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Abstract

We define the notion of rational payoffs in stochastic games. We
then prove that the set of rational payoffs coincides with the set of
extensive form correlated equilibrium payoffs; those are equilibrium
payoffs in an extended game that includes an autonomous correlation
device: a device that sends at every stage a private signal to each
player, which is independent of the play, but may depend on previ-
ous signals. In particular, it follows that communication between the
players and/or between the players and the correlation device cannot
increase the set of equilibrium payoffs.
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1 Introduction

The folk theorem characterizes the set of feasible and individually rational
payoffs in an infinitely repeated game by means of the one-shot game. As
long as the outcome of the coins used by the players is private, a payoff vector
that is individually irrational for at least one player cannot be the expected
outcome of the game.

There are two features of infinitely repeated games that enable such a
characterization. First, the individually rational level of all players remain
the same along the play, and second, the same payoffs are available at each
stage.

Aumann (1987) proved that in one-shot games, if the players are Bayesian
rational and utility maximizers, then the expected outcome of the game must
be a correlated equilibrium, and, given a suitable information structure, every
correlated equilibrium can be the expected outcome of the game.

In the present paper we are interested in stochastic games. In particu-
lar, the features mentioned above are missing. Since the state of the game
changes, the individually rational level of the players changes as well. More-
over, a payoff that is sustainable at some stage may not be sustainable at the
next stage, if the state of the game has changed. Since the game is played
in stages, players may learn new information as the game proceeds, in which
case Aumann’s characterization is not valid.

Our first task is to define rational outcomes in a dynamic setup. In one
shot games, Aumann (1992) measures “expected irrationality” for each player
i in the following way:

“At each of i’s information states, one multiplies the probability
of that state by the difference between i’s expected payoff there
and the maximum expected payoff that he could have gotten by
changing his strategy; then one sums over all of i’s information
states.”

Thus, the expected irrationality depends on the strategy profile that is to
be played, and it measures the maximum (in expected utility terms) that
a player can profit by deviating from his prescribed strategy. Any payoff
that corresponds to a strategy profile whose expected irrationality is 0, is a
rational outcome of the game.

When the setup is dynamic, there are two points we should take into
account. First, the information state changes along the play. Hence, at some
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information state, a player may be aware that even though he may profit
by deviating today, he may profit even more if he waits few more stages
and deviates in more favorable circumstances. Second, since players may
acquire additional information along the play, a player who deviates from his
prescribed strategy cannot disregard the possibility that his opponents will
learn about his deviation in subsequent stages, and, once they learn about it,
will also deviate from their prescribed strategies, and punish him as severely
as they can.

We represent each player’s decision to deviate by a stopping time: at
every information state, a player may either follow his prescribed strategy,
or deviate. A deviation corresponds, then, to a stopping time, supplemented
with a new strategy that should be followed whenever the stopping time
indicates to stop following the original strategy.

Thus, we define the expected irrationality of some strategy profile w.r.t.
player i as the maximum that player i can profit by deviating from his pre-
scribed strategy, provided his deviation is followed by an indefinite punish-
ment. Note that the worst is assumed from the point of view of player i: his
deviation is immediately detected and punished.

In general, players may have asymmetric information, in which case the
play follows a correlated strategy profile; that is, the evolution of the game
is equivalent to a situation where at every stage an action combination is
chosen according to some joint probability distribution over the space of
action combinations. We then say that player i deviates if, when some action
combination was chosen, and each player was informed of his action in this
combination, player i decides to play some other action.

One way to define rational payoffs would be as payoffs that correspond to
some correlated strategy profile whose expected irrationality is 0 w.r.t. every
player. In other words, no player can profit by deviating at any stage from
his recommended action, provided his deviation is followed by an indefinite
punishment.

Under this definition, the set of rational payoffs may be empty even for
simple games (e.g., the “Big Match” with the limsup evaluation, studied
by Blackwell and Ferguson (1968)). We therefore define the set of rational
payoffs in a more robust way.

We say that a payoff vector is ε-rational if it is the expected payoff of some
correlated strategy profile whose expected irrationality, w.r.t. every player,
is less than ε. Any limit of ε-rational payoffs, as ε goes to 0, is a rational
payoff vector.
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Note that this definition is the weakest possible: if a payoff vector is
irrational than it is irrational if deviations are not detected immediately. In-
deed, if a player can profit by a deviation that is punished immediately, he
can clearly profit if he deviates but punishment is delayed. Thus, a pay-
off vector that is irrational cannot be the expected outcome of the game,
whatever be the information structure of the game.

Our main result is that in stochastic games, the set of rational outcomes
coincides with the set of extensive form correlated equilibrium payoffs. Those
are equilibria in an extended game that includes an autonomous correlation
device: a device that sends, at every stage, a private signal to each player,
which may depend on past signals but not on past play. The devices we
use are not canonical (Forges, 1988a): the signal each player receive is not
a recommended action, but a vector of recommended actions, one for each
possible history, as well as the vector of actions that were recommended at
the previous stage.

This result is a folk theorem for stochastic games. Moreover, it shows that
in stochastic games introducing communication between the players and an
autonomous correlation device cannot enlarge the set of equilibrium payoffs.
This phenomenon was found by Forges (1988a) for a class of repeated games
with incomplete information on one side. Since repeated games with incom-
plete information on one side can be represented as a stochastic game, where
the state variable is the posterior distribution of the uninformed player, our
result generalizes the result of Forges (1988a). Recall that when the informa-
tion is asymmetric, communication between the players and the correlation
device may enlarge the set of equilibrium payoffs (Forges, 1986, Example
1). Our characterization result can also be viewed as a generalization of
Aumann’s (1987) result to stochastic games.

