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Abstract:

The trading volume of long-lived securities with recursive payoffs, such as equity,
is generically zero in infinite-horizon recursive pure exchange Lucas asset models
with heterogeneous agents. In equilibrium, there is no portfolio rebalancing of such
assets. More generally, the end-of-period portfolio of long- and short-lived securities
is constant over time and states in the generic economy. We also present a nonrobust
formulation of dynamically complete markets which does have nonzero trading volume
in equilibrium. The comparisons show that any theory of asset trading volume will
be very sensitive to small changes in model specifications.



1 Introduction

The Lucas asset pricing model (Lucas (1978)) examines a representative agent en-
dowment economy. From an asset-pricing point of view this assumption is sensible if
markets are complete or can be completed through dynamic trading of the available
securities (see Kreps (1982)). In this case, even if there are several agents in the
economy, asset prices evolve as if there were a single agent. Therefore, asset pricing
research typically assumes a representative agent. This approach ignores trading vol-
ume, an unfortunate feature since there is data on volume. Even when markets are
complete, a recognition of possible agent heterogeneity might enrich the Lucas model
by jointly modeling asset pricing and trading volume. This paper examines a simple
extension of Lucas (1978) with agent heterogeneity and dynamically complete mar-
kets. We characterize equilibrium and present an algorithm to compute equilibrium
prices and trading volume. We use these results to study how the set of available
securities affects trading volume.

It is commonly thought that trading comes from a combination of differences
in information, beliefs, and tastes. Many models assume that the most important
source for trade is informational asymmetries among agents combined with other
shocks (see e.g. Wang (1994)). Brock and LeBaron (1996) present an adaptive beliefs
model which is able to roughly reproduce several features seen in the data.

Another presumed source of volume is portfolio rebalancing, i.e. individuals with
common beliefs adjusting their portfolios in response to new public information about
assets’ future returns. If there is a complete set of Arrow securities then they are
traded at the initial period and no further asset trading occurs. When there does not
exist a complete set of Arrow securities, agents may need to periodically trade assets
to implement their desired consumption plan. Therefore, one would expect there to be
trade even with symmetric information and dynamically complete security markets.
As Grossman (1985) puts it, “with incomplete equitization, but complete markets,
there is trading on each day, as the person with a low income on that day enters the
loan market to lend. A particular person will be a bond buyer on some days and a
bond seller on the other.”

The key result in this paper is that this intuition is misleading when asset markets
are dynamically complete and the economy is stationary. In particular, we find that
if all assets are long-lived, such as equity or consols, then there is no asset-trading
after the initial period. The intuition is clear and follows directly from linear alge-
bra. Suppose, for the sake of simplicity, that the current dividend summarizes all
information about future dividends!. Then the dividend process is a Markov process
where we identify the current state? of the Markov chain with the current dividend.

IThis is not necessary. All that is needed is that the current state of the dividend process is
common knowledge.
2We need to be careful to distinguish the two possible meanings of the term “state.” In the



Suppose that there are S states and S long-lived securities where each security’s pay-
off depends solely on the current dividend. Assume further that the S securities are
linearly independent. If utility is separable over time with exponentially discounted
utility (as assumed in Lucas and below) then each agent’s optimal consumption pol-
icy is a function of the exogenous state, and is also a vector of S numbers. If the
state-contingent dividends from the S long-lived assets are .S independent vectors, any
state-contingent consumption plan equals the returns generated by some unique fized
and constant combination of the S assets. If an agent’s endowment does not equal
the fixed portfolio which produces the desired consumption process, he can obtain
that fixed portfolio through trading in the initial period. Therefore, any consumption
plan can be implemented by some trade-once-and-hold-forever trading strategy. By
concavity, there is a unique optimal consumption plan; hence, the trade-once-and-
hold-forever strategy which can implement the optimal consumption process must be
the unique optimal trading strategy. This is true for each agent and for any price
process. Therefore, it must hold in equilibrium.

This simple example assumed all assets were long-lived like equity. However,
the essential logic continues to hold if there are some short-lived zero-net-supply
securities. Our analysis allows the continual creation of single-period securities, such
as short-term debt and options. In this case, agents will buy or sell the newly issued
short-lived assets in each period. However, their portfolio of short-term securities
will, in the appropriate sense, be the same at the end of each time in all states of
the world. Suppose, for example, that an investor holds two shares, three 60-day call
options, and one 30-day call option at the end of some period. Then we argue that he
holds that portfolio at the end of any period, in any state and at any time. Of course,
some trade is necessary as the character of the short-lived assets changes. Over the
course of 30 days, the investor needs to sell two of those 60-day call options as they
become 30-day options in order to maintain his position in 30-day options. Similar
considerations apply to bonds with a finite maturity. Our general conjecture is that
an investor will trade short-lived securities as they mature to maintain a constant
maturity structure in his portfolio. We prove this for a limited set of securities in this
paper, but present the general conjecture here to clarify the general intuition.

