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Abstract

A long-standing unsolved problem, often arising from auctions with multidimen-

sional bids, is how to design seller-optimal auctions when bidders' private character-

istics (\types") di�er in many dimensions. This paper solves the problem, assuming

bidder-types stochastically independent across bidders. First, it proves that in any

optimal auction, with positive probability, the object is not sold. Thus, a standard

auction without a reserve price is not optimal. Second, and more importantly, the

paper obtains an explicit formula for optimal auctions in a class of environments. The

optimal mechanism is almost equivalent to a Vickrey auction with reserve price, except

that the bids are ranked by an optimal scoring rule, which assigns scores to the mul-

tidimensional bids. When the hazard rate of a statistic of bidder-types is monotone,

this auction is optimal among all mechanisms. When the hazard rate is not monotone,

this auction is optimal among all \scoring mechanisms," where a winner chooses a
multidimensional payment bundle subject to a type-speci�c rule. Our optimal auc-

tion implies that an optimizing seller would not evaluate bids by her own preferences;

instead, she would induce downward distortion of nonmonetary provisions from the

�rst-best con�guration. Applied to multidimensional nonlinear pricing, our design of

optimal auction yields an explicit optimal pricing function.

�This research was initiated in the University of Minnesota, where I bene�ted from the advice of Professors
Marcel K. Richter and James S. Jordan, as well as the support of the Graduate School Dissertation Fellowship
of the University of Minnesota. The comments from Professor Mark Armstrong have led to signi�cant
improvements of the paper.
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1 Introduction

In real-world auctions, we often observe bidders submit bids containing several provisions.
Economists have documented such examples in electric power industries (La�ont and Ti-
role [12, Ch. 14] and Chao and Wilson [6]), national defense procurement (La�ont and
Tirole [12, Ch. 14]), environmental reservation of cropland (Osborn, Llacuna, and Linsen-
bigler [17]), school milk procurement (Tichy [23]), and the disposal of noxious wastes (Le-
scop [13]). An important question in these settings is how to design a mechanism optimal
for the seller. Theoretically, this question corresponds to the following problem: what is
a (seller-)optimal auction when bidders' private characteristics vary in several dimensions?
This turned out to be a long-standing unsolved problem.

The above problem was unsolved because the available technique for designing optimal
auctions is based on the assumption that bidders' private characteristics (\types") vary only
in one dimension. This unidimensional assumption rules out the multidimensional nature
of the above problem. To see that, imagine a hypothetical example: Several health care
insurance companies (\bidders") compete to provide insurance coverage for the employees of
a large �rm (\seller"). Each insurance company bids a health care package (xj)

m
j=1 containing

m provisions, as well as a money transfer y to the �rm. If a winning bid is ((xj)
m
j=1; y), then

the �rm gets a payo� y � c
Pm

j=1 xj for some parameter c 2 R, and the winning insurer gets

mX
i

#jx
1=2
j � y;

where #j is his privately known valuation of provision j in the package. Thus, a bidder's
private characteristic is a vector (#j)

m
j=1. A mechanism designer may want to tailor each

provision xj according to some function ~xj of the multidimensional bidder-type (#j)
m
j=1, and

the functions ~xj may be di�erent across j. Such a multidimensional design would be absent

in the usual model of optimal auction, where the term
Pm

i #jx
1=2
j is replaced by either a

scalar t or a product tx, with t being a scalar private valuation and x being a scalar index
of \quality."

Given the practical signi�cance of our multidimensional problem, researchers in mech-
anism design have long been trying to solve it. The main barrier to progress is the incentive-
compatibility (IC) constraint complicated by the multidimensional bidder-type.1 If the
bidder-type were one-dimensional, we could represent the constraint as a tractable mono-
tonicity condition, which requires that higher types be more likely to win. This monotonic-
ity representation would enable us to obtain an optimal auction by the available technique
(Myerson [15]), whether the IC constraint is binding or not.2 With multidimensional bidder-
types, however, the task of representing incentive-compatibility as a monotonicity condition

1For example, due to multidimensional types, a bidder can lie about his type in two ways. One is to
report a type that has a di�erent probability of winning than the true type. The other is to fake a type
whose corresponding transaction is di�erent from the true type, with the probability of winning unchanged.
While the �rst way of lying is allowed in the unidimensional settings, the second is absent.

2Here we use the phrase \binding IC constraint" in the context where the agents' types are continuously
distributed. When types are unidimensionally and discretely distributed, the phrase would mean that the
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has been di�cult. For example, we do not know a priori how to determine one type is
\higher" than the other.3

In the mean time, the techniques recently developed in a related �eld, nonlinear pricing
under multidimensional private information, suggests the possibility of a breakthrough in
our optimal auction problem. In the health care example, the setup of the nonlinear pricing
problem corresponds to the special case where there is only one insurance company bidding
to provide insurance coverage. Thus, the �rm seeking insurance coverage does not need to
select a winner. Consequently, all that the �rm needs to design is a pricing function that
maps each health care package (xj)

m
j=1 to a money payment ~y((xj)

m
j=1) (Rochet [19]).

In the setup of nonlinear pricing, McAfee and McMillan [14] characterized the incentive-
compatibility (IC) constraint as a system of partial di�erential equations. These equations
come from the �rst- and second-order necessary conditions of IC. To make the conditions
also su�cient for IC, McAfee and McMillan assumed a \generalized single crossing prop-
erty," which guarantees an agent's local optimum to be his global optimum. The authors,
however, noted that their characterization assumes that the allocation of a mechanism is a
di�erentiable function of agents' types. Since this di�erentiability assumption usually does
not hold in auction settings (Figure 1), their result has not been applied to auctions.4

A breakthrough in multidimensional nonlinear pricing problems is done by Armstrong [1].
He established an exclusion result, which says that a pro�t-maximizing multiproduct mo-
nopolist would exclude a positive measure of consumer-types. This result shows that the
dimensionality of private information does matter, because the exclusion result can be ruled
out when consumer-types are one-dimension. Armstrong further proved that, in some set-
tings, the monopolist's optimal pricing function depends only on her cost (\cost-based tar-
i�"). Armstrong achieved that by adding two assumptions. One is \multiplicative separa-
bility" ([1, Eqs. (18) and (23)]). Due to this assumption, the incentive-compatibility (IC)
constraint under any cost-based tari� becomes a monotonicity condition with respect to a
one-dimension statistic of the consumer-type. The other assumption is the monotonicity
of the hazard rate of that statistic ([1, Eq. (22)]), which guarantees that the IC constraint
of a pro�t-maximizing cost-based tari� is non-binding. That paper did not characterize an
optimal pricing scheme when the IC constraint is binding.

Rochet and Chon�e [20] took on the multidimensional nonlinear pricing problem through
the dual approach. That is, they described a mechanism as its associated surplus function,
which maps an agent's type to his payo� when everyone reports the true information. The IC
constraint became a convexity condition of the surplus function. Rochet and Chon�e proved

\downward" constraints are binding, where a downward constraint means a high-type agent is not tempted
to act as a low-type.

3A knee-jerk response to the multidimensional problem may be simply to rank a bid according to the
seller's payo� from it. But such a ranking criterion may be suboptimal, as the theory of optimal auctions
has long recognized in the case of unidimensional types. That is also true for multidimensional types, as this
paper proves (Proposition 4.2).

4McAfee and McMillan [14] did work out an example that can be interpreted as an auction, but their
solution there did not use their characterization result.

3



the existence and uniqueness of a monopolist's optimal mechanism for both binding and non-
binding IC constraints. They further proved that optimal mechanisms with non-binding IC
constraints are exceptional rather than generic. Rochet and Chon�e, however, noted that
their dual approach does not provide a procedure to construct an optimal mechanism.

To pass from multidimensional nonlinear pricing to our optimal auction problem, one
must confront an additional question: how to select a winning bidder. Any auction mech-
anism, by de�nition, must answer this question one way or another. In multidimensional
settings, although the received auction theory has not answered this question, economists
have observed from actual auctions the usage of \scoring rules" to select winners. Here a
seller announces a minimum score and a rule that assigns scores to bids; after bids are sub-
mitted, she sells the good to a bidder whose bid is scored highest and above the minimum
level. (See the sources cited at the beginning paragraph for examples.) With bids varying in
several dimensions, the design of a scoring rule has been a central and di�cult issue among
policy makers. In a cropland reservation bidding program from 1986 to 1998, the U.S. gov-
ernment had been revising its scoring rule each year, and researchers in that program are
still debating an appropriate rule.5 In the California electricity wholesale market, the choice
of a scoring rule that appeared to be wrong from hindsight had led to severe consequences
(Chao and Wilson [6]).

Therefore, an auction designer in our multidimensional setting has two tasks. One is
to design a payment function that determines a winner's multidimensional payment package
for each bidder-type. The other task is to design a winner-selection criterion. Although the
�rst may bene�t from the progress of the multidimensional nonlinear pricing literature, the
second task is speci�c to the nature of auctions. To my knowledge, no one has o�ered a
general design of optimal auctions when bids and bidder-types are both multidimensional.6

This paper therefore steps in and provides an explicit formula of optimal auctions in
our multidimensional setting. Its main assumption is that bidder-types are stochastically

5This program is called Conservation Reserve Program, where the U.S. Department of Agriculture
(USDA) retires erodible croplands from production by renting them from farmers. A participating farmer
submits a bid that speci�es the acreage and soil quality of the cropland, as well as the rent for the land
and how the land will maintained during the retirement period. The USDA ranks the bids by a scoring
rule that condenses a bid's provisions into a score (Osborn, Llacuna, and Linsenbigler [17, p5]). For the
discussion about scoring rules in this program, see Reichelderfer and Boggess [18, p10], Barbarika, Osborn,
and Heimlich [5, p122], and Babcock, Lakshminarayan, Wu, and Zilberman [3, 4].

6Che [7] considered auction settings where the bidder-type is one-dimension and the bid is two-dimension.
In our health care example, his setting corresponds to an aforementioned special case, where a winner's payo�
is tx � y. Che designed a scoring rule that achieves optimality among auctions where the IC constraint is
non-binding and the trade always takes place.
Armstrong [2] solved the optimal auction problem in a two-object setting with binary bidder-type. That

paper also demonstrated geometrically the complication of multidimensional auction design.
Jehiel, Moldovanu, and Stacchetti [9] considered multidimensional types from a di�erent angle. Their focus

was auctions where a bidder's payo� depends on the identity of the winner. In our health care example,
their setting corresponds to the case where an insurance company's payo� is ti� y, where ti is a scalar value
for the bidder if company i wins the competition. Due to such additively separable payo� functions, the
authors characterized the IC constraint as a condition of monotonicity and integrability. They obtained a
mechanism optimal among auctions where bids are one-dimensional and the good is always sold.
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independent across bidders. A bidder's type is a vector (#j)
m
j=1, continuously distributed;

depending on the mechanism, his transaction with the seller contains a money transfer y
and a nonmonetary bundle (xk)

l
k=1. A winning bidder's payo� is u((xk)

l
k=1; (#j)

m
j=1) � y

for some function u. The model therefore contains the following frameworks as special
cases: independent private value auctions (where u((xk)

l
k=1; (#j)

m
j=1) is replaced by a scalar

t), auctions of incentive contracts in Che [7] and La�ont and Tirole [11] (where the vectors
(xk)

l
k=1 and (#j)

m
j=1 are respectively replaced by scalars x and t), and multidimensional

nonlinear pricing (where the number of bidders is one).

The paper �rst proves that an optimal auction gives zero winning probability to a
positive measure of bidder-types (Proposition 3.1). Consequently, an auction would not be
optimal without an appropriate entrance fee or reserve price (Corollary 3.1). This exclusion
result shows that the dimensionality of bidder-types does make a di�erence, since in the
unidimensional framework, a standard auction can be optimal without any reserve price, as
long as the scalar bidder-types are su�ciently large. The proof is an extension of Armstrong's
proof in the framework of nonlinear pricing, except that our auction setting requires a more
careful treatment of the di�erentiability condition of mechanisms.

The paper then takes on the unsolved optimal auction problem and obtains a general
solution in a class of environments. The di�culties of this problem come from the coupling of
two features of the model: (i) a bidder-type (#j)

m
j=1 is a vector and (ii) the bidder-type is not

additively separable from the transaction ((xk)
l
k=1; y) in the preference u((xk)

l
k=1; (#j)

m
j=1).

Without the �rst feature, one can easily characterize the incentive-compatibility (IC) con-
straint tractably and then obtain optimal auctions. Without the second feature, one can
simply apply the solution of Myerson [15] by substituting the valuation u((#j)

m
j=1) here for

the one-dimension type there. When both features are present, there has not been a tractable
representation for the IC constraint of an arbitrary mechanism.

To bypass the above obstacle, this paper starts with a subset of mechanisms called
scoring mechanisms: a winner is assigned a score and an additively separable scoring rule
that maps bids to scores; the winner is to carry out a transaction whose score equals to
the one assigned. In such a scoring mechanism, say �, a type-# bidder behaves as if his
payo� from winning is equal to a \private valuation" ��(#) minus a \payment" s, where
s is the score assigned, and the induced valuation ��(#) is a scalar depending on his type
and the mechanism. Such a separable structure enables us to characterize the IC constraint
as a monotonicity condition with respect to this unidimensional induced valuation ��(#)
(Lemma 4.3). We next add an assumption about the bidders' preferences and type distri-
butions, which resembles the multiplicative separability assumption in Armstrong [1]. Due
to this assumption, the induced valuation ��(#) in any scoring mechanism is monotone in
a one-dimension statistic z of a bidder's type #, independent of the mechanism. The IC
constraint therefore becomes a monotonicity condition with respect to z.

