq. (23)

o(x,t) = m(a(2)) = Vi (), Yz € [V3 (to), fa], Vt € [ta, o). (32)
By Egs. (32) and (13), we have
Fi(a(z)) = Fi(o(z,t) + fi(o(z, t)[o(z,t) — t], Yz € [V5 (to), 2], VE € [ts, T2). (33)

Since bidder 2 wants to maximize the payoff function u given his type, let us calculate its
derivatives. (The derivative at an endpoint means the left- or right- derivative.)

Lemma 6.8 Suppose Assumptions 2 and 3. For any z € [V; (%), %) and any t € [t,, 2],
3}
8—xu(x, t) = (Froa)(x)o(z,t) —o(z,z)]; (34)

0
au(m,t) = Fi(o(z,t)). (35)

Proof: “Assumptions 2 and 3” implies that the function 3 is well-defined by the differential
equation system (25) and (26), hence is differentiable. Thus, the function u is differentiable.
By Eq. (25), we have

- izb(y, z)

ww,t) = (¢ 2)(Foa)(@) + 50t - 5

61‘ y=z y=x

By the definition (24) of v, the partial derlva.tlve (y, t) is equal to

(F1oa)(y)lo(y,t) — t] + {Fi{a(y)) — filo(y, t))[o(y,t) — t] — Fi(a(y, ))} U(y,t)
which is equal to (Fy o a)'(y)[o(y,t) — #] by Eq. (33). Thus,
—u(z,t) = (t = 2)(F 0 o) (&) + (Fi 0 @) (2)lo(x,t) ~ 1] = (Fi 0 @) (2)[o(x,7) — ],
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which implies Eq. (34). We next calculate
o} 0
5@t = 5 {th(a(@) + [Fie(2) - Alo(z,)llo(zt) - t]}
= F(o(z,t) +{Fi(a(z)) — Fi(o(z,1) = filo(z,t))o(z,t) - t]}gzo(l‘,t)-
Thus, Eq. (35) follows from Eq. (33).

To assure the second-order sufficient condition for truthful bidding, we want the deriva-
tive Qu/0z to satisfy a single-crossing property. Since o(z,t) — o(z, r) has such a property,
as will be proved below (Egs (37) and (38)), Eq. (34) suggests that we need the function
F o o to be increasing. For this purpose we add an assumption:

Assumption 5 (Monotone Resale Profit) The derivative (V' o V,)'(z) > 1 for allz €
(V3 (to), ta)-

This assumption says that the expression V;"!(V,(¢2)) — ¢, is increasing in bidder 2’s type
t. By Eq. (28), this expression is equal to bidder 2’s profit if he bids truthfully, acts as a
middleman, and a resale occurs. Thus, Assumption 5 roughly corresponds to a monotonicity
condition for the middleman’s “type.” In Figure 4, this assumption implies that the curve HL
cannot be steeper than 45 degree. (To see that, differentiate the equation £, = V; 1 (V4(%;)),
which represents the curve HL.) Using Assumption 3, one can easily show that Assumption 5
is satisfied if bidder 2’s virtual utility function V; is concave and increases as least as fast as
bidder 1’s virtual utility function V;.

As desired, Assumption 5 implies the strict monotonicity of the function Fj o a:

Lemma 6.9 By Assumptions 2, 8, and 5, the function Fy o a is strictly increasing on
[V (o), &al-

Proof: By Egs. (22) and (33), for any z € [V5!(to), 2], we have

Fi(a(z)) = F(V(Va(2) + (Vi (Va(2)) Vi (Va(2)) — 2.
Denote t := V"3 (Va(z)) and n(t) := t — V; ' (Va(t)). Since Vi 'o Vo : [V3 1 (to), 5] —
[V (to), Vi 1(%2))] is strictly increasing, it suffices to show that
G(t) == Fi(t) + fi(t)n(?)
is strictly increasing for all ¢ € [V, (to), V;"(£2)]- For this purpose, calculate the derivative
G'(t) = (1 + 7' ()] + fi(t)n(2).