This argument depends on all the special features of the Lucas model. If we
replace the representative agent feature with an overlapping generations structure
then there will be trade for life-cycle reasons. If asset markets are incomplete there
will be trade. The key result here is that, contrary to standard intuition, there is no
trade purely motivated by portfolio rebalancing.

The generic no-trade result we prove for equity and other long-lived assets is sur-

Arrow security approach, the states differ in both the time and dividend dimensions. In a Markov
chain, the term state typically refers only to the current state of information about the current and
future value of the dividend. In this paper, we will mean the state of the Markov process describing
dividends when we say “state” unless it is clear we mean otherwise.



prising. We then present special, nongeneric cases of the generalized Lucas model
with heterogeneous agents and asset markets that are formally not complete but can
be completed by trade. In these cases equity trade occurs in equilibrium for con-
ventional reasons. These cases assume that there are many possible states but that
only a few states are reachable from any particular state. This fact corresponds to
a sparse transition matrix for the Markov transition process. Sparseness will imply
that dynamic trading in a small number of assets can implement arbitrary consump-
tion processes. Trade occurs because the short-run spanning properties of the assets
change over time and investors adjust their portfolios accordingly.

In order to examine these features of our asset-pricing model, we compute some
examples. We develop an algorithm to compute equilibrium prices and trading vol-
ume in the Lucas model with heterogeneous agents. The computation of dynamic
equilibrium is generally difficult in infinite horizon models with incomplete markets
(see Judd et al. 1998). However, since the equilibrium is Pareto efficient, we can use a
Negishi approach to compute equilibrium. The resulting algorithm is simple enough
to be implemented in an Excel spreadsheet. We compute some representative exam-
ples of the model. Our sparse transition matrix examples do follow the conventional
intuition that portfolio rebalancing will occur in equilibrium. However, even in these
example, the pattern of trade does not follow any simple intuitive pattern. While
these examples are formally not robust to changes in the transition matrix, many will
find them to be more intuitive descriptions of real asset markets and more suitable
models of portfolio rebalancing.

The model examined here is simple, but makes points relevant for any discussion
of volume. The results presented below show that any results on volume will be quite
sensitive to the structure of the dividend process and the kind of assets being traded.
Therefore, volume information will be quite difficult to interpret unless one has very
precise knowledge about these details.

The paper is organized as follows. Section 2 describes the standard model of an
infinite-horizon pure exchange economy. The concepts of Arrow-Debreu equilibrium
and financial market equilibrium are defined. In Section 3 we present the numer-
ical procedure for computing equilibrium, show that end-of-period asset holdings
are generically constant, and illustrate the main points with an example. Section 4
presents examples of economies with sparse transition matrices with trading. Section
5 concludes.

2 The Asset Market Economy

We examine a standard Lucas asset pricing model with heterogeneous agents and com-
plete asset markets. Time is indexed by ¢t € Ny = {0,1,2,...}. A time-homogeneous
Markov process of exogenous states (y:)ien, is valued in a discrete set Y = {1,2,...,S}.



The Markov transition matrix is denoted by II. A date-event oy is the history of states
up to time t, i.e. o = (Yo,y1,-.-4:).> Let 3; denote the possible histories o; up to
time t. Let ¢ € R* denote a complete history. Let ¥ = U;Y; denote all possible
histories of the exogenous states.

We assume a finite number of types H = {1,2,.., H} of infinitely-lived agents.
There is a single perishable consumption good, some of it produced by the firms and
some if it being endowed to individuals. The firms distribute their output each period
to its owners through dividends. investors trade in securities in order to transfer
wealth across time and states. We assume that markets are complete with J = S
linearly independent assets traded on financial markets. Without loss of generality
and for ease of notation we assume that each asset is either an infinitely-lived (long-
lived) asset or a single-period asset. Equity is an example of a long-lived asset, as is
any asset with payments tied to the dividend process. Options and short-term debt
are examples of the single-period assets. We will also assume that the short-lived
assets are in zero net supply.

We assume that there are J° > 0 long-lived assets. Asset j pays a dividend
& :Y — Ry, j=1,...,J% which depends solely on the current state y € Y. In
addition, there are J* = S — J* > 0 short-lived securities issued in each period.
Short-lived asset j issued in period t pays d’ : Y — R, j = J*+1,...,S, in period
t + 1, and then expires. We denote agent h’s portfolio at time ¢ along o by 6(c) =
(011 (0),...,0M5(0)) = (0M(0),00(0)) € RS, where 6/'(c) € R” (91%(0) € R”
denotes agent h’s portfolio of long-lived (short-lived) assets at time ¢ along o € .
His initial endowment of the long-lived assets prior to time 0 is denoted by 6",. We
assume that the agent has zero initial endowment of the short-lived assets and, in
order to rule out speculative bubbles, that all infinitely-lived assets are in positive
net supply. agent h also has an individual endowment of the consumption good at
each time. This represents other sources of income, such as labor, and is a function
e’ 1Y — R, . depending on the current state 3, alone. The aggregate endowment of
the economy in state y is e(y) = Sor_, (e"(y) + 0",.d\ ().

