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Abstract

The purpose of this paper is to analyze endogenous asset innovation by an entrepreneurial

exchange owner in a partial equilibrium model of incomplete security markets with �nancial

transaction fees. A monopolistic market maker has the technology to introduce new securities

into the economy and charge investors transaction fees if they trade on the exchange. The

market maker's objective is to choose the security and transaction fee that maximize pro�ts

when opening the exchange.

We compute the e�ects of asset innovation for the case of an option exchange introducing

an option on a stock index. In the �rst set of economies agents with heterogeneous levels of risk

aversion trade securities to achieve some risk sharing. In the second set of economies agents

have identical risk aversion but heterogeneous beliefs which leads to trading due to the desire

for portfolio re-balancing. In both types of models the introduction of the pro�t-maximizing

option leads to a decrease of the prices of established securities. Typically small heterogeneity

of beliefs leads to substantial more trading volume in the option than reasonable di�erences

among levels of risk aversion.

Our computational approach allows us to examine some previous results in the theoretical

literature for heterogeneous-beliefs models about the e�ects of an option introduction. We show

that these results about options leading to a price increase of the underlying stock depend on

some very strong assumptions on the parameters and are quantitatively negligible. Typically

an opposite result, namely a price decrease of the underlying stock, of much larger quantitative

magnitude holds.
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1 Introduction

The last thirty years have witnessed an astronomical rise in the number of securities traded on

�nancial markets and in the transaction volume on these markets. Many �nancial innovators, such

as governments, banks, �rms and exchange companies have contributed to this development. While

these innovators have been driven by a variety of motives to introduce new �nancial securities, two

motives appear to dominate: the desire of investors to increase their risk-sharing opportunities and

the objective of entrepreneurial market makers to make pro�ts by charging transaction fees. Allen

and Gale (1994) provide a detailed discussion of a variety of motives for �nancial innovators to

introduce new �nancial securities. They argue that the desire of agents to improve risk-sharing

opportunities is the most important driving force of �nancial innovation. In particular they view

the introduction of a �nancial security as a step to move incomplete markets closer to a system of

complete markets (Van Horne (1985)). They also recognize other important bene�ts of �nancial

innovation such as the reduction of transaction costs (Merton (1990)) and the opportunity for

market makers to earn temporary monopolistic pro�ts (Silber (1985)).

A growing economic literature attempts to build a theoretical framework for security design

in incomplete �nancial markets. Research in general equilibrium theory focuses on the spanning

role of new securities. The objectives of this research e�ort are to study how new securities a�ect

the market span of all �nancial assets, to compare the e�ects of di�erent sets of securities, and to

explain which �nancial structures would be preferred by rational agents in the model. However,

DuÆe and Rahi (1995) complain that

while there are several results providing conditions for the existence of equilibrium with

innovation, the available theory has relatively few concrete normative or predictive re-

sults.

The purpose of this paper is to analyze endogenous asset innovation through a pro�t-maximizing

market maker in a model of incomplete security markets with transaction fees on �nancial markets.

Following the typical two-stage setup (DuÆe and Rahi (1995)) of security innovation models we

proceed in two steps. First, we de�ne equilibrium in a model of a two-period �nance economy with

asset transaction fees and a �xed set of securities. Secondly, we introduce a monopolist who has

the technology to introduce new securities, and who has the right to charge proportional trans-

action fees for transactions of the new securities. The market maker chooses the securities and
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transaction fees to maximize pro�ts from opening the exchange. We analyze the e�ects of security

innovation in parameterized versions of our model. A computational approach is necessary since

there are no interesting models with closed-form solutions. We focus on economies with a market

maker operating an option exchange introducing a single option on a stock (index). We compute

optimal pairs of option payo�s (determined by the strike price) and transaction fees for the market

maker. Furthermore we determine the welfare e�ects of the new option and perform comparative

statics exercises on the impact of the option innovation on the prices and the trading volume of

the existing assets.

Our general model is similar to the model by Hara (1995) who studies a general equilibrium

model of endogenous asset formation in which a monopolistic designer can create a �nite number

of assets to maximize commission revenues. In order to obtain closed-form results consumers are

restricted to have mean-variance utility functions. Hara (1995) emphasizes an important feature

of his (and our) model, namely that a market maker simultaneously choosing several assets may

have an incentive to introduce assets such that the resulting security structure is arbitrarily close to

redundancy. The supremum of the total commission revenues, over the choice set of proportional

transaction fees and payo� structures of a �xed number of assets, cannot be achieved. Hara (1995)

proves that this problem does not occur in his model if the number of innovated securities is at

most 2. For our computational analysis of the model of an option exchange introducing a single

option in a model with a bond and a stock we therefore do not need to be concerned with any

existence problems.

Our computational analysis of the e�ects of an option introduction resembles the general equi-

librium analysis of option and stock market interactions by Detemple and Selden (1991). They

consider a general equilibrium model with incomplete markets in which three assets are available:

a stock, a call option on the stock, and a bond. They show that the stock price depends generically

on the strike price of the option. In a specialized version of their model with no �rst-period con-

sumption and quadratic utility functions and two types of agents with di�ering beliefs, they �nd

that the option introduction increases the equilibrium stock price. Although Detemple and Selden

(1991) do not consider transaction fees one expects to �nd a similar result in our model. We show,

however, that their result of the price e�ect of an option introduction depends very crucially on

their assumptions on the agents' beliefs. Even if those assumptions are satis�ed, the magnitude of
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their proven e�ect is minuscule (price increase of less than 10�3%) in our model. On the contrary,

for most strike prices of the call option their assumptions on agents' beliefs are not satis�ed and a

stock price decrease, not increase, of much larger magnitude occurs (price decrease of more than 2

%).

Bisin (1998) presents a general equilibriummodel where several imperfectly competitive market

makers play a game to determine both the number of assets and their payo�s as well as the bid-

ask spreads they charge investors for trading the assets. The entrepreneurs face both �xed and

variable transaction costs for the introduction and intermediation of each asset making �nancial

markets endogenously incomplete. Once the assets and bid-ask spreads are chosen, an equilibrium

is determined in a �nancial markets (two-period GEI) model. All securities have nominal payo�s

and contrary to incomplete market models with exogenously speci�ed asset payo�s the equilibria

do not exhibit real indeterminacy.

The seminal paper by DuÆe and Jackson (1989) has been a major in
uence for many papers in

�nancial innovation. DuÆe and Jackson (1989) consider a one-period model of a futures exchange

with �xed transaction costs on asset trades. The exchange's objective is to design an optimal futures

contract in order to maximize transaction volume and so their revenues. In order to simplify the

analysis all agents are assumed to have mean-variance utility functions. DuÆe and Jackson (1989)

give necessary condition on the structure of the new �nancial contract to be volume maximizing.

With zero transaction costs they also obtain suÆcient conditions. As Allen and Gale (1994, chapter

4) point out, a big drawback of the model is that the transaction costs are exogenous. It is more

realistic to assume that the exchange owner can decide both the structure of the new asset and the

transaction fee. We include this feature in our model, and our computational analysis shows that

the transaction fee has a signi�cant impact on the revenues of the exchange owner. In particular, we

detect a connection between the choice of asset structure and the fee that maximizes the exchange's

revenue.

Allen and Gale (1994) consider a process of �nancial innovation in which �rms can issue di�erent

assets against their future income stream. Financial innovation is thus a part of the �rms' policies

to maximize pro�ts. Although papers in the general equilibrium literature on �nancial innovation

typically are not concerned with aspects of corporate policy the basic framework of Allen and

Gale (1994) has been widely adapted. Pesendorfer (1995) presents a similar innovation process

in which perfectly competitive intermediaries can issue new securities against collateral in form of

5



other standard securities. Both innovation costs and short-sale constraints are important in these

models with collateral. We include transaction costs in our model description but omit short-sale

constraints. However, such constraints could be easily incorporated both in the model and the

computational analysis.

Before we continue a few words of caution are necessary. In this paper we consider as the only

motives for �nancial innovation the desire of investors to have increased risk-sharing opportunities

and the objective of entrepreneurs to make pro�ts through the introduction of new securities. Of

course, there are many other reasons that are important. The surveys by Allen and Gale (1994)

and DuÆe and Rahi (1995) mention many other motives, among them, the desire to circumvent

regulations and taxation, a reaction to a change in accounting standards, corporate control issues

within a �rm, a �rm's objective to raise capital, or the desire to change prices of other assets.

Corresponding to the many di�erent aspects of �nancial innovation there exists a continuously

growing literature on the subject. We are not concerned with any of these issues and refer the

interested reader to the surveys by Allen and Gale (1994) and DuÆe and Rahi (1995) and the

many citations therein. We concentrate on the spanning role of securities. This restriction paired

with the parameterizations of our model allows us to make concrete predictions about the impact

of a security introduction.

The remainder of the paper is organized as follows: Section 2 describes a partial equilibrium

model of asset innovation. In Section 3 we specialize the model of the market maker and consider an

option exchange introducing a single option. Section 4 reports computational results for models with

homogeneous beliefs. In Section 5 we examine the innovation e�ects in the presence of heterogeneous

beliefs. We �nish the paper with some concluding remarks in Section 6.

2 A Partial Equilibrium Model of Security Innovation

In this section we introduce the general version of our partial equilibriummodel of asset innovation.