Notice that 1+7'(t) > 0 by Assumption 5 and that 7(t) > 0 by Assumption 3. Thus, we will
be done if fj(t) > 0. Let us therefore consider the other case, fi(t) < 0. For the derivative
G'(t) to be positive, we need only

—fi(®) <A@+ 7' (B)]/n(t).
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Since Eq. (12) already implies —f;(t) < f1(t)?/[1 — Fi(t)], we need only

RO/ = F@)] < L+ 7 0)/n(0) (36)
The definition of function 7 means V;(t) = Va(t — n(t)); Eq. (13) then implies

1-F(t) 1 - Fi(t —n(t))

O YT TR

Thus, [1 — Fi(®)]/f1(t) > n(t) > n(t)/[1 + n'(t)] since n'(t) > 0 (Assumption 5). This
implies (36), as desired. Thus, the function Fj o « is strictly increasing. ®

We now prove that truthful bidding is bidder 2’s best response at stage one.

Lemma 6.10 By Assumptions 2, 8, and 5, truthful bidding is bidder 2’s best response to
the strategy-belief profile €Z defined by Egs. (27), (28), (29), and (30).

Proof: For all z € [V;7}(ty), ;] and all ¢ € [t,, %], we claim:
t>z = o(z,t) > o(z,z); (37)
t<z = o(z,t) <o(z,z). (38)
To prove them, suppose o(z,t) < o(z,r). Then Eq. (32) and the monotonicity of Vi 4(z)
(Lemma 4.1 (a)) implies
t = Via@)(o(z,t)) < Vig@(o(z, ) =z

This proves (37). One can prove (38) likewise. Thus, “Lemma 6.9 and Egs. (34), (37),
and (38)” implies: for all z € [V,7!(t,), ;] and all ¢ € [t,, %],

5 >0 ifz<t
—0——u(a:,t) =0 ifz=t (39)
T <0 ifz >t

Pick any type t; € [t,,;] of bidder 2. There are two cases. First, to > V, '(ty). Then
bidding his own type t, maximizes bidder 2’s expected payoff u(:,t;) among all bids above
V;Y(to). Bidding below V; !(ty) is worse, because for bid z < V;7'(¢,), his expected payoff

u(z, ) = 0 = u(V; *(to), V5 (o)) < w(Vy '(to), t2) < u(ta, t2),

where the first equality uses Eq. (31), the second equality uses Eq. (26), the first inequality
uses the fact that u(V;!(¢), -) is increasing (Eq. (35)), and the last inequality uses Eq. (39).
The second case is that t, < V; !(¢y). Bidding below V; '(to) surely gives zero payoff to
bidder 2 of such a type. Any bid = above V; '(t) is worse, because

u(z, t2) < u(Vy ' (to), 1) < u(V3 ' (to), V37 (to)) =0,

where the first inequality uses the third branch of Eq. (39), the second inequality uses
Eq. (35), and the equality uses Eq. (26). Thus, truthful bidding maximizes bidder 2’s
expected payoff. m
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6.5 The Optimality of Mechanism M?

Having completed the above steps, we obtain a perfect Bayesian equilibrium (PBE) eZ that
supports truthful bidding at the mechanism MZ. Furthermore, this mechanism-PBE pair
yields the highest possible expected payoff for the initial owner in our dynamic environment.

Proposition 6.1 By Assumptions 1, 2, 8, and 5, the stage-one mechanism M? constructed
in Subsection 6.1 is dynamically optimal for the initial owner.