Each agent h has a time-separable state-dependent utility function

Uh(C) =FE {Zﬁtuh(ct,yt)} .

t=0

where ¢ is a consumption process. We assume that the state-dependent utility func-
tions u(.,y) : Ry, — R are strictly monotone, C?, strictly concave, and satisfy the
Inada property, that is, lim._ou/(c, y) = co where we let u/(c, y) denote 2 (u(c,y)).
We assume that the discount factor € (0, 1) is the same for all agents, and that all

3Tn this paper, we use the term “state” to refer to the state of the Markov process which describes
dividends and other income. The term “date-event” refers to what is called a “contingent state” in
Arrow (1959) and “event” in Debreu (1959).



agents agree? on the transition matrix for the dividend process.

Note that this representation of agents’ preferences is a generalization of von-
Neumann-Morgenstern utility in the sense that we allow each agent’s utility function
to depend on the exogenous state as well as consumption. The key is that we assume
that the shocks to preferences lie in the span of the securities. Otherwise, there would
be trading for hedging purposes. Since we want to focus on the role of portfolio
rebalancing motives for trading, we abstract from hedging motivations.

Let the matrices

el(1) - el(S) d'(1) - d\(S)

represent individual endowments and security dividends. The vector of utility func-
tions is u = (u',...,u). We collect the primitives of the economy with financial
markets in the expression & = (e, d, II, 3, u).

This is a simple model but includes many features thought to affect trading vol-
ume. For example, we include income shocks to individuals, a factor which Gross-
man(1985) argues to be important. We also allow individuals to have different tastes
for risk and for the dividend process to have time-varying mean and variance. The
presence of these factors makes it a reasonable model to use to study trading volume

with heterogeneous agents.

2.1 Arrow-Debreu Equilibrium

Let w"(y) = e"(y) + 0" d*(y) denote the initial endowment of agent h € H in state y.
For an economy &, define an Arrow-Debreu equilibrium which would be obtained in a
world with an Arrow contingent security for every date-event. We take consumption
at time 0 to be the numeraire. The price p; of the consumption good at o; is denoted
pe(0); let p(o) denote the collection of prices. Similarly for the consumption plan
¢(0) and the consumption plan ¢(o).

Definition 1 An Arrow-Debreu equilibrium for an economy £ is a collection of
prices (p(0))gses: and consumption plans (¢(0))yes satisfying following conditions:

(1) Zle 5?(0) = Zle W'(y,) forallo € ¥ and all t

(2) For each agent h, c"(o) mazimizes Uy(c") given the lifetime budget constraint

Der 2 P(O)w(0) = 3 oes 20, Pi(0)c) (0).

4Conventional rational expectations assume that the agents know the true transition probabilities.
The only thing we need for our analysis is that agents agree.




Bewley (1972) proved that the economy £ has an Arrow-Debreu equilibrium. The
first and the second welfare theorem also hold. These facts allow us to analyze the
dynamic stochastic equilibrium.

2.2 Financial Markets Equilibrium

It is unreasonable to assume that there is a separate security for each time and state
contingency. Instead, the Lucas model and our generalization forces agents to use the
J available assets to achieve the desired consumption stream. At each state 3, and
along each history o each agent faces the budget constraint

¢/ (o) = €"(ye) + 02, (0)d (ye) + 0121 (0)(ay(0) + ' () — 0} (0)ar(0),

where d'(y;) (d*(y:)) equals the column vector of the payoffs of the long-lived (short-
lived) assets given the state y;.
The notion of a financial market equilibrium is defined as follows.

Definition 2 A financial markets equilibrium for an economy £ is a process of port-
folio holdings {(0*,...,0%)} and asset prices {(T*,...,q’)} satisfying the following
conditions:

(1) S 6Mo) =1 0" foralloe X, t > 0.
(2) For each agent h :
0"(oc) € arg max Un(c)

ci(o) = €"(yo) + 0121 (0)d (y) + 0,21 (o) (@ + d' () — 0/ (0)@(0)

sup |q(0)f; (o)) < oo
oeX, t

It is well-known that in the absence of speculative bubbles, if there are as many
assets as states then there is generically a one-to-one correspondence between Arrow-
Debreu equilibria and financial market equilibria; we will make this point precise
below.