Since our result characterizes the set of extensive form correlated equi-
librium payoffs, it may be used to prove non-emptiness of this set. Indeed,
Solan and Vieille (1998) proved that every undiscounted stochastic game
with finite state and action spaces admits a rational payoff, hence, by our
result, an extensive form correlated equilibrium payoff.

When the punishment level of the players is independent of the history,
a stronger result can be obtained. In this case, the set of rational outcomes
coincides with the set of correlated equilibrium payoffs. In particular, in this
class of games the set of correlated equilibrium payoffs coincides with the set
of extensive form correlated equilibrium payoffs.

The two characterization results hold in a very general setup. The state

4



space is an arbitrary measurable separable space, the action spaces of the
players are arbitrary complete separable metric spaces, and the payoff func-
tion may be any measurable function from histories to payoffs.

Since we deal with a general setup, we represent strategy profiles using a
countable sequence of i.i.d. r.v.s. This representation has its own merit, and
may be useful elsewhere.

When the number of available actions is finite, and there are at least four
players, then a simple application of a result due to Bárány (1992) shows
that the set of rational payoffs coincides with the set of direct communication
equilibrium payoffs; that is, equilibrium payoffs in an extended game where
players may send private messages to each other at every stage. We elaborate
on this result in section 6.

Our work is related to that of Myerson (1986), who studies multi-stage
games, and characterizes the set of sequential communication equilibria using
codominated actions. Nevertheless, there are some important differences.
First, Myerson’s equilibria are sequential, while in our equilibria players may
be required to punish a deviator, which may be irrational for some of the
players (though punishment never occurs on the equilibrium path). Second,
Myerson is concerned with finite multi-stage games, whereas in our model
the game may last infinitely many stages.

The paper does not address the question of whether the set of rational
payoffs is empty or not. Moreover, existence of a rational payoff is known only
in special cases, and in all but one, the existence is asserted by proving the
existence of an equilibrium or of a correlated equilibrium (see, e.g., Mertens,
Sorin and Zamir (1994) for the existence of equilibria in finite-stage games
and discounted games, and Nowak (1991) for the existence of correlated equi-
librium in discounted games). The only exception is, as mentioned above,
stochastic games with finitely many states and actions, and the lim sup eval-
uation, where the existence of a rational payoff is proved directly (and the
existence of an equilibrium payoff or of a correlated equilibrium payoff has
not been proved yet).

The paper is arranged as follows. The model is presented in section 2, and
rational payoffs in section 3. In section 4 we define autonomous correlation
devices and extensive form correlated equilibria, and we state two equivalence
theorems. These theorems are proved in section 5. In section 6 we explain
how communication can substitute correlation, provided there are at least
four players.
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2 The Model

For every measurable space Y we denote by P(Y ) the space of probability
measures over Y . If µ ∈ P(Y ) and C ⊆ Y is a measurable set, then µ[C] is
the measure of C under µ. A function f : X → P(Y ) is measurable if for
every measurable subset C ⊆ Y the function g : X → [0, 1] defined by g(x) =
fx[C] is measurable. A product (resp. union) of measurable spaces is always
endowed with the product (resp. union) σ-algebra. Finally, a correspondence
is a set-valued function, and a correspondence φ : X → Y is measurable if
the set {x ∈ X | φ(x) ∩ C 6= ∅} is X-measurable for every closed subset
C ⊆ Y .

A stochastic game G is given by:

1. A finite set of players I.

2. A measurable space of states S.

3. An initial state s1 ∈ S.

4. For every player i ∈ I, a complete separable metric space of pure actions
Ai0. We denote A0 = ×i∈IAi0.

5. For every player i ∈ I, a measurable correspondence Ai : S → Ai0.
Ai(s) is the set of actions available for player i in state s. We denote
A(s) = ×i∈IAi(s). The space of infinite histories is denoted by H∞:

H∞ = {(s1, a1, s2, a2, . . .) ∈ {s1} × (A× S)N| an ∈ A(sn) ∀n ∈ N}.

We endow H∞ with the σ-algebra generated by all the finite cylinders.

6. A measurable transition rule q that assigns for each (s, a) ∈ Gr(A) a
probability measure in P(S).

7. For every player i ∈ I, a measurable bounded utility function ui :
H∞ → [−R,R], where R ∈ R.

The game is played in stages. At stage n each player is informed of past
play hn = (s1, a1, . . . , sn), and chooses an action ain ∈ Ai(sn), independently
of his opponents. The action combination an = (ain) that was chosen and
the current state sn determine a new state sn+1, according to the probability
measure q(sn, an).

6



The payoff for each player i ∈ I is determined by the infinite path that
has occurred, and is equal to ui(s1, a1, s2, a2, . . .) Note that our definition of
a utility function, which follows Maitra and Sudderth (1998), is more general
than the standard approach of using daily payoffs.

2.1 Strategies

We denote the space of histories of length n by Hn. The last state of a
history hn of length n is denoted by sn. The history (s1) is denoted by s1.
The space of all finite histories is denoted by H = ∪n∈NHn. Whenever we
say that hn ∈ H, we implicitly mean that hn has length n.

Definition 2.1 A strategy of player i is a measurable function σi : H →
P(Ai0) such that σi(hn)[Ai(sn)] = 1 for every hn ∈ H. A profile is a vector
of strategies σ = (σi)i∈I . A correlated profile is a measurable function σ :
H → P(A0) such that σ(hn)[A(sn)] = 1 for every hn ∈ H.

Note that every profile is a correlated profile. We denote by Σi the space
of profiles of player i, by Σ? the space of correlated profiles, and by Σ−i? the
space of correlated profiles of players N \{i}; that is, the space of measurable
functions σ−i : H → P(A−i0 ) such that σ−i(hn)[A−i(sn)] = 1 for every hn ∈
H, where A−i(sn) = ×j 6=iAj(sn).