Proof: “Lemmas 6.4, 6.5, 6.6, and 6.10” implies “Conditions 1, 2a, 2b, and 2¢” in the
definition of PBE (Subsection 2.2). Thus, the strategy-belief profile eZ characterized by
Egs. (27), (28), (29), and (30) is a PBE of the continuation game once M?Z is chosen.
Consequently, “Assumption 1 and Lemma 6.3” implies that the conditions of Lemma 3.4 (a)
are satisfied. Lemma 3.4 (a) then implies that the mechanism-PBE pair (M?, e%) gives the
" initial owner the highest possible expected payoff in our environment, i.e., the stage-one
mechanism M?Z is dynamically optimal. ®

7 Examples

This section illustrates the results of this paper by the following example.

Example 2 For each i € {1,2}, bidder i’s type t; is uniformly distributed on [0,%;], such
that t; > ty. The initial owner’s type ty is commonly known to be zero.

By Eq. (1), we calculate, for each ¢ € {1,2} and each t; € [0,%;]:

Vitt:) = 2ti—t;
A = t-l - t_z;
Vit(Valtz)) = ta—A/2.

Notice that Assumptions 1, 2, 3, 4, and 5 are satisfied.

We can then calculate the statically optimal auction M* (i.e., the “optimal” auction
in the existing auction literature) by Egs. (2), (3), and (4). The mechanism M* sets %;/2
as the reserve price for bidder i. If both bidders bid above their reserve prices, then M*
allocates the good according to the line LH in Figure 5: If the bid profile (£,, ;) lies in the
area MLH, then bidder 2 wins and pays ; — (£, — £3)/2; if (1, %) lies in the area HLFG,
then bidder 1 wins and pays £, + (£; — £2)/2.

A crucial feature of this mechanism M* is that it intends to subsidize a disadvantaged
bidder in order to intensify the bidding competition. Here the disadvantaged bidder is
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Figure 5: The Intended Rule of the Statically Optimal Auction (Example 2)

bidder 2, whose distribution of type is stochastically dominated by bidder 1’s distribution.
. The intended subsidization corresponds to the event in which the mechanism M* intends
to sell the good to bidder 2 while bidder 1’s type is higher than bidder 2’s. This event is
the area ABLH in Figure 5. As proved in Myerson [10], this mechanism is optimal for the
initial owner when resale can be prohibited. Hence we call it statically optimal auction.

A problem of M* is that its subsidization scheme fails to intensify the bidding com-
petition when resale cannot be prohibited. The intuition is that a bidder can buy the good
from the subsidized bidder instead of competing with him. Specifically, if the initial owner
sells the good via the mechanism M?*, there is no equilibrium that supports truthful bidding
(Proposition 5.1); instead, there is a collusive equilibrium yielding low revenues for the initial
owner (Proposition 5.2). :

To see why truthful bidding is impossible for the statically optimal auction M*, let us
suppose that there were such an equilibrium. Consider the case where bidder 2 wins and
pays p?. If p? is above the reserve price t5/2, then bidder 2, trusting bidder 1 to be truthful,
thinks that the type profile (¢;,t2) belongs to the area M LH in Figure 5. Thus, he infers
that bidder 1’s type is p? + A/2 and sets that as the resale price. But then bidder 1 with
types in (3, (f; + #2)/2) would strictly prefer bidding below his true type, thereby lowering
p? and the resale price. This contradicts the supposition of truthful bidding.

Let us look at the collusive equilibrium when M* is used to sell the good. Roughly
speaking, the idea is that bidder 2, taking advantage of the subsidy, buys the good and resells
it to the other bidder, who does not compete with bidder 2 in the auction. Specifically,
bidder 1 expects high bids from bidder 2 and hence bids only ; /2 at stage one if his type is
above that value, and bids below it if otherwise. Expecting low bids from bidder 1, bidder 2
bids his highest possible type %, if his type is at least

t, = max{O, vV 2{1t_2 — t_l}
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and bids below #,/2 if otherwise. Here the cutoff ¢, is obtained via finding the root of the
function g(t;) (Eq. (18)), which is type-t bidder 2’s surplus:

g(tz) = [(tz + {1)2 - 2{11?2]/(451), Vtz € [_t_2, t_g]