3 A Theorem on Constant Portfolios

In this section we show that for a generic set of short-lived assets’ dividends every con-
tingent markets equilibrium is equivalent to a financial markets equilibrium in which
the end-of-period portfolio holdings of all agents are constant after an initial adjust-
ment in period 0. We do this in a constructive manner by describing an algorithm
for the computation of equilibria in our model.
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We proceed in three steps. First, the welfare theorems tell us that the equilibrium
allocation can be obtained as the solution of a representative agent’s maximization
problem over A consumption goods. The artificial representative agent has a separable

utility function
H 00
E{zvzﬂtuh@t,w}
h=1 (=0

where the A" are the Negishi-weights. We compute the Negishi weights \*, h =

2,...,H, in order to obtain a Pareto efficient sharing rule. This will allow us to de-
termine the security prices ¢ and derive the optimal portfolio choices " for all agents
h =1,...,H. In fact, once we have computed a Pareto efficient consumption allo-

cation we will be able to give closed-form solutions for both asset prices and portfolios.

3.1 Equilibrium Computation

The following theorem is the basis for showing that all relevant economic variables
exhibit time-homogeneity. It follows directly from the first welfare theorem.

Theorem 1 For an economy & every Arrow-Debreu equilibrium exhibits time-homogeneous
Markovian consumption processes for all agents.

Proof: Denote the period 0 probability of event o; by m(o¢). Suppose that
there is an equilibrium where for two date-event nodes oy, oy with y; = y» we have
) (o) # i (o) for some agent h € H. Then we could improve everybody’s utility by
redistributing consumption at these nodes. Let

Brmi(o)ef (o) + By (o)t (o)
Bim(o) + B (o)
for all h € H. This convex combination is clearly a feasible allocation and by strict

concavity agent k' will derive higher utility. Therefore, ¢ (o) # ¢ (0,) contradicts
efficiency.ll

ci/(0) =

The recursive property of equilibrium proven in Theorem 1 is the key to all of our
results. First, note that the artificial representative agent’s utility function can be

rewritten as .
E {Z s (Z Nu (e, m)) }
t=0 h=1

where the M are state- and time- independent weights on individual utilities.
Second, we take advantage of recursivity in our notation. We change the notation
and express the dependence of all variables on the exogenous state through a subscript.



The notation here will be inconsistent with the notation above, but will allow us to
exploit the recursive nature of any equilibrium. For example, c’yl will denote the
consumption of agent A in state y.

We introduce some other useful notation. The state in a current period is denoted
by y and the random variable of the subsequent state is denoted by y,. We will use
a circle, o, to denote elementwise multiplication of vectors. Specifically, if =,y € R®
then

1Y
roy= xQ,yz e R
TsYs

Finally, Ig is the S x S identity matrix.

3.1.1 Step 1: Computing Negishi weights.

A three-step process will compute the Negishi weights, individual consumption pro-
cesses, asset prices, and individual portfolios. The first step is to compute the Negishi
weights. At the optimal solution to the representative agent’s optimization problem
the derivatives u}b(c;j, y) at each state y are collinear across agents; that is,

ui(cy,y) = Nup(cly), h=2,... H. (1)

Since marginal utilities are collinear, we can replace Arrow-Debreu prices with the
marginal utility of agent 1. Therefore, we define

py = ull (Cglp y)

to be the price of consumption in state y, and we let p = (p,),ey € R® be the vector
of prices.

The budget constraint for each agent h states that the present value of his con-
sumption must equal the present value of his initial endowment. Let Vyh be the present
value of consumption for agent A when the economy starts in state y € Y. We can
compute V;Jh by solving the recursive equation

V) =pye, +BE{V, Iy}, yeY (2)
In matrix terms, (2) implies
VP =poct+prIvh
and has the unique solution
V= [Is = I (po c)

10



Let W; denote the present value of agent h’s endowments and portfolio dividends;
W;} is the solution to

Wy =pywy +BE{W} [y}, yeY (3)
The unique solution to (3) is
W" = [Is — pI] " (pow™).

If the economy starts in the state yg € Y at period ¢t = 0 then the budget constraint
for the Arrow-Debreu model requires that

Vi=W} h=1,... H

Yo’

Due to Walras’ law it actually suffices to require this last equation for the first H — 1
agents only. So, we require

(s = B (po (" =), =0. (4)

for h=1,..., H— 1. Market clearing requires that

E h _
Cy =

1

" (5)

H H
h= h=1

The system of equations (1, 4, 5) has the HS + (H — 1) unknowns

CZ, yeY h=1,... H,

N h=2,... H

The system (1, 4, 5) of nonlinear equations has as many equations as unknowns.
The second welfare theorem implies that this system always has at least one solution.
Any solution to (1, 4, 5) is an equilibrium state-contingent consumption CZ for agent
h=1,...,H in state y € Y.

3.1.2 Step 2: Computing asset prices.

Using the Euler equations of the first agent we can compute the price function of any
asset. For a long-lived asset j the Euler equations for agent 1 are

@py = BE{py, (@), +& )y}, yeY

which is a system of S linear equations in S unknowns. The solution is
¢ op=[Is— B 'Bli(po d).