By Ionescu-Tuclea Theorem (see, e.g., Neveu (1965), Proposition V.1.1),
every finite history hn ∈ H and every correlated profile σ induce a probability
measure Phn,σ over H∞; that is, the probability measure induced by σ in the
subgame beginning with hn. We denote expectation w.r.t. this probability
measure by Ehn,σ.

2.2 Payoffs

For every correlated profile σ and every finite history hn ∈ H we denote

γi(hn, σ) = Ehn,σu
i(s1, a1, . . .).

The payoff of a correlated profile σ is defined by γ(σ) = (γi(s1, σ))i∈I .
For every player i ∈ I and every finite history hn ∈ H we define the

punishment level of player i by:

vihn
= inf

σ−i∈Σ−i
?

sup
σi∈Σi

γi(hn, σ).
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vihn
is the punishment level that players N \ {i} can inflict on player i when

they act as a single player. A correlated strategy profile σ−i that approxi-
mates this infimum up to ε is called an ε-punishment strategy profile.

We assume that for every n ∈ N, every ε > 0 and every player i ∈ I there
exists a correlated profile σ̃−iε ∈ Σ−i? such that

sup
σi∈Σi

γi(hn, (σ̃
−i
ε , σ

i)) < vihn
+ ε ∀hn ∈ Hn,

and for every correlated profile σ−i ∈ Σ−i? there is a strategy σi ∈ Σi such
that

γi(hn, (σ
−i, σi)) > vihn

− ε.
We do not know under which conditions such strategy profiles exist. However,
in various special cases such a correlated profile is known to exist: (i) if the
state and action spaces are countable, then there are no measurability issues,
and (ii) if the utility function is the discounted sum or the limsup of daily
payoffs, then existence was proved in general set-ups (see, e.g., Mertens, Sorin
and Zamir (1994) for the discounted sum, and Maitra and Sudderth (1993)
for the limsup).

Note that in general the punishment strategy and the strategy of player i
that defends the punishment level depend on the past play, rather than only
on the current state. This is the case whenever the future payoff depends on
past play. When using the discounted or the limsup evaluation, future payoff
does not depend on past play, and indeed in these cases those strategies
depend only on the current state.

3 Expected Irrationality

In this section we assign for each correlated profile σ and every player i ∈ I
a non-negative number U i(σ), that measures how much player i can profit
by deviating from σi, provided his deviation is followed by an indefinite
punishment. In other words, U i(σ) measures the expected irrationality of
following σ for player i.

For every correlated profile σ, every finite history hn ∈ H and every action
ai ∈ Ai, define σ(hn) | ai to be the conditional probability over A−i given
ai.1 If player i received the signal ai, σ(hn) | ai is his conditional probability
on the joint action played by his opponents.

1Formally, this is the disintegration of σ(hn) w.r.t. the function f : A → Ai that
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Let hn ∈ H be a finite history, ai ∈ Ai an action, and σ be a correlated
profile. Define

U i(hn, σ, a
i) = max{ sup

bi 6=ai

Eσ(hn)|ai(vihn,bi,a−i − γi((hn, ai, a−i), σ)), 0}.

The first term in the maximization is the maximal amount that player i
can profit by deviating after the history hn, given the action he should have
played was ai, and his deviation is followed by an indefinite punishment.
Therefore, U i(hn, σ, a

i) is equal to 0 if player i cannot profit, while it his
equal to his maximal profit, if such a profit is available.

In Aumann’s (1992) terms, U i(hn, σ, a
i) is the amount that player i can

profit in the information state (hn, a
i).

Any measurable stopping time t : H∞ → N and every correlated profile σ
induce, by Ionescu-Tuclea Theorem, a probability measure over H. Denote
expectation w.r.t. this measure by Et,σ. Define the expected irrationality of
σ w.r.t. player i by

U i(σ) = sup
t

Et,σU
i(ht, σ, at)

where the supremum is over all measurable stopping times. In other words,
given that the players should follow σ, player i may stop following σ whenever
he chooses. However, one stage afterwards, he is being punished with his
punishment level. U i(σ) measures the maximal amount that player i can
profit by such a process, where the profit is measured relative to following σ
indefinitely.

Definition 3.1 Let ε > 0. A payoff vector g ∈ RI is ε-rational if there
exists a correlated strategy profile σ such that (i) γ(s1, σ) = g, and (ii)
U i(σ) < ε for every i ∈ I.

A payoff vector g ∈ RI is rational if it is the limit of ε-rational payoffs
as ε goes to 0; that is, for every ε > 0 there exists an ε-rational payoff vector
gε such that ‖g − gε‖ < ε.

We denote the set of rational payoffs by E0.

Note that E0 ∈ RI , and it depends on the initial state s1.
A payoff vector g is rational if there exists a sequence of correlated strat-

egy profiles such that the corresponding payoffs converge to g (feasibility)
and their expected irrationality converge to 0 (individual rationality).

is defined by f(a) = ai, projected on A−i (see Dellacherie and Meyer, 1978). Since we
require that (σ(hn) | ai)[Ai] = 1, regular conditional probabilities do not suffice.
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Thus, we rule out as irrational payoff vectors only those vectors that ei-
ther (i) cannot be supported by correlated strategy profiles, or (ii) can be
supported by correlated strategy profiles, but those profiles are irrational
for at least one player: if these profiles are played, at least one player can
substantially profit by deviating, whatever threats his opponents make. In
particular, if a payoff vector is individually irrational, it cannot be the ex-
pected outcome of the game. As we see in the next section, any payoff that
is individually rational can be an equilibrium payoff in some extended game
that includes an autonomous correlation device.

