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1 Introduction

A well-known result by Blackwell [1] states that, in any Markov Decision
Process (MDP thereafter) with finitely many states and finitely many actions,
there is a pure stationary strategy that is optimal, for every discount factor
close enough to one. This strong optimality property is now referred to as
Blackwell optimality.

In this paper, we address the problem of existence of Blackwell optimal
strategies for finite MDP with partial observation; that is, for finite MDP’s
in which at the end of every stage, the decision maker receives a signal
that depends randomly on the current state and on the action that has been
chosen. We prove that, in any such MDP, there is a strategy that is Blackwell
ε-optimal; that is, ε-optimal for every discount factor close enough to one.
The strategy we construct is moreover ε-optimal in the n-stage MDP, for
every n large enough.

The standard approach to MDP’s with partial observation is to convert it
into an auxiliary MDP with full observation and Borel state space. The con-
ditional distribution over the state space Ω given the available information
(sequence of past signals and past actions) plays the role of the state variable
in the auxiliary MDP. This approach has been developed for instance in [7],
[8] and [9]. One then looks for optimal stationary strategies (strategies such
that the action chosen in any given stage is only a function of the belief held
on the underlying state in Ω). A commonly used criterion is the long-run av-
erage cost criterion, see, e.g., [2], [3]. It is well-known that optimal strategies
for this criterion do not exist in general MDP’s with Borel state space. Hence
one imposes assumptions which guarantee the existence of optimal strategies.
These assumptions usually have the flavor of an irreducibility condition that
one imposes on the transition function of the MDP. For MDP’s that arise
from a MDP with partial observation, these conditions may be difficult to
interpret in terms of the underlying data; see for instance Assumption 7.2,
p. 329 in [6].

In the present paper we do not follow this approach but rather use the
structure on the auxiliary MDP that is derived from the underlying MDP.
Specifically, using a sequence of optimal strategies in the n-stage MDP, and
using the compactness of the state space of the auxiliary MDP and the conti-
nuity of the payoff on this space, we construct a Blackwell ε-optimal strategy.

In Section 2, we present the model and the main results. In section 3, we
show on an example that the result is in some respect tight. In Section 6, we
construct a Blackwell ε-optimal strategy. This strategy is neither pure nor
stationary. In the case of degenerate observation (the decision maker receives
no information whatsoever), we construct a pure, stationary Blackwell ε-
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optimal strategy. Part of this proof serves as an introduction for the general
case. It is therefore presented in Section 5. Section 4 contains a number of
preliminary results that are used in both proofs.

2 The Model and the Main Results

Given a set M , we denote by ∆(M) the set of probability distributions over
M , and we identify M with the set of extreme points of ∆(M).

A Markov decision process with partial observation is given by: (i) A
state space Ω, (ii) an action set A, (iii) a signal set S, (iv) a transition rule
q : Ω×A→ ∆(S×Ω), (v) a payoff function r : Ω×A→ R, (vi) A probability
distribution x1 ∈ ∆(Ω).

We assume that Ω, A and S are finite sets. Extensions to more general
cases are discussed below. W.l.o.g., we assume that 0 ≤ r(ω, a) ≤ 1 for every
(ω, a) ∈ Ω× A.

An initial state ω1 is drawn according to x1. At every stage n the decision
maker chooses an action a ∈ A, and a pair (sn, ωn+1) ∈ S×Ω of a signal and
a new state is drawn according to q(ωn, an). The decision maker is informed
of the signal sn, but not of the new state ωn+1.

Thus, the information available to the decision maker at stage n is the
finite sequence a1, s1, a2, s2, . . . , an−1, sn−1 and a behavior strategy for the
decision maker is a function that assigns for every such sequence a probability
distribution over ∆(A). We set Hn = (A×S)n−1, and we denote respectively
by H = ∪n≥1Hn and H∞ = (A × Ω × S)N the set of finite histories and
infinite plays. We denote by Hn the algebra over H∞ induced by Hn.

Each strategy σ and every initial distribution x1 induce a probability
distribution Px1,σ over (H∞,H∞), where H∞ = σ(Hn, n ≥ 1). Expectations
under Px1,σ are denoted by Ex1,σ. All norms in the paper are supremum
norms.