11



For a short-lived asset j the Euler equations for agent 1 are
alpy = BE {p,,. & |y} .
Therefore, the price for short-lived asset j in state y is

¢g:ﬁE{p°d@Mﬁ::ﬁHﬂpof)
Y Py Dy

3.1.3 Step 3: Computing portfolios.

We next examine the portfolios of the agents. They must also be recursive, that is,
depending solely on the state y and any state to which the dividend process can move
from y. Assume that the transition matrix II has no zero elements; therefore, all states
can be reached in one transition from each state. Then there is a budget constraint
which must hold between any two dividend states stating that if the current state
is y and the previous state was z then the end-of-period portfolio in state z must
finance the consumption and investment choices in state y. This collection of budget
constraints for agent h across the various states implies

OV (g, +d) +02(d}) = ) —el+0hq, VyzeY (6)

a collection of S? equations for the S? unknown end-of-period portfolios. The key
fact is that the right-hand side of (6) is the allocation of wealth across consumption
and investment in state y and, because of recursivity, cannot depend on z whereas
the left-hand side of (6) depends strongly on the previous period’s state. Recursivity
implies that an agent must have the proper resources in state y to carry out the
stationary plan for current and future consumption no matter what the state was in
the previous period even though the initial wealth in state y depends on the portfolio
at the end of the previous period.. This clearly puts strong constraints on the possible
values of 0", the end-of-period portfolio of type h agents in state z. In fact, we will
see that, generically, this is possible only if " is independent of the state z. We now
present the details.
The system (6) is equivalent to:

OV (gt +d) + 005 (ds) = 00 (ql+dl) +00(ds) y,z,s€Y,z2,y#s .
7

O (qh +dl) + 015 (d3) = cp—el 4 00q, yey

12



which in turn is equivalent to:

Jt . Jt
s _phsy | @0 +d
(9;M - 9247 9; - 9;1 ) djf_t,_l = 07 v% zeY
(8)
25
Qgedi + QZS(dz —q;) = CZ — e?’}, VyevY

where the row vector ¢ = (q{, ey qu) denotes prices of asset j across all states y € Y.
Similarly, & = (df,...,d%) denotes the row vector of dividends of asset j across all

states. At this point in the argument we need that the S x S-matrix
[ ¢+ dt ]

J! . J!
q’ +d

28

has full rank S. Kreps (1982) shows that the matrix in (9) has full rank for a generic
set of asset dividends when agents have no initial holdings of the assets. His argument,
combined with the fact that the long-lived assets’ dividends are independent, shows
that the matrix in (9) has full rank generically in the dividends of the short-lived
assets. Then the equations (8) imply that

HZ:QZ, Vy,z €Y.

Hence, we can define the state-independent portfolio vector ©" = 93 forally € Y
and the equations (8) become

dl

JZ
d h h

(@M, @hs) dﬂ+1 _ qﬂ+1

dS_qS

13



The S x S-matrix
dl

L
dJ
dJ‘f+1 _ qu+1

dS _ qS

has full rank S if and only if the matrix in equation (8) has full rank. So, for generic
dividends of the short-lived assets the last system (10) implies that forall h =1,..., H
- 1 -1

dl

d:ﬂ

(0", 0") = (" — €M) G Tt ) (11)

dS_qS

Substituting the equilibrium prices g into equation (11) leads to the equilibrium port-
folio holdings ©" for all agents h = 1,..., H.

Furthermore, there is a special case which deserves attention. Suppose that there
are no short-lived assets and that the dividend payoff matrix d is nonsingular. Being
nonsingular is a generic property, so its assumption is natural. The absence of short-
lived assets implies that asset prices ¢ do not appear in (11). Then, the nonsingularity
of d implies that (11) is surely solvable. This is the key special case which captures
the basic intuition of the result.

Note that our derivation does not use the fact that the agents choose their con-
sumption policies optimally. Any consumption allocation among the agents that is
a first-order Markovian process and that satisfies market-clearing can be supported
through constant portfolios. Put differently, for any set of welfare weights portfolios
will be constant as long as markets clear. In addition, the portfolio choices can be
expressed independently of the prices of the long-lived securities.

We summarize our findings for the equilibrium portfolios in the following theorem.

Theorem 2 Suppose that an infinite-horizon pure exchange economy has a time-
homogeneous discrete-time and finite-state Markov dividend process. Furthermore,
assume that the dividend process for the infinitely-lived assets has a Markov transi-
tion matriz I1 with no zero probabilities and the dividend payoffs of the infinitely-lived
assets are linearly independent. Then the following holds: for a generic set of divi-
dends of the short-lived assets the end-of-period portfolios of all agents are constant
after one initial round of trading. Therefore, the trading volume for infinitely-lived

14



securities is zero after the initial round of trading. Furthermore, if there are no short-
lived assets then portfolios of all agents are constant after the initial period.

Theorem 2 shows that there will be no trade in assets after an initial period. This
is a strong result which relies on many assumptions. We assume infinite-lived agents
with additively separable utility and a common discount factor. An overlapping
generations model will produce trade as may models with nonseparable preferences.
The result is still surprising since we may think that heterogeneous risk preferences
would motivate some portfolio rebalancing in equilibrium even in this simple model.