(It is easy to verify that 0 < ¢, < £2/2.) Along the equilibrium path, bidder 2 wins at stage
one if his type is at least the cutoff ¢,, regardless of bidder 1’s type. Consequently, bidder 2
learns nothing new about bidder 1 from his winning status or his payment to the initial
owner. Bidder 2 hence sets the resale price p, to maximize his expected profit from resale,
given his type ts:

max(pz — t2)(1 — p2/t1).

p22t2

The optimal resale price is therefore (f2 + ?;)/2. In other words, he sets the resale price
according to line HN in Figure 6. From bidder 1's viewpoint, although this price line is

ts
b=t LE4-AR2
5 lc Ma” w6
; ";" E %-é. ------- -tr= 2t1—-t-1
- bidder) 2+ ---»___rQS,al‘?_'__
g Bo: i/ Wd
2 Q" g I /{\I bidder 1 F
s T [/ T
L.~ no sale ----==/- bidder 1----~
0 ;1/2;2 t_1+Tz -t—l tl

2

Figure 6: Collusion in the Statically Optimal Auction M* (Example 2)

more stringent than the price line HL offered by the mechanism M*, he would still prefer
buying the good at resale, because competing with bidder 2 at stage one would result in
an even higher payment ((¢; + f2)/2). At this equilibrium, the revenue for the initial owner
is at most %;/2, the minimum bid for winner . One can show that the initial owner’s
expected revenue is lower than the amount which the statically optimal auction M* would
have generated in the no-resale static environment.®

With the failure of the mechanism M*, can a seller still benefit from subsidizing a
disadvantaged bidder when resale cannot be prohibited? More fundamentally, what is an
optimal auction when resale cannot be prohibited? To answer these questions, let us recall
why M* fails. The reason is two-fold. First, the payment scheme in M* tells a winner
too much information about the loser, which the loser wants to manipulate. This leads to
the impossibility of truthful bidding in M*. Second, M* charges a winner according to the
loser’s bid; the subsidized bidder can therefore bid high, thereby crowding out the rival and

8Interestingly, the resale at this equilibrium does not correct the misallocation of the mechanism M*;
instead, the set (area AQN H) of type profiles where this equilibrium misallocates the good is larger than
the one intended by M*. See also Footnote 3.
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profiting from resale. Thus, an idea to fix these problems is to change the payment scheme
so that the subsidized bidder’s payment depends only on his own bid.

Let us therefore try the following mechanism, denoted by MZ. (Subsection 6.1 has
the general definition.) Each bidder submits a bid independently; given the profile (£;,%;) of
bids, the rules are:

1. If {, < #;/2 and £, < £,/2, then the initial owner withholds the good.
2. If £, > #,/2 and £, < £5/2, then bidder 1 wins and pays £, /2.
3. If {; > i, + A and £, > #,/2, then bidder 1 wins and pays t, + A/2.

4. If {y <ty + A and £, > £,/2, then bidder 2 wins and pays 3(f;), where the function 3
will be constructed below.

Figure 7 illustrates these rules. The mechanism has three features. First, when both bidders

t2 t2 —_-’tl—A 2
tz-_—t] t2=t1i—A
o SN T ) e
! bidder 2 wms ' bride =
e Rk
/2 T —F
J{ bidder 1. wins E
T Ao lsale T price=it1/27

0 W2t 4t U
2

Figure 7: The Dynamically Optimal Auction MZ (Example 2)

bid above their minimum bids ;/2, the good goes to bidder 2 if and only if the bid profile
lies to the left of dividing line GK in Figure 7, instead of HL, which is the dividing line for
M*. Second, the payment (3(f;) from bidder 2, whom we hope to subsidize, depends only on
his own bid £,. Third, upon beating bidder 2, bidder 1 pays ¢, + A/2 instead of £, + A that
the dividing line GK might seem to indicate.