We let

γn(x1, σ) = Ex1,σ[(r(ω1, a1) + · · ·+ r(ωn, an))/n]

denote the expected average payoff in the first n stages.
We denote by vn(x1) = supσ γn(x1, σ) the value of the n-stage process.

We simply write vn where there is no risk of confusion about the initial
distribution.

For every λ ∈ (0, 1) and every strategy σ we define the λ-discounted
payoff as

γλ(σ) = γλ(x1, σ) = Ex1,σ

[
(1− λ)

∞∑
m=1

λm−1r(ωm, am)

]
,
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and the discounted value by

vλ = sup
σ
γλ(σ).

Definition 1 v ∈ R is the (uniform) value of the MDP with p.o. (with
initial probability distribution x1) if v = limn→∞ vn = limλ→1 vλ and, for
every ε > 0, there exists a strategy σ, a positive integer N0 ∈ N, and λ0 ∈
(0, 1) such that:

γn(x1, σ) ≥ vn − ε, ∀n ≥ N0 (1)

γλ(x1, σ) ≥ vλ − ε, ∀λ ≥ λ0 (2)

Our first main result is that the value always exists.

Theorem 2 If Ω, A and S are finite, then v exists.

In the case where |S| = 1, that is, the decision maker receives no infor-
mative signal, we get a stronger result.

To state this result we need additional notions. For n ≥ 1, we denote by
yn the conditional law of ωn given Hn: for each ω ∈ Ω, yn [ω] is the posterior
probability in stage n that the process is at state ω given the information
available to the decision maker (we do not assume here that |S| = 1.) Thus,
y1 = x1. Observe that the value yn(hn) ∈ ∆(Ω) of yn after a given history
hn may be computed without knowledge of the strategy. yn is therefore a
function Hn → ∆(Ω) or, equivalently, a random variable (H∞,Hn)→ ∆(Ω).
Clearly, the law of yn is influenced by the strategy that is followed.

A pure strategy is a strategy σ : H → ∆(A), such that σ(h) ∈ A for each
h ∈ H. A strategy is stationary if σ(hn) depends only on the belief yn(hn)
held at stage n.

If |S| = 1, the ε-optimal strategies can be chosen to be pure and station-
ary.

Theorem 3 If Ω and A are finite, and |S| = 1, then for every ε > 0 there
exists a pure stationary ε-optimal strategy.

Comment: It might seem that stationarity is an extremely desirable
requirement. However, it may well be the case that the decision maker
cannot hold twice the same belief over time. In such a case, the stationarity
requirement is empty.

Comment: It is not clear that the existence of a pure ε-optimal strategy
follows from the existence of ε-optimal strategies (i.e., from Theorem 2). The
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reason is the following. By Kuhn’s theorem [4], given x1 and a strategy σ,
there exists a mixed strategy π, i.e., a probability distribution over pure
strategies, such that the probability distribution over H∞ obtained by first
choosing a pure strategy f according to π, and then following f , coincides
with Px1,σ. In particular, given n ≥ 1, there exists a strategy fn in the
support of π, such that γn(x1, fn) ≥ γn(x1, σ). However, it is not clear at all
that fn can be chosen independently of n.

3 An example

Define a MDP with no signals as follows. Set Ω = {ω, ω}, and A = {a, a}.
The transition rule q is given by

q(ω̄|ω̄, a) = 1 for each a

q(ω|ω, ā) = 1, q(ω|ω, a) =
1

2
.

The payoff function r is given by

r(ω̄, ā) = 1, and r(ω, a) = 0 otherwise.

The MDP starts from state ω. We identify a probability distribution over Ω
with the probability assigned to ω.

Observe that the state ω̄ is absorbing. Observe also that: whenever
the player chooses ā, the current state does not change, hence the belief
remains the same; whenever the player choose a, the current belief (i.e., the
probability of being in ω) is divided by two.