3.2 Complete Markets with S — 1 Short-lived Assets

For infinite-horizon economies with only short-lived assets we can use Theorem 2 in
order to obtain another surprising result about equilibrium portfolios.

Theorem 3 Consider an infinite-horizon pure exchange economy with a time-homogeneous
discrete Markov process of exogenous states and S —1 short-lived assets that have zero
payoffs in the state yo in which the economy starts at time t = 0. For a generic set

of dividends of the short-lived assets the financial markets equilibrium is equivalent

to the Arrow-Debreu equilibrium. Put differently, markets are complete with S — 1
securities.

Proof: Consider an infinite-horizon pure exchange economy with a time-homogeneous
discrete Markov process of exogenous states and S short-lived assets. Theorem 2 im-
plies that in equilibrium we can write an agent’s budget constraint at time ¢ = 0 as
follows:

h h Ah=
Cyy = €y, — ©7q, Vh.
The theorem also implies that in equilibrium we can write an agent’s budget constraint
in state yp at any time ¢t > 0 as
I =el + 0", —0"q, Vh.

Yo

These two equations imply that
e"d,, =0, Vh.

Now suppose that there is only a single asset with nonzero payoffs in the state yy. In
that case the last equation implies that every agent has a zero position in that asset
in all states. In other words, the agents only trade the other S — 1 short-lived assets
and still obtain complete markets consumption. This observation completes the proof
of the theorem. W
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3.3 A Numerical Example

The three steps of our algorithm are easy to implement. The first step, computing
the Negishi weights and consumption functions, requires solving a nonlinear system of
equations. The second and third step, computing the asset prices and the portfolios,
respectively, require us only to solve linear systems of equations. For small examples
it is possible to implement the algorithm in an Excel spreadsheet utilizing the solver
add-in. In all the numerical examples of this and the next section the first system
never required more than a few seconds to solve and the (relative) numerical errors®
were less than 1071, The linear system of the second and third step were solved in
less than a second with numerical errors less than 10716, All computations were done
on a 450Mhz PentiumPC using Excel with Windows97.

We illustrate the method with a simple example. Assume H = 2 agents with
CRRA Bernoulli-functions. Type 1 agents will be relatively risk tolerant with a
coefficient of relative risk aversion of 7; = 0.5 and type 2 investors will have relative
risk aversion of 9 = 4. The common discount factor equals 7 = 0.95. Assume S = 3
exogenous states. The economy starts in state 1. The first asset is long-lived (call it
stock) and has a dividend vector d* = (1,10,100)”. The stock is in unit net supply
and the agents have both an initial endowment of 0'$ = 6% = 0.5. Agents have no
individual endowment of the consumption good, so ezll = 622/ =0 for y € {1,2,3}. The
Markov transition matrix is

0.45 0.10 045
IT= | 0.05 090 0.05
0.45 0.10 045

The second asset is a riskless short-lived bond paying 1 unit of the consumption good
in every state; so, dg =1 for y € {1,2,3}. The third asset is a one-period option on
the stock with a strike price K resulting in payoffs d) = max{q] +d; — K,0}, y €
{1,2,3}. Both the bond and the option are in zero net supply and the agents have
zero endowments of these securities.

We first compute the Negishi weights. Since there are only two agents we need
to compute only one Negishi weight, that of the second agent. Solving the optimal-
ity and feasibility conditions shows that A\?> = 14.86716 and that state-contingent

5“Relative numerical error” refers to the consumption equivalent error in the Euler equations.
For example, when we say that we had an error less than ¢ in solving an equation of the form
u} (0237 y) = )\hugz(c’;, y), we mean that our solutions satisfied

ui(cyy) — MNuj (e}, y)
i ey, y)

<e
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consumption is

¢! = (0.00437,7.475,96.523)
& = (0.9956,2.525, 3.476)

The solution for consumption allows us to compute asset prices for various assets.
The Euler equations of the first agent imply that the prices of the stock and the bond
satisfy

¢ = (11.18,384.73,1662.39)
¢ = (0.4327,2.833,64.315)

These prices hold no matter what other asset is used to complete the market.

We can use the consumption solution to price any option which completes the
market span. Not all options are acceptable. In order for markets to be complete,
the strike price of the option must satisfy

12184 < K < 1762.3.

If K < 12.184 then the option has positive payoffs in all states and is spanned by
the payoffs of the stock and the bond. If K > 1762.3 then the option payoffs are
identically zero.

The option value will depend on the strike price. If K = 100, the payoft vector of
the option equals d° = (0,294.7267,1662.388). Following Step 2 of our algorithm the
Euler equations yield the vector of option prices

q° = (5.458,273.97,811.28).
Step 3 of the algorithm tells us that the constant portfolio for the first agent is
' = (6',6",6') = (0.5940, —2.7198, —0.1185)
and the constant portfolio of agent 2 is
0% = (0.405965, 2.71981, 0.11854).