Based on this tractable representation, we obtain a formula for optimal mechanisms by
extending the technique of Myerson [15]. The optimal auction is almost equivalent to a Vick-
rey auction, except that the bids are ranked by an optimal scoring rule �� (Equation (29)).
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More precisely, the optimal mechanism is a \scoring-rule auction" (Theorem 4.1):

The seller commits to the scoring rule ��. Each bidder then independently pledges
a score. The seller sells the good to a highest-score bidder if his score is posi-
tive, and withholds the good if otherwise. The winner carries out a transaction
((xk)k; y) such that its score ��((xk)k; y) is equal to either the second highest
score pledged by the bidders or zero, whichever is larger.

This auction is optimal among all mechanisms when the hazard rate of the statistic z is
monotone (non-binding IC constraint), and is optimal among all scoring mechanisms when
otherwise (binding IC constraint).

A convenient feature of this mechanism is that the two tasks of auction design|to
�nd a winner-selection criterion and choose a payment function that determines a winner's
transaction|are ful�lled by one single construct: our scoring rule. Both tasks are delegated
to the bidders via the bidding game.

The reason why our scoring-rule auction delivers optimality is roughly the following.
Extending the usual steps of optimal auction design (Myerson [15, Section 4]), we know that
the seller's equilibrium expected payo� cannot exceed a weighted sumX

bidder i

prob(i wins)MRi(x
i; yi)

at each possible state of the world, where MRi(x
i; yi) denotes the seller's marginal payo�

from raising the probability with which bidder i wins, given the transaction (xi; yi). Thus,
the best the seller could do is to (i) maximizes the marginal payo� MRi and (ii) maximize
the winning probabilities to those i whose maxMRi are positive and maximal among all
bidders, subject to the IC constraint.

When the hazard rate of the statistic z is monotone, our scoring-rule auction imple-
ments both maximization operations without violating the IC constraint. The scoring rule
induces a winner to choose the MRi-maximizing transaction, thereby achieving operation (i).
Furthermore, bidders with higher maxMRi bid higher scores in the auction, due to our scor-
ing rule and the monotone hazard rate. Therefore, a winner's maxMRi is maximal among
all bidders. Finally, the minimum score makes it unpro�table for a bidder to participate with
a nonpositive maxMRi. Thus, the scoring-rule auction achieves operation (ii) and reaches
the upper bound of the above weighted sum, which is the highest the seller can get in any
mechanism. Consequently, our auction game maximizes the seller's equilibrium expected
payo� among all mechanisms.7

When the hazard rate of the statistic z is non-monotone, the IC constraint is binding
when one attempts the above maximization operations. Since we manage to represent the

7More precisely, \all mechanisms" here means all the regular mechanisms satisfying the regularity condi-
tion in Section 2. This condition guarantees that the usual beginning step of optimal auction design is valid.
The condition is automatically satis�ed if a winner's payo� function is additively separable.
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IC constraint in any scoring mechanism as a monotonicity condition, we are able obtain
a mechanism optimal among scoring mechanisms through an extension of the \ironing"
technique in Myerson [15, Section 6]. Remarkably, our optimal mechanism in this case
is still the same scoring-rule auction as described above, except that the scoring rule is
revised by the ironing procedure (Proposition 4.1). In this case, since our monotonicity
representation of the IC constraint is valid only among scoring mechanisms, we only know
that our mechanism is optimal among scoring mechanisms. An auction optimal among all
mechanisms is still unknown in the case of binding IC constraints.

Our result of optimal auction implies that an optimizing seller should commit to eval-
uating bids by the scoring rule �� instead of her own preferences; the latter would yield
suboptimal outcomes (Proposition 4.2).8 We further prove that the optimal scoring rule
rewards the nonmonetary bundle x less than the seller's true preference would and the
di�erence between them are calculated explicitly (Equation (31)). We have therefore ex-
tended the \downward distortion" result from unidimensional (Che [7]) to multidimensional
settings, which says that an optimizing seller would induce downward distortion of nonmon-
etary bundles from the �rst-best con�guration. In our health care example, this distortion
result implies that even an employer cares as much about her employees' health care bene�ts
as her employees do, she would commit herself to putting less weight on these provisions
when selecting an insurance company.

Our result also yields an explicit optimal tari� in the special case of non-auction mul-
tidimensional screening (Corollary 4.2). This is new in that literature, because our solution
covers the case of non-monotone hazard rate (binding IC constraint). Di�erent from the
cost-based tari� in Armstrong [1], the optimal tari� here need not be based on the monopo-
list's cost. Corresponding to the aforementioned downward distortion result, the monopolist
would charge more for a nonmonetary bundle x than her cost of providing it.

In the enterprise of multidimensional optimal auction design, this paper provides an
explicit solution for a class of environments, whether the incentive-compatibility is binding
or not. The main message is that the common sense \auctioning the good to the highest
bidder" in unidimensional settings can be restored in multidimensional settings, provided
an optimal scoring rule and minimum score. The main restriction of the environments
considered in this paper is the assumption of multiplicative separability. This assumption
con�nes our search for optimal scoring rules to those based on a one-dimensional summary
L(x) of the nonmonetary attributes x of a bid. The multidimensional structure is thus
compromised. Nevertheless, we still partially retain the multidimensional structure. The
reason is that bidders having a same score in our scoring-rule auctions can have di�erent
transactions, depending on their actual multidimensional types. See Subsection 4.6 for an
example. The optimal auction design without the dimension-compromising restriction is a

8In some actual auctions, the seller does not announce the scoring rule before the bidding. Such a practice
occurred in the aforementioned Conservation Reserve Program (Osborn [16]) and school milk procurement
auctions (Tichy [23]). Proposition 4.2 implies that such a \scoring-rule hiding" practice is not optimal. The
reason is that bidders would expect that the seller would rank the bids according to her true preferences,
without committing to a di�erent scoring rule.
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wide open question. I hope that this paper has provided results and techniques useful for
further scienti�c exploration.

2 A Model

Consider an auction setting where a seller is to allocate at most one indivisible object to at
most one of n competing bidders. The object is characterized by several attributes. One
may think of the object as a multiple-provision contract between the seller and the winner.
Depending on their agreement, the attributes of the object is con�gured as a vector x in a
Euclidean space X. A bidder can also make a monetary payment y 2 R to the seller. Call
such a pair (x; y) a transaction.

A bidder's privately known type is a vector in Rm. Bidder-types are independently
and identically distributed across bidders, according to a known probability distribution
with density function f and support �.

Given type # 2 R and transaction (x; y), a bidder's payo� is

u(x; #)� y

for some function u : X � Rm ! R, and the seller's payo� is

v(x) + y

for some function v : X ! R. If a bidder does not win the object, then his payo� is �y.

For example, we may think of the object being auctioned as a weapon procurement
contract between a government and a winning weapon �rm. The term y, which may be
negative, is a lump sum monetary transfer from the �rm to the government. The vector x
is a contingency reimbursement plan for the �rm's overrun cost in the R&D phase for the
weapon. The �rm's valuation u(x; #) of the contract depends on the x provision and its
type. The government bears a cost jv(x)j for the cost reimbursement plan x. Notice that the
standard model of independent private value auction is a special case of the current setup,
with the vector x degenerate to a constant.

By the Revelation Principle, we can denote an auction mechanism and its equilibrium
by the corresponding direct revelation game (q; ~x; ~y), where q(#; �(�i)) is the probability with
which a type-# bidder wins given his rivals' reported types �(�i), and (~x(#; �(�i)); ~y(#; �(�i); �)
his transaction with the seller, contingent on his winning status � 2 fwin; loseg. Under a
mechanism (q; ~x; ~y), a type-# bidder's expected payo� from mimicking type #̂, expecting
others abiding to the equilibrium, can be easily calculated as

�(#̂; #) = E�(�i)q(#̂; �
(�i))u

h
~x(#̂; �(�i)); #

i
� �y(#̂);
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where E�(�i) denotes a bidder's expected value operator on functions of his rivals' types, and
�y(#̂) his expected monetary payment. De�ne for each bidder-type #

U(#) := �(#; #):

Incentive-compatibility says that

U(#) = max
#̂2�

�(#̂; #); 8# 2 �:

As usual, we call U the surplus, indirect utility or equilibrium expected payo� function of the
underlying mechanism.

The following is a standard useful fact due to the quasi-linear structure of a bidder's
payo� function. The proof is trivial and hence omitted.

Lemma 2.1 Assume that u(x; �) (8x 2 X) is a convex function of #. Then the surplus
function U of any incentive-compatible mechanism is convex.

Throughout this paper, we will maintain the following assumption.

Assumption 1 The functions u(x; �) (8x 2 X) are convex, nondecreasing, linearly homo-
geneous, at least three times continuously di�erentiable, and strictly increasing in at least
one dimension of Rm. The density function f is continuously di�erentiable on its support �
and positive at all but �nite points of �. The support � is compact and convex, contained by
Rm

+ and containing 0, with full dimension in Rm, and its boundary consists of �nitely many
compact smooth (m� 1)-manifolds.9

For tractability, we will con�ne attention to regular mechanisms, i.e., those that meet
the following Condition 1. As the rest of this section will explain, we need this regularity
condition to calculate the surplus function U . We will prove that this condition is automat-
ically guaranteed if a bidder's payo� is additively separable, as in the independent private
value model. An impatient reader may skip to the next section.

As usual in mechanism design, we will need to calculate the gradient of U through the
partial derivatives of �(#̂; �). If the function � were continuously di�erentiable, we could do
that by the Envelope Theorem. In an auction setting, however, the function � is usually
not even continuous. The reason is that the winning probability q is usually not continuous
in a bidder's type #. That is because the seller may give zero winning probability to some
bidder-types, through charging an entrance fee or committing to a reserve price.

9A smooth k-manifold is a metric space such that at every interior point there is a su�ciently small
neighborhood di�eomorphic to Rk, and at every boundary point there is a su�ciently small neighbor-
hood di�eomorphic to the half space of Rk. We will sometimes call a smooth k-manifold a k-surface, for
convenience.
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For a simple example, consider a �rst-price sealed-bid auction with independent unidi-
mensional private type # 2 R, so �(#̂; #) = prob(winj#̂)(#� #̂): Suppose the seller commits
to a reserve price p�. Then the winning probability prob(winj#̂) is zero for all #̂ < p� and
jumps up to a positive number at #̂ = p� (assuming continuous strictly increasing distri-
bution of types). The function � is therefore discontinuous at all points (p�; #), except at
(p�; p�), where � is not di�erentiable (Figure 1).

Reserve Price

Reserve
Price

Reported Type θ̂

Type
Discontinuities

θ

Zero
Expected
Payoff

Zero
Expected
Payoff

Positive
Expected
Payoff

Negative Expected Payoff
Fall < 0

Jump > 0

Figure 1: The Discontinuity of a Bidder's Expected Payo� �

Thus, it is not automatically valid to set the gradient of U equal to the gradient of
�(#̂; �). Fortunately, we can �nd a regularity condition under which the di�erentiation, except
on a set of measure zero, is valid. This condition con�nes our attention to regular mech-
anisms, i.e., those satisfying the following condition. These mechanisms include standard
auctions with reserve prices (e.g., the one depicted in Figure 1).

Condition 1 (Regularity) For almost every type # 2 � and for every j = 1; : : : ; m, the

mapping t 7! @
@#j

�(#̂; #)
���
#̂=#+tej

is continuous at the point t = 0, where ej denotes the unit

vector having the direction of the jth coordinate axis.

When a bidder's payo� is additively separable between type and transaction (i.e.,
the vector x degenerates to a constant), such as the model in Myerson [15], an incentive-
compatible mechanism is automatically regular:

Lemma 2.2 If a bidder's payo� conditional on winning is additively separable in the sense
that u(#; x) is independent of x, and if u(#; x), denoted by u(#) with an abuse of notation,
is a di�erentiable function of #, then any incentive-compatible mechanism is regular.

Proof : Incentive-compatibility is equivalent to

�(#0; #)� �(#0; #0) � U(#)� U(#0) � �(#; #)� �(#; #0) (1)
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for any two types #; # 2 �. With additively separable preferences, this inequality implies

(u(#)� u(#0))(�q(#)� �q(#0)) � 0 (2)

for any two types #; #, where we denote �q(#) := E�(�i)q(#; �
(�i)) for a bidder's expected

winning probability conditional on his type #. Thus, the probability �q(#) is a nondecreasing
function of u(#). Consequently, the monotone function u(#) 7! �q(#) has at most countably
many discontinuous points in the range u[�] of u. If this mapping is discontinuous at a point
a 2 u[�], then the function �q may be discontinuous at the boundary of the level set u�1(a)
in Rm. Such a boundary is of measure zero in Rm, since u(�) is continuous by hypothesis.
Therefore, we have deduced that the function �q is continuous almost everywhere on the
support �.

With the additive separability assumption and u(#) assumed to be di�erentiable in #,
one easily calculates that @

@#j
�(#̂; #) = �q(#̂) @

@#j
u(#). This partial derivative is continuous at

#̂ for almost all #̂, since �q(#̂) has been proved to be so. Thus, the Regularity Condition is
satis�ed. This proves the lemma. Q.E.D.