Why is the mechanism M?Z designed like that? Due to the second feature, when
bidder 2 wins in MZ, the only news he obtains is that he has beat bidder 1, which, by the
first feature, means that bidder 1’s type is bounded above by ¢, + A. Consequently, given
his bid £, and type t,, bidder 2 sets a resale price to solve

;1;1%(172 — t)[1 — p2/(f2 + A)),
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so his resale price is (t; + 5 + A)/2. This, if bidder 2 has bid truthfully, is exactly the price
the statically optimal auction M* intends to charge bidder 1. Thus, the first and second
features induce bidder 2 to carry out the initial owner’s desirable allocation rule at the resale
stage. Due to the third feature, bidder 1 will pay the same price whether he beats bidder 2
in MZ or he buys the good from bidder 2 at resale. Mainly because of that, bidder 1 cannot
profit from misrepresenting his type. (Subsection 6.3 has the proof.)

We need to design the payment function 8 such that bidder 2 bids truthfully. We first
examine bidder 2’s payoff when he bids #; below the minimum bid #,/2. Then he cannot win
in M? (Rules 1 and 2). His expected payoff is obviously zero if bidder 2 does not win either.
We claim that his expected payoff is zero even if bidder 2 wins. That is because bidder 2
knows that the winner bidder 1 will infer that bidder 2’s bid—and hence bidder 2’s type
since bidder 1 assumes bidder 2 to be truthful—is below bidder 1’s own type (Rule 3 and
the fact that #; > t3); consequently, bidder 2 expects bidder 1 to conclude that there is no
gain from trades with bidder 2 and to set the resale price as ¢;, which bidder 2 cannot afford.
- (Footnote 7 discusses the case when bidder 1 chooses other resale prices.) Thus, bidder 2’s
expected payoff is zero, as claimed. We next examine bidder 2’s payoff when #; > #,/2. Then
he wins in mechanism M?# with probability Fj (s + A) (Rule 4 of MZ). If he wins, then his
expected resale profit (previous paragraph) is

(fz '—t2+A) <(£2+A) - (t2+£2 +A)/2)
2 ts+ A '

If bidder 2 loses, then his expected payoff is zero. The reason is similar to the case where
he bids below his minimum bid #5/2. Therefore, before bidding, type-t, bidder 2’s expected
payoff u(t,,t;) from bidding ¢, is zero if #; < f;, and otherwise is

u(te, t2) = 5-1— {(tz — BE))(E + A) + 32_122+_A [(52 LAY - tz-i—#—_ll_] } |

1

To construct the function 3, we calculate, for all #; € [£;/2,%,] and all t; € [t,,,]:

_ 9 . P Ly bttt A
ty -a—f-u(t2, ta) = =B(t2)(t2+A) + 1t — B(t2) + ‘2——‘22‘_"“; (40)
2
0 - . £2 +t+ A
Et—z-u(tz,tz) = 5 . (41)

Thus, the first-order necessary condition for truthful bidding is %u(t}, t2)|z,—¢, = 0. Since a
truth-telling bidder 2 with type below £, gets zero payoff, to assure incentive compatibility
at the minimum bid £5/2 we also need u(Z2, ;) = 0. Solving this differential equation system,

we obtain . _
oy (2L +A¥+1

ta) = =
) = =+
One can check that 3 is strictly increasing and that 8(#,/2) > t5/2. The latter fact makes
sense because the payment scheme takes bidder 2’s resale profit into account.

, Vig € [£2/2,12). (42)
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To verify that bidder 2 bids truthfully, we use Eqgs. (40) and (42) to calculate:

o . to—1ty s 2 - _
—u(ly, ty) = 2="2, Vi, € [£2/2, %3], Vt2 € [t5, Ta). (43)
8t2 2tl

Using Eqgs. (41), (43), and the fact that u(23,%2) = 0, one can prove that truthful bidding
maximizes bidder 2’s expected payoff for any type of his. (See the paragraph following
Eq. (39) for a proof.)