The uniform value of this MDP is equal to one. Indeed, given ε > 0, let
σ be the (stationary) strategy that plays a in the first N = blog2 εc + 2
stages, and plays ā afterwards. Given σ, one has yN+1 < ε. Therefore,
Ex1,σ [r(ωn, an)] = 1−yN+1 > 1−ε for each n > N . In particular, lim infn→∞ γn(σ) =
lim infλ→1 γλ(σ) > 1 − ε. Since vn ≤ 1, and vλ ≤ 1, the uniform value is in-
deed equal to 1. This implies limλ→1 vλ = limn→∞ vn = 1.

We now claim that there is no Blackwell optimal strategy. By Kuhn’s the-
orem, it is enough to prove that there is no pure Blackwell optimal strategy.
Let σ = (an)n∈N be a pure strategy. We distinguish three (non-exclusive)
cases.

Case 1: There exists N ∈ N, such that an = ā for every n ≥ N .
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In that case, the sequence (yn) is constant from stage N on. Therefore,
limn→∞ γn(σ) = limλ→1 γλ(σ) = 1 − yN < 1. In particular, γλ(σ) < vλ for
λ close to one.

Case 2: There exists N ∈ N, such that an = a for every n ≥ N .
In that case, Eσ [r(ωn, an)] = 0 for each n ≥ N . Therefore, limn→∞ γn(σ) =

limλ→1 γλ(σ) = 0.

Case 3: There exists n0 ∈ N, such that an0 = ā and an0+1 = a. Denote
by τ the strategy obtained from σ by permutation of an0 and an0+1. Observe
that

Eτ [r(ωn, an)] = Eσ [r(ωn, an)] for each n ∈ N\ {n0, n0 + 1} ,
Eτ [r(ωn0 , an0)] = Eσ [r(ωn0+1, an0+1)] = 0,

Eτ [r(ωn0+1, an0+1)] > Eσ [r(ωn0 , an0)] .

Therefore, γλ(τ) > γλ(σ) for λ close to one. In particular, σ is not optimal
for λ close to one.

A natural question arises. Does there exist a strategy that is Blackwell
ε-optimal for each ε > 0 ? We claim that there is such a pure strategy, but
no stationary one. Indeed, let σ = (an)n∈N be a pure stationary strategy.
Since yn+1 = yn whenever an = ā, the stationarity of σ implies that an+1 = ā
as soon as an = ā. This implies that the sequence (an) is eventually constant,
i.e., it must be that either case 1 or case 2 above holds. In both cases, σ fails
to be ε-optimal, provided ε is small enough.

Let now σ = (an) be any sequence such that the subsetA = {n ∈ N,an = a}
of N is infinite and has density zero. Since A is infinite, the sequence (yn)
converges to zero under σ. Therefore,

lim
n→∞,n/∈A

Eσ [r(ωn, an)] = 1. (3)

Since A has density zero, (3) yields limn→∞ γn(σ) = limλ→1 γλ(σ) = 1.

4 Preliminaries

The purpose of this section is to introduce several general results. The first
result is standard. It asserts that, given N ∈ N, there exists a pure optimal
strategy in the N -stage MDP such that the action played in stage n depends
only on n and yn.
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Lemma 4 For each N ≥ 1, there exists a pure strategy σN such that γN(x1, σN) =
vN(x1) and σN(hn) is only a function of n and yn(hn).

Proof. Let a strategy σ be given, and define a strategy σ̂ as follows.
In stage n ≥ 1, it plays a ∈ A with the probability Px,σ(an = a|y1, ..., yn).
Since yn is a sufficient statistic about ωn, it is easy to check that γN(x1, σ) =
γN(x1, σ̂). Observe that σ̂(hn) depends only on n and yn(hn). Using Kuhn’s
Theorem, there exists a pure strategy σN such that γN(x1, σN) ≥ γN(x1, σ̂).
The result follows.

Whenever in the sequel we refer to optimal strategies in the n-stage pro-
cess, we mean a pure strategy that satisfies the two conditions in Lemma
4.

Given m < n, we denote by

γm,n(x1, σ) = Ex1,σ

[
1

n−m+ 1
(r(ωm, am) + · · ·+ r(ωn, an))

]
,

the expected average payoff from stage m up to stage n. Thus, γn(x1, σ) =
γ1,n(x1, σ).