If an incentive-compatible mechanism is regular, then we can easily deduce

DjU(#) = E�(�i)

2
4q(#; �(�i)) @

@#j
u(x; #)

�����
x=~x(#;�(�i))

3
5 (3)

for almost every type # 2 � and for all j = 1; : : : ; m. To see that, simply replace the #0 in
Equation (1) with # + tej and use the regularity condition. For almost all type # 2 � and
for all vector w 2 Rm, the directional derivative U 0(#;w) at point # along vector w can be
easily calculated from Equation (3) as

U 0(#;w) = E�(�i)

2
4q(#; �(�i)) mX

j=1

(w � ej) @

@#j
u(x; #)

�����
x=~x(#;�(�i))

3
5 : (4)

3 An Exclusion Principle in Auctions

Our model is di�erent from the usual model of independent private value auctions in only
two aspects. One is that a bidder's private type is multidimensional. The other is that a
bidder's type is not necessarily additively separable from his transaction with the seller. The
�rst di�erence leads to an exclusion result, which says that an optimizing seller gives zero
winning probability to a positive measure of bidder-types.

Proposition 3.1 (Exclusion Principle) Suppose that m � 2, the support � of types is
strictly convex,10 and the function v is nonpositive. Then any optimal mechanism that is
regular gives nonpositive expected payo�s to a positive measure of bidder-types.

10A set is said to be strictly convex if any strictly convex combination of its elements is interior to the set.
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This proposition will be proved in Appendix A.1. Its intuition is similar to the ex-
clusion principle Armstrong [1] established for non-auction nonlinear pricing settings. In
the following we will demonstrate the power of our exclusion result in a familiar special
case|independent private value auctions.

Let us consider the usual independent private value auction with one indivisible good
and n competing bidders. Here a bidder's payo� conditional on winning is v � p, where v is
his private valuation of the good being auctioned and p his monetary payment to the seller.
If the valuation were the underlying bidder-type, then the standard theory would predict,
given su�ciently strong assumption of the distribution of bidder-types, the seller's expected
revenue is the same across auction mechanisms; speci�cally, the Vickrey auction without
reserve price would be seller-optimal (revenue-maximizing at bidding equilibrium).

A crucial element of the above setup is that a bidder's type is modeled as a unidi-
mensional valuation v. The implicit assumption is that all aspects of a bidder's private
information can be summarized to a one-dimension variable. Let us take this implicit as-
sumption seriously. Thus, assume that a bidder's valuation v is a function u of the bidder's
m-dimensional private information # 2 Rm, with m � 2:

v = u(#); 8# 2 Rm: (5)

Let F� denote the marginal distribution function of bidders' valuation induced by the un-
derlying density function f of bidder-types. That is,

F�(v) := Probf# 2 � : u(#) � vg; 8v 2 R:

Denote f� for the marginal density function of F�, if it exists. It follows immediately from
Assumption 1 and Lemma A.1 that f� does exist, and it is continuous on its support u[�]
and positive almost everywhere on u[�].

A special case is that the bidders di�er in their valuations v and another dimension #2
that has no e�ect on their valuations, i.e., u(#) = #1 (8#), and the support of the distribution
of types is a narrow horizontal band (Figure 2). At �rst glance, one may think that the #2

v θ

θ

θ θ 1

2

1 1

_
_

Support

δ

µ(ε)

A

B

Figure 2: Can we neglect #2 when � is small?

dimension would not change the prediction of the unidimensional model. After all, a bidder's
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valuation is simply the horizontal projection of his type, and the bidders' heterogeneity along
the vertical dimension is bounded by the small width �.

It turns out, however, that such a small \tremble" of the seemingly irrelevant #2 di-
mension changes our prediction signi�cantly. No matter how small the tremble � is, our
exclusion principle implies that the Vickrey auction, as well as other auctions where almost
all bidders stand a positive probability to win, is not seller-optimal:

Corollary 3.1 (Suboptimality of Vickrey Auction) If the support � of bidder-types is
strictly convex, then the �rst- and second-price sealed-bid auctions without reserve price are
not seller-optimal.

Proof : By the Exclusion Principle (Proposition 3.1), an auction is suboptimal if (i) almost
every bidder-type gets a positive expected payo� at equilibrium and (ii) the auction is regular
(Condition 1). We will prove that for both the Vickrey (second-price) and �rst-price auctions.

Let us �rst notice the obvious fact that the dominant-strategy equilibrium of the Vick-
rey auction is that each bidder bids truthfully his valuation u(#) if # is his type. It then
follows from Lemma 2.2 that the mechanism is regular.

We next calculate a bidder's expected payo� in this mechanism. To do that, recall
a fact from previous remark that the density function f� of the a bidder's valuation u(#)
exists, and it is positive almost everywhere on its support u[�]. Thus, the density function
of the highest valuation among a bidder's rivals exists and is almost everywhere positive on
u[�]. Denote this density function by f�;n�1. Let v := min� u. A type-# bidder's expected

payo� �(#̂; #) from bidding u(#̂) is

�(#̂; #) =
Z u(#̂)

v
[u(#)� v]f�;n�1(v)dv:

By the Exclusion Principle, if the mechanism were optimal, then it must give nonnegative
expected payo� to a set of bidder-types of positive measure. Let # be such a type. Then the
equilibrium expected payo� for this type is zero, i.e.,

Z u(#)

v
[u(#)� v]f�;n�1(v)dv = 0:

Since the integrand is nonnegative and f�;n�1 almost everywhere positive on its support,
we are forced to deduce that u(#) = v for almost every v 2 [v; u(#)], which is impossible
unless u(#) = v. Since u is assumed to be strictly increasing in at least one dimension of the
type, the set of such # is of measure zero. It follows that the Vickrey auction gives positive
expected payo� to almost all bidder-types. Thus, this mechanism is not seller-optimal.

The case for the �rst-price sealed-bid auction is similar. As in the standard auction
model, the symmetric Bayes-Nash equilibrium where the bid is di�erentiable in the valuation
exists and is unique. At this equilibrium, a type-# bidder submits a bid �(u(#)) below his
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valuation u(#), and the bid is strictly increasing in the valuation u(#). Consequently, a
type-# bidder's expected payo� is

�(#̂; #) = [u(#)� �(u(#̂))]F�;n�1(u(#̂))

from bidding �(u(#̂)). Since F�;n�1 is strictly increasing and �(u(#)) < u(#) except for those
types whose valuation is the minimum level, almost all bidder-types get positive equilibrium
expected payo�. Since Lemma 2.2 implies that the mechanism is regular, it follows from the
Exclusion Principle that this mechanism is suboptimal. Thus, we have proved the corollary.
Q.E.D.

A reader may be puzzled by the suboptimality of the Vickrey auction, because here
the other dimension #2 of a bidder's type can have no e�ect on his valuation of the good.
The reader may ask: What is wrong with the standard argument of optimal auctions in the
unidimensional theory?

The answer is that a crucial assumption|the hazard rate condition|in that standard
proof no longer holds when bidder-types are multidimensional. To explain this answer, let us
recall the essence of the standard derivation of optimal auctions. That derivation assigns to
each bidder-valuation v a real number MR(v), which measures the seller's marginal revenue
from raising the probability of winning for that type:11

MR(v) = v � 1� F�(v)

f�(v)
; 8v 2 u[�]; (6)

Thus, a crucial condition for an auction without reserve price to be seller-optimal is that
the marginal revenue MR(u(#)) of any bidder-type # is nonnegative. If this condition is
violated, the seller would rather withhold the good from some bidder-types. When bidder-
types are unidimensional, one can guarantee this nonnegativity condition by assumptions
of the type distributions. When bidder-types are multidimensional, in contrast, one can
prove that this condition is violated. To see the reason, Let us look at the example in
Figure 2 and assume that the two-dimension bidder-type (#1; #2) is uniformly distributed on
the support. The marginal density f�(v) is then the length of the segment AB (Figure 2),
which is the intersection between the support and the vertical line f(#1; #2) : #1 = vg.
Obviously, when the valuation v moves to its in�mum #1, the length of AB shrinks to zero.
Thus, f�(v)! 0 and MR(v)! �1, no matter how large this in�mum is. That is why the
multidimensionality of types necessitates the exclusion of a positive measure of bidder-types.

4 Optimal Auctions

This section will take on the problem of �nding a mechanism that maximizes the seller's
expected payo� at equilibrium. This problem is challenging because of the multidimensional

11The term marginal revenue here are also called virtual surplus, virtual utility, or virtual welfare.
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bidder-types, which make the incentive-compatibility condition hard to characterize. We are
able to obtain a solution for optimal auctions in a subset of environments that satisfy an
assumption of multiplicative separability in Armstrong [1]. We will consider both binding
and non-binding incentive-compatibility constraints.

4.1 The Usual Beginning Steps

Let (~x; ~y; q) be a regular (Condition 1) and incentive-compatible direct-revelation game.
Denote U for the corresponding surplus function. Recall from Assumption 1 that the support
� of bidder-types is contained in Rm

+ and contains the point 0.

As usual in optimal auction theory, we start by calculating U . The obstacle of multi-
dimensional types in this step is resolved by the technique of \integration along the ray" in
Armstrong [1]. For each type # 2 �, de�ne a function ~U# : [0; 1]! R by t 7! U(t#) from the
unit interval to the reals. This function is well-de�ned because � is assumed to be convex.
We want to calculate U(#) via ~U#(1). Since U is a convex function (Lemma 2.1), so is ~U#.
Thus, ~U# is absolutely continuous and so

U(#) � U(0) =
Z 1

0

~U 0
#(t)dt:

By the de�nition of ~U#, the derivative ~U 0
#(t) is the directional derivative of the scalar �eld

U at the point t# along the vector #. Since the mechanism is assumed to be regular and
incentive-compatible, this directional derivative can be calculated according to Equation (4).
Thus, for almost all t 2 [0; 1],

~U 0
#(t) = E�(�i)

2
4q(t#; �(�i)) mX

j=1

#j
@

@#j
u(x; t#)

�����
x=~x(t#;�(�i))

3
5

= E�(�i)

h
q(t#; �(�i))u(~x(t#; �(�i)); t#)

i
=t;

where the second equality follows from the linear homogeneity of u(x; �) (Assumption 1). We
have therefore obtained

U(#) = U(0) +
Z 1

0
E�(�i)

n
q(t#; �(�i))u(~x(t#; �(�i)); t#)=t

o
dt; 8# 2 �: (7)

We next calculate the seller's expected payo� in the above mechanism. Let �(i) :=
(�

(i)
j )mj=1 denote the type of bidder i, and �(�i) := (�(k))k 6=i the type pro�le of the other

bidders. Since the types are independent across bidders, the seller's expected payo� is

nX
i=1

n
E�(i);�(�i)

�
q(�(i); �(�i))[v(~x(�(i); �(�i))) + u(~x(�(i); �(�i)); �(i))]

�
� E�(i)U(�

(i))
o
:

To calculate this quantity explicitly, de�ne for each type # 2 �

g(#) :=
Z 1

1
tm�1f(t#)dt: (8)

15



For each attribute bundle x 2 X and each type # 2 �, de�ne the virtual utility as

V (x; #) := v(x) + u(x; #)

 
1� g(#)

f(#)

!
: (9)

Using Equation (7) and the Tonelli's Theorem (Royden[21, p. 309]), one can calculate the
seller's expected payo� as

E�(i);�(�i)

(
nX
i=1

q(�(i); �(�i))V
�
~x(�(i); �(�i)); �(i)

�)
� nU(0): (10)

We omit the details, which can be found from Armstrong [1, p. 62].

As standard in optimal auction theory, there is no loss of generality to let U(0) = 0.
This equation implies individual rationality, because U(#) � U(0) for all type # 2 �, which
results from the assumption that u(x; �) is nondecreasing and � � Rm

+ . There is no need to
consider mechanisms where U(0) > 0, which are obviously suboptimal for the seller.

We have therefore derived the following fact, similar to its counterpart in unidimen-
sional models:

Lemma 4.1 The problem of maximizing the seller's expected payo� subject to the constraints
of regularity, incentive-compatibility and individual rationality is equivalent to maximizing

E�(i);�(�i)

(
nX
i=1

q(�(i); �(�i))V
�
~x(�(i); �(�i)); �(i)

�)

among all (~x; q) subject to the conditions of incentive-compatibility (Equation (1)), resource
feasibility

nX
i=1

q(�(i); �(�i)) � 1 and 0 � q(�(i); �(�i)) � 1; 8i = 1; : : : ; n; 8(�(i); �(�i)) 2 �n; (11)

and regularity (Condition 1).

Therefore, if the incentive-compatibility constraint is non-binding, the seller would follow
a greedy algorithm in descending order of the virtual utility V : sell the good to a bidder
whose maxx V (x; �

(i)) is highest among all bidders if that amount is positive, and withhold
the good if otherwise; in addition, con�gure the attributes x of the good to attain to the
maximum maxx V (x; �

(i)).

4.2 Incentive-Compatibility in Scoring Mechanisms

The main di�culty in our model is how to characterize incentive-compatibility (Equa-
tion (1)). When bidder-types are unidimensional, it is well-known that incentive-compatibility
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is equivalent to a monotonicity condition, which says that a bidder's winning probability
given his reported type is nondecreasing in that type. This equivalence result would allow
us to apply the technique in Myerson [15] to obtain optimal auctions.12 With multidimen-
sional bidder-types, although it remains valid when bidders' payo� functions are additively
separable (i.e., u(x; #) depends only on #), the equivalence result does not hold in general.
Researchers in this �eld have found the condition of incentive-compatibility quite intractable.

This paper bypasses the above obstacle in the following way. First, we temporarily
look at a subset of mechanisms, which we will call scoring mechanisms. Such a mechanism
makes bidders' payo�s additively separable, thereby salvaging the monotonicity condition for
incentive-compatibility. We will then mimic Myerson's technique to characterize the optimal
auctions within this subset of mechanisms, for both binding and non-binding incentive-
compatibility constraints. Finally, we will prove that, when incentive-compatibility is non-
binding, which is guaranteed by a hazard rate assumption, the optimal auction we obtain is
also optimal among the entire class of mechanisms.