Following the typical two-stage setup (DuÆe and Rahi (1995)) of security innovation models we

proceed in two steps. First, we describe our model of a �nance economy for a given set of securities

with asset transaction fees. Secondly, we introduce a monopolist who has the technology to in-

troduce and intermediate new securities, and who has the right to charge proportional transaction

fees for transactions of the new securities. The introduction of securities leads to both �xed and
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variable costs. The market maker correctly anticipates the equilibrium trades and prices given her

choice of new securities and transaction fees. Her objective is to maximize pro�ts by choosing the

best combinations of new securities and corresponding transaction fees.

The market maker must give investors an incentive to trade the new asset in order to receive

revenues from operating the exchange. One possibility to create such an incentive is to o�er a

redundant asset with a payo� structure that could be copied through a portfolio of already existing

securities, however, only at considerable transaction costs. Mutual funds are a prime example of

such a �nancial instrument. Pesendorfer (1995) allows for the introduction of redundant assets

and shows that in his model the creation of such assets can be an equilibrium property. A second

and according to Allen and Gale (1994) much more desirable possibility would be the introduction

of a new asset that improves the investors' risk-sharing opportunities. Such an asset would allow

investors to insure against a previously uninsured risk and they might be willing to pay considerable

transaction fees for trading such a new security. In order to rule out the introduction of redundant

assets we assume that agents pay no transaction fees on already existing assets. Therefore, the

market maker has to introduce an asset that increases the asset span in order to have any hope to

charge transaction fees from the investors. In this setup we can interpret the amount of transaction

fees agents are willing to pay as a measure of their desire for additional spanning.

2.1 Finance Economy with Transaction Costs

The standard model of a Stochastic Finance Economy describes an exchange economy over two

periods t = 0; 1 with uncertainty over the state of nature in period t = 1: At time t = 0 the

economy is in state s = 0 which is known by each of the H types of agents (h = 1; : : : ;H;H <1)

participating in the economy. But it is not known which of the S possible states y = 1; : : : ; S at

time t = 1 will occur.

In each state y = 0; 1; : : : ; S there is a single (perishable) consumption good. Each agent h

chooses a consumption vector ch = (ch0 ; : : : ; c
h
S) 2 IRS+1

++ where chy 2 IR++ denotes the consumption

choice for state y: Agent h is characterized by an initial endowment vector, eh = (eh0 ; : : : ; e
h
S) 2

IRS+1
++ ; and his preferences. These are represented by a utility function uh : IRS+1

++ ! IR satisfying

the standard assumptions of smooth preferences, that is, uh is strictly increasing, strictly quasi-

concave and twice continuously di�erentiable. Moreover, the closure of the indi�erence curves of

uh lies in IRS+1
++ .
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The agents face a separate budget constraint in every state y. In order to transfer wealth

between time periods and states of nature agents can buy a portfolio of securities at time t = 0:

There are two types of securities. First, there is a �nite number J of "established" assets that can

be traded without transaction fees. Second, there is a �nite number I of "new" securities, which

have just been introduced by a market maker. (In our applications the just introduced security

is a derivative on an established asset.) Agents have to pay transaction fees if they want to trade

these assets. Without loss of generality all J + I assets are in zero net supply. We always consider

incomplete markets, that is, J + I < S:

Each established asset j pays a nonnegative dividend a
j
y 2 IR+

0
in state y � 1; and each

new asset i pays a nonnegative dividend diy 2 IR+

0
in state y � 1: The asset price of established

asset j (new asset i) in state y = 0 is denoted by pj(qi): We de�ne p = (p1; p2; : : : ; pJ) 2 IRJ

to denote the vector of prices for the established assets at time 0. The vector q 2 IRI is de�ned

analogously. At time t = 0 agent h chooses asset transactions �h 2 IRJ of the J established assets.

If �h;j > 0(�h;j < 0) then the agent holds a long (short) position in asset j: In addition, the agent

chooses asset transactions (#+;h; #�;h) 2 IRI
+ � IRI

+ of the I new assets, where #+;h denotes the

amount of asset purchases and #�;h denotes the asset short sales of the new securities. Whenever

agent h conducts a transaction on the new asset markets he must pay a proportional transaction

fee. The per-unit transaction fee for buying (selling) asset i is denoted by k+;i
2 IR+(k

�;i
2 IR+):

Buying #+;h;i units of security i having a price qi leads to expenditures of (qi + k+;i)#+;h;i for the

agent. Similarly, selling #�;h;i units of asset i leads to revenues of (qj � k�;i)#�;h;i: Finally, we

de�ne �h = (�h;1; �h;2; : : : ; �h;J) 2 IRJ : The vectors #+;h and #�;h are de�ned analogously.

The exogenous parameters de�ning an economy

(E) = (E((uh; eh)h=1;:::;H ; (a
j)j=1;:::;J ; (d

i)i=1;:::;I ; k
+; k�))

are the agents' utility functions (uh)h=1;:::;H and endowments (eh)h=1;:::;H , the dividend vectors

(aj)j=1;:::;J and (di)i=1;:::;I ; and the vector of proportional transaction fees k: In a slight abuse of

notation we will denote the set of agents and the two sets of assets by H;J; and I respectively.

Next, we de�ne a notion of equilibrium for the economy (E):

De�nition 1 (Competitive Equilibrium)

A competitive equilibrium for a stochastic �nance economy with transaction costs (E) is de�ned as a

collection of consumption allocations (�ch)h=1;:::;H ; asset transactions (��
h)h2H and (�#+;h; �#�;h)h2H ;

and asset prices (�pj)j2J and (�qi)i2I satisfying the following conditions:

8



(1) The vectors (�ch)h2H ; (��
h)h2H ; (�#

+;h; �#�;h)h2H solve the utility maximization problems for all

agents h 2 H :

maxc;�;#+;#� uh(c)

s. t. c0 = eh0 � �p� � (�q + k+)#+ + (�q � k�)#�

cy = ehy + ay� + dy(#
+
� #�) for all y � 1

#+ � 0; #� � 0

(2) All security markets clear:

X
h2H

��h = 0:

X
h2H

(�#+;h
� �#�;h) = 0:

The monotonicity of the utility functions allows us to write the budget constraints immediately

as equations. The agents' utility maximization problems are convex programming problems so that

the �rst-order conditions are both necessary and suÆcient for optimality. Denote the Lagrange

multipliers for the inequality constraints #+;h;i
� 0 and #�;h;i

� 0 by �+;h;i and ��;h;i; respectively.

Then, the equilibria of the economy (E) are given by the solutions to the following equations and

inequalities.

@c0u
h(c)pj �

SX
y=1

@cyu
h(c)ajy = 0 for h 2 H; j 2 J (1)

@c0u
h(c)(qi + k+)�

SX
y=1

@cyu
h(c)diy � �+;h;i = 0 for h 2 H; i 2 I (2)

@c0u
h(c)(�qi + k�) +

SX
y=1

@cyu
h(c)diy � ��;h;i = 0 for h 2 H; i 2 I (3)

c0 � eh0 + p� + (q + k+)#+ � (q � k�)#� = 0 for h 2 H (4)

cy � ehy � ay� � dy(#
+;h

� #�;h) = 0 for h 2 H; s 2 S (5)

#+;h;i
� 0 for h 2 H; i 2 I (6)

#�;h;i
� 0 for h 2 H; i 2 I (7)

�+;h;i#+;h;i = 0 for h 2 H; i 2 I (8)

��;h;i#�;h;i = 0 for h 2 H; i 2 I (9)

�+;h;i
� 0 for h 2 H; i 2 I (10)
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��;h;i
� 0 for h 2 H; i 2 I (11)X

h2H

�h;j = 0 for j 2 J (12)

X
h2H

(#+;h;i
� #�;h;i) = 0 for i 2 I (13)

Equations (1)-(11) are the �rst-order conditions for agent h: The last two equations (12) and (13)

are the market-clearing conditions. The agents have to pay transaction fees whenever they trade a

new security and so it will never be optimal for them both to buy and to sell short a new security

at time t = 0: Thus, �#+;h;i
� �#�;h;i = 0 for all new assets i 2 I:

In the presence of transaction fees on the �nancial markets, market clearing on these markets

does not imply market clearing on the spot markets. The �nancial transactions \burn" real re-

sources and so
P

h2H(�c
h
0 � eh0) < 0 whenever

P
h2H

�#+;h > 0: Only in time period t = 1 market

clearing on the spot markets holds since there is no asset trading anymore in the �nal period. The

following market-clearing condition holds at t = 0 :

X
h2H

eh0 =
X
h2H

�ch0 + k+
X
h2H

�#+;h + k�
X
h2H

�#�;h:

It is important to notice that in equilibrium there might be an indeterminacy in the security

prices. If the transaction fees k+ or k� for an asset are too large in comparison to the bene�t the

agents can obtain from trading this security, the market for this asset will be closed resulting in an

undetermined price. A continuum of asset prices supports the no-trade equilibrium. All equilibria

are allocationally equivalent. Herings and Schmedders (1999) provide a detailed discussion on the

existence of a continuum of equilibria and prove the following result.

Theorem 1 For a generic set of agents' endowments the economy (E) has an equilibrium. The

number of di�erent equilibrium allocations is odd.