3.1 Properties of E0

In finite stage games with finite state and action sets, the set of rational pay-
offs is a compact and closed polyhedron. This fact can be proved directly, or
deduced from Corollary 2 in Forges (1986) and our characterization theorem.

It is easy to verify that in a general setup, the set E0 is closed and convex
by definition.

However, in general it needs not be a polyhedron. We provide two exam-
ples where E0 is not a polyhedron. The first is of a two-player one shot game,
where the action spaces of the two players are the unit intervals, and the sec-
ond is of an infinite stage game where the action spaces of the players are
finite. Moreover, in the second example the punishment level is independent
of the history. It follows from Theorem 4.7 below that in both examples, the
set of correlated equilibrium payoffs, that coincides with the set E0, is not a
polyhedron.

As the example in section 4.3 shows, the set of correlated equilibrium
payoffs may be a strict subset of E0.

Example 1: Consider a two-player one shot game, where the action space
of each player is the closed unit interval, and the payoff function is

u(a1, a2) =

{
(0, 0) a1 6= a2

(cos(a1), sin(a1)) a1 = a2

For every x ∈ [0, 1], (x, x) is an equilibrium, hence (cos(x), sin(x)) is an equi-
librium payoff, and in particular in E0. However, the set {(cos(x), sin(x)) |
x ∈ [0, 1]} is the pareto frontier of E0, hence E0 is not a polyhedron.

Example 2: Consider a two-player game, where A1 = {0, 1, Stop} and
A2 = {Continue, Stop}. The game terminates once at least one player stops.
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If a player stops at any stage, he receives −2. If a player does not stop
while his opponent stops, he receives -1. If the play continues forever, then
player 2 continued at all stages. In this case, the moves of player 1 are a
sequence of zeroes and ones, and define naturally a number x in the unit
interval. The payoff is, then, (cos(x), sin(x)). As in Example 1, the set
{(cos(x), sin(x)) | x ∈ [0, 1]} is the pareto frontier of E0, hence E0 is not a
polyhedron.

4 Extensive Form Correlated Equilibria

In this section we define autonomous correlation devices. We then extend the
original stochastic game by introducing such a device. Equilibrium payoffs
in the extended game are extensive form correlated equilibrium payoffs. We
prove that the set of extensive form correlated equilibrium payoffs coincides
with the set E0 of rational payoffs. If for every player the punishment level
is independent of the history, a stronger result is obtained: E0 coincides with
the set of correlated equilibrium payoffs. Finally, by studying an example, we
see that there exist games, and extensive form correlated equilibrium payoffs
in these games, that pareto dominate all correlated equilibrium payoffs. We
use this example to illustrate the autonomous correlation devices we use in
the proofs.

4.1 The Extended Game

Definition 4.1 An autonomous correlation device D is given by

• For every player i ∈ I and every n ∈ N, a measurable space M i
n of

signals or messages. Denote Mn = ×i∈IM i
n.

• For every n ∈ N, a measurable function µn : M1×· · ·×Mn−1 → P(Mn),

Given a stochastic game G and an autonomous correlation device D, we
define an extended game G(D) that is played as follows. At each stage n, a
signal mn = (mi

n) ∈ Mn is chosen according to µn(m1, . . . ,mn−1), and each
player i is informed of mi

n. Each player then chooses an action ain ∈ Ai(sn),
and a new state sn+1 is chosen according to q(sn, an), where an = (ain)i∈I .
Both the action combination an that was played and the new state sn+1 are
publicly announced.
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Note that the signals are payoff irrelevant, and they are independent of
past play.

We assume that players have infinite recall, so each player i can base his
choice of an action at stage n on past play (s1, a1, . . . , sn) and on past signals
(mi

1, . . . ,m
i
n) he has received.

A correlation device is an autonomous correlation device D = ((M i
n), µn)

such that M i
n contains one element for every n ≥ 2. That is, the players do

not get informative signals after the first stage.
Let H i(M) be the space of all finite histories that player i can observe in

G(D); that is, the space of all sequences (s1,m
i
1, a1, . . . , sn−1,m

i
n−1, an−1, sn,m

i
n)

such that ak ∈ A(sk) and mi
k ∈M i

k. Note that, since the signals are private,
each player observes a (possibly) different history. Let H(M) be the space of
all finite histories that an outside observer, who observes both the actions of
the players and the signals sent to all the players, can observe. Let H∞(M)
be the space of all infinite histories that this outside observer can observe.
We endow H∞(M) with the σ-algebra generated by all the finite cylinders.
Note that the spaces (H i(M))i∈I , H(M) and H∞(M) are independent of
(µn)n∈N.

A strategy for player i in G(D) is a measurable function τ i : H i(M) →
P(Ai0) such that τ i(hn)[Ai(sn)] = 1 for every hn ∈ H(M). A strategy profile
τ = (τ i)i∈I (or simply a profile) is a vector of strategies, one for each player.

In the sequel, σ always refers to correlated profiles in the game G, and τ
refers to (non-correlated) profiles in the extended game G(D).

For every history (s1,m1, a1, . . . , sn,mn) ∈ H(M) we denote

τ(s1,m1, a1, . . . , sn,mn) = (τ i(s1,m
i
1, a1, . . . , sn,m

i
n))i∈I .

By Ionescu-Tuclea Theorem, every autonomous correlation device D, every
profile τ in G(D) and every finite history hn ∈ H(M) induce a probability
measure Phn,Dτ over H∞(M). We denote expectation w.r.t. this measure
by Ehn,D,τ . Define for every finite history hn ∈ H(M), the expected payoff
w.r.t. τ by

γiD(hn, τ) = Ehn,D,τu
i(s1, a1, . . .).