By a scoring mechanism we mean a scoring rule � : X �R! R given by

�(x; y) = y + !(x)

for some function ! : X ! R and the following rule: if a bidder wins, he is assigned a score
s in the range of � and he chooses a transaction (x; y) such that �(x; y) = s. Denote such a
mechanism by its scoring rule �.

The class of scoring mechanisms contains the scoring-rule auctions we often observe in
industries. By a scoring-rule auction we mean the following mechanism:

1. The seller commits to a minimum score s, a scoring rule �, and an integer k = 1; 2.

2. Each bidder independently pledges a score s 2 R. The seller awards the good to a
highest-score bidder if his score is above s, and otherwise withholds the good.

3. The winner carries out a transaction (x; y) 2 X � R subject to the condition that
�(x; y) is equal to the maximum of s and the kth highest score pledged by the bidders.

We say the auction is �rst-score if k = 1, and second-score if k = 2.

Compared to a general mechanism, a scoring mechanism has the special feature of
delegating the determination of a winner's transaction to the winner himself, subject to
a scoring rule. Compared to a general scoring mechanism, a scoring-rule auction has the
special feature that the scoring rule also selects a winner.

12Speci�cally, this equivalent representation allows the seller to replace the incentive-compatibility con-
straint with the tractable monotonicity condition. If the virtual utility V is nondecreasing in the bidder-type,
she simply follows the greedy algorithm in descending order of V (so the monotonicity condition is auto-
matically guaranteed). Otherwise, she �rst \irons" out the non-monotone parts of the virtual utility V
(Myerson [15, Section 6]), so the revised V becomes monotone, and then follows the greedy algorithm in
descending order of this revised V .
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In a scoring mechanism �, once a type-# bidder wins, he chooses a payo�-maximizing
transaction (x; y) to ful�ll his score. Since a winner's payo� u and the scoring rule � are
both additively separable between x and y, a winner's payo�, given type # and score s, is

u�(s; #) := �s +max
x2X

fu(x; #) + !(x)g : (12)

Thus, a winner's payo� is an additively separable function of his score and a one-dimensional
statistic maxx2X fu(x; #) + !(x)g induced by the scoring rule and his type. Therefore, we
can regard a scoring mechanism as a direct-revelation game, where the message space is the
range of this induced statistic, and the allocation outcome consists of the winning status and
the score assigned to the winner. Consequently, by the standard argument in Myerson [15,
Lemma 2], the incentive-compatibility of such a mechanism can be shown to be equivalent to
the monotonicity condition that a bidder's winning probability is a nondecreasing function
of his reported message.

A scoring mechanism therefore partially salvages the monotonicity representation of
incentive-compatibility. The only obstacle in our way is that this monotonicity condition
depends on the scoring mechanism itself. To bail out this obstacle, we need stronger assump-
tions about the fundamentals. We want to have an assumption strong enough to give us
a mechanism-independent (unidimensional) statistic of the bidder-type, yet not too strong
to allow the multidimensional structure of our model. We found such an assumption from
Armstrong [1]:

Assumption 2 (Multiplicative Separability) There exist functions � : � ! R, L :
X ! R, and � : rangeL! R such that, for all # 2 � and all b 2 rangeL,

maxfu(x; #) : L(x) = bg = �(#)�(b); (13)

where: (i) the function � is nonnegative, linearly homogeneous, and three-times continuously
di�erentiable with nonzero gradient at every point # 6= 0, and (ii) the function L is continuous
and linear, and L(x) > 0 unless x = 0. There exist continuous functions f� : R+ ! R+ and
f0 : �! R+ such that

f(#) = f�(�(#))� f0(#); 8# 2 �; (14)

where f� is positive over the interior of range �, and f0 is positive and homogeneous of degree
zero.

Essentially, this assumption yields a mechanism-independent statistic �(#) of the bidder-type
#. For convenience, we need one more assumption:

Assumption 3 For any # 6= 0, u(�; #) is strictly concave, di�erentiable, and satis�es the
Inada Condition.13 If x 6= 0 and # 6= 0, u(x; #) > 0 and u(�x; #) is strictly increasing in
� � 0. There is a function ~v : R! R such that

v(x) = ~v(L(x)); 8x 2 X;

13That is, each partial derivative of u(�; #) goes to positive in�nity as x goes to 0, and goes to zero as kxk
goes to in�nity.
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and the function ~v is concave, continuous, strictly decreasing, nonpositive, and ~v(0) = 0.

For example, let the seller's payo� be y � c
Pm

j=1 xj, a type-# winning bidder's payo�

be
Pm

j=1 #jx
1=2
j � y, and the distribution of bidder-types be F (#) = k#k� on the support

f# 2 Rm
+ : k#k � 1g. Then one can calculate that L(x) =

Pm
j=1 xj, ~v(b) = �bc, �(#) = k#k,

�(b) =
p
b, f�(z) = �z��1, and f0 � 1. It is easily to check that the above assumptions are

satis�ed.

Assumptions 2 and 3 imply nice properties of the functions � and �, stated in the
following lemma and proved in Appendix A.2.

Lemma 4.2 (i) For any # 6= 0, �(#) > 0.
(ii) The function � is continuous, di�erentiable, strictly concave, strictly increasing, and
strictly positive except at the point zero, where �(0) = 0.

As intended, Assumptions 2 and 3 turn the incentive-compatibility constraint of a
scoring mechanism into a monotonicity condition with respect to the mechanism-independent
statistic �(#). This we will show in the following.

Let us consider a scoring mechanism with scoring rule �(x; y) = y + !�(L(x)) (8x; y)
for some function !�, where the function L is given by Assumption 2. Denote L[X] for the
range of function L. Assumptions 2 and 3 imply

max
x2X

fu(x; #) + !�(L(x))g = max
b2L[X]

maxfu(x; #)+!�(b) : L(x) = bg = max
b2L[X]

f�(#)�(b)+!�(b)g:

For each z in the range of the statistic �, de�ne the induced type as

��(z) := max
b2rangeL

fz�(b) + !�(b)g: (15)

By Equation (12), a type-# winner's payo� in the scoring mechanism � is ��(�(#) � s.
Therefore, the mechanism is equivalent to an independent private value auction, where
a bidder's private valuation is his induced type ��(�(#)). Formally, a scoring mechanism
�(x; y) = y + !�(L(x)) is equivalent to the following direct-revelation game, denoted by the
triple (�; q; ~s):

Each bidder's message space is the range of the induced type ��. Given any
reported message pro�le (ti; t�i), the probability with which bidder i wins is
q(ti; t�i), the score assigned to i if he wins is ~s((ti; t�i), and a bidder's payo�
upon winning is his induced type minus his score.

For any possible induced type t, denote �q(t) := Et�i
q(t; t�i) for a bidder's winning probability

if he reports t, and denote �s(t) := Et�i
~s(t; t�i) for his expected score. A bidder's expected

payo� from reporting induced type t̂, with true induced type t, is

�(t̂; t) = t�q(t̂)� �s(t̂): (16)
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To characterize incentive-compatibility as a monotonicity condition with respect to
the mechanism-independent statistic �, consider a scoring mechanism �(x; y) = y+!�(L(x))
such that the function z�(b) + !�(b) has a maximum b�(z) in the range L[X], for each z in
the range of �. The Envelope Theorem gives the derivative

� 0�(z) = �(b�(z));

which is nonnegative by Lemma 4.2 and the assumption that L[X] � R+ (Assumption 2).
Thus, the induced type ��(z) is nondecreasing in the statistic z. Consequently, a monotonicity
condition with respect to the induced type becomes a monotonicity condition with respect
to the mechanism-independent �. The next lemma states this result.

Lemma 4.3 (Monotonicity Condition) If a scoring mechanism (�; q; ~s) satis�es �(x; y) =
y + !�(L(x)) (8x; y) and allows a maximum of z�(b) + !�(b) for each z in the range of the
statistic �, then the mechanism is incentive-compatible i�

a. the winning probability �q(��(z)) (8z 2 range �) is nondecreasing in z, and

b. the assignment of scores satis�es �(t; t)� �(t̂; t̂) =
R t
t̂ �q(t

0)dt0 for all t; t̂ 2 range ��.

Proof : In such a scoring mechanism (�; q; ~s), a winner's payo� is additively separable (Equa-
tion (16)). Thus, one can easily mimic the proof in Myerson [15, Lemma 2] to show that
incentive-compatibility is equivalent to condition (b) and the nondecreasing monotonicity
of �q. The proof will be complete if this nondecreasing monotonicity condition is equivalent
to that of �q � ��. By the proved fact that �� is nondecreasing, \�q is nondecreasing" implies
\�q � �� is nondecreasing." To prove the converse, suppose that �q is nondecreasing. For each t
in the range of ��, pick any element in the inverse image ��1� (t) and denote it by Z(t). Then
the function Z is nondecreasing, since �� has been proved to be so. Thus, �q = �q � �� � Z is
nondecreasing. Thus, the nondecreasing monotonicity of �q is equivalent to that of �q � ��, as
desired. This proves the lemma. Q.E.D.

We will say that a scoring mechanism (�; q; ~s) is well-behaved if it satis�es the hypothesis
of the above lemma, i.e., �(x; y) = y + !�(L(x)) (8x; y) and the function z�(�) + !�(�) has
a maximum for each z in the range of �. Although Lemma 4.3 reduces the incentive-
compatibility constraint of well-behaved scoring mechanisms to a monotonicity condition
with respect to the unidimensional variable �(#), the multidimensional structure in our model
is intact. The reason is that a scoring mechanism delegates the choice of a multidimensional
transaction bundle (x; y) to the winning bidder; thus, we do not assume away the question
how to induce the winner to choose the transaction optimal to the seller.

4.3 Optimal Auctions among Scoring Mechanisms

Using the convenient representation of incentive-compatibility delivered by Lemma 4.3, this
subsection will characterize the optimal auction among scoring mechanisms. Given a hazard

20



rate assumption, the next subsection will show that this optimal auction is also optimal
among the entire class of regular mechanisms.

Let � denote the distribution function of �(#) induced by the underlying density func-
tion f of bidder-types. That is,

�(z) := Probf# 2 � : �(#) � zg; 8z 2 range �:

Denote � for the density function of �, if it exists. By Corollary A.1, the density function
exists, has �nite value and is continuous on the range �[�] of �; it is positive over the interior
of �[�]. Furthermore,

�(z) = kzm�1f�(z); 8z 2 �[�]; (17)

where k is a positive constant. Hence the cdf � is continuously di�erentiable.

Recall from Lemma 4.1 that the seller would follow the greedy algorithm in descending
order of maxx V (x; #) if the incentive-compatibility constraint were not binding. Due to
Assumptions 2 and 3, maxx V (x; #) is collapsed to a function of the statistic �(#): For each
type # 2 �,

max
x2X

V (x; #) = max
b2rangeL

(
�(b)

 
z � 1� �(z)

�(z)

!
+ ~v(b)

)
; with z := �(#): (18)

To prove this equation, notice that maxx V (x; #) = maxb2L[X]maxfV (x; #) : L(x) = bg. By
the de�nition of the virtual utility V (Equation (9)), Assumptions 2 and 3, we have

maxfV (x; #) : L(x) = bg = �(b)�(#)

 
1� g(#)

f(#)

!
+ ~v(b):

Equation (18) then follows from a fact proved by Armstrong [1, Section 4.4]: for each # 2 �,
�(#)g(#)
f(#)

= 1��(�(#))
�(�(#))

.14

Let z := min �[�]. For each z 2 �[�] and each b 2 L[X], de�ne

W (b; z) := R(z)�(b) + ~v(b); with R(z) := z � 1� �(z)

�(z)
: (19)

Given any pro�le (�(i))ni=1 of types across bidders, let zi := �(�(i)) and let z�i := (zj)j 6=i. The
problem of optimizing auctions among well-behaved scoring mechanisms (de�ned in previous
subsection) is stated by the following lemma.

Lemma 4.4 Suppose that the probabilities q(zi; z�i) (8i; zi; z�i) and the functions � : �[�]!
L[X] and ! : L[X]! R jointly maximize

Ezi;z�i

nX
i=1

[q(zi; z�i)W (�(zi); zi)] (20)

14This fact results from Equation (14) and the di�erentiability and linear homogeneity of the function �
(Assumption 2).
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subject to three constraints: \�q(zi) := Ez�iq(zi; z�i) is nondecreasing in zi," resource feasi-
bility (Equation (11)), and

max
b2L[X]

fz�(b) + !(b)g = z�(�(z)) + !(�(z))| {z }
:=�(z)

; 8z 2 �[�]: (21)

Let �(x; y) := y + !(L(x)) (8x; y) and ~s(z) := �(z)�q(z) � R z
z �q(t)dt (8z 2 �[�]). Then the

scoring mechanism (�; q���1; ~s���1) maximizes the seller's expected payo� among incentive-
compatible, individually rational and well-behaved scoring mechanisms.

Proof : One can easily prove this from Equation (18), and Lemmas 4.1 and 4.3, by mimicking
the proof in Myerson [15, Lemma 3]. There are only two details worth mentioning. One is
that Equation (21) is needed as a constraint because a bidder's valuation �(z) of the good
being auctioned results from his optimal choice of a transaction bundle. The other is that
the regularity condition in Lemma 4.1 is automatically guaranteed by a well-behaved scoring
mechanism, by Lemma 2.2. Q.E.D.

We want to calculate optimal mechanisms from Lemma 4.4. Unlike the usual optimal
auction problems, where the only choice variables are the probabilities q, our problem here
contains another choice variable, the function �(�), which is needed here to induce a winner
to carry out a seller-optimal transaction.