For other existence proofs of equilibria for models with transaction costs see Laitenberger (1991),

Yamazaki (1991), and Pr�echac (1994).

2.2 Entrepreneurial Market Maker

We introduce a market maker into the �nance economy. The model of this �nancial innovator is

motivated by banks and exchanges that introduce new securities in order to obtain pro�ts from

charging investors transaction fees for trading the new assets. The �nancial innovator owns an
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exchange with the monopolistic right to introduce and intermediate new securities. She can also

choose the transaction fees she charges agents trading on her exchange. All trades in the new

securities must go through the exchange.

The market maker's technology for introducing and trading securities results in both �xed and

variable transaction costs. The �xed costs of creating a new asset i with payo� structure di are

denoted by f i = f i(di); the variable costs of trading asset i are denoted by vi = vi(di): We make

some assumptions on the cost functions to obtain independence of costs from the denomination of

the payo� vector di:

Assumption: The transaction cost functions have the following properties:

1. f i(d) � 0; vi(d) � 0 8d 2 <M
+ ;

d = 0) f i(d) = vi(d) = 0:

2. f i(�d) = f i(d) 8� > 0; d 2 <M
+ ;

vi(�d) = �vi(d) 8� > 0; d 2 <M
+ :

The �rst condition assumes all costs to be nonnegative and ensures that issuing an asset with d = 0

is the same as not issuing a new security and not incurring any costs. The second assumption

requires that a scaling of the asset payo�s does not a�ect the �xed cost of introducing the asset

but results in an equivalent scaling of the variable transaction costs. This assumption is needed for

the normalizations below, but it appears questionable for options.

The entrepreneur is restricted to introduce a �nite number I new securities. The market makers'

pro�t function when she introduces I assets with dividend payo�s d to the economy charging agents

transaction fees k+;i(k�;i) for buying (selling) security i equals

P (d; k+; k�) =
X
i2I

(
(k+;i

� vi)
X
h2H

�#+;h;i + (k�;i
� vi)

X
h2H

�#�;h;i
� f i

)

The exchange owner's objective is to �nd securities and transaction fees that maximize her pro�ts.

In our computations we will frequently set f i = vi = 0 so that pro�t maximization simpli�es to

revenue maximization. The entrepreneur only cares about period t = 0 since there is no asset

trading at t = 1: Therefore, we do not need to specify her probability distribution for the states in

the second period.
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De�nition 2 A pro�t-maximizing equilibrium for the �nance economy with a monopolistic mar-

ket maker issuing I new securities is a decision triple (d�; (k+)�; (k�)�) such that there exists an

equilibrium for the resulting �nance economy (E) such that for any equilibrium of any other choice

triple (d; k+; k�) it holds that P (d�; (k+)�; (k�)�) � P (d; k+; k�):

At this point of the development we face two technical diÆculties. First, the pro�t function

P (d; k+; k�) is not well-de�ned if there are multiple equilibria in the �nance economy. Given a

market maker's decision (d; k+; k�) there may exist several equilibria resulting in di�erent pro�ts

for the exchange. As a consequence the requirement of the de�nition might be satis�ed for one

equilibrium but maybe not for another one given the decision (d�; (k+)�; (k�)�): Unfortunately, at

this point only very few restrictive conditions are known to ensure uniqueness in �nance economies

(see Hens et al. (1999) for a state-of-the-art description). In our computations a small change in

the parameter values of the model always leads to a small change in the equilibrium quantities.

So, although we cannot rule out multiple equilibria, it appears as if we compute and compare

equilibria that lie in the same regular part of the equilibrium manifold. Therefore, we disregard

the multiplicity issue for the remainder of this paper and assume that the pro�t function is well-

de�ned.1 The second technical diÆculty is of much bigger concern. Hara (1995) emphasizes an

important feature of his (and our) model, namely that a market maker simultaneously choosing

several assets may have an incentive to introduce assets such that the resulting security structure

is arbitrarily close to redundancy. The supremum of the total commission revenues, over the choice

set of proportional transaction fees and payo� structures of a �xed number of assets, cannot be

achieved. The intuition for this phenomenon is straightforward. Consider a sequence of security

payo�s approaching linear dependency. As the market span approaches a drop in rank the investors

have the desire to hold unboundedly large long and short positions of the assets. If the market maker

chooses a decreasing sequence of proportional commissions, the resulting total revenues in sequence

of ensuing market equilibria may be increasing. The supremum, however, cannot be achieved,

because in the limit the market span drops in rank and the assets' payo�s are redundant. Hara

(1995) proves that this problem does not occur in his model if the number of innovated securities

is at most 2. During computational exercises we have found many parameterized examples of our

model with the same existence problem. Our computational analysis below focuses on a version of

1Hara (1995) shows that in his model with mean-variance utility functions and one riskless asset the revenues are

unique even in the presence of multiple equilibria.
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the model for which we can show that the described existence problem cannot occur.

2.3 Normalizations

We characterize some properties of the model of a �nance economy with a monopolistic market

maker. These properties show how our model relates to the literature and also simplify our choice

of parameter values for our computational analysis in the later sections.

Lemma 1 Let
�
(ch)h2H ; (�

h)h2H ; (#
+;h; #�;h)h2H ; (p

j)j2J ; (q
i)i2I

�
be an equilibrium for the �nance

economy with the market maker's choices
�
(di)i2I ; (k

+;i; k�;i)i2I
�
resulting in a pro�t P: Then for

the economy with the market maker's choices
�
(�idi)i2I ; (�

ik+;i; �ik�;i)i2I
�
; where �i > 0 8i 2 I;

the process

�
(ch)h2H ; (�

h)h2H ; (
1

�i
#+;h;i; 1

�i
#�;h;i)h2H ; (p

j)i2J ; (�
iqi)i2I

�
is an equilibrium and re-

sults in a market maker's pro�t of P:

By scaling the dividend processes and transaction fees of the innovated securities up or down

the market maker cannot increase her pro�ts. The agents can adjust their portfolios accordingly

without changing their consumption allocations and transaction expenditures.

Lemma 2 Let
�
(ch)h2H ; (�

h)h2H ; (#
+;h; #�;h)h2H ; (p

j)j2J ; (q
i)i2I

�
be an equilibrium for the econ-

omy with the market maker's choices
�
(di)i2I ; (k

+;i; k�;i)i2I
�
resulting in a pro�t P: Then for all

k̂+;i; k̂�;i
� 0 with k̂+;i + k̂�;i = k+;i + k�;i

there exist a unique price process (q̂i)i2I so that�
(ch)h2H ; (�

h)h2H ; (#
+;h; #�;h)h2H ; (p

j)j2J ; (q̂
i)i2I

�
is an equilibrium for the economy with the mar-

ket maker's choices

�
(di)i2I ; (k̂

+;i; k̂�;i)i2I

�
resulting in a pro�t P:

Proof: Let k̂+;i be such that k+;i + k�;i
� k̂+;i

� 0: De�ne q̂i = qi + (k+;i
� k̂+;i) and k̂�;i =

k+;i + k�;i
� k̂+;i: Then q̂i + k̂+;i = qi + k+;i and q̂i � k̂�;i = q̂i � k+;i

� k�;i + k̂+;i = qi � k�;i: As

long as qi+k+;i and qi�k�;i remain constant the equilibrium conditions (2)-(4) remain satis�ed. 2

As long as the sum of the transaction fees for buying and selling remains constant, the asset

prices for the new assets can be adjusted in such a fashion that all other variables in an equilibrium

can stay unchanged for the process to remain an equilibrium and to result in the same pro�t for

the market maker. Two special cases are of interest now. First, when k�;i = 0 for all i 2 I the

transaction fee k+;i for buying is equivalent to the bid-ask spread in the model of Bisin (1998).

Secondly, for simplicity we can restrict ourselves for the remainder of this paper to the case ki �
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k+;i = k�i for all i 2 I; that is, the exchange owner charges identical fees for buying and selling

the new securities (as in the model of Hara (1995)).

3 Financial Innovation through an Option Exchange

The computational analysis in the next few sections focuses on the monopolistic option introduction

in �nance economies. We examine two di�erent motives of agents to trade the option despite the

fact that they must pay transaction fees to the option exchange. The option introduction increases

the asset span of the securities in the market. If agents have heterogeneous levels of risk aversion,

then the option leads to increased risk-sharing opportunities. We examine economies with such

agents in Section 4. When agents have identical risk aversion they still want to trade the option

when they have heterogeneous beliefs about the states at time t = 1: The option introduction gives

them additional opportunities for portfolio re-balancing in the presence of disagreement about

the probability of future economic shocks. Section 5 examines economies with agents that have

heterogeneous beliefs.

3.1 The Option Exchange

For the computations in the remainder of this paper we need to focus on speci�c parameterizations

of our model. For this reason we specialize the model of the entrepreneurial market maker. She is

the owner of an options exchange having the right to introduce a single (European) call option with

strike priceK on an already existing stock with dividends as in the stochastic �nance economy. The

option has payo�s dcy = maxf0; asy �Kg for y = 1; : : : ; S: The market maker's objective function

equals

P (K; k) = (k � vc)

HX
h=1

(�#+;h;c + �#�;h;c)� f c:

Her decision problem is to determine the strike price K� of the option and the fee k� agents have

to pay for trading the option on her exchange in order to maximize P (K; k):

The assumption that the market maker introduces only a single option greatly reduces the

number of decision variables for the entrepreneur. Instead of specifying an asset payo� for every

possible state at t = 1; the exchange owner only needs to specify a single number, namely the

strike price. The market maker can only make a pro�t if the option payo�s are not spanned by

the existing assets, because the agents can trade these assets without paying any transaction fees.