So far we have demonstrated heuristically that, if the initial owner sells the good by
the mechanism MZ, then there is an equilibrium where bidders bid truthfully in MZ and
the final owner is selected in exactly the same way as the statically optimal auction M* does
in the resale-prohibiting static environment. How good is mechanism M?#, then? It turns
out that MZ is optimal for the initial owner when resale cannot be prohibited.

To see why the mechanism M? is optimal, we first notice that the initial owner cannot
- do better in our dynamic environment (where resale cannot be prohibited) than in the static
environment (where resale can be prohibited). That is because the initial owner in the static
environment can replicate any mechanism in the dynamic environment by offering an option
of resale (Lemma 3.1). Thus, the expected revenue II* generated by the statically optimal
auction M* in the static setting is the best the initial owner can possibly get in the dynamic
setting. Therefore, M? is dynamically optimal if it gives the initial owner an expected
revenue equal to IT* in our dynamic setting. Comparing Figures 5 with 7, we see that the
payment scheme in MZ differs from that in M* only when the bid profile belongs to the area
CJKG. Thus, it suffices to show that, given truthful bidding, the expected revenues over
this area are identical between the two mechanisms. For M*, the expected revenue when the
type profile belongs to the area CJKG is

12 1 11/2 52 t2+A/2 ta+A o
/ - / —=dty +/ (t1 — A/2)dty +/ (t2 + A/2)dt; | dta/ts.
1,/2 tl 0 2 /2 Jta+AJ2

For M?Z, the corresponding expected revenue is

iz t2+A L 1 i2
/ / B(tz)dt dty [ (Fi1s) = T ((2tz + A)? + B2)dt,,
5/2J0 tite Ji, 2

where the equality uses Eq. (42). An elementary calculation shows that the two expected
revenues are equal to each other, as desired. (“Lemmas 3.4 and 6.3” proves the general case
by the revenue-equivalence theorem.) The mechanism M# is hence dynamically optimal.

The above example is a special case of Proposition 6.1, which designs a mechanism and
proves that it is optimal when resale cannot be prohibited. Following are two more examples
that fit the general result.

Example 3 For each i € {1,2}, bidder i’s type t; is drawn from the distribution Fi(t;) =
1—e Nt (Vt; € [0,00)), such that Ay > Ay > 0. The initial owner’s type is commonly known
to be zero.
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By Eq. (1), we calculate, for each 7 € {1,2} and each ¢; € [0, 00):

Vilts) = ti—1/X;
Vi'(Va(ty)) = ta+1/A —1/.

One easily calculates that Assumptions 1, 2, 3, 4, and 5 are satisfied.

Example 4 Bidder 1’s type is drawn from the distribution F(t,) := 1—e=*" (Vt, € [0, 00));
bidder 2’s type is uniformly distributed on [0,1/A], such that A > 0. The initial owner’s type.
is commonly known to be zero.

By Eq. (1), we calculate, for each ¢; € [0, 00] and each ¢, € [0,1/A]:

Vilty) = t1—1/X
Va(ts) = 22— 1/
Vit(Va(te)) = 2t

It is easy to check that Assumptions 1, 2, 3, 4, and 5 are satisfied.

8 Concluding Remark

One thing held against auction theory was that a secondary market may wash away the
significance of an auction. If a potential buyer can obtain the good from resale, why would
he care about winning in the auction? If secondary markets will eventually deliver the good
to the buyer who values it most, why should a social planner care about auction design?
Auction theorists used to fend off these criticisms by assuming an exogenous friction to
secondary markets. Needless to say, this assumption is neither theoretically elegant, nor
realistically compelling, with the advancing information technology easing transaction costs.
In this context, an insight contributed by this paper is: Even when resale has no friction at
all, efficient allocation is not guaranteed, and a seller can still manipulate where the good will
eventually go by designing an optimal auction. The paper therefore indicates that auction
design is crucial to social planning even with frictionless secondary markets.

I hope that this paper could stimulate more works on auction design in a dynamic
environment. Further extensions may include environments that have many bidders and
multistage resales.
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