To solve the constrained optimization problem, we need to \iron" out the non-monotone
parts of R. This procedure is needed to satisfy the incentive-compatibility constraint, which
may be binding. Speci�cally, with the objective (20), the seller would wish to maximize
W (�; z) and assign the highest winning probabilities q to the highest maxbW (b; z), so a bid-
der's winning probability would be increasing in maxbW (b; z). On the other hand, incentive-
compatibility requires that the winning probability increase in z. Thus, the seller needs to
maximize W (�; z) subject to the constraint that the constrained maximum of W (�; z) is
increasing in z. This is done by extending the technique of Myerson [15, Section 6].

We �rst notice that the distribution function � of the statistic � is strictly increasing.
The reason is that its density function � is positive almost everywhere, as pointed out at
Equation (17). Thus, the inverse ��1 exists.

For each probability p 2 [0; 1], de�ne h(p) := R � ��1(p). Pick an a 2 (0; 1). Then
��1(a) is an interior point of �[�], so �(��1(a)) > 0 (Equation (17)) and h(a) is �nite.
Thus, we can de�ne H(p) :=

R p
a h(r)dr for each p 2 (0; 1) and continuously extend H to

the boundary points 0 and 1. Let G : [0; 1] ! R be the convex hull of the function H
(Myerson [15, Eq. (6.3)]). For each z 2 �[�] and each b 2 L[X], de�ne

R(z) := G0(�(z)); (22)

W (b; z) := R(z)�(b) + ~v(b); (23)

�(z) := arg max
b2L[X]

W (b; z); (24)

W �(z) := W (�(z); z): (25)
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The following lemma says that � and W � are well-de�ned and nondecreasing.

Lemma 4.5 The functions � and W � are continuous, nonnegative, and nondecreasing, with
the following properties:

a. If R(z) � 0 then �(z) = 0 and W �(z) = 0.

b. If R(z) > 0, then �(z) is unique and positive, and W �(z) > 0.

c. If R(z) = R(z0), then �(z) = �(z0) and W �(z) = W �(z
0). If R(z); R(z0) > 0 and

R(z) > R(z0), then �(z) > �(z0) and W �(z) > W �(z
0).

d. The monotonicity of � implies that it is continuous.

e. Equation (21) is satis�ed by !� : L[X]! R de�ned by

!�(b) :=

(
� R b0 ��1� (t)� 0(t)dt if b 2 range �
�1 otherwise;

(26)

where, for each b 2 range �,

�
�1

� (b) := the maximum of the inverse image �
�1
(b): (27)

This lemma will be proved in Appendix A.3.

For any vector z := (zi)
n
i=1 2 �[�]n of statistics � indexed by bidders, let M(z) be the

set of bidders for whom W �(zi) is maximal among all bidders and is positive:

M(z) := fi = 1; : : : ; n : 0 < W �(zi) = max
k=1;:::;n

W �(zk)g:

We can now state our �rst main result: in an auction optimal among all scoring mechanisms,
(i) the good is sold to the bidder with the highest W �(zi), provided this is positive; further,
(ii) the winner is assigned to honor a score according to a scoring rule �� speci�ed below.

Proposition 4.1 Suppose Assumptions 1, 2, and 3. De�ne !� by Equation (26). For each
bidder i and each (zi; z�i) 2 �[�]n, let

q�(zi; z�i) :=

(
1=#M(zi; z�i) if i 2M(zi; z�i)
0 if i 62M(zi; z�i);

(28)

��(x; y) := y + !�(L(x)); and (29)

�s�(zi) :=
�
zi�(�(zi)) + !�(�(zi))

�
Ez�iq

�(zi; z�i)�
Z zi

z
Ez�iq

�(t; z�i)dt: (30)

Denote (q�; �s�; ��) for the mechanism that selects winners by the probabilities q� and, for
a winner with \type" zi, requires the winner carry out a transaction whose score equals
to a number s�(zi; z�i) according to the rule ��, where the number s�(zi; z�i) is in average
Ez�is

�(zi; z�i) = �s�(zi). Then (��; q�; s�) is seller-optimal among all well-behaved scoring
mechanisms.
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Proof : The proof is similar to Myerson's proof of the theorem in [15]. Recall the seller's
expected payo� (20). By the de�nition of R and W and mimicking the calculation in
Eqs. (6.9) and (6.10) of Myerson [15], we have

nX
i=1

Ezi;z�i [q(zi; z�i)W (�(zi); zi)] =

nX
i=1

Ezi;z�i

h
q(zi; z�i)W (�(zi); zi)

i
| {z }

:=A(q;�)

�
nX
i=1

�(�(zi))
Z
�[�]

(H(�(t))�G(�(t))) d�q(t)

| {z }
:=B(q;�)

:

Consider (q�; �), with q� de�ned in the theorem and � de�ne previously. By de�nition, �(zi)
maximizes W (�; zi), and q� puts all probability on bidders for whom W (�(zi); zi) is positive
and maximal. Thus, for any function � : �[�] ! L[X] and any probability assignment
q(zi; z�i),

A(q�; �) � A(q; �):

On the other hand,
B(q�; �) = 0:

To see this, notice that \H(�(t)) 6= G(�(t))" implies that G0 �� is 
at over a neighborhood
of point t (G is the convex hull of H). Thus, R is constant over that neighborhood. By
Lemma 4.5 (c), W � and �q� are also constant there. Consequently, the integrals in the term
B(q�; �) are all zero.

For any well-behaved scoring mechanism satisfying incentive-compatibility, its winning
probability �q(zi) := Ez�iq(zi; z�i) is nondecreasing in zi (Lemma 4.3). Consequently, with
H � G (by construction) and � � 0 (Lemma 4.2), we have B(q; �) � 0.

Therefore, for any incentive-compatible well behaved scoring mechanism (q; ~s; �) and
any associated function � : �[�]! L[X],

nX
i=1

Ezi;z�i

h
q�(zi; z�i)W �(�(zi); zi)

i
�

nX
i=1

Ezi;z�i [q(zi; z�i)W (�(zi); zi)] :

Thus, the proof will be complete if the mechanism (��; q�; s�) satis�es the su�cient conditions
in Lemma 4.4. Equation (21) in that lemma is satis�ed by !�, by the proof of Lemma 4.5 (e).
We hence need only to prove that the winning probability �q�(zi) is nondecreasing in zi.
That directly follows from the fact that �q�(zi) is nondecreasing in W �(zi) (by construction)
and the fact that W � is nondecreasing (Lemma 4.5). Thus, Lemma 4.4 implies that the
mechanism (��; q�; s�) is optimal among all well-behaved scoring mechanisms. This proves
the proposition. Q.E.D.

The above result is similar to the general solution in Myerson [15, Section 6] in the
sense that both select winners in descending order of some ironed virtual utilities (W � in
our case). The new element in our solution is a scoring rule, which is needed to resolve the
obstacle of incentive-compatibility for multidimensional bidder-types.
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4.4 Optimal Auctions among All Mechanisms

The optimal mechanism obtained above turns out to be simpler than it appears. In the
following we will prove that the mechanism is almost equivalent to a Vickrey auction, except
that the bids are ranked by our scoring rule �� and the minimum score is zero. Furthermore,
this mechanism is optimal among all mechanism when the function R(�) (Equation (19)) is
increasing. This monotonicity condition of R(�) corresponds to the monotone hazard rate
condition in the unidimensional optimal auction theory.

Theorem 4.1 Suppose Assumptions 1, 2, and 3.

a. The mechanism (��; q�; s�) constructed by Equations (28){(30) is equivalent to the
second-score scoring-rule auction using �� (Equation (29)) as the scoring rule and
zero as the minimum score.

b. If the function R(�) (Equation (19)) is increasing, then the scoring-rule auction max-
imizes the seller's equilibrium expected payo� among all regular mechanisms. If the
function R(�) is not increasing, then the scoring-rule auction maximizes the seller's
equilibrium expected payo� among all well-behaved scoring mechanisms.

Proof : We shall prove Claim (b) �rst. Proposition 4.1 has proved the case when the function
R(�) is not increasing. We thus need only to consider the case where R(�) is increasing. In
that case, it is obvious that R � R. By the de�nition of � (Equation (24)), W � W and
�(z) � argmaxbW (b; z). Thus, for any pro�le (zi)

n
i=1 2 �[�]n indexed by bidders, �(zi)

maximizes W (�; zi) and q�(zi; z�i) puts all probability on bidders for whom W (�(zi); zi) is
maximal and positive. Consequently, the mechanism (��; q�; s�) maximizes the weighted
sum (20). By Lemma 4.1, this weighted sum is equal to the seller's expected payo� from
any incentive-compatible, individually rational and regular mechanisms.

As proved in Proposition 4.1, the mechanism (��; q�; s�) is incentive-compatible. It is
individually rational by Equations (28) and (30). Being a well-behaved scoring mechanism,
(��; q�; s�) is regular (Condition 1), as observed in the proof of Lemma 4.4. Therefore, we
have proved that the mechanism (��; q�; s�) is seller-optimal among all incentive-compatible,
individually rational and regular mechanisms, whenever R(�) is increasing. This proves
Claim (b).

We next prove Claim (a). To prove that the second-score scoring-rule auction is equiv-
alent to the mechanism (��; q�; s�), we need only to show that the auction game (i) generates
the same winning probabilities as q� and (ii) induces any winner to choose transactions in
such a way that yields the same expected payo� for the seller as the winner does in the
mechanism (��; q�; s�).

Let us start our proof of Claim (a) by looking at a winner's choice of transactions. Given
a score s and type #, a winner in the scoring-rule auction chooses a nonmonetary bundle x
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to maximize u(x; #) subject to L(x) = b�(�(#)), where b�(�(#)) maximizes �(#)�(b) + !�(b)
for all b; he picks a money payment y as s � !�(b�). By Lemma 4.5 (e), b� = � pointwise.
Consequently,

max
b2L[X]

fz�(b) + !�(b)g = z�(�(z)) + !�(�(z)) := ���(z); 8z 2 �[�]:

By the properties of � (Lemma 4.2) and � (Lemma 4.5), we know that the induced type
���(z) > 0 i� R(z) > 0 and ��� is strictly increasing over the region where R(z) > 0. By
the properties of W � (Lemma 4.5), we know that W �(z) > 0 i� R(z) > 0 and W � is strictly
increasing over the region where R(z) > 0. In the scoring-rule auction, therefore, bidders
with nonpositive induced types are exactly those with nonpositiveW �, and bidders with higher
positive induced types have higher positive W�(zi).

We can now prove condition (i), namely, the scoring-rule auction has the same winner-
selection criterion as the mechanism (��; q�; s�). Recall from Equation (12) that a winner's
payo� in the scoring-rule auction is the additively separable form ���(z)�s, with ���(z) being
his induced type and s the score he needs to ful�ll. Since the dominant-strategy equilibrium
of our second-score scoring-rule auction is that every bidder submits his true induced type
���(z) as his score, the auction game puts all winning probability on bidders whose induced
type is maximal across bidders and is positive (since the minimum score is zero). The italic
claim in the previous paragraph then implies that the scoring-rule auction generates the
same winning probabilities as q�, by the de�nition of q�.

Finally, we prove condition (ii), namely, a winner's choice of transactions in the scoring-
rule auction yields the same expected payo� for the seller as in the mechanism (��; q�; s�).
From our previous analysis of a winner's decision, a winner's transaction in the scoring-rule
auction will be equivalent to that of the mechanism (��; q�; s�) if the scoring-rule auction
assigns scores so that a bidder's expected score depends on his type in the same way as the
function �s� in the mechanism (��; q�; s�). One can prove this by mimicking the standard
revenue equivalence argument in unidimensional settings, with \revenue" and \type" there
replaced by \score" and \induced type" here, respectively. The reasons why we can apply
the revenue equivalence argument are: First, a winner's payo� in the scoring-rule auction
is the additively separable form ���(z)� s, with the induced type ���(z) independent across
bidders; second, the equilibrium bidding function in the auction game is strictly increasing
in the induced type, as shown previously; third, the bidders getting zero equilibrium payo�
in the auction game are exactly those getting zero equilibrium in the mechanism (��; q�; s�)
(i.e., those with nonpositive W �(z)). Thus, condition (ii) follows. This proves Claim (a) of
the theorem. The proof of the theorem is therefore complete. Q.E.D.

A convenient feature of our optimal auction is that the seller does not need to select
winners or determine transactions on a case-by-case basis. The auction delegates both of
these tasks to the bidders by having them compete according to the scoring rule ��. Remark-
ably, this convenient feature remains whether the hazard rate R(z) is increasing (non-binding
IC constraint) or not (binding IC constraint).
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The intuition by which we constructed the scoring-rule auction is the following. From
the usual steps in optimal auction design, we know that the seller's equilibrium expected
payo� cannot exceed the weighted sum

nX
i=1

[q(zi; z�i)W (�(zi); zi)]

at each possible state. Thus, the best she could do is to (i) maximize the virtual utilities
W (�; zi) for each zi and (ii) assign all the winning probabilities q to bidders with the maximal
and positive maxbW (b; zi).