Proposition 5 Let x, x′ ∈ ∆(Ω). For every strategy σ and every m < n,

|γm,n(x, σ)− γm,n(x′, σ)| ≤ ‖x− x′‖.

Proof. Let n ≥ 1 and hn ∈ Hn be given. Observe that, for every
x ∈ ∆(Ω) and for every strategy σ, one has

Px,σ(hn = h̄n) =
∑
ω∈Ω

x(ω)Pω,σ(hn = hn).

In particular, Ex,σ [r(sn,an)] =
∑

ω∈Ω x(ω)Eω,σ [r(sn,an)]. The result follows.

For simplicity, we write γn(σ) and γm,n(σ) instead of γn(x1, σ) and γm,n(x1, σ)
whenever there is no possible confusion about x1.

Comment: We claim here that to prove that v is the value, it is enough
to prove that v = limn→∞ vn and (1) holds. Since Ω is finite, Proposition
5 implies that (vn) converges to v uniformly over ∆(Ω). Hence, by Lehrer
and Sorin [5], (vλ) converges uniformly to v. Moreover, one can show that
lim infλ→1γλ(x1, σ) ≥ lim infn→∞γn(x1, σ). Hence (2) holds as well.
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Proposition 6 Let σ, ε > 0 and n ∈ N be given, and set

N = inf {k ∈ N, such that γm(σ) ≥ γn(σ)− ε for every k ≤ m ≤ n} . (4)

Then N ≤ 1 + (1− ε)n. Moreover,

γN,m(σ) ≥ γn(σ)− ε for every N ≤ m ≤ n. (5)

Given ε > 0 and σ, let Nn denote the integer associated with n in (4).
Observe that limn→∞(n−Nn) = +∞. This Proposition has the same flavor
as Proposition 2 in [5].

Proof. Clearly, N ≤ n. Note that if N > 1 then γN−1(σ) < γn(σ)− ε.
We first show that N ≤ 1 + (1 − ε)n. Indeed, otherwise, N > 1, hence

γN−1(σ) < γn(σ)− ε. Since payoffs are bounded by 1,

γn(σ) ≤ N − 1

n
γN−1(σ) +

n−N + 1

n
< γn(σ)− ε+ ε = γn(σ)

a contradiction.
Next we show that (5) holds. Fix an integer m such that N ≤ m ≤ n. If

N = 1, one has γN,m(σ) = γm(σ) ≥ γn(σ)−ε. If N > 1, γN−1(σ) < γn(σ)−ε,
while γm(σ) ≥ γn(σ)− ε. It follows that γN,m(σ) ≥ γn(σ)− ε.

5 The Case of ‘No Signals’

This section is devoted to the proof of Theorem 3. Thus, we assume that no
signal is available. The initial distribution x1 is fixed throughout the section.

A pure strategy is reduced to a sequence of actions: the action that is
played at each stage. Moreover, if σ is pure, the posterior distribution at
stage n depends deterministically on σ. We write yn(σ) for the posterior
distribution at stage n:

yn(σ)[ω] = Px1,σ(ωn = ω).

If σ = (a1, a2, . . . ) ∈ AN is a strategy, we define for every positive integer
m ∈ N the truncated strategy σm = (am, am+1, . . . ) and the prefix mσ =
(a1, ..., am).

Define w = lim supn→∞vn, and fix ε > 0. Let (ni)i∈N be a subsequence
such that limi→∞ vni

= w, and |vni
− w| < ε/2 for every i ∈ N. Let σi

be a pure optimal strategy in the ni-stage problem (that satisfies the two
conditions of Lemma 4.) Thus, γni

(σi) = vni
.
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Given i ∈ N, we let Ni ≤ 1 + (1 − ε)ni be the integer obtained by
applying Proposition 6 to ni. Possibly by taking a subsequence, we may
assume w.l.o.g. that N1 ≤ Ni for each i.