14



The exchange owner must choose the strike price in such a fashion that the option payo� vector is

independent of the payo� vectors of the existing assets. In a model with a riskless asset and the

stock this requirement leads to a lower and upper bound on K; namely the smallest and largest

payo� of the stock. Therefore, we can restrict our search for the optimal K� to a bounded interval.

Also, the set of positive transaction fees resulting in nonzero trade is bounded. These observations

make the problem of �nding the pro�t-maximizing pair (K�; k�) computationally feasible.

3.1.1 Call vs. Put

We compare the equilibria of two di�erent economies. Both economies have identical established

assets, a riskless security paying ab � 1 and a stock paying dividends as: In the �rst economy the

option exchange introduces a call option with strike K; in the second economy it introduces a put

option with strike K and payo�s d
p
y = maxf0;K � asyg for y = 1; : : : ; S: The following proposition

shows how the (well-known) relationship between the two equilibria (the put-option equilibrium

values of the variables are denoted by �ch; etc.) implies that the market maker is indi�erent between

a call and a put introduction.

Proposition 1 (Allocational Equivalence of Call and Put)

The market maker is indi�erent between the introduction of a call or a put option with strike

price K because of the following relationship between equilibria of the call-option economy and

the put-option economy. Let
�
(ch); (�h;s; �h;b); (#+;h;c; #�;h;c); (ps; pb); (qc)

�
be the equilibrium of the

call-option economy at the transaction fee k: The put-option equilibrium for the same fee k equals:

�ch = ch;

��h;s = �h;s + (#+;h;c
� #�;h;c); ��h;b = �h;b �K(#+;h;c

� #�;h;c);

�#+;h;p = #+;h;c; �#�;h;p = #�;h;c;

�ps = ps; �pb = pb;

�qp = qc � ps +Kpb (put-call parity).

Proof: Substituting the relationship dc = dp+ as�K � ab into the agents' budget equations (5) at

time 1 yields

chy � ehy = asy�
h;s + aby�

h;b + dcy(#
+;h;c

� #�;h;c)

= asy(�
h;s + #+;h;c

� #�;h;c) + aby(�
h;b
�K(#+;h;c

� #�;h;c)) + dpy(#
+;h;c

� #�;h;c)
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The budget equations (4) at time 0 can be rewritten accordingly.

ch0 � eh0 = ps�h;s + pb�h;b + qc(#+;h;c
� #�;h;c) + k(#+;h;c + #�;h;c)

= ps(�h;s + #+;h;c
� #�;h;c) + pb(�h;b �K(#+;h;c

� #�;h;c))

+(qc � ps +Kpb)(#+;h;c
� #�;h;c) + k(#+;h;c + #�;h;c)

Using equations (1) we can transform (2) as follows.

0 = @c0u
h(c)(qc + k)�

SX
y=1

@cyu
h(c)dcy � �+;h;c

= @c0u
h(c)(qc + k)�

SX
y=1

@cyu
h(c)(dpy + asy �Kaby)� �+;h;c

= @c0u
h(c)(qc � ps +Kpy + k)�

SX
y=1

@cyu
h(c)dpy � �+;h;c

The same change can be made in equations (3). De�ning �qp = qc� ps+Kpb; ��h;s = �h;s+(#+;h;c
�

#�;h;c); ��h;b = �h;b � K(#+;h;c
� #�;h;c); �#+;h;p = #+;h;c; �#�;h;p = #�;h;c; ��+;h;p = �+;h;c; ���;h;p =

��;h;c; it becomes readily apparent that all equilibrium conditions (1)-(13) are satis�ed for the

put-option economy with identical consumption allocations, stock and bond prices. In particular,

the individual holdings of the call option are identical to the agents' put-option positions. The

total trading volume on the option exchange is the same in both economies resulting in identical

pro�ts for the market maker. 2

Proposition 1 has several implications. There is no loss of generality when we consider only a

call-option introduction by the option exchange. We can always easily calculate the corresponding

put-option equilibrium. The maximizing pair (K�; k�) is identical for both options. The equilibrium

prices for the established assets are una�ected by the option introduction, but the equilibrium trades

are not.

Corollary 1 The maximum pro�ts the exchange owner can receive by introducing a single call

option with strike price K on an existing stock with payo�s as1 < as2 < : : : < asS has the following

properties:

1. For asS�1 � K < asS the maximum pro�t P �(K; k�) of the exchange is constant.
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2. If there is also a riskless asset in the economy paying one unit of the consumption good in

every state in the second period, then for as1 < K � as2 the maximum pro�t P �(K; k�) of the

exchange is constant.

Proof: For asS�1 � K < asS the option payo� equals asy �K in state S and 0 in all other states.

Changing K within this interval amounts to multiplying do by a positive factor. So, statement 1

is a direct consequence of Lemma 1. Proposition 1 implies that the proof for part 1 also shows the

second part of the corollary. 2

This corollary implies that for �nding the optimal pair (K; k) we can restrict ourselves to values

of K such that as2 � K � asS�1 (see also Detemple, Selden (1991, Remark 3.2)). For all the

computations in the remainder of this paper we consider an economy with H = 2 agents, S = 8

states in period 1; and J = 2 assets, a bond and a stock. The bond is a riskless asset paying one

unit of the consumption good in each of the eight states in the second period. The bond is in zero

net supply and no agent is endowed with it. The stock is a risky security with state-dependent

payo�s. The stock is in unit net supply and the initial holdings are �
1;st
�1 = �

2;st
�1 = 0:5: Both agents

have zero initial endowment. (Note that this economy is equivalent to one with a stock in zero net

supply and zero initial holdings and agents having identical labor endowments equal to half the

stock's dividends; thus, this economy �ts into the framework of our model.) The technology of the

market maker allows her to introduce a single option on the stock at zero cost, that is, f c = vc = 0:

The entrepreneur's pro�t function equals

P (K; k) = k �
X
h2H

(�#+;h;c + �#�;h;c):

Note, that for this parameterization of our model a revenue-maximizing equilibrium always exists.

The optimal value K� must lie in the interval [as2; a
s
S�1] and for all values of K in this interval the

market span does not approach a redundancy.

4 Homogeneous Beliefs

Both agents have identical von-Neumann-Morgenstern CRRA utility functions with identical uni-

form beliefs. That is, agent h's utility function equals

uh(c) =
c
1�
h

0

1� 
h
+

8X
y=1

1

8

c
1�
h

y

1� 
h
;

17



with 0 < 
h 6= 1 being the coeÆcient of relative risk aversion (and log-utility for the case 
h = 1).

In a �rst exercise we demonstrate how we can �nd the optimal pair (K�; k�) yielding the

maximum revenue for the option exchange.

4.1 Optimal Strike Price and Transaction Fee

Let the stock's payo�s equal as0 = 1; as1 = (0:5; 0:65; 0:8; 0:95; 1:05; 1:2; 1:35; 1:5): The coeÆcients of

relative risk-aversion are 
1 = 1 and 
2 = 5; respectively. In a �rst step we �x the strike price of

the option at K = 0:749 and compute equilibria as a function of k.

[FIGURES 1 AND 2 ABOUT HERE]

Figure 1 displays the equilibrium option trade of agent 1 as a function of the proportional

transaction fee k: As expected the higher the transaction fees the less the agents trade the option.

The relationship appears to be almost linear until the fee has become so large that the agents no

longer want to trade the option. As a consequence the revenue function for the option exchange

has a concave, parabolic shape (until the option market closes) with a unique local and thus global

maximum, see Figure 2. The maximum revenues are attained at a fee of 3:137 � 10�3 and equal

4:6419 �10�4 : Agent 1 holds 0.073985 units of the option at those fees. The �ndings of this example

are typical and we have found them for a wide range of stock payo�s, strike prices for the option,

and number S of states in the second period.

Computational Result 1 In the two-period model with two agents the option trades decrease

almost linearly in the transaction fee k resulting in a concave parabolic shape of the revenue function

until the option market closes and revenues are zero.

Figure 3 illustrates our �rst computational result for four di�erent levels of risk aversion for agent 2.

[FIGURE 3 HERE]

In the next step we now vary the strike price K and determine k�(K) and the corresponding

revenues in order to �nd the maximizing pair (K�; k�): In our current example the relevant values

for the strike price are 0:5 < K < 1:5 since the option is redundant for any other strike prices.

Figure 4 shows the concentration of the revenue function as a function of K; that is, the maximum
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revenues the option exchange can achieve with an option having strike price K: As predicted by

Corollary 1, the function is constant for 0:5 < K � 0:65 and 1:35 � K < 1:5:

[FIGURE 4 ABOUT HERE]

We can distinguish S � 1 = 7 intervals in each of which the revenue function appears to be

di�erentiable. The boundaries of these intervals are given by the various payo�s of the stock,

and the intervals correspond to the number of states with a nonzero option payo�. For example,

for 0:5 < K � 0:65 the option has a nonzero payo� in 7 of 8 states, for 0:65 < K � 0:8 in

6 of 8 states, and so on. Whenever K equals one of the payo�s, the revenue function exhibits

a non-di�erentiability but remains continuous. The revenue function exhibits two local optima.