When the \hazard rate" R(�) is increasing, our scoring-rule auction implements both
operations and satis�es the incentive-compatibility (IC) constraint, as explained in the Intro-
duction. When R(z) is not increasing in z, however, no scoring mechanism can accomplish
the two maximization steps without violating the IC constraint. In this case, the highest-
score bidder need not be the one with whom the seller most desires to trade. We need to revise
the scoring rule on one hand, and revise the seller's winner-selection criterion maxbW (b; zi)
on the other, so that both can move in the same direction. Among scoring mechanisms, the
best the seller can do is to maximize the weighted sum

nX
i=1

h
q(zi; z�i)W (�(zi); zi)

i

at each possible state, where W is the revised (ironed) criterion for winner-selection. Re-
markably, the maximization in this seemingly messy case can still be implemented by a
scoring-rule auction. We design the scoring rule so that a winner would choose a trans-
action to maximize W (�; zi), and a bidder's pledged score moves in the same direction as
maxW (�; zi). Here the optimal auction retains the convenient feature of delegating both
tasks of winner-selection and transaction determination to the bidders. Due to the bind-
ing constraint of incentive-compatibility, our optimal auction in this case does not achieve
the upper bound maxqmax�

Pn
i=1 [q(zi; z�i)W (�(zi); zi)]. Nevertheless, the mechanism max-

imizes the seller's payo� among a class of scoring mechanisms, containing scoring-rule auc-
tions (Proposition 4.1). It is still unknown whether our mechanism is optimal among all
mechanisms.

Let us close the circle by noting that the optimal auction constructed in Proposition 4.1
gives zero winning probability to a positive measure of bidder-types, as an instance of the
exclusion principle in Section 3.

Corollary 4.1 Suppose Assumptions 1-3 and that R(z) is increasing in z. Then there is a
unique constant z0 2 �[�] such that bidders whose types belong to the set f# 2 � : �(#) � z0g
have zero winning probability, and this set is of measure �(z0) > 0.

Proof : Recall the fact that bidders with types # 2 � such that W �(�) � 0 have zero
winning probability. By the monotonicity of R(�) and the fact that W �(�) � 0 if R(z) � 0,

27



we need only to prove that the supremum z0 of the set fz 2 �[�] : R(z) � 0g is greater than
z := min �[�], for then �(z0) > 0 by the fact that � is strictly increasing (Equation 17)). To
show that z0 > z, we need only z < (1� �(z)=�(z). That is equivalent to z < 1=�(z), with
�(z) = 0. This inequality will be true if z = �(0), because �(0) = 0 by the homogeneity
of � (Assumption 2). To prove that z = �(0), pick any nonzero b 2 L[X] and any # 2 �.
Since u(x; �) is increasing (Assumption 1), u(x; #) � u(x; 0) for any attribute bundle x such
that L(x) = b. Thus, Equation (13) implies that �(#)�(b) � �(0)�(b) and, with �(b) positive
(Lemma 4.2), �(#) � �(0). Thus, z = �(0), as desired. This proves the corollary. Q.E.D.

4.5 Some Implications

Our formula of optimal auctions have several implications. One of them is that a seller would
rather commit to a bid-ranking criterion di�erent than her own preferences. Our result
also contributes to the literature of non-auction multidimensional screening by providing an
optimal mechanism for both binding and non-binding incentive-compatibility constraints.

4.5.1 Downward Distortion of Nonmonetary Attributes

Let us recall from our model that the seller's preferences on the transactions (x; y) are given
by her utility function v(x) + y. The optimal scoring rule �(x; y) in Theorem 4.1 is another
ranking criteria on the transactions. A question is how the two ranking criteria are di�erent.
The next proposition answers the question. It says that an optimizing seller would commit
to ranking bids by the optimal scoring rule instead of her true preferences. Furthermore,
the optimal scoring rule rewards the nonmonetary provisions x less than her true preference
would do. Here we calculate the explicit amount by which the optimal scoring rule distorts
the seller's preferences.

Proposition 4.2 Suppose Assumptions 1{3. Suppose also that R(�) is strictly increasing
and the function ~v is di�erentiable on L[X]. Then:

a. It is suboptimal to use the seller's utility function v(x)+ y as the scoring rule, whether
the auction is �rst-score or second-score.

b. For any nonmonetary bundle x 2 X, the optimal scoring rule ��(x; y) ranks x lower
than the seller's true preferences u(x; y): if L(x) is interior to the range of � (Equa-
tion (27)), then the di�erence is

@

@L(x)
u(x; y)� @

@L(x)
��(x; y) =

1� �(�
�1

� (L(x)))

�(�
�1

� (L(x)))
� 0(L(x)) > 0: (31)
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c. Let z0 := supfz 2 �[�] : R(z) � 0g > 0. Then

lim
~v�!pointwise0

��(x; y) = y � z0�(L(x)); 8(x; y) 2 X �R: (32)

Thus, for any transaction (x; y), ��(x; y) � y � z0�(L(x)) 6= y when the seller's utility
from (x; y) is approximately y.

Appendix A.4 will prove this proposition. Part (b) of this result implies that an op-
timizing seller would give less credit to bidders' nonmonetary provisions x than her true
preferences would. This generalizes the result of Che [7] in the unidimensional setting, and
the intuition here is similar to that given by Che. Part (c) of our proposition implies that the
amount by which the optimal scoring rule distorts the seller's true preferences is bounded
away from zero. The reason is intuitively obvious. Since the bundle x is related to a bid-
der's type # in his valuation function u(x; #), an optimizing seller would try to exploit this
relationship, whether x a�ects her own utility or not.

4.5.2 Optimal Multidimensional Screening

As mentioned in the Introduction, the environment of non-auction multidimensional screen-
ings (Armstrong [1], Rochet and Chon�e [20], etc.) corresponds to the special case in our
model where the number of bidders is one. Applying Theorem 4.1, we obtain an explicit
formula for the optimal nonlinear pricing mechanism in this setting, whether the hazard rate
is increasing or not.

Corollary 4.2 Suppose Assumptions 1{3 and that there is only one bidder. For each non-
monetary bundle x 2 X, let

p(x) :=

( R L(x)
0 �

�1

� (t)� 0(t)dt if L(x) 2 range �
1 otherwise;

(33)

where the function �
�1

� is de�ned by Equation (27). Then the nonlinear pricing mechanism|
the bidder carries out a transaction (x; p(x)) with the seller|is optimal among all regular
mechanisms if R(�) is increasing, and optimal among all L(x)-based tari�s (mechanisms of
the form (x; p(L(x)))) if R(�) is not increasing.

Proof : By Theorem 4.1, our optimal mechanism is the second-score scoring-rule auction
using �� as the scoring rule and zero as the minimum score. Since the auction is second-score
and there is only one bidder, the score assigned to the bidder is zero. The de�nition of ��

(Equation (29)) implies that the money transfer y paid to the seller is y = �!�(L(x)) for
any bundle x 2 X. Equation (33)) then follows from the de�nition of !� (Equation (26)). It
is trivial to check that the nonlinear pricing mechanism (x; p(x)) is equivalent to the second-
score scoring-rule auction. (Note that the mechanism allows bidders not to participate by
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choosing the transaction (0; 0).) The optimality of the mechanism, for both cases of R(�),
follows from Theorem 4.1; the only detail worth mentioning is that a well-behaved scoring
mechanism in the one-bidder setting corresponds to an L(x)-based tari�. The corollary is
proved. Q.E.D.

The above optimal nonlinear pricing function is a new result in the non-auction mul-
tidimensional screening literature. The reason is that the pricing function has an explicit
formula, the optimality remains even if the hazard rate R(�) is not monotone, and the pricing
function need not be a cost-based tari�. Let us expand the last point here. Our optimal
pricing function is a tari� based on a function L(x) of the attribute bundle x, and L(x)
need not be the cost jv(x)j for the seller. In particular, even when the seller's cost v(x) from
attribute bundles x goes to zero, the seller's price would still vary with x: p(x) � z0�(L(x)),
with the weight z0 bounded away from zero (Proposition (4.2). This feature is absent in
the cost-based tari� of Armstrong [1]. The reason is that his assumption of multiplicative
separability is cost-based, and mine is L(x)-based.

When the hazard rate R(�) is strictly increasing, Proposition 4.2 implies that the mo-
nopolist would overcharge the attribute bundle x by an amount given by Equation (31).
The intuition is that the seller separates the market according to L(x) and becomes the
monopolist in each of them. The right-hand side of Equation (31) can then be viewed as
the monopolist's markup for a market where consumers demand attribute bundles x have a
common L(x).

4.6 An Example

In our auction setting, let the seller's payo� be y�cPm
j=1 xj, a type-# winning bidder's payo�

be
Pm

j=1 #jx
1=2
j � y, and the distribution of bidder-types be F (#) = k#k� on the support

f# 2 Rm
+ : k#k � 1g, for some � > 0. Hence the density function is f(#) = �k#k��1. Notice

that Assumption 1 is satis�ed. Let m � 2.

We �rst calculate the virtual utility by Equation (9):

V (x; #) = �c
mX
j=1

xj +

 
1� g(#)

f(#)

!
mX
j=1

#jx
1=2
j ; (34)

where the function g is, by Equation (8),

g(#) =
Z 1

1
tm�1f(tk#k)dt = k#k�m

Z 1

k#k
tm�1f(t)dt

and so
g(#)

f(#)
= k#k�(m+��1)

Z 1

k#k
tm���2dt:
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Therefore, the expression
�
1� g(#)

f(#)

�
is a function of the Euclidean norm k#k of the type #.

Denote this function by h : [0; 1]! R. Notice that for all z 2 [0; 1],

h(z) = 1� z�(m+��1)
Z 1

z
tm���2dt =

m+ �� z1�m��

m+ �� 1
: (35)

Notice that
h(z) > (resp: �) 0() (m + �)zm+��1 > (resp: �) 1: (36)

Note that the function h is strictly increasing on [0; 1] and the equation h(z) = 0 has a unique
root in (0; 1). Denote this root by z0. Thus, the set of types # 2 � such that h(k#k) < 0 is
the interior of the set f# 2 Rm

+ : k#k < z0g. Note that this z0 corresponds to the one de�ned
in Corollary 4.1.

By Lemma 4.1, the best the seller could do is to maximize V (�; #) for each # and put all
probabilities to the bidders for whom V�(#) := maxx V (x; #) is maximal across bidders and
is positive. Let ~x(#) := argmaxx V (x; #). Note that the function is concave i� h(k#k) � 0.
Thus, one can easily calculate that

~x(#) =

(
0 if h(k#k) � 0
h(k#k)2

4c2
(#2j)

m
j=1 if h(k#k) � 0;

(37)

V�(#) =

(
0 if h(k#k) � 0
1
4c
k#k2h(k#k)2 if h(k#k) � 0.

(38)

Let us pause and notice that Equations (37) and (38) illustrate some features we do
not see in unidimensional auction settings. One is that the equations require that bidders
of di�erent types # get di�erent attribute bundles ~x(#), even if their ranks V�(#), and
hence their probabilities of being a winner, are identical. This requirement is absent in
unidimensional frameworks, where implementability is only a matter of preventing bidders
from manipulating the probabilities of being a winner. Another feature is that the virtual
utility can be negative when the norm of the bidder-type is su�ciently small. (Also look at
Equation (35).) Thus, from the seller's viewpoint, those bidders having such types should
stand no chance to win. This is an instance of the exclusion principle in Section 3.

We now construct an optimal mechanism by the formulas in Propositions 4.1 and 4.1.
One can calculate that L(x) =

Pm
j=1 xj, ~v(b) = �bc, �(#) = k#k, �(b) = p

b, f�(z) = �z��1,
f0 � 1, and �[�] = [0; 1]. It is easily to check that Assumptions 2 and 3 are satis�ed.
Furthermore,

R0(z) =
d

dz

 
z � 1� �(z)

�(z)

!
= h(z) + zh0(z) =

h
m+ � + (m+ �� 2)z1�m��

i
=(m+ �� 1)

by Equation (35). Since m � 2, the above quantity is greater than zero. Thus, the function
R(�) is increasing, so Proposition 4.1 implies that our optimal mechanism is a scoring-rule
auction.
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To calculate the optimal scoring rule, we �rst solve the maximization problemmaxbW (b; z).
As before, denote the solution by �(z). It is easy to calculate that, for every z 2 �[�],

h(z) � 0 =) �(z) = 0;

h(z) > 0 =) zh(z) = 2c
q
�(z):

Note that zh(z) is equal to 1 when z = 1, goes to �1 as z ! 0+, and is strictly increasing
on (0; 1). Thus, the equation zh(z) = a has a unique root in (0; 1] for each a � 1, so the
root, denoted by z�(a), exists and is unique for any such a. As one can easily show that

2c
q
�(z) � 1, we obtain the inverse ��1 : (1; 0]! �[�]:

��1(b) = z�
�
2c
p
b
�
; 8b � 0:

Thus, we obtain the scoring rule �� in our optimal auction:

��(x; y) := y � 1

2

Z Pm

j=1
xj

0
z�
�
2ct1=2

�
t�1=2dt; 8(x; y) 2 X � R; (39)

where z�(a) (8a � 1) denotes the unique root of the equation zh(z) = a in the interval (0; 1].

The seller would do worse if she uses her utility function �(x; y) = y�c
Pm

j=1 xj instead
of our �� as the scoring rule. As reasoned in previous subsection, a type-# winner in an
auction using � chooses the attribute bundle x such that L(x) maximizes k#kpb� bc among
all b 2 L[X]. Denoting the solution by ��(k#k), we have

��(k#k) = k#k2
4c2

; 8# 2 �: (40)

In contrast, to maximize the seller's equilibrium expected payo� would require, by Equa-
tion (37), that a type-# winner choose a bundle ~x(#) such that

mX
j=1

~xj(#) =
k#k2h(k#k)2

4c2
a:e: [f ]: (41)

This is violated in the auction, because Equation (40) implies that a type-# winner chooses
~x(#) such that

mX
j=1

~xj(#) =
k#k2
4c2

; 8# 2 �:

This violates Equation (41), because h(k#k)2 6= 1 unless k#k = 1 (Equation (35)).