For the case of K = 1000, a much higher strike price, d° = (0,0, 762.388). The
option has a nonzero payoff in only one of the three states. In this case the option

price vector equals
q° = (2.192614,10.07765, 325.921).

and the agents’ end-of-period portfolios are

©' = (0.502703, —1.06706, —0.04882)
©% = (0.497297, 1.06706, 0.04882).
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in each state. In this case, type one agents hold less equity and sell fewer options.
We see that the strike price of the option affects the equilibrium portfolio since it
affects the covariance patterns among the assets. The assets span the same space
but different combinations are used to implement any specific consumption plan.
However, the portfolio is constant with no trade in the equity and bond markets.

4 Dynamically Complete Markets with Few Assets

The results obtained above are initially unintuitive. Standard intuition says that
investors should continuously trade securities in response to new information about
expected future returns and their riskiness. A critical feature of our result is that
it still assumes a large set of securities. For generic processes involving S states, we
will need all of the S assets specified above. It is more natural to assume that real
markets contain fewer assets than the number of possible states. We could examine
the impact of incomplete markets on asset volume; Judd et al. (1999, 2000) take such
an approach to models with one and two assets. In this paper, we want to stay with
the complete market framework and stay away from the efficiency issues which arise
in any model with genuine asset incompleteness.

In this section, we examine some examples where trading in a few assets can
implement Pareto efficient dynamic consumption processes. From a mathematical
point of view, almost all transition matrices II will have no zero entries, implying
that each state can be followed by any other state. In this case, completeness of
markets require S assets. However, some may find it more intuitive to believe that
dividends move more “smoothly” and do not display arbitrary jumps. Formally,
this means that II is sparse. In such cases, a few assets will be able to implement
arbitrary feasible consumption plans since at any point in time a few assets can span
the short-run uncertainty. Even though the examples will be nonrobust to changes in
the transition matrix, they probably correspond better with standard intuition than
the analysis above.

4.1 An Example of Trading

Both of our examples assume H = 2 agents with CRRA Bernoulli-functions, where
type one agents have relative risk aversion of v; = 0.5 and type two agents have
v2 = 4. The common discount factor equals 3 = 0.95.

Our first example assumes S = 5 exogenous states, with a Markov transition
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matrix

05 05 0 0 O
05 0 05 0 O
M= 0 05 0 05 O
0 0 05 0 05
0 0 0 05 05

The first asset is stock with dividends d* = (1,1.5,2,2.5,3)". This example approx-
imates a dividend following a random walk except for the reflecting barriers when
dividends are at their highest and lowest possible values.

The stock is in unit net supply and initial endowments are equal, 6% = 625 = 0.5.
The second asset is a riskless short-lived bond paying 1 unit of the consumption good
in every state, dg =1 for y € {1,...,5}. Both agents have zero endowments of the
bond, and they have no personal endowment of the consumption good; so e; = eg =0
fory € {1,...,5}.

The algorithm of Section 3 can be used to compute equilibria even when markets
are incomplete. The key condition is that the assets are able to implement the
equilibrium consumption process through dynamic trading. This will be true here
with our stock and bond since there are only two possible future states at any time,
and the stock and bond can never have identical returns. Our algorithm tells us that
A2 = 0.982352 and that the state-contingent consumption allocations are

¢! =(0.191,0.572,1.004, 1.457,1.920)
¢® = (0.809,0.928,0.996, 1.043, 1.080)

Type one agents have more volatile consumption than the more risk averse type two
agents. When dividends are low, type one agents consume much less than type two
agents, but this is reversed in the high dividend states. This kind of reversal is
expected since each type begins at time zero owning exactly half of all wealth.

The state-contingent asset prices of the stock and the bond are

¢ = (17.49,30.23,39.93,48.10,55.27)
¢ = (0.749,1.181,1.024,0.986,1.020).

The individual portfolios now vary across states. This does not contradict The-
orem 2 since Theorem 2 is a generic result. The fact that the payoff matrix II in
this example has many zero entries is a nongeneric property and is obviously critical
here. The fact that each state has only two possible successor states implies that
it is possible for two assets to span the space of returns in the short-run, and that
trading in those two assets may be able to span all possible consumption plans. In
this example, the asset prices and returns all line up so that this is true.

Let the end-of-period holding of stocks (bonds) by agent h in state j be denoted
by 9;” (9;-”’). The consumption patterns, the asset prices, and the state-contingent
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budget constraints imply that the state-contingent end-of-period portfolio of type one
agents is

0'* = (0.464,0.502,0.578,0.604,0.600)
0 = (—1.090,—1.797, —4.700, —6.085, —5.846)

The pattern of trading is interesting, illustrating a variety of factors. When div-
idends are high, the stock price is high, and the risk-tolerant type one agents hold
the majority of the equity and are short in the bond market. Type one agents have
high consumption and high net wealth in those states. This large holding of equity is
necessary to finance type one consumption. As dividends fall type one agents unload
their equity in order to finance consumption and pay off their debt. At the lowest
dividend state, type two agents own the majority of the equity despite the fact that
they are much more risk averse.