Definition 4.2 A payoff vector g ∈ RI is an extensive form correlated
ε-equilibrium payoff (resp. correlated ε-equilibrium payoff) if there exists an
autonomous correlation device D (resp. a correlation device D) and a strategy
profile τ in G(D) such that for every player i ∈ I and every strategy τ ′i of
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player i in G(D),

γiD(s1, τ) ≥ gi − ε ≥ γiD(s1, τ
−i, τ ′i)− 2ε.

Definition 4.3 A payoff vector g ∈ RI is an extensive form correlated
equilibrium payoff (resp. correlated equilibrium payoff) if it is the limit of
extensive form correlated ε-equilibrium payoffs (resp. correlated ε-equilibrium
payoffs) as ε goes to 0.

4.2 Equivalence Results

The main result of this section is:

Theorem 4.4 The set E0 of rational payoffs coincides with the set of ex-
tensive form correlated equilibrium payoffs.

The theorem follows from the following two propositions, that are proved
in the next section. Proposition 4.5 implies that every extensive form cor-
related equilibrium payoff is a rational payoff, while Proposition 4.6 implies
the converse.

Proposition 4.5 Let ε > 0. For every autonomous correlation device D
and every ε-equilibrium profile τ in G(D) there exists a correlated profile σ
such that (i) γD(s1, τ) = γ(s1, σ), and (ii) U i(σ) ≤ ε for every i ∈ I.

The intuition of Proposition 4.5 is as follows. The autonomous corre-
lation device D induces a probability distribution over plays, and therefore
a correlated profile σ. Since, by definition, σ induces the same probability
distribution over plays, the proposition follows.

Proposition 4.6 For every correlated profile σ and every ε > 0 there exists
an autonomous correlation device D and a profile τ in G(D) such that (i)
γD(s1, τ) = γ(s1, σ), and (ii) γiD(s1, τ

−i, τ ′i) ≤ γiD(s1, τ) +U i(σ) + ε for every
player i ∈ I and every strategy τ ′i of player i in G(D).

The intuition here is to construct an autonomous correlation device that
mimics the profile σ: at every stage it chooses an action combination accord-
ing to the probability distribution given by σ, and it sends each player the
action that he should play. To deter deviations, the device reveals, at each
stage, the actions it recommended to all players in the previous stage. This
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way any deviation is detected immediately, and can be punished by the other
players.

The only difficulty here is a measure theoretic one: how can one mimic a
profile σ when the state and action spaces are general.

When the punishment level of each player is constant over the space of
finite histories, a stronger result holds. In such a case, no correlation is
needed along the play in order to sustain any rational payoff as a correlated
equilibrium payoff.

Theorem 4.7 If for every player i ∈ I, vihn
is independent of hn ∈ H, then

the set of rational payoffs coincides with the set of correlated equilibrium
payoffs.

A result with similar flavor was proved by Forges (1988b) for one-shot
games with incomplete information.

The intuition of Theorem 4.7 is as follows. If the expected irrationality
of some correlated profile is small, than it must be small after “most” of the
possible realized histories. Since the individually rational level is constant,
that means that after most histories, the expected payoff of the players is,
up to some ε, independent of the history. In particular, one can choose a
pure profile before start of play, and transmit it to everyone. With high
probability, no player can profit too much by deviating at any stage.

Note that Theorem 4.4 implies that the set of equilibrium payoffs cannot
increase if we allow players to send private messages to the correlation device.
The reason is that whatever be the extension under discussion, as long as (i)
the outcome of the coin used by any player is private, (ii) all actions are played
simultaneously, and (iii) each player is informed of past play, any equilibrium
payoff is a rational payoff. Indeed, assume that g is an equilibrium payoff
that is not rational. Then, for every ε > 0 there is a profile τε that is an
ε-equilibrium, and its payoff is ε-close to g. Fix ε > 0. The profile τε induces
a correlated probability distribution σε over the space of infinite histories.
Since g is not rational, the expected irrationality of σε for some player i is
strictly more than ε. It follows that player i could profit more than ε by
deviating from σiε: there is a stopping time t such that if player i deviates
whenever t stops, and defends his punishment level thereafter, he profits on
average more than ε. Since the players observe past play, player i can deviate
from τε whenever t stops. Since the outcome of the coin he uses is private,
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and since actions are played simultaneously, he can defend his punishment
level in the extended game as well.

Remark: Though uniform equilibrium payoffs (see, e.g., Mertens, Sorin
and Zamir (1994)) are not in the scope of our model (since the uniform
equilibrium payoff cannot be defined as a limit of ε-equilibrium payoffs using
some utility function) similar results can be obtained, with analogous proofs.

4.3 An Example

In this subsection we present an example of a two-player two-stage game.
We find that this game has a unique correlated equilibrium payoff, and that
it has an extensive form correlated equilibrium payoff that pareto dominates
the unique correlated equilibrium payoff. The autonomous correlation device
that we use illustrates the structure of the devices that are used in the proof
of Proposition 4.6.

Consider the following two-player two-stage game:

stage 2

L R

3,−1 0,−2

stage 1

L C R

B

T

2 0, 0 1,−4

1, 1 1, 0 0, 2

Figure 1

One can verify that the unique Nash equilibrium of the game is:

• At stage 1, player 1 plays (1/2, 1/2) and player 2 plays (1/3, 2/3, 0).

• If the game reaches stage 2, player 2 plays L.

The corresponding equilibrium payoff is (1, 0). Moreover, the unique corre-
lated equilibrium coincides with the probability distribution over the entries
of the matrices induced by this Nash equilibrium.