Comparing the revenue values at those two strike prices reveals that the unique maximum is

attained at K� = 0:749 and k� = 3:137 � 10�3:

Figures 5 and 6 allow us to take a separate look at the two factors determining the market mak-

er's revenues as a function of the strike price K; respectively, the option trade of the agents and

the maximizing transaction fee. We see that the large values of the revenue function are obtained

for relatively large transaction fees but comparatively low transaction volume. Moreover, it also

becomes obvious, that the choice of k� depends on the strike price K; that is, the asset payo�s. A

sole maximization of transaction volume (as in DuÆe and Jackson (1989)) is inappropriate for our

model, since it leads to the previously mentioned redundancy problems. These observations em-

phasize that a joint examination of both the trading volume and the transaction fees is important

in order to determine the best decision for the exchange owner.

[FIGURES 5 AND 6 ABOUT HERE]

Figure 7 shows the option price as a function of the strike price. The larger the strike price the

smaller the expected payo� of the option resulting in a lower option price. We do not show the

graphs of the prices for the other two assets, there is very little variation in those prices.

[FIGURE 7 ABOUT HERE]
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Finally we investigate the welfare impact of the option introduction for the two agents in the

economy. In the incomplete markets model the agents disagree on the state prices and so the con-

cepts of equivalent variation and compensating variation are not well-de�ned. Therefore we de�ne

another measure for wealth comparisons as follows. The welfare change due to the option introduc-

tion equals the fraction of additional �rst-period consumption in the economy without the option

exchange that would make the agent as well o� as he is in the economy with the option exchange.

The formulas for this welfare measure for all the utility functions that we use in this paper are

given in Appendix C. Figures 8 and 9 show the welfare change for the agents as functions of the

strike price. The less risk-averse agent 1 experiences a welfare loss for all possible strike prices of

the option, the more risk-averse agent 2 always obtains a welfare gain from the option introduction.

[FIGURES 8 AND 9 ABOUT HERE]

Recall our de�nition of the concentration of the revenue function as a function of K as the

function of the maximum revenues the option exchange can achieve with an option having strike

price K:

Computational Result 2 The two-agent model with CRRA utility functions exhibits the follow-

ing properties:

1. The concentration of the revenue function is continuous in K. For asy < K < asy+1; y =

2; : : : ; S � 2; the function is di�erentiable and concave. Typically there exist a unique global

maximum K�
.

2. The large values of the concentration of the revenue function are typically attained for rela-

tively large transaction fees and relatively small trading volumes.

3. The concentration of the call-option price function qc is a decreasing function of K:

4.2 Comparative Statics: Varying Risk-Aversion

We continue with comparative statics exercises for the coeÆcients of relative risk aversion for the

two agents. Table 1 shows the pro�t maximizing pairs (K�; k�) for various pairs (
1; 
2) and the

resulting pro�t P �(K�; k�): It also displays the agents' trades in economies with and without the

option exchange. All asset prices in those two economies are depicted in Table 2. That table also
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shows the welfare e�ects of the option introduction.

[TABLES 1 AND 2 ABOUT HERE]

Computational Result 3 The call option introduction in the two-agent model with CRRA utility

functions has the following impact:

1. The more risk-averse agent always sells the call option short, sells part of his stock holding,

and buys the bond.

2. The call option introduction always leads to a decrease in the trading volume for the bond and

the stock.

3. The call option introduction always leads to a decrease in the prices of the bond and the stock.

For �xed 
1 and 
1 < 
2 we observe:

4. The maximum revenues for the market maker increase as 
2 increases.

5. The optimal strike price K�
decreases and the optimal fee k� increases as 
2 increases.

6. The welfare gain for agent 2 increases and the welfare gain for agent 1 decreases as 
2

increases. Unless 
2 and 
1 are relatively close, the less risk-averse agent 1 has a welfare loss

and the more risk-averse agent 2 has a welfare gain.

In an economy without the option exchange the two agents can only trade the bond and the

stock in order to achieve some risk-sharing. Their trade is always of the same nature. The less

risk-averse agent 1 sells some insurance in form of the bond to the more risk-averse agent 2 who

in turn sells part of his stock holdings to the less risk-averse agent. The less risk-averse agent

takes on more of the risk and demands a payment for doing so. For example, in the case 
1 = 1

and 
2 = 5 the asset trades of the �rst agent are �1;b = �0:270999 and �1;st = 0:311799 at prices

pb = 1:42271 and ps = 1:13128: As a consequence the less risk-averse agent has a positive payo�

(0.032821) from these trades at t = 0 and at the same time a positive expected payo� (0.040800)

at time T = 1: These payo�s are the reward for taking on more risk, or from the perspective of

the more risk-averse agent, these are his payments for buying some insurance. As soon as the
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option exchange opens and o�ers a third asset the opportunities for risk-sharing increase. The

more risk-averse agent is no longer forced to buy insurance only through buying the bond and

selling a large portion of his stock holdings. Instead, compared to the no-option economy, he buys

less of the bond, sells less of the stock, and now sells the call option. Short-selling the call option

allows the more risk-averse agent to transfer wealth more easily from the high-dividend states to

the low-dividend states. In equilibrium the less risk-averse agent is no longer able to extract as

much of an insurance premium from the risk-averse agent as in the no-option economy. The asset

trade (�1;b; �1;st; #+;1;o) = (�0:243463; 0:263164; 0:073985) generates net payo�s of 0.032144 and

expected 0.021880 in periods 0 and 1, respectively, for the less risk-averse agent, which is less than

the corresponding payo�s in the no-option economy. The reduction in these payments has a larger

impact on the less risk-averse agent's welfare than the increased risk-sharing opportunities due to

the new security. Therefore, the option introduction hurts the less risk-averse agent and bene�ts

the risk-averse agent. Only when the risk attitudes of the agents are very similar both agents gain

from the option introduction. In this case the increased risk-sharing opportunities outweigh the

e�ect of insurance selling, because in the no-option economy this e�ect was already very small.

4.3 Comparative Statics: Varying Stock Dividend Risk

We analyze the impact of the variance of stock dividends on the behavior of the �nance economy. We

rerun all experiments from the previous subsection for two other speci�cations of stock dividends,

namely for dividends with lower variance, that is,

as0 = 1; as1 = (0:7; 0:8; 0:9; 0:95; 1:05; 1:1; 1:2; 1:3);

and dividends with higher variance, that is,

as0 = 1; as1 = (0:3; 0:5; 0:7; 0:9; 1:1; 1:3; 1:5; 1:7):

The dividend variance of the �rst stock equals 0.035625, that of the second stock 0.21. For com-

parison, the stock dividends in the previous examples had a variance of 0.10375.

[TABLES 3 AND 4 ABOUT HERE]

Tables 3 and 4 give the corresponding information to Tables 1 and 2. Table 3 shows the pro�t

maximizing pairs (K�; k�) for various pairs (
1; 
2); the resulting pro�t for the market maker, and
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the agents' trades in economies with and without the option exchange. All asset prices in those

two economies are depicted in Table 4, as are the welfare e�ects of the option introduction.

Computational Result 4 As the variance of the stock payo�s increases,

1. so does the proportional transaction fee the exchange owner charges;

2. so does the transaction volume of the option;

3. so do the revenues of the exchange owner;

4. so do the agents' welfare changes due to the option introduction;

5. so do the prices of the bond and the stock (in both the economy with and the economy without

the option).

5 Heterogeneous Beliefs

The stock payo�s are the same as in Section 4.1, that is, as0 = 1; as1 = (0:5; 0:65; 0:8; 0:95; 1:05; 1:2; 1:35; 1:5):

The beliefs of the agents are always chosen such that the expected payo� of the stock equals 1 for

both agents. However, the agents have di�erent risk assessments of the stock's payo�s. We consider

6 di�erent belief structures.

�(1) �1 = (0:1; 0:1; 0:15; 0:15; 0:15; 0:15; 0:1; 0:1); �2 � 0:125;

�(2) �1 = (0:1; 0:125; 0:125; 0:15; 0:15; 0:125; 0:125; 0:1); �2 � 0:125;

�(3) �1 = (0:15; 0:125; 0:125; 0:1; 0:1; 0:125; 0:125; 0:15); �2 � 0:125;

�(4) �1 = (0:15; 0:15; 0:1; 0:1; 0:1; 0:1; 0:15; 0:15); �2 � 0:125;

�(5) �1 = (0:2; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:2);

�2 = (0:2; 0:225; 0:05; 0:025; 0:025; 0:05; 0:225; 0:2);

�(6) �1 = (0:2; 0:1; 0:05; 0:15; 0:15; 0:05; 0:1; 0:2);

�2 = (0:2; 0:2; 0:05; 0:05; 0:05; 0:05; 0:2; 0:2):

For belief structures �(1) and �(2) (�(3) and �(4)) the �rst agent assesses a lower (higher) risk

to the stock payo�s than the second agent who has always uniform beliefs. For belief structures

�(5) and �(6) both agents consider the stock dividends more risky than with the other 4 beliefs.