We let yi = yNi
(σi) be the posterior distribution over states induced by σi

at stage Ni. Since Ω is finite, ∆(Ω) is compact, hence there exists y ∈ ∆(Ω)
and a subsequence of {yi}, still denoted by {yi}, such that

‖yi − y‖ < ε, for each i ∈ N.

For each i ∈ N define πi as: follow σ1 up to N1, switch to σNi
i at stage

N1. Formally,

πi(n) =

{
σ1(n) for 1 ≤ n ≤ N1 − 1
σi(Ni + n−N1) for N1 ≤ n

Set mi = N1 + ni − N
i
. Since N1 ≤ Ni, one has mi ≤ ni. Note that

lim infi→∞mi = +∞.

Proposition 7 If m satisfies (N1 − 1)/ε < m ≤ mi then

γm(πi) ≥ w − 4ε.

Proposition 7 asserts that each πi gives high payoff in all m-stage prob-
lems, provided m is sufficiently large (but smaller than mi). Moreover, the
lower bound on m is independent of i.

Proof. Fix an integer m such that (N1 − 1)/ε < m ≤ mi. By construc-
tion, yN1(πi) = y1, hence

γm(x1, πi) =
N1 − 1

m
γN1−1(x1, πi) +

m−N1 + 1

m
γN1,m(x1, πi)

=
N1 − 1

m
γN1−1(x1, πi) +

m−N1 + 1

m
γm−N1+1(y1, π

N1
i )

By the assumption on m, (m−N1 + 1)/m ≥ 1− ε. Since ‖y1 − yi‖ < ε, we
get by Proposition 5, and since γN1−1(πi) ≥ 0,

γm(x1, πi) ≥ (1− ε) (γNi,m−N1+Ni
(x1, πi)− ε) .

Since N1 ≤ Ni, m−N1 + Ni ≤ ni, hence γNi,m−N1+Ni
(yi, πi) ≥ w − 2ε. The

result follows.

Proposition 8 In the case |S| = 1, the uniform value exists.
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Proof. Since A is finite, by a diagonal extraction argument there exists
a pure strategy π such that every prefix of π is a prefix of infinitely many
πi’s: for each m, mπ = mπi for infinitely many i. In particular, for every
m > (N1 − 1)/ε,

γm(π) ≥ w − 4ε.

In particular, vm ≥ w − 4ε. Since ε > 0 is arbitrary, one has w = limn→∞ vn
and π is a 4ε-optimal strategy.

Proof of Theorem 3. Let π = (a1, a2, . . . ) be a pure ε-optimal strategy;
that is, for some n0 ∈ N, γn(π) ≥ w− ε for every n ≥ n0. Let yn = yn(π) be
the posterior distribution at stage n.
Case 1: (yn)n∈N is eventually periodic; that is, there exists n1 ∈ N and
d ∈ N such that yn = yn + d for every n ≥ n1.

Since π is ε-optimal, it follows that the expected average payoff along the
period is at least w − ε:

γn1,n1+d−1(π) ≥ w − ε.

It follows that there exist n2 ≤ n3 such that (i) yn2 = yn3 , (ii) yi 6= yj for
every n2 ≤ i < j < n3, and (iii) γn2,n3−1(π) ≥ w − ε.

Let Y = {yn, n = 1, . . . , n3} be the set of all posterior distributions
in the first n3 stages. Consider the directed graph whose vertices are the
elements in Y , and which contains the edge (y, y′) ∈ Y × Y if and only if
(y, y′) = (yn, yn+1) for some n ∈ {1, . . . , n3 − 1}. Thus we connect with an
edge any two consecutive elements in the finite sequence (yn)n3

n=1.
Clearly there is a path from y1 to any y ∈ Y . Let y1 = yi1 , yi2 , . . . , yik be a

shortest path that connects y1 to the set {yn2 , yn2 +1, . . . , yn3}. In particular,
yij 6= yij′ for every 1 ≤ j < j′ ≤ k. Assume w.l.o.g. that yik = yn2 . Define

π′ = (ai1 , ai2 , . . . , aik−1, an2 , an2+1, . . . , an3−1, an2 , an2+1, . . . , an3−1, . . . ).