Consider now an extended game that includes an autonomous correlation
device. The extended game is played as follows:
Stage 1A: the device chooses two signals, and sends one signal to each player.
Stage 1B: the players choose simultaneously actions for stage 1 of the original
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game.
If the players chose (B,L), then:
Stage 2A: the device chooses a signal, which may depend on the previous
signals that it chose, and sends it to player 2.
Stage 2B: player 2 chooses an action for stage 2 of the original game.

We claim that any point on the interval (3/2, 1/2)-(2, 0) is an equilibrium
payoff in the extended game, for a suitably defined autonomous correlation
device. In particular, both players can profit by using such a device.

Indeed, let x ∈ [0, 1], and consider the following device:

1. At stage 1A, the device chooses (T, L) with probability x and (B,L)
with probability 1 − x, and sends to each player his element in the
chosen pair.

2. At stage 2A, the device sends its choice of stage 1A to player 2 (that
is, it reveals its previous recommendation to player 2).

It is easy to verify that if 1/2 ≤ x ≤ 3/4 then the following pair of strategies
form a Nash equilibrium in the extended game, that yields the players an
expected payoff (3− 2x, 2x− 1):

• At stage 1B, the players follow the signal they received at stage 1A.

• At stage 2B, player 2 plays L if player 1 followed the recommendation
of the device at stage 1A, and plays R otherwise.

This device has the features that we will see in the proof of Proposition
4.6.

1. The device chooses at every stage a recommended action to each player,
according to some known joint distribution, and sends to each player
the action he is supposed to play.

2. In addition, the device reveals his recommendations for all the players
at the previous stage.

3. The players are required to follow the recommendation of the device.

4. Since the recommendation becomes public after one stage, a deviation
is detected immediately and is punished by his punishment level.

16



5 Proofs of the Equivalence Theorems

5.1 Representing Correlated Profiles as Autonomous
Devices

In this subsection we develop some measure theoretic results that are needed
to prove Proposition 4.6.

Given a correlated profile σ, we have to define an autonomous correlation
device that mimics it. That is, a device that will recommend, at every stage,
an action combination according to the probability distribution given by
σ. Since the device is autonomous, it cannot base its choice on the actual
play. However, for every realized play, σ may indicate a different probability
distribution over action combinations. Thus, one needs to choose at stage n a
recommended action combination for every possible history of length n. The
players, who observe the realized history, can choose the recommended action
that corresponds to that history, and disregard all other recommendations.

Since the setup is general, the space Hn of histories of length n may be
uncountable, hence one cannot choose each recommendation independently.
However, there is no need to choose the recommendations independently. As
long as the recommendations at stage n are independent from the recom-
mendations of previous stages, the distribution on plays will be equal to the
one induced by σ.

The goal of this subsection is to prove the following result.

Proposition 5.1 Let σ : H → P(A0) be a correlated profile. Then there
exists a sequence (Yn)n∈N of i.i.d r.v. uniformly distributed over [0, 1], and
a measurable function δn : Hn × [0, 1], such that for every hn ∈ H and every
measurable subset C ⊆ A0,

σ(hn)[C] = P(δn(hn, Yn) ∈ C).

In words, the Proposition asserts that for every correlated profile σ and for
every n ∈ N there exists a countable collection of i.i.d. r.v.s and a measurable
function δn : Hn × [0, 1] → A that represent σ(hn). That is, the probability
that δn(hn, ·) is in some set C ⊆ A0 is equal to σ(hn)[C].

Proposition 5.1 readily follows from the following lemma.

Lemma 5.2 Let H be a measurable space, let X be a complete separable
metric space, and let X be the σ-algebra of Borel subsets of X. Let µ : H →
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P(X) be measurable. Let Y be a r.v. uniformly distributed over [0, 1]. Then
there exists a measurable function δ : H × [0, 1]→ X, such that

P(δ(h, Y ) ∈ C) = µ(h)[C] ∀h ∈ H,C ∈ X . (1)

Proof: We first deal with the case that X is at most countable. Denote
X = (xn)Nn=1, where N = |X| can be equal to +∞. Let Y be a r.v. uniformly
distributed over [0, 1]. Define

δ(h, Y ) = min

{
k |

k∑
n=1

µ(h)[xn] ≥ Y

}
.

Note that δ is measurable. Eq. (1) holds, since for every n = 1, . . . , N ,
P(δ(h, Y ) = xn) = µ(h)[xn].

Assume now that X is uncountable. Since X is complete, separable and
metric, it is isomorphic to ([0, 1],B), where B is the collection of Borel subsets
of [0, 1] (see, e.g., Parthasarathy 1967, Theorems 2.8 and 2.12). Hence, it is
sufficient to prove the Lemma for the case (X,X ) = ([0, 1],B).

We shall now define the function δ : H × [0, 1]→ [0, 1]:

δ(h, y) = sup{x ∈ [0, 1] | µ(h)[0, x] ≤ y}.

Note that δ is measurable. Indeed, for every fixed x ∈ [0, 1],

{(h, y) | δ(h, y) > x} = {(h, y) | µ(h)[0, x] < y}
= ∪q∈Q∩[0,1]{h | µ(h)[0, x] < q} × [q, 1].

Since a countable union of measurable sets is measurable, and since µ is
measurable, δ is measurable.

Let Y be a r.v. uniformly distributed over [0, 1]. Then for every h ∈ H
and every x ∈ [0, 1],

P(δ(h, Y ) ≤ x) = µ(h)[0, x].

Since the intervals {[0, x], x ∈ [0, 1]} generate the Borel σ-algebra, it follows
that for every C ∈ B,

P(δ(h, Y ) ∈ C) = µ(h)[C],

as desired.
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5.2 Standard Revealing Devices

We will be interested in a class of autonomous correlation devices, which we
call standard revealing devices. Those devices have three special features: (i)
they choose an element in [0, 1] according to the uniform distribution, (ii) the
private signal space at stage n of each player i ∈ I is the space of universally
measurable functions from Hn to Ai, and (iii) at stage n + 1 they publicly
announce the signals that were sent at stage n.