We should also note that this example is not a knife-edge case. In particular,
a small change in any utility parameter or dividend parameter in this example will
also produce a determinate equilibrium with trading. This holds since the critical
matrices are nonsingular. Therefore, within the space of dividend processes with the
zero pattern of this example, we have produced a robust example of trading.

4.2 Example with Changing Variance

The last example has a simple random walk character with reflecting barriers. The
mean and variance of returns changes over time, making it difficult to explain the
asset movements. One simple conjecture is that changes in variance will induce trade
with the more risk averse agent selling some of his holdings to the more risk tolerant
agent. The next example examines this conjecture.

We assume that same utility functions for type 1 and 2 trades, but change the
transition matrix and the stock dividends in the previous example to create an ex-
ample where the mean future dividend is fixed but the variance changes. We assume
the Markov transition matrix

0 05 05 0
- 05 0 0 05
0 05 05 0

05 0 0 0.5

and assume that the new stock dividend process is d* = (1,2,4,5)7. In this example
the time ¢ expectation of the time ¢t + 1 dividend is always 3, but the variance of
this expectation can change across states. In states 1 and 3 the dividend in the next
period is either 2 or 4, but is either 1 or 5 in states 2 and 4. If trading was induced
by changes in variance, then we might expect the more risk tolerant type 1 agents to
buy stock from type 2 agents after a transition from state 1 to 2 or from state 3 to 2.
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The asset prices of the stock and the bond are

¢ = (17.77,44.34,75.87,88.55)
¢" = (0.3030,1.4146,1.2935,2.8248),

the portfolio policy of agent 1 is

9" = (0.5527,0.5315,0.5527,0.5315)
0 = (—1.9462,—0.5912, —1.9462, —0.5912),

and the state-contingent consumption is

' = (.1527,.9370,2.7821,3.7363)
¢ = (.8473,1.0630,1.2179,1.2637).

The volatility of asset prices changes substantially as states change. In state one, the
asset price is low, but the price in the next period is either (approximately) 44 or 76,
but in state two, the price is 44 with future price equally either 18 or 89. Similarly,
expected price volatility is much higher in state four than in state two. Now the asset
positions are identical in states 1 and 3 (2 and 4) since states 1 and 3 (2 and 4) have
the same variance in returns.

The asset holding patterns are somewhat puzzling. The relatively risk-tolerant
type one investors hold less equity in the riskier states 2 and 4. When the dividend
process moves from state 1 to state 2, dividend and price variance increases and
type one investors sell shares to type two agents who are more risk averse, and they
reduce their leverage. Consider also the situation in state two. If the next period’s
state is (apparently less risky) state one, then type one agents increase their equity
holdings. This seems odd from a portfolio rebalancing perspective. However, it is not
surprising when we examine the consumption pattern. When the dividend process
moves from state two to state one, type one consumption plummets from 0.9370 to
0.1527, leading type one agents to save and increase their asset holdings.

These two examples highlight some important points. First, trading will occur
when there are fewer assets than the total number of states. This is a reasonable
assumption to make, even though it is a nongeneric condition in the theory. Second,
portfolio trading patterns do not follow any simple rules. The equilibrium portfolios
are determined by a variety of factors with riskiness of the assets being only one of
them. Third, even in the cases where trading does occur, it is small in magnitude.
Our examples encompass a wide variation in dividends and asset prices, and have
agents with substantially different risk aversion. Still, the volume of trade is rather
small.
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5 Conclusions

Analyses of asset markets often ignore volume. We show that standard intuition
about volume is misleading. In particular, in generic dynamically complete markets of
Lucas-style asset models, there will be no trading motivated by portfolio rebalancing
considerations. This follows directly from the recursivity properties of any Pareto
efficient allocation and the spanning properties of assets in a dynamically complete
market.

This result implies that the reasons for trade lie in other considerations, such
as life-cycle factors and asymmetric information (factors noted elsewhere), as well
as incompleteness of the asset market. We display one kind of model with asset
incompleteness which will generate trade for portfolio rebalancing considerations. The
key property of these examples is that if the dividend process can be modelled by a
Markov process with a sparse transition matrix, then a few assets can dynamically
span all feasible consumption processes but only with some trading since the character
of each asset changes as the dividend process evolves. While this later model is
formally nongeneric, it may be a more realistic model of actual markets.

All of our results indicate that volume is not pinned down by simple rules such
as the risk-tolerant buying up risky assets when they become riskier. In fact, the
opposite happens in our sparse transition matrix examples. Pareto efficiency of the
consumption process apparently has little to say about asset volume. In general,
volume is sensitive to details of a market which are difficult to know. The fact that
portfolio rebalancing alone will not produce substantial trading adds to the mystery
of why asset markets are so active.
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