In both cases the �rst agent assesses a lower risk to the stock payo�s.
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Case 1: Constant Relative Risk Aversion

Both agents have log-utility with heterogeneous beliefs. Agent h's utility function equals

uh(c) = ln(c0) +

8X
y=1

�hy ln(cy):

Case 2: Linear-Quadratic Utilities

Both agents have linear-quadratic utility functions of the form

uh(c) = c0 �
1

2
b(c0)

2 +

8X
y=1

�hy (cy �
1

2
b(cy)

2)

with b > 0:

Case 3: Constant Absolute Risk Aversion

Both agents have CARA utility functions of the form

uh(c) = �e�ac0 �

8X
y=1

�hy e
�acy

where a is the coeÆcient of absolute risk aversion for both agents.

5.1 Revenue-Maximizing Equilibria

The revenue-maximizing equilibria for the economies in the three cases are structurally very similar.

Therefore we display only the results for linear-quadratic utilities (Case 2) with b = 2

3
:

[TABLES 5 AND 6 ABOUT HERE]

Tables 5 and 6 give the corresponding information to Tables 1 and 2. Table 5 shows the pro�t

maximizing pairs (K�; k�) for the six belief structures and the resulting pro�t as well as the agents'

trades in economies with and without the option exchange. All asset prices in the two economies

are depicted in Table 6, as are the welfare e�ects of the option introduction. Note that the bond

price in the economy without the option is always 1.

Computational Result 5 We observe the following properties of the revenue-maximizing equi-

libria.

1. The agent with the lower risk assessment of the stock dividends always buys a portion of the

stock and sells short both the bond and the option.
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2. The call option introduction leads to a signi�cant increase in the transaction volume of the

bond and the stock.

3. The call option introduction always leads to a decrease of the bond and stock price.

4. The call option introduction improves the welfare for both agents.

The beliefs of the agents are such that the agents have the same expected value of 1 for the

stock dividends and have only fairly small belief di�erences of the dividend variance. As a result

there is only very little trading in the economy without the call option. The agent with the higher

risk assessment for the stock sells a small part of his stock and buys a small portion of the bond.

The situation changes considerably in the economy with the option exchange. The agent with

the high risk assessment sells a large part of his stock holding (in the extreme cases 5 and 6 he even

sells the stock short) and buys large portions of the bond and the call option. The long bond holding

o�ers the agent some insurance against the negative outcomes that he gives a higher probability

than the low-risk-assessment agent does. The long call position promises higher payo�s in the high

dividend states that the agent again believes to be more likely than the low risk assessment agent

does. Both types of agents always experience a welfare gain through the option introduction.

The revenue-maximizing equilibria for economies with agents having both log-utility or both

CARA utility show the identical pattern as the presented equilibria for linear-quadratic utility

functions. All statements of Computational Result 5 are also valid for economies with agents

having these utility functions. The tables corresponding to Tables 5-6 can be obtained from the

author upon request.

5.2 The Detemple-Selden Conditions

In all examples we have computed so far the asset prices for the bond and the stock always decrease

when the call option is introduced. This observation is in stark contrast to the result for the model

of a mean-variance economy examined by Detemple and Selden (1991, Section 4.1). Their model

coincides with the linear-quadratic economy of this section except that agents have no �rst-period

consumption. Detemple and Selden (1991) show that { under the restriction that the agents agree

on the expected stock payo�, the expected option payo�, the variance of the option payo�, and

the covariance between the stock and option payo�s { the option introduction always leads to an

increase of the stock price.
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Detemple and Selden (1991) give the following explanation of the agents' behavior. They argue

that investors with a high risk assessment have a relative preference for a portfolio paying o� for

large values of the stock dividends. To obtain such a portfolio such agents sell the stock and buy

the call option. These agents view the stock and the option as substitutes. Further Detemple and

Selden (1991) claim that the two assets are complementary for the agents with a low risk assessment

resulting in buying more of the stock and short-selling the call option. Detemple and Selden (1991)

further state that on an aggregate level the call option complements the stock because the second

type of investor with a low risk assessment has a stronger reaction to the market changing due to

the option introduction. They �nally conclude that the call-option introduction makes the stock

more valuable and thus its price increases. It is apparent from our computational results that

this last conclusion does not hold in our model. The price of both the bond and the stock always

decreases when the call option is introduced. It appears that while the intuition regarding the

trading patterns is correct the conclusion about their impact on asset prices depends critically on

the payo� restrictions of Detemple and Selden (1991).

SuÆcient conditions for these restrictions to be satis�ed in our model are that the option pays

o� in only one state and the agents agree about the probability of that state. So, for example,

an economy with beliefs �(6) satis�es the restrictions. Figure 10 shows the di�erence between

the stock price in an economy with a call option having strike price K and the stock price in the

economy without the option. Only for K � 0:662 and K � 1:338 is this di�erence barely positive.

As Figure 11 shows, options with these strike prices barely generate any revenue for the option

exchange.

[FIGURES 10 AND 11 ABOUT HERE]

Of course, the comparison for the economy with beliefs �(6) is not fair, since for most values

of K; and in particular the ones near the center of the interval, the payo� restrictions of Detemple

and Selden (1991) are not satis�ed. In order to perform a better comparison we create a new

set of beliefs �(7) as follows. The second agent believes that every state in the second period

has the same probability 0:125: We de�ne the probabilities of the �rst agent to be the optimal

solution of a linear programming problem. Given a strike price K = 1 the linear constraints are

the restrictions of Detemple and Selden (1991) and that the expected stock payo� equals 1. In
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order to rule out negative consumption in any state of the world we also require that every prob-

ability must be at least 0:08: The objective of the LP is to maximize the second moment of the

stock dividends under the beliefs of the �rst agent. One of the optimal solutions to this LP is

�(1) = (0:179; 0:08; 0:08; 0:08; 0:23; 0:125; 0:08; 0:146) resulting in V ar(as; �(1)) = 0:109825: Under

the uniform beliefs �(2) the variance of the stock dividends equals 0:10375:

[FIGURES 12, 13, 14 ABOUT HERE]

Figure 12 shows the di�erence of the stock prices in the economy with the option and the no-

option model. For 0:981 � K � 1:017 and 1:136 � K � 1:167 the stock price increases through the

option introduction. The maximal relative price increase of 5:680 �10�5 is caused by an option with

strike price K = 0:999: For most strike prices, though, the option introduction leads to a decrease

of the stock price that is much larger than the largest increase. Figure 13 shows the revenues of the

option exchange. All options with a strike price 0:5 < K � 0:65 lead to the maximum revenues of

7:108 �10�3 and a relative decrease of the stock price by 7:1 �10�3: At strike prices where the option

introduction leads to an increase of the stock price there is barely any trading of the securities, see

Figure 14.

The results of this last example are not accidental; in all of a dozen examples with beliefs

satisfying the Detemple-Selden conditions and for various quadratic utility functions the stock price

increase is always very small and con�ned to a small set of strike prices. Moreover, the options with

such strike prices generate little revenue for the market maker and result in relatively small trading

volume in all markets. In summary, although based on our computations we are not in the position

to make general statements about the Detemple-Selden conditions, we conjecture that the strike

prices that satisfy the restrictions lead to an asset span that allows only very little risk-sharing

for the agents based on their heterogeneous beliefs. A revenue-maximizing option exchange has no

desire to introduce options with such strike prices. Instead it will introduce options that lead to a

substantial decrease in the stock price.

5.3 Agent Heterogeneity

Although we need to be careful when comparing the computational results for heterogeneous-beliefs

model with those of the heterogeneous-risk-aversion model, it seems evident that the exchange

27



owner can make more money when the agents have (modest) beliefs di�erences than when they

have (reasonably) di�erent levels of risk aversion. Comparing the revenue-maximizing equilibria for

the computed examples of the two models we see that the option trading volume is roughly an order

of magnitude higher in the heterogeneous-beliefs model. The maximizing fees are of the same order

of magnitude resulting in much higher revenues for the market maker. We further observe di�erent

trading patterns in the two models depending on whether agent heterogeneity appears in the form

of di�erent levels of risk aversion or in the form of di�erent risk beliefs for the stock's payo�s. In

the model with homogeneous beliefs and heterogeneous levels of relative risk aversion the more

risk-averse agent always sells both the stock and the (call) option in order to buy the bond; in the

heterogeneous-beliefs model the agent with the higher risk assessment sells the stock to buy both

the bond and the option. These di�erent behaviors highlight the di�erences between the two forms

of heterogeneous risk attitudes. The agent with higher relative risk aversion sells the option short

(and buys the bond with the proceeds) in order to transfer wealth from the high-dividend states

into the low-dividend states. The agent with the belief of a higher dividend risk buys the option in

order to receive an additional payo� in the high-dividend states that he believes to be more likely

than his counterpart. To summarize, the way in which agents' heterogeneous risk attitudes are

modeled matters.

5.3.1 Strike Price vs. Stock Dividends

Conventional wisdom states that the strike price of a successful option will be close or even equal

to the price of the underlying security at the time of the issue of the option. In the context of our

model it is not sensible to examine this convention as the option is truly an option only on the

stock's dividend, since there is no stock trading and so no stock price at time t = 1: Also, the stock

price is driven by the risk attitudes of the agents. In the examples in Section 4 the stock price is

frequently above the highest possible dividend for the subsequent period (resulting in a negative

return). For such levels of the strike price the option would be redundant. However an interesting

question is how close the strike price of the revenue-maximizing option is to the expected stock

payo�, since the option is a derivative on the stock dividends. The expected stock payo� in all the

examples in this paper equals 1.