Definition 5.3 A standard revealing autonomous correlation device D is
given by a sequence (δn)n∈N of measurable functions, where δn : Hn× [0, 1]→
A, such that for every y ∈ [0, 1], and every hn ∈ Hn, δn(hn, y) ∈ A(sn).

A standard revealing device chooses, at every stage n ∈ N, an element
Yn ∈ [0, 1] according to the uniform distribution, and then sends to each
player i ∈ I a pair mi

n = (mn−1, δ
i
n(·, Yn)), where mn−1 = (mi

n−1)i∈I is
the vector of signals sent at the previous stage, and δin(·, Yn) : Hn → Ai.
δin(hn, Yn) can be interpreted as a recommended action for player i if the
realized history up to stage n is hn.

Since δn is measurable, it follows by Theorem III.23 in Castaing and
Valadier (1977) that δin is universally measurable, for every player i ∈ I.

Note that a standard revealing device is in particular an autonomous
correlation device. Indeed, fix n ∈ N. Every x ∈ [0, 1] defines a function
δn(·, x) : Hn → Ai. Let M ′i

n be the space of all these functions. The Borel
measurable structure of [0, 1] induces a measurable structure on M ′i

n , and
the uniform distribution over [0, 1] induces a probability distribution νn over
M ′i

n . Finally, the signal space of player i at stage n is M i
n = Mn−1 ×M ′i

n ,
where Mn−1 = ×i∈IM i

n−1, and the distribution over M i
n is {mn−1} ⊗ νn.

5.3 The Proofs

Proof of Proposition 4.5:
Let ε > 0, let D be an autonomous correlation device, and let τ be an
ε-equilibrium profile in G(D).

Recall that Ps1,D,τ is the probability distribution over the space H∞ of
infinite histories induced by D and τ . Let σ be a correlated profile that
induces the same distribution over H∞; that is, σ(hn)[C] = PhnD,τ (an ∈ C)
for every measurable subset C ⊆ A0. By definition, γD(s1, τ) = γ(s1, σ).
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We shall now prove that U i(σ) ≤ ε for every i ∈ I. Otherwise, there
exists a player i ∈ I, and a stopping time t such that Et,σU

i(ht, σ, at) > ε+ρ,
for some ρ > 0. Define a strategy τ ′i for player i in G(D) as follows. Follow
τ i until t. Afterwards, play a strategy that maximizes (up to ρ) your payoff
against τ−i given ht.

It is easy to verify that

γiD(s1, τ
−i, τ ′i) ≥ γi(s1, σ) + Et,σU

i(ht, σ, at)− ρ ≥ γiD(s1, τ) + ε,

a contradiction.

Proof of Proposition 4.6:
Let σ be a correlated profile and let ε > 0. By Proposition 5.1, there exists
a countable sequence (Yn)n∈N of i.i.d. r.v.s, uniformly distributed over [0, 1],
and a measurable function δn : Hn × [0, 1]→ A such that for every hn ∈ Hn

and every measurable subset C of A0,

σ(hn)[C] = P(δn(hn, Yn) ∈ C). (2)

Consider the autonomous correlation device defined by (δn)n∈N. Thus,
at each stage n, an element Yn ∈ [0, 1] is chosen according to the uniform
distribution, and each player i receives the function δin(hn, Yn) : Hn → Ai.

Define a profile τ in G(D) as follows. At every stage n, each player is
checked whether his realized action at stage n− 1 coincides with the recom-
mendation of the device δin−1(hn−1, Yn−1) (which is revealed at stage n). If
at least one player deviated, then the deviator who has a minimal index is
punished, from that stage on, with an ε-punishment correlated strategy pro-
file forever. Otherwise, each player i plays at stage n the action δin(hn, Yn),
where hn is the realized history until stage n.

Note that we have not specified how, once a deviator is detected, his
opponents correlate their actions. This can be done by the following proce-
dure. Before the start of play, the device chooses, for every player i ∈ I, a
sequence of i.i.d. r.v.s (W i

n)n∈N with P(W i
n = 1) = 1/2. The device then

sends the sequence (W i
n) to all players except player i. If the necessity arises,

players N \ {i} use the sequence (W i
n) to correlate their moves and follow an

ε-punishment correlated strategy σ̃−iε against player i.
It is easy to verify that Ps1,D,τ = Ps1,σ, and therefore γD(s1, τ) = γ(s1, σ).
We shall now show that γiD(s1, τ

−i, τ ′i) ≤ γiD(s1, τ) + U i(σ) + ε. Indeed,
let τ ′i be a strategy of player i in G(D). Let t be the stopping time defined
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by
t = min{n ∈ N | an 6= δin(hn, Yn)}+ 1.

Then, under t−i, at stage t players N \ {i} switch to a punishment profile
against player i. In particular,

γiD(s1, τ
−i, τ ′i) ≤ γi(σ) + U i(σ) + ε,

as desired.

Proof of Theorem 4.7:
Assume now that for every fixed player i ∈ N , vihn

is independent of hn ∈ H,
and denote this common value by vi.

In view of Theorem 4.4, it suffices to prove that every rational payoff is
a correlated equilibrium payoff.

Fix ε > 0. We denote by P i the space of pure strategies of player i, and
P = ×i∈NP i. Every correlated profile σ induces a probability measure over
P . This probability measure is also denoted by σ.

Let σ be a correlated profile such that U i(σ) < ε for each player i ∈ N .
For every δ > 0, denote by Hδ

∞ the set of all histories h∞ ∈ H∞ such that
γi(hn, σ) < vi − δ for some beginning hn of h∞.