By construction, yn(π′) = yin(π) for each n < k, yk(π
′) = yn2(π), and the

sequence (yn(π))n≥k coincides with the periodic sequence
(yn2(π), ...yn3−1(π), yn2(π), ..., yn3−1(π), ...). Each of the posteriors yn(π′), n <
k appears only once, hence π′ is stationary. Since γn2,n3−1(π) ≥ w − ε, we
have γn(π′) ≥ w − 2ε for every n ≥ k(n3 − n2)/ε.
Case 2: There are two integers 0 < n1 < n2 such that yn1 = yn2 , and
γn1,n2−1(π) ≥ w − ε.

Define the strategy π′ = (a1, a2, . . . , an1 , an1+1, . . . , an2−1, an1 , . . . , an2−1, . . . ).
Then π′ is 2ε-optimal, and (yn(π′)) is eventually periodic. We can then apply
Case 1 to π′.
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Case 3: There is some y ∈ ∆(Ω) that appears infinitely often in the
sequence (yn)n∈N.

Since for every n sufficiently large, γn(π) ≥ w − ε, it follows that there
exist n1 < n2 such that yn1 = yn2 = y and γn1,n2−1(π) ≥ w − ε. Apply now
Case 2.
Case 4: None of the above hold.

Since Case 3 does not hold, every y ∈ ∆(Ω) that appears in the sequence
(yn)n∈N, does so only finitely many times. Since Case 2 does not hold, the
expected average payoff between two appearances of any y ∈ ∆(Ω) in (yn) is
below w − ε.

Define a sequence (ik)k∈N as follows:

i1 = max {n ≥ 1, yn = y1} ,

and

ik+1 = max{n ≥ 1, yn = yik+1}. (6)

In words, i1 is the last occurrence of the initial belief, i2 is the last occurrence
of the belief held in stage i1 + 1, and so on. Since yik appears only finitely
many times in the sequence (yn), the maximum in (6) is finite. Clearly
ik+1 > ik. Note that yik+1

= yik+1, for each k.
Define now a strategy π′ = (ai1 , ai2 , ai3 , . . . ). Since yik+1

= yik+1, it follows
by induction that

yik+1
= y(ai1 , ai2 , . . . , aik),

where y(ai1 , ai2 , . . . , aik) is the posterior probability held after playing actions
ai1 , ai2 , . . . , aik . It also follows that no element in the sequence (yik) appears
twice. In particular, the strategy π′ is stationary.

We now argue that for every k0 ≥ n0, γk0(π
′) ≥ w − ε. Set n = ik0 and

i0 = 0. Note that

n =

k0∑
k=1

(ik − ik−1) = k0 +
∑

k≤k0|ik+1>ik+1

(ik − ik−1 − 1).

Clearly,

nγn(π) = k0γk0(π
′) +

∑
k≤k0|ik+1>ik+1

(ik+1 − ik − 1)γik+1,ik+1−1(π).

Since Case 2 does not hold, γik+1,ik+1−1(π) < w − ε, whenever ik+1 > ik + 1,
Since n ≥ k0 ≥ n0, γn(π) ≥ w−ε. It follows that γk0(π

′) ≥ w−ε, as desired.
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Comment. The fact that the action set A is finite was used in the diagonal
extraction argument in the proof of Proposition 8. However, the proof can be
extended to compact metric action spaces provided the functions a 7→ r(ω, a)
and a 7→ q(ω, a) are continuous in a, for each ω ∈ Ω.

To see why the diagonal extraction argument works in that case, take for
every n ∈ N a finite subset An ⊂ A such that for each a ∈ A there is some
ā(a) ∈ An with

sup
ω
|r(ω, a)− r(ω, ā(a))| < ε and sup

ω
‖q(ω, a)− q(ω, ā(a))‖ < ε/2n. (7)

Define for every i ∈ N the strategy π′i by π′i(n) = ā(πi(n)). By (7), |γn(πi)−
γn(π′i)| < 2ε. Since for each fixed n, {π′i(n)}i∈N is finite, one can apply the
diagonal extraction argument to {π′i}i∈N, and get a strategy π′ such that
every prefix of π′ is a prefix of infinitely many π

′
i’s. Then π′i is 3ε-optimal.