Tables 2 and 4 show for the heterogeneous-risk-aversion economies that the strike price of the

revenue-maximizing option is always smaller than the expected stock payo� and decreases as the
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coeÆcient of risk aversion of the more risk-averse agent increases, see Computational Result 3.5.

When the di�erences between the risk coeÆcients become signi�cantly large the strike price is more

than 25% below the expected stock payo�. As the second agent becomes more risk averse his fear

of the worst stock dividend states increases. The smaller the strike price of the option the better

the more risk-averse agent can use the option to insure against those very negative outcomes.

The situation is quite di�erent for the heterogeneous-beliefs economies. Table 7 shows for some

representative economies that for all three utility functions under consideration in this section

the strike price of the option appears to be much closer to the expected stock payo� than in the

heterogeneous-risk-aversion examples. The di�erences are particularly small for economies with

CARA utility functions (for which they are remarkably stable for moderate changes of the risk-

aversion coeÆcient).

[TABLE 7 ABOUT HERE]

6 Conclusion

In this paper we have analyzed endogenous asset innovation by an entrepreneurial exchange owner

in a partial equilibrium model of incomplete security markets with �nancial transaction fees. A

monopolistic market maker has the technology to introduce new securities into the economy and

charge investors transaction fees if they trade on the exchange. The market maker's objective is to

choose the security and transaction fee that maximize pro�ts when opening the exchange.

We have computed the e�ects of asset innovation for the case of an option exchange introducing

an option on a stock index and have presented a detailed analysis of a variety of examples. We

examined two motives for agents to trade securities. First, to achieve risk-sharing when agents

have homogeneous beliefs but heterogeneous levels of risk aversion. Secondly, to do portfolio re-

balancing when agents have identical levels of risk aversion but heterogeneous beliefs. The most

striking result of our computations is that the introduction of the pro�t-maximizing option leads

always to a decrease of the prices of the established securities. Typically small heterogeneity of

beliefs leads to substantially more trading volume of the option than reasonable di�erences among

levels of risk aversion.

This paper obviously presents only a �rst step in the computational analysis of �nancial inno-

vation in general equilibrium models with incomplete markets. Many interesting issues remain to
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be examined, we just mention two immediate extensions of the present analysis. We might want

to take nonzero transaction fees for established assets into account. Such a model would allow us

to examine the value of derivatives such as options as a tool to reduce total transaction fees for

achieving desired portfolio payo�s. Another topic of importance would be to examine �nancial in-

novation in multi-period models. Multiple periods would allow agents to rebalance their portfolios

by retrading securities. We might expect many new phenomena to appear in such models.
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Appendix

In the �rst section of the Appendix we describe the algorithms used for our computations. The

second section provides running times and numerical errors for some of the computational examples.

Section C de�nes the wealth measure we use for all welfare comparisons.

A Description of the Computations

Computing a pro�t-maximizing decision (K�; k�) for the option exchange is done in three steps.

At �rst the strike price K is �xed, and for some very small and evidently suboptimal value of k an

equilibrium of the �nance economy is computed. In the second step, the optimal value k� for given

K is determined. Finally, the �rst two steps are repeated over a �ne grid of points in the interval

of possibly optimal strike prices in order to determine the value for K�:

Step 1: Computing an Equilibrium for the Finance Economy

Computing an equilibrium for the �nance economy requires solving the system of equations and

inequalities (1) - (13). Using a variable transformation we eliminate the inequalities (6),(7),(10),

and (11) in order to obtain a standard system of nonlinear equations (see (Garcia and Zangwill

(1981)).

We introduce new variables �+;h;i
2 IR and ��;h;i

2 IR for all h 2 H and i 2 I: Let � � 2 be

some positive natural number. Next de�ne

�+;h;i = (maxf0; �+;h;i
g)�

#+;h;i = (maxf0;��+;h;i
g)�:

Corresponding de�nitions apply for ��;h;i and #�;h;i: We substitute these expressions into the

system (1) - (13). The nonnegativity constraints on the portfolio variables and Lagrange multipliers

are satis�ed simply by de�nition. In addition the complementary-slackness conditions (8) and (9)

are satis�ed immediately. Therefore, we can eliminate these constraints.

The remaining equations are solved via a homotopy approach. We de�ne a homotopy parameter

� 2 [0; 1] and starting prices p̂j for all j 2 J and q̂i for all i 2 I: The homotopy equations are as
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follows:

(1� �)�h;j + �

0
@@c0u

h(c)pi �

SX
y=1

@cyu
h(c)aiy

1
A = 0 for h 2 H; j 2 J

(1� �)(maxf0;��+;h;i
g)�+

�

0
@@c0u

h(c)(qj + k+)�

SX
y=1

@cyu
h(c)djy

1
A� (maxf0; �+;h;i

g)� = 0 for h 2 H; i 2 I

(1� �)(maxf0;���;h;i
g)�+

�

0
@@c0u

h(c)(�qj + k�) +

SX
y=1

@cyu
h(c)djy

1
A� (maxf0; ��;h;i

g)� = 0 for h 2 H; i 2 I

c0 � eh0 + p� + (q + k+)(maxf0;��+;h
g)� � (q � k�)(maxf0;���;h

g)� = 0 for h 2 H

cy � ehy � ay� � dy((maxf0;��
+;h
g)� � (maxf0;���;h

g)�) = 0 for h 2 H; s 2 SX
h2H

�h;j � (1� �)(pj � p̂j) = 0 for j 2 J

X
h2H

((maxf0;��+;h;i
g)� � (maxf0;���;h;i

g)�)� (1� �)(qi � q̂i) = 0 for i 2 I

The unique starting point at � = 0 is given by p = p̂; q = q̂; �h = 0; �+;h = ��;h = 0; ch = eh for

all h 2 H: The entire system consists of HJ+2HI+H(S+1)+J+I equations in the unknowns � and

pj; qi; �h;j; �+;h;i; ��;h;i; chy for j 2 J; i 2 I; h 2 H; and y 2 Y:

The implementation of the algorithm on a 400MHz-Pentium computer uses the software package

HOMPACK77, a suite of Fortran 77 subroutines for solving nonlinear systems of equations using

homotopy methods (Watson et al. (1987)). In order to reduce the number of equations to be solved

we substitute the de�ning equations for the consumption variables into the remaining �rst-order

conditions. For the example in Section 4.1 we then need to solve a system with 11 equations and

variables. In addition to these equations we need to provide the software with the Jacobian of the

left-hand side, which is approximated through a one-sided di�erence formula. Once the homotopy

has found a solution to the equations, we use this solution as a starting point for HYBRD, a a suite

of Fortran subroutines for solving nonlinear systems of equations using Powell's hybrid method.

This Newton solver allows us to reduce the computational error very quickly.

Step 2: Finding k�

Once we have found an equilibrium for a very small k = k0 that will be smaller than the
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optimal k� we increase k until we �nd k�. Setting � = 1 in the homotopy of step 1, we de�ne a

new homotopy by de�ning the transaction fee to be

k = k0(1 + L � �)

where L is some large positive number and � is the new homotopy parameter. Otherwise we use

the same system as in step 1 with � = 1: The solution of the �rst step is the starting point for the

new homotopy when � = 0: The number L is chosen suÆciently large, so that the maximum value

for P (K; k) will be attained for a value of � < 1.

Along the homotopy path we keep track of the value of P (K; k): At �rst, due to the choice for

k0; the value of P will increase along the path. As many computations have shown, the function

P has a unique local and thus global maximum as a function of k; see Computational Result 1.

Therefore, as soon as the value for P starts to decrease, we have found a rough approximate value

~k for the maximizer k�: The homotopy terminates. Next we start a search for the maximizer k�

using a modi�ed version of the bracketing method, see Judd (1998). We compute the equilibria

and corresponding pro�ts P using the Newton solver at three values for k; namely (1��)~k; ~k; and

(1+�)~k; where � is some small positive number. Next we calculate P for (1��=2)~k and (1+�=2)~k

and update the interval in which the optimum has to lie. This procedure continues until the relative

di�erence between the lower and upper bound of the interval is less than some given value �:

Step 3: Finding (K�;k�)

The �rst two steps of our computational procedure work with a �xed strike price K. In order

to determine an optimal pair (K�; k�) we perform a grid search on the interval of possible strike

prices. The smallest (largest) K we consider for the computations in Section 4 is typically as2�0:005

(asS�1 + 0:005): We always use a step size of 10�3: In order to accelerate the computations in step

2, it is useful to have a value for k0 which is safely below k� but not too small. Typically, we use

for k0 the value 0.25 times the optimal fee from the previous grid point.

B Running Times and Computational Errors

When we solve the partial equilibrium problem we are concerned with three computational errors;

the optimization error in the �rst-order conditions for the agents' maximization problems; the
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domain error in k in the market maker's maximization problem; and the resulting error in the

pro�t P: (We do not consider any error with respect to the strike price K; since we assume that it

is unreasonable for the market maker to set real strike prices with many signi�cant digits.)

We can easily control the relative error in k by setting a desired value for �: For all the com-

putations for which we report errors in Table 8 we use � = 10�10: When the interval size for k is

within this error tolerance the error in the objective function value is always below 0:01�: We report

in Table 8 only the maximum relative error in the equilibrium equations for the �nance economy.