Since U i(σ) < ε, and since vihn
is independent of hn for every i ∈ I, it

follows that Ps1,σ(H
√
ε
∞ ) ≤

√
ε.

Define a correlation device D with a signal space M i = P for each player
i. The device chooses a pure profile according to σ, and reveals to all the
players the profile that was chosen. The players are then requested to follow
the pure profile that was chosen by the device. A deviator, who will be
noticed immediately, will be punished with his punishment level, which is
independent of the history.

There is one technical difficulty we have ignored so far: how to choose a
pure profile in P? To do this one needs to impose a measurable structure
on the space of pure profiles. Note that each realization of the sequence
(Yn) that was defined in the proof of Proposition 4.6 defines a pure strategy
profile. Thus, the measurable structure is the one induced by the mapping
that maps [0, 1]N to the space of pure profiles. The measure on P is the one
induced by the uniform distribution over [0, 1]N (that is, the infinite product
of independent copies of the uniform distributions over [0, 1]). This measure
induces the same expected payoff for the players as σ, for every finite history
hn. Formally, denote by π the correlated profile that corresponds to the
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uniform distribution over [0, 1]N. Then for every hn ∈ H and every player
i ∈ I,

γi(hn, π) = γi(hn, σ).

With probability greater than 1 −
√
ε, γi(hn, σ) > vihn

−
√
ε for every

n ∈ N, hence no player can profit more than
√
ε. In particular, this profile is

a ((1−
√
ε)
√
ε+
√
εR)-equilibrium in G(D) (recall that R is a bound of u).

6 Communication and Correlation

In this section we show that if the action set is finite and there are at least 4
players, then communication can substitute correlation; that is, if we extend
the original stochastic game by allowing the players to send countably many
private messages at every stage between each other, then the set of equi-
librium payoffs in the extended game coincides with the set E0 of rational
payoffs.

Since the proof is a simple application of a result due to Bárány (1992),
and a result with a similar flavor was proved by Forges (1988b) for games
with incomplete information, we will only sketch the ideas.

A direct communication protocol is a finite sequence of rules, known to
all the players, specifying what players should do. Each rule has the form:
Some player i should choose a message from his message space according to
some probability distribution, that may depend on previous messages he sent
or received, and send it to some other player i′.

Bárány (1992) has proved the following theorem:

Theorem 6.1 (Bárány (1992)) Consider a one shot game with player set
I and action sets (Ai)i∈I . If |I| ≥ 4 and if A is finite, then every correlated
equilibrium payoff that is supported by a rational joint probability distribu-
tion over A is a Nash equilibrium payoff in some extended game, that has a
pre-play direct communication phase, in which players follow a direct com-
munication protocol.

The protocol devised by Bárány (1992) can be extended so that if a player
deviates from the rules of the protocol in a way that affects the payoff, his
identity is revealed. This feature is necessary for effective punishment.
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A stochastic game with direct communication is a stochastic game where
every stage contains two sub-stages: a direct communcation sub-stage and
a decision sub-stage. At the direct communication sub-stage, players send
messages according to a given direct communication protocol, while at the
decision sub-stage, each player chooses an action, as a function of past play
(where play here includes realized states, realized actions and messages sent
and received by that player).

An equilibrium payoff in the extended game is a direct communication
equilibrium payoff.

The main result of this section is:

Theorem 6.2 If |I| ≥ 4 and A is finite, the set E0 of rational payoffs
coincides with the set of direct communication equilibrium payoffs.

Proof: The proof that every communication equilibrium payoff is a rational
payoff follows the same lines as the proof of Proposition 4.5.

We shall now prove the converse. If h 7→ µ(h) ∈ P(A) is measurable, and
if each µ(h) is rational, then the function that assigns to each h ∈ H the
protocol devised by Bárány is also measurable (where the space of protocols
is equipped with the discrete topology).

Let now σ be a correlated profile such that U i(σ) < ε for every i ∈ I.
Choose a measurable function σ′ : H → P(A) such that for every hn ∈ H (i)
σ′(hn) ∈ P(A(sn)) , (ii) σ′(hn) is rational, and (iii) ‖σ′(hn)− σ(hn)‖ < ε/2n.
It then follows that U i(σ′) < 2ε for every i ∈ I.

Define now a strategy in the extended stochastic game as follows. At
the direct communication sub-stage, follow the protocol devised by Bárány
for σ′(hn), and at the decision sub-stage, play the action suggested by the
protocol given the messages you have sent and received during the last direct
communication sub-stage. If a deviation from the direct communication pro-
tocol is detected, the deviator is identifies and punished by his punishment
level.

It is easy to verify that this strategy profile is a 2ε-equilibrium.

Comment: If the transition rule q is norm continuous, the action space A(s)
is compact metric for every s ∈ S, and the payoff function ui(s, a) is contin-
uous over A for every fixed s ∈ S, then one can find, for every δ > 0, a finite
approximation of A(s); that is, for every player i a finite set Bi

δ(s) ⊂ Ai(s)
such that for every ai ∈ Ai(s) there exists bi ∈ Bi

δ(s) with d(ai(s), bi(s)) < δ.
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Moreover, one can choose Bi
δ(s) so that the correspondence (s, δ) 7→ Bi

δ(s) is
measurable. Denote Bδ(s) = ×i∈IBi

δ(s).
For every ε > 0, every s ∈ S and every distribution µ ∈ P(A(s)), there ex-

ists δ > 0 and a distribution ν ∈ P(B(s)) such that ‖Eµu(s, a)−Eνu(s, a)‖ <
ε (continuity of u) and ‖Eµq(s, a)− Eνq(s, a)‖ < ε (norm-continuity of q).

Thus, under these continuity conditions, Theorem 6.2 holds.
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