6 The General Case

This section is devoted to the proof of Theorem 2. At first we follow the
same path as in the proof of Theorem 3. However, since now the signal
set is not degenerate, the posterior distribution at stage Ni depends on the
signals the decision maker received. Hence, before the process starts, the
decision maker who follows some strategy has a probability distribution over
the possible posteriors he may have at stage Ni. We are thus forced to work
with the space ∆(∆(Ω)), which is no longer finite dimensional. The proof
will be amended to deal with this difficulty.

Fix ε > 0 once and for all. Denote w = lim supn→∞ vn, and let (ni) be a
subsequence such that limi→∞ vni

= w and |w − vni
| < ε for every i ∈ N.

For each i ∈ N, let σi be an optimal strategy in the ni-stage MDP (that
satisfies the two conditions of Lemma 4), and let Ni ≤ 1 + (1 − ε)ni be the
integer obtained by applying Proposition 6 to ni.

We assume w.l.o.g. that N1 ≤ Ni for each i.
Recall that yNi

is the posterior distribution over Ω at stage Ni, given the
history up to that stage. Since A and S are finite, yNi

may take only finitely
many values.

We denote by pi the law of yNi
when the strategy σi is followed (under

Pσi
): pi has finite support supp(pi) and

pi(y) = Pσi
(yNi

= y) for each y ∈ ∆(Ω).

Comment. A natural idea is to repeat the proof of the previous section,
by using the law of the belief as relevant state variable, i.e. by dealing with
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the auxiliary state space ∆(∆(Ω)). Observe that ∆(∆(Ω)) is no longer finite-
dimensional but is compact in the w∗-topology, which is a metric topology.
Let d be a corresponding metric. The proof of the previous section would go
through if one was able to prove the following Lipschitz property:

for every p, p′ ∈ ∆(∆(Ω)), σ and n ∈ N, |γn(p, σ)− γn(p′, σ)| ≤ d(p, p′),

where γn(p, σ) denotes the expectation of γn(x, σ) under p. However, it is not
clear that this condition holds. We therefore choose a different route, which
involves a discretization of ∆(Ω), and uses the Lipschitz condition expressed
in Lemma 5.

Let T be a finite partition of ∆(Ω) into sets of diameter smaller than ε.
By Lemma 5, given T ∈ T , x, x′ ∈ T , a strategy σ and every n ∈ N, one
has

|γn(x, σ)− γn(x′, σ)| < ε. (8)

Given p ∈ ∆(∆(Ω)) with finite support, we denote by p̂ the probability
induced by p on T :

p̂[T ] =
∑

x∈supp(p)∩T

p[x] ∀T ∈ T .

Since T is a finite partition, there is a subsequence of (p̂i)i∈N that con-
verges to a limit p̂. We still denote this subsequence by (p̂i)i∈N. We assume
moreover that for every i ∈ N, ‖ p̂i − p̂ ‖< ε/2. In particular, ‖p̂i − p̂1‖ < ε
for every i ∈ N.

In the case of no signals, we defined a strategy πi as: follow σ1 up to stage
N1, then switch to the sequence of actions prescribed by σi after stage Ni.
We will proceed in a similar way here. There is however a small difficulty.
The action that σi plays in stage Ni depends on the belief yNi

. Therefore, one
needs to define a map that associates to the true belief yN1 held at stage N1

a fictitious value for yNi
. Indeed, the possible beliefs in stage N1 need not be

the same as the possible beliefs in stage Ni. The solution is simply to select
a fictitious belief x according to the conditional distribution pi [·|T (yN1)],
where, given y ∈ ∆(Ω), T (y) is the element of T that contains y.

We need an additional notation. For each x ∈ ∆(Ω), we define the strategy
σNi
i [x] induced by σi after stage Ni, given the belief x, as follows. For each

history (a′1, s
′
1, . . . , a

′
m, s

′
m), we set

σNi
i [x] (a′1, s

′
1, . . . , a

′
m, s

′
m) = σi(a1, s1, . . . , aNi−1, sNi−1, a

′
1, s
′
1, . . . , a

′
m, s

′
m),

13



where (a1, s1, . . . , aNi−1, sNi−1) is any sequence in HNi
such that

yNi
(a1, s1, . . . , aNi−1, sNi−1) = x.