Table 8 also reports running times for �nding the optimal pair (K�; k�) for some of the e-

conomies considered in Section 4.2 (L = 100; � = 0:04): Computing such an optimal pair requires

�nding k� for 711 di�erent strike prices (because of the way we set up step 2). The results indicate

that the program is able to �nd the optimal k� for a single strike price K is less than 0.6 seconds.

The relative computational errors are consistently below 10�10:

[TABLE 8 ABOUT HERE]

C Computation of Wealth Equivalents

In the �nance model with incomplete markets the agents disagree on the state prices. As a con-

sequence the concepts of equivalent variation and compensating variation are not well-de�ned for

the incomplete-markets economies. Therefore we need to de�ne another measure for wealth com-

parisons. For all wealth comparisons between the economies with and without the option exchange

we de�ne the following measure; the fraction of additional �rst-period consumption in the economy

without the option exchange that would make the agent as well o� as he is in the economy with the

option exchange. Clearly, if the agent gains (loses) welfare through the option introduction then

this fraction will be positive (negative).

Let �h denote the di�erence between agent h's utility in the economy with the option and the

economy without the option. Let Æh be the fraction of additional �rst-period consumption in the

no-option economy leading to the same utility as in the option economy. Let vh = uh(ch0 ) be the

�rst-period utility in the no-option equilibrium from consuming ch0 : After computing the equilibria

we know �h and vh: We can then compute Æh by solving

� + vh = uh((1 + Æh)ch0 )
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For log-utility it follows that

� + vh = ln((1 + Æh)ch0)() Æh = �1 + e�
h

:

For CRRA utility functions with 
h 6= 1 the fraction equals

Æh = �1 +

�
1 +

�h

vh

� 1

1�
h

:

For our quadratic utility functions the fraction equals

Æh = �1�
1

bch
0

�

s
(b(ch

0
)2 + ch

0
)2

(b(ch
0
)2)2

+
�h

1

2
b(ch

0
)2
:

For CARA utility functions the fraction equals

Æh = �
ln(�

h+vh

vh
)

ach
0

:
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Figure 1: Option trades as a function of k.
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Figure 2: Revenues of the option exchange as a function of k.
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Figure 3: Illustration of Computational Result 1.
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Figure 4: Concentration of the revenue function.
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trades of agent 1 trades of agent 1


1 
2 (no option) option with option revenues

bond stock strike fee (�10�3) bond stock option (�10�5)

1 1.2 -0.037 0.041 0.876 0.239 -0.033 0.034 0.0144 0.686

1 2 -0.135 0.151 0.869 1.143 -0.120 0.127 0.0486 11.105

1 5 -0.271 0.312 0.749 3.137 -0.243 0.263 0.0740 46.419

1 8 -0.318 0.370 0.739 4.239 -0.293 0.326 0.0667 56.546

3 4 -0.052 0.070 0.860 1.400 -0.048 0.062 0.0222 6.206

3 7 -0.141 0.204 0.751 5.363 -0.129 0.181 0.0488 52.329

3 10 -0.186 0.278 0.746 8.081 -0.173 0.254 0.0526 85.032

Table 1: Revenue maximizing options as functions of 
h; h = 1; 2.

asset price asset prices wealth change


1 
2 (change (in %) w/o option) option with option (�10�4) agent

bond stock strike bond stock option 1 2

1 1.2 0.004 0.002 0.876 1.150 1.006 0.156 0.006 0.062

1 2 0.080 0.036 0.869 1.226 1.036 0.151 -1.130 2.304

1 5 0.420 0.241 0.749 1.417 1.129 0.210 -13.467 20.471

1 8 0.535 0.328 0.739 1.520 1.182 0.214 -20.213 31.084

3 4 0.046 0.038 0.860 2.567 1.688 0.098 -0.054 0.699

3 7 0.365 0.334 0.751 3.766 2.312 0.143 -5.245 12.764

3 10 0.557 0.530 0.746 4.595 2.742 0.142 -10.712 26.380

Table 2: Asset prices and wealth change as functions of 
h; h = 1; 2.
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trades of agent 1 trades of agent 1

variance 
1 
2 (no option) option with option revenues

bond stock strike fee (�10�4) bond stock option (�10�5)

0.035625 1 2 -0.156 0.161 0.984 2.006 -0.146 0.149 0.0269 1.077

1 5 -0.313 0.326 0.976 5.403 -0.301 0.310 0.0342 3.698

1 8 -0.367 0.382 0.925 7.135 -0.355 0.366 0.0284 4.048

3 4 -0.064 0.070 0.981 2.212 -0.061 0.065 0.0127 0.563

3 7 -0.178 0.196 0.924 8.551 -0.169 0.184 0.0277 4.737

3 10 -0.239 0.266 0.872 12.098 -0.225 0.247 0.0336 8.138

0.21 1 2 -0.099 0.133 0.636 45.524 -0.082 0.084 0.0810 73.771

1 5 -0.191 0.294 0.603 158.757 -0.168 0.222 0.1203 381.820

1 8 -0.220 0.361 0.589 219.467 -0.200 0.298 0.1026 450.364

3 4 -0.035 0.080 0.625 71.016 -0.031 0.068 0.0325 46.094

3 7 -0.090 0.235 0.616 240.565 -0.084 0.216 0.0656 315.671

3 10 -0.114 0.311 0.613 329.532 -0.109 0.294 0.0640 421.552

Table 3: Revenue maximizing options as function of V ar(as).
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asset price asset prices wealth change

variance 
1 
2 (change (in %) w/o option) option with option (�10�5) agent

bond stock strike bond stock option 1 2

0.035625 1 2 0.008 0.004 0.984 1.064 1.011 0.0697 -1.07 2.17

1 5 0.035 0.020 0.976 1.106 1.036 0.0693 -9.63 13.76

1 8 0.043 0.027 0.925 1.126 1.049 0.0917 -13.30 18.14

3 4 0.006 0.004 0.981 1.337 1.173 0.0489 -0.06 0.63

3 7 0.053 0.043 0.924 1.531 1.306 0.0639 -5.65 10.92

3 10 0.094 0.078 0.872 1.668 1.402 0.0892 -14.69 24.86

0.21 1 2 0.510 0.229 0.636 1.689 1.091 0.2901 -74.58 159.88

1 5 2.292 1.475 0.603 2.574 1.365 0.2937 -842.66 1815.91

1 8 2.294 1.635 0.589 3.094 1.526 0.2980 -1001.30 2705.42

3 4 0.212 0.213 0.625 9.793 3.667 0.2068 -1.64 53.23

3 7 1.347 1.403 0.616 18.580 6.412 0.1964 -138.35 745.32

3 10 1.735 1.817 0.613 23.513 7.921 0.1890 -182.91 1226.21

Table 4: Asset prices and wealth changes as function of V ar(as).
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trades of agent 1 trades of agent 1

beliefs (no option) option with option revenues

bond stock strike fee (�10�3) bond stock option (�10�3)

�(1) -0.0417 0.0427 0.889 3.447 -0.314 0.431 -0.601 4.141

�(2) -0.0306 0.0313 0.976 2.826 -0.187 0.245 -0.402 2.271

�(3) 0.0270 -0.0278 0.976 2.824 0.178 -0.241 0.402 2.269

�(4) 0.0353 -0.0363 0.903 3.514 0.282 -0.398 0.581 4.080

�(5) -0.0425 0.0441 0.997 7.435 -0.455 0.682 -1.268 18.851

�(6) -0.0403 0.0418 1.004 7.446 -0.379 0.553 -1.033 15.376

Table 5: Revenue maximizing options as a function of beliefs �:

asset price asset prices wealth change

beliefs (change (in %) w/o option) option with option (�10�3) agent

bond stock strike bond stock option 1 2

�(1) 0.614 0.613 0.889 0.994 0.947 0.162 2.021 2.139

�(2) 0.340 0.349 0.976 0.997 0.948 0.118 1.128 1.149

�(3) 0.340 0.351 0.976 0.997 0.942 0.126 1.127 1.148

�(4) 0.608 0.616 0.903 0.994 0.939 0.163 2.032 2.066

�(5) 2.899 3.056 0.997 0.972 0.900 0.138 21.213 6.384

�(6) 2.354 2.476 1.004 0.977 0.907 0.129 10.006 5.616

Table 6: Asset prices and wealth change as functions of beliefs �.
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revenue-maximizing strike prices

CRRA quadratic CARA

belief 
1 = 
2 = 1 b = 2

3
a = 1

�(1) 1.141 0.889 0.999

�(2) 1.048 0.976 0.999

�(3) 1.050 0.976 1.001

�(4) 1.134 0.903 1.001

�(5) 1.050 0.997 1.030

�(6) 1.050 1.004 1.029

Table 7: Strike prices as functions of preferences and beliefs �.

running times and errors


1 
2 r. t. (mm:ss) max. relative opt. error

1 1.2 5:28 1.9 �10�12

1 2 5:34 5.2 �10�13

1 5 6:23 2.2 �10�13

1 8 7:07 4.8 �10�13

3 4 5:51 6.4 �10�13

3 7 6:57 7.1 �10�12

3 10 7:46 7.5 �10�12

Table 8: Running Times and Computational Errors.
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