Finally, let us look at the optimal scoring rule �� when the seller cares almost only about
the money payment y. Notice from the de�nition of z�(�) that z�(2ct1=2) ! z0 as c ! 0.
(Recall that z0 is the unique root of zh(z) = 0 on (0; 1].) Consequently, By Equation (39),

lim
c!0+

��(x; y) = y � z0

0
@ mX
j=1

xj

1
A1=2

; 8(x; y) 2 X � R:

Thus, the optimal weight z0 on the nonmonetary bundle x is bounded away from zero, even
when the nonmonetary provision is almost costless to the seller.
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A Appendix

A.1 The Proof of the Exclusion Principle

The proof parallels the proof in Armstrong [1] for non-auction cases, except for the more
careful usage of the Divergence Theorem here (Footnote 15).

Suppose, on the contrary of the proposition, that almost all bidder-types have positive
expected payo� in an optimal mechanism. Let (q; ~x; ~y) denote the corresponding direct-
revelation game of this mechanism, and U : � ! R the corresponding indirect utility
function. For each � � 0 de�ne

�(�) := f# 2 � : U(#) � �g:

Since � is convex and U is convex (Lemma 2.1) and continuous, each �(�) is compact and
convex. By the optimality of the mechanism, the set �(0) must be nonempty, for otherwise
the seller would bene�t by increasing the monetary payment ~y(�) for every type pro�le
� 2 �n by the amount minU (which exists by the compactness of � and the continuity of
U).

Now suppose that the nonempty set �(0) contains two distinct bidder-types #0 and
#00. Since U is convex and nonnegative (individual rationality), the point �#0 + (1 � �)#00,
with 0 < � < 1, also receives zero expected payo�. With � assumed to be strictly convex,
this point lies in the interior of �. Thus, the set f� 2 � : #��#0 + (1� �)#00g has positive
Lebesgue measure and so has positive measure with respect to the density function f . But
since U is increasing with respect to the coordinate-wise relation� (because u(x; �) is so), this
set is also contained in �(0) and we reach the conclusion of the proposition, a contradiction,
that �(0) has positive measure. We have thus deduced that �(0) is a singleton. Then,
letting V (�(�)) and S(�(�)) denote respectively the volume and surface area of the set �(�),
we have

lim
�!0

V (�(�)) = V (�(0)) = 0; lim
�!0

S(�(�)) = S(�(0)) = 0: (42)

Here the last equality is due to m � 2.

We hope to show that the seller's expected payo� �(�) gained from a bidder of types
in the set �(�) is in smaller order than �. The seller's payo� obtained from such a bidder,
say i, is Z

�(�)

n
E�(�i)

�
q(#; �(�i))[v(~x(#; �(�i))) + u(~x(#; �(�i)); #)]

�
� U(#)

o
f(#)d(#):

Because U � 0 and v is assumed to be nonpositive, we have

�(�) �
Z
�(�)

E�(�i)q(#; �
(�i))u(~x(#; �(�i)); #)f(#)d#:

35



Since u(x; #) is homogeneous of degree one in #, we have u(x; #) � # � D2u(x; #); since
Equation (3) holds almost everywhere in �(�), we obtain

�(�) �
Z
�(�)

# � rU(#)f(#)d#: (43)

Next we use divergence theorem in multivariate calculus, which states thatZ
A
div(w)d# =

Z
@A
w � n dS;

where A is a closed convex set in Rm, @A is the surface of this set, n the outward-pointing
unit normal vector at a point on the surface @A, w = (w1; : : : ; wm) is an m-dimensional
vector-valued function de�ned on A, div(w) :=

Pm
j=1 @wj=@#j is the divergence of the vector

�eld w, and dS denotes integration over the surface @A. The only assumption required
by the theorem is that the vector �eld w is continuous and each wj(#) (8j = 1; : : : ; m) is
an absolutely continuous function of #j (so the divergence is de�ned almost everywhere).15

To apply the divergence theorem in our case, let w(#) := U(#)f(#)# for all # 2 �. This
vector w is obviously continuous. Furthermore, each component wj(#) = U(#)f(#)#j is an
absolutely continuous function of #j, since U is convex and f is assumed to be continuously
di�erentiable. Thus, the divergence theorem applies and so Inequality (43) becomes

�(�) �
Z
@�(�)

U(#)f(#)# � n dS �
Z
�(�)

U(#)div(#f(#))d#:

With f continuously di�erentiable on the compact set �(�), there is some positive number
B such that each of f(#), f(#)# �n, and div(#f(#)) is bounded in �(�) in absolute value by
B, for all su�ciently small �. Since U(#) � � in �(�), the above inequality implies

�(�) � �B[S(�(�)) + V (�(�))]:

15 The usual version of the divergence theorem assumes the di�erentiability of the vector �eld w. However,
this assumption can be weakened to our assumption stated above. To see that, we simply walk through the
standard proof of the theorem (e.g., Kaplan [10, pp. 329-331]). As in such a proof, it su�ces to prove thatZ

A

@wj

@#j
d# =

Z
@A

wjdS; 8j = 1; : : : ;m: (44)

Let us do that for j = 1 and m = 3. Since the space A is convex, its projection on the plane for all the
points (#2; #3) is a convex region A23. Thus, we can represent the space A as the set of vectors (#1; #2; #3)
such that

k1(#2; #3) � #1 � k2(#2; #3); (#2; #3) 2 A23;

for some real functions k1 and k2. Then the left-hand side of Equation (44) is equal to

Z
A23

"Z k2(#2;#3)

k1(#2;#3)

@w1

@#1
d#1

#
d#2d#3 =

Z
A23

[w1(k2(#2; #3); #2; #3)� w1(k1(#2; #3); #2; #3)] d#2d#3;

where the equality holds because the function w1(�; #2; #3) is absolutely continuous. The rest of the proof is
the same as the standard proof. 2

36



Thus, the seller's expected payo� �(�) obtained from a bidder of types in the set �(�) is in
smaller order than �, by Equation (42).

Finally, consider the change �� of the seller's expected payo� in raising the bidders'
monetary payment ~y uniformly by � > 0. This will cause a bidder of types in �(�) not to
participate; the seller will lose �(�) for that. Because a uniform change of the monetary
payment does not distort incentive-compatibility, the seller will gain � more payo� from each
remaining bidder-type; these remaining types are of measure at least 1� V (�(�))B. Thus,

�� � �[1� V (�(�))B]� �B[S(�(�)) + V (�(�))] = �[1�B(2V (�(�)) + S(�(�)))];

which is positive for all su�ciently small �, by Equation (42). This contradicts the supposed
optimality of the mechanism (q; ~x; ~y). This proposition is hence proved. Q.E.D.

A.2 The Proof of Lemma 4.2

By Equation (13) and the linearity of L (Assumption 2), one easily shows that �(#)�(b) > 0
for all # 6= 0 and all b 6= 0. Consequently, since the function � is nonnegative (Assumption 2),
�(#) > 0 unless # = 0. Thus, Claim (i) follows. It also follows that �(b) > 0 for all b 6= 0 and
�(0) = 0. For any nonzero #, from the linearity of L, Equation (13) and the strict concavity of
u1(�; #) (Assumption 2), one can easily prove that �(#)�(�) is strictly concave. Consequently,
by the proved Claim (ii), the function � is strictly concave. Thus, it is continuous.

We prove the rest of Claim (ii). First, let us show that � is strictly decreasing. To
do that, pick any b; b0 2 L[X]. Then b; b0 � 0 (Assumption 2). Thus, b0 = �b for some
� � 0. Suppose b < b0, then � > 1. Pick any # 6= 0. Let x�(b; #) be a maximum for the
constrained maximization problem in Equation (13). By the linearity of L (Assumption 2),
L(�x�(b; #)) = b0, so

�(#)�(b0) � u1(�x�(b; #); #) > u1(x�(b; #); #) = �(#)�(b);

where the strict inequality follows from the assumption that u1(�x; #) is strictly increasing
in � (Assumption 3). Thus, we have �(b0) > �(b), since �(#) > 0 by the �rst paragraph of
the proof.

To prove that the function � is di�erentiable, we use the Benveniste-Scheinkman Theo-
rem (Stokey and Lucas [22, p. 84]). By Equation (13), we need only to prove the di�erentia-
bility of the function �(#)�(�), for some # 6= 0 (hence �(#) > 0). Hence pick any such #. We
have proved that �(#)�(�) is concave (Claim (i)). By the Benveniste-Scheinkman Theorem,
we still need, for each interior point b0 of L[X], to construct a concave di�erentiable function
A on a neighborhood of b0 such that A is below �(#)� and touches the latter at the point
b0. Thus, pick any interior point b0 of L[X]. The solution for the maximization problem in
Equation (13) exists by Assumption 2. Since u1(�; #) is strictly concave, L linear (Assump-
tion 2), and X convex, the solution exists and is unique. Let x̂(b0) denote this solution.
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Being a Euclidean space, X is open, so it has a neighborhood N of b0 in L[X] such that
(b=b0)x̂(b0) 2 X for all b 2 N . De�ne

A(b) := u1

 
b

b0
x̂(b0); #

!
; 8b 2 N:

Notice that A is concave and di�erentiable over N , since u1(�; #) is concave and di�erentiable.
Note also A(b0) = �(#)�(b0). Furthermore, for any b 2 N , A(b) � �(#)�(b), because the
linearity of L implies L((b=b0)x̂(b0)) = (b=b0)L(x̂(b0)) = b, so (b=b0)x̂(b0) is feasible for
the maximization problem in Equation (13) given the parameter b. Thus, the Benveniste-
Scheinkman Theorem implies that �(#)�(�) is di�erentiable at b0. Since b0 can be any interior
point of L[X], we have proved that the function �(#)�(�), and hence �, is di�erentiable. This
proves Claim (ii). Thus, we have proved the lemma. Q.E.D.

A.3 The Proof of Lemma 4.5

The nonnegativity of � and W � will immediately follows from Claims (a) and (b) of this
lemma. Since the function R is nondecreasing by construction (Equation (22)), Claim (c) of
the lemma will imply that � and W � are nondecreasing. Consequently, Claim (d) will imply
the continuity of �, which in turn will imply that W� is continuous. Thus, we need only to
prove each itemized claim of the lemma.

For Claim (a), R(z) � 0 implies thatW (�; z) is strictly decreasing, because � is nonneg-
ative and strictly increasing (Lemma 4.2 (i)), and because the function ~v is strictly decreasing
(Assumption 3). Thus, the maximum �(z) of W (�; z) is minL[X], and minL[X] = 0 by the
nonnegativity and linearity of L. Since ~v(0) = 0 (Assumption 3), we have W �(z) = 0. Thus,
Claim (a) follows.

We now prove Claim (b). When R(z) > 0, W (�; z) is strictly concave, since � is strictly
concave (Lemma 4.2) and ~v is assumed to be concave (Assumption 3). Thus, the maximum
�(z) of W (�; z) is unique. Furthermore, the maximum exists and is nonzero, because �
satis�es the Inada Condition (as u(�; #) does, by Assumption 3). Since L is nonnegative,
we have �(z) > 0. Consequently, W �(z) > 0. The reason is that 0 2 L[X] and �(z) is the
unique maximum, so 0 =W (0; z) < W (�(z); z) = W �(z). This proves Claim (b).

The �rst half of Claim (c) follows directly from Claims (a) and (b). To prove its
second half, pick any z; z0 2 �[�] such that R(z) and R(z0) are both positive. By the proved
uniqueness of the maximum �(z) for z (and �(z0) for z0),

[R(z)�R(z0)][�(�(z))� �(�(z0))] > 0:

Since � is strictly increasing (Lemma 4.2), R(z) > R(z0) implies �(z) > �(z0). With � being
positive at z and z0 (Claim (b)), � is positive at these points (Lemma 4.2). Consequently,
R(z) > R(z0) implies

W �(z
0) =W (�(z0); z0) < W (�(z0); z) < W �(z):
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Claim (c) is thus proved.

We next prove Claim (d). The function W is continuous, by the continuity of the
functions � (Lemma 4.2), � (Equation (17)), and ~v (Assumption 3). To prove that � is
continuous, pick any z 2 �[�] and any in�nite sequence (zj)j that converges to z. (Such
sequence exists, since the set �[�] is an interval by the convexity of � and continuity of �.)
Consider the sequence (bj)j de�ned by bj := �(zj) (8j). Since � is well-de�ned and assumed
to be monotone on the compact set �[�], the in�nite sequence (bj)j is bounded, and so has
a cluster point b, so bji !i b for some subsequence (bji)i. We claim that b = �(z). Suppose
not, then W (b0; z) > W (b; z) for some b0 6= b. With W continuous, there are open disks O1

and O2 in R2 such that (b0; z) 2 O1, (b; z) 2 O2, andh
(�b; �z) 2 O1 and (b̂; ẑ) 2 O2

i
=) W (�b; �z) > W ((b̂; ẑ):

But, for all i su�ciently large, (b0; zji) 2 O1 and (bji; zji) 2 O2, so W (b0; zji) > W (bji ; zji) for
any such i, contradicting the fact that bji = �(zji) (8i). Thus, we have proved that b = �(z).
Since z was chosen arbitrarily from �[�], the function � is continuous. Thus, Claim (d) is
proved.

Finally, we prove Claim (e). Notice that the function �
�1

� is well-de�ned by Equa-

tion (27), since the maximum of the inverse image �
�1
(b) exists because � is continuous

(Claim (d)). Notice that �
�1

� is strictly increasing. By the de�nition of !� in Equation (26),
the objective in the maximization problem of Equation (21) becomes

J(b) := z�(b) �
Z b

0
�
�1

� (t)� 0(t)dt:

We need only to show that b = �(z) maximizes J(b). This is trivial when the range of � is a
singleton. We hence focus on the other case. In that case, the range of � is a nondegenerate
interval, because � is continuous (Claim (d)) and the domain �[�] of � is a nondegenerate
interval. Consequently, with � di�erentiable (Lemma 4.2), J(b) is a di�erentiable function
of b. Thus, for any b 2 L[X], the derivative of J at b is

J 0(b) = � 0(b)(z � �
�1

� (b)) = positive term� (z � �
�1

� (b));

where the second equality follows from the fact that � is strictly increasing (Lemma 4.2).