Since σi is stationary, this is independent of the particular sequence (a1, s1, . . . , aNi−1, sNi−1).
(If no such sequence exists, the definition of σNi

i [x] is irrelevant).
We now define, for every i ∈ N, a strategy πi as follows:

• Follow σ1 up to stage N1 − 1.

• If pi[T (yN1)] = 0, continue in an arbitrary way.

• Otherwise, choose x according to pi[· | T (yN1)], and continue with
σNi
i [x] .

Observe that the definition of πi involves choosing at stage N1 a pure
strategy at random. Such a strategy is called a mixed strategy. By Kuhn’s
theorem [4], there is a behavior strategy that induces the same probability
distribution over H∞ as πi. We may therefore view πi as a behavior strategy.

Proposition 9 For any m such that N1/ε ≤ m ≤ N1 + ni −Ni, one has

γm(πi) ≥ w − 5ε.

Proof. By the definition of πi, and since payoffs are bounded by 1:

γm(πi) =
N1 − 1

m
γN1−1(σ1)

+
m−N1 + 1

m

∑
y∈∆(Ω)

∑
x∈T (y)

p1(y)pi(x|T (y))γm−N1+1(y, σNi
i [x]).

If x, y ∈ ∆(Ω) belong to the same element of T , one has∣∣γm−N1+1(y, σNi
i [x])− γm−N1+1(x, σNi

i [x])
∣∣ ≤ ε.

Therefore

γm(πi) ≥
N1 − 1

m
γN1−1(σ1) (9)

+
m−N1 + 1

m

∑
T∈T

p̂1(T )
∑
x∈T

pi(x|T )γm−N1+1(x, σNi
i [x])− ε. (10)
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Since ‖p̂i − p̂1‖ < ε,∑
T∈T

p̂1(T )
∑
x∈T

pi(x|T )γm−N1+1(x, σNi
i [x]) ≥

∑
x∈∆(Ω)

pi(x)γm−N1+1(x, σNi
i [x])− ε

≥ γNi,m−N1+Ni
(σi)− ε

Since m ≥ N1/ε, substituting into (9) yields

γm(πi) ≥ (1− ε)γNi,m−N1+Ni
(σi)− 2ε ≥ w − 5ε.

The last step is to construct from the sequence (πi)i∈N, using a diag-
onal extraction argument, a strategy π that is 6ε-optimal. Let n ≥ 1
be given. Since Hn is finite, there exists a sequence (in(j))j∈N such that
limj→∞ πin(j)(h) exists for every h ∈ Hn. We denote by π(h) the limit.
W.l.o.g., we may assume that (in+1(j))j is a subsequence of (in(j))j for each
n. Clearly, for each n,

γn(π) = lim
j→∞

γn(πin(j)).

By Proposition 9, γn(π) ≥ w − 5ε, for every n ≥ N1/ε. Hence Theorem 2 is
proved.

We conclude by discussing several extensions.
Comment. The extension to a compact set of actions also holds in the

general case, under the same conditions as in the case of no signals, as dis-
cussed above.

Comment. The extension to MDP with finite Ω, A and countable set of
signals S is straightforward. Indeed, given ε > 0, there exist finite subsets S∗n
of S such that, given any strategy σ and any initial distribution x1 ∈ ∆(Ω),

Px1,σ(sn /∈ S∗n for some n) ≤ ε.

The proof then essentially reduces to the case of a finite set of signals.

Comment. The extension to MDP with finite A, countable Ω does not
hold, even when S is a singleton. Indeed, there are examples, see [5] for
instance, of MDP with finite A, countable Ω and deterministic transitions,
that have no value. For such MDP, the sequence of past actions enables the
decision maker to recover the current state of the MDP. Hence the assumption
of partial observation is irrelevant.

Comment. Our proof works in the case of MDPs with a compact metric
space Ω, and finite action set A and signal set S, as long as (8) holds.
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