Since �
�1

� is strictly increasing, the derivative J 0(b) positive for all b < �(z) and nonpositive
for all b � �(z). Thus, �(z) is a maximum of W (�; z) on L[X]. This proves Claim (e). We
have therefore completed the proof of the lemma. Q.E.D.

A.4 The Proof of Proposition 4.2

Since the optimal auction (��; 0) constructed in Proposition 4.1 gives the seller an expected
payo� equal to the maximum value of expression (20), it su�ces Claim (a) to show that
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using the seller's true utility function v(x) + y as the scoring rule does not give the seller
an expected payo� as high as that maximal level. Denote this scoring rule by �. Since
v(x) = ~v(L(x)) (Assumption 3), we have

�(x; y) = y + ~v(L(x)); 8x8y:
Whether the scoring-rule auction using � is �rst- or second-score, a winner of type # in this
game chooses his attribute bundle x such that L(x) solves

��(z) := max
b2L[X]

fz�(b) + ~v(b)g ; with z := �(#): (45)

Let ��(z) denote a solution of this problem. Comparing this problem with the problem
maxbW (b; z) = maxbW (b; z) (since R(�) is assumed to be strictly increasing), which is
solved by �(z), we know

��(z) = �(R�1(z)); 8z 2 �[�];

where the inverse R�1 exists since R(�) is assumed to be strict monotone. Since R(�) is
negative up to the point z0 > min �[�] (the proof of Corollary 4.1), we have

��(z) 6= �(z); 8z 2 �[�]:

For each z 2 �[�], since �(z) is the unique maximizer of W (�; z) (Lemma 4.5 (a) and (b)),
��(z) does not maximizeW (�; z). We have therefore deduced that using � as the scoring rule
does not maximize the seller's equilibrium expected payo� (20). This proves Claim (a).

We now prove Claim (b). Pick any x 2 X such that L(x) is interior to the range of �.
By Assumption 3 and Equations (29),

@

@L(x)
u(x; y)� @

@L(x)
��(x; y) = � 0(L(x))

 
~v0(L(x))

� 0(L(x))
+ �

�1
(L(x))

!
:

Since the function � is positive and strictly increasing over (z0;1)\ �[�], and is constantly

zero for z � z0 (Lemma 4.5 and Corollary 4.1). Thus, the inverse �
�1
(L(x)) is an interior

solution for the problem maxW (�; ��1(L(x))), so the �rst-order necessary condition gives

R(�
�1
(L(x))) = � ~v0(L(x))

� 0(L(x))
: (46)

Equation (31) then follows from the de�nition of R(�) and the fact that � 0 is positive. This
proves Claim (b).

For Claim (c), it su�ces to prove Equation (32). Since ~v is continuous, di�erentiable,
and ~v(0) = 0 by assumptions, we have

~v(b) =
Z b

0
~v0(t)dt; 8b 2 L[X]:

Thus, \~v �! 0 pointwise" implies

~v0(b) �! 0 a.e. b 2 L[X]:
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This equation, coupled with Equation (46), implies that R(�
�1
(b)) ! 0 for almost all b in

the range of �. With z = z0 being the unique root of R(z) = 0 (R(�) is strictly increasing)
and R continuous (� is continuous by Equation (17)), we have ��1(b))! z0 for almost all b
in the range of �. Equation (32) then follows from Equations (26) and (29). Thus, Claim (c)
is proved. This proves the corollary. Q.E.D.

A.5 The Density of a Statistic of Random Vectors

If u(x) is a statistic of the m-dimensional random vector x, which is distributed according
to a density function f(x), how do we calculate the density function f� of the statistic u(x)?
The following lemma answers this question. It was used in Corollary 3.1 and was the basis of
Equation (17). The answer says that the density f�(v) at a point v is the \surface" integral of
f on the level set u�1(v). This fact was heuristically derived in Courant [8, pp. 300-302] and
Armstrong [1]. (In the latter, the function u is subject to a stronger condition (homogeneity)
than here.) For the convenience of the reader, we prove it here, following their intuition.

Lemma A.1 Let u : Rm ! R, f : Rm ! R, and K � Rm. Suppose:

a. Except for �nitely many points x in the boundary of K such that u(x) is not interior to
the range u[K], the function u is three-times continuously di�erentiable and its gradient
is nonzero everywhere.

b. Each level set of u is a smooth (m� 1)-manifold in Rm and cuts Rm into two discon-
nected sets.

c. The set K is compact and convex, with full dimension in Rm, and its boundary consists
of �nitely many smooth (m� 1)-manifolds.

d. The function f is continuous on K.

Then for any v in the interior of the range u[K],

d

dv

Z
fx2K:u(x)�vg

f(x)dx1 � � �dxm =
Z
fx2K:u(x)=vg

f(x)

kru(x)kdS: (47)

Proof : Since we can approximate the set K by compact sets K 0 excluding the �nite singular
boundary points, there is no loss of generality to assume that the function u is three-times
di�erentiable and has nonzero gradient everywhere. Pick any v in the interior of the range
u[K]. For each vector x 2 u�1(a) \K, construct a gradient path 
x : [0;1)! Rm by


0x(t) =
ru(
x(t))
kru(
x(t))k ; 8t 2 (0;1);


x(0) = x:
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Since u is assumed to be at least twice continuously di�erentiable, with nonzero gradient
everywhere, one can easily show that the above system of di�erential equations has a unique
solution, so 
x is well-de�ned. By the chain rule, (u � 
x)0(t) = kru(
x(t))k. Thus, u � 
x(t)
is strictly increasing in the parameter t, so the path 
x starts at the point x and moves along
the gradients of u.

Since K is compact and u is at least twice continuously di�erentiable, we can pick
an � > 0 so small that for each x 2 u�1(v) the gradient path 
x intersects the level set
u�1(v+�) at some point. Since the path is continuous, it intersects each level set u�1(a+ �),
with 0 < � < �. Pick any such �. We have

8x 2 u�1(v) 9 unique �(x; �) > 0 s:t: u � 
x(�(x; �)) = a+ �:

Here the uniqueness of the intersection point 
x(�(x; �)) follows from the proved fact that
the value of the function u is strictly increasing along the gradient path 
x.

We want to calculate the integralZ
fy2K:v�u(y)�v+�g

f(y)dy1 � � �dym: (48)

To do that, we will \parameterize" the region fy 2 K : v � u(y) � v + �g, on which
we integrate f , as follows. The intuition is that a point in this region can be viewed as
a point on some gradient path starting at some point on the level set u�1(v). Look at a
gradient path that starts at an intersection points x between the level set u�1(v) and the
boundary @K of the space K. We know that such a path reaches the level set u�1(v + �)
at a unique point 
x(�(x; �)). The set of all such arcs x ; 
x(�(x; �)), with x ranging over
the intersection u�1(v) \ @K, comprises a cylinder-like smooth m� 1 surface. Now look at
the region circumscribed by this \cylinder" and bounded between the level sets u�1(v) and
u�1(v + �). Denote this region by V�. We claim that

V� = fy 2 Rm : y = 
x(�(x; �)) for some x 2 u�1(v) \Kg: (49)

The \�" part of this equation is trivial. For the \�" part, from any point y 2 V�, we can
construct a \reversed gradient path" that reaches the level set u�1(v) at a unique point x, so
that the reverse of the path is the gradient path starting from the point x. Thus, the point
y belongs to the set on the right-hand side of the equation. This proves Equation (49).

Compare the two regions V� and fy 2 K : v � u(y) � v + �g. The latter is simply
the region bounded between the level sets u�1(v) and u�1(v + �) and circumscribed by the
boundary of K. Let �V� be the closure of the symmetric di�erence between the two regions.
Clearly, �V� is compact, so the continuous function f has maximum and minimum values
on �V�. Thus,Z

�V�
min
K

f �
Z
fy2K:v�u(y)�v+�g

f(y)dy�
Z
V�
f(y)dy �

Z
�V�

max
K

f: (50)

We will show later that the both sides of this sandwich inequality are in smaller order than
�, so the integral (48) converges to

R
V� f in faster order than � goes to zero.
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We �rst calculate the integral
R
V� f . By Equation (49), we can integrate in two steps: (i)

for each point x on the level set u�1(v)\K, integrate along the gradient path x; 
x(�(x; �));
(ii) integrate on the level set u�1(v) \K. That is,

Z
V�
f(y)dy =

Z
u�1(v)\K

Z �(x;�)

0
f(
x(t))k
0x(t)kdtdS =

Z
u�1(v)\K

Z �(x;�)

0
f(
x(t))dtdS;

where the last equality follow from the construction of the gradient path 
x. By the
Mean-Value Theorem, the inner integral is equal to f(
x(�(x; �)))�(x; �) for some �(x; �) 2
(0; �(x; �)). Thus, Z

V�
f(y)dy =

Z
u�1(v)\K

f(
x(�(x; �)))�(x; �)dS: (51)

Since K is compact and u continuous, one can easily show that

�(�; �)! 0 uniformly on K \ u�1(v) as �! 0: (52)

Consequently, �(�; �)! 0 uniformly, so f(
x(�(�; �)))! f(x) uniformly on K \ u�1(v). We
now calculate �(x; �) for small �. Since the gradient path 
x is twice continuously di�eren-
tiable (u is thrice continuously di�erentiable), Taylor's formula gives


x(�(x; �)) = 
x(0) + �(x; �)
0x(0) + o(�(x; �)) = x+ �(x; �)
ru(x)
kru(x)k + o(�);

where the second equality uses the fact (52).16 With u at least twice continuously di�eren-
tiable, Taylor's formula gives

a+ � = u(
x(�(x; �))) = u(x) + �(x; �)kru(x)k+ o(�):

Thus,

�(x; �) = �

 
1� o(�)

�

!
=kru(x)k:

It follows that �(�; �) ! �=kru(�)k uniformly on u�1(v) \ K as � ! 0. Equation (51) thus
gives Z

V�
f(y)dy! �

Z
u�1(v)\K

f(x)

kru(x)kdS as �! 0:

Consequently, by Equation (50), we will be done if
R
�V�

maxK f and
R
�V�

minK f are
both o(�). (Notice that being O(�) does not su�ce.) We show that for

R
�V� maxK f . The

case for
R
�V� minK f is similar. As for the case of V�, we can parameterize the set �V� by the

bounded m�1 surface u�1(a+ �)\�V� and the reversed gradient paths starting from points
lying on u�1(a+�)\�V�. (Here we need to start from the level set u�1(a+�) because the level
set u�1(a)'s intersection with �V� has only dimension m � 2.) Thus, we can calculate the
integral

R
�V� maxK f in two steps: (i) for each point in u�1(a+ �)\�V�, integrate along the

reversed gradient path from that point up to the boundary @K; (ii) integrate the quantity

16An expression a(�) is said to be o(�), i.e., in smaller order than �, if a(�)
�

! 0 as � ! 0. An expression
b(�) is said to be O(�), i.e., in the same order as �, if there is a �nite number k such that b(�)! k� as � ! 0.
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resulting from step (i) over the bounded surface u�1(a+ �)\�V�. Similar to the convergence
fact (52), the arc lengths of the arcs on these reverse gradient paths converge uniformly to
zero when �! 0. Thus,Z

�V�
max
K

f � O(�)S(u�1(a+ �) \�V�)max
K

f

for su�ciently small �, where S(u�1(a+ �) \�V�) denotes the \area" (Lebesgue measure in
Rm�1) of the m�1 surface u�1(a+�)\�V�. As �! 0, this surface converges to u�1(a)\�V�,
which is of Lebesgue measure zero in Rm�1. Consequently, S(u�1(a+ �)\�V�) converges to
zero as �! 0. Thus,

R
�V� maxK f = O(�)O(�) = o(�).

Finally, we have deduced that, when �! 0,

Z
fy2K:v�u(y)�v+�g

f(y)dy =
Z
V�
f(y)dy + o(�)! �

 Z
u�1(v)\K

f(x)

kru(x)kdS +
o(�)

�

!
;

hence

lim
�!0

1

�

Z
fy2K:v�u(y)�v+�g

f(y)dy =
Z
fx2K:u(x)=vg

f(x)

kru(x)kdS;

as desired. This completes the proof of the lemma. Q.E.D.

By the above lemma, we can calculate the induced density function � in Section 4.

Corollary A.1 Suppose Assumptions 1{3. The density function � of the statistic � (As-
sumption 2) has �nite value and is continuous on the range �[�] of �, and it is positive over
the interior of �[�]. Furthermore, Equation (17) holds.

Proof : Pick any interior point z of the range �[�]. Lemma A.1 and Equation (14) imply
that

�(z) =
Z
f#2�:�(#)=zg

f�(�(#))� f0(#)

kr�(#)k dS:

By assumption, � is homogeneous of degree one, and f0 is homogeneous of degree zero. Thus,
by changing the variable #=z 7! #, we have

�(z) = zm�1f�(z)
Z
f#2�:�(#)=1g

f0(#)

kr�(#)kdS:

This proves Equation (17) for all interior points z of �[�], with the surface integral here
being the constant k there. The equation can be continuously extended to the boundary of
�[�], because f� is continuous (Assumption 2) and the integral is �nite (\�(#) = 1" implies
\r�(#) 6= 0" by Assumption 2). Thus, Equation (17) holds throughout �[�], and � is �nite
and continuous. Since f0 is positive on �[�] and f� is positive over the interior of �[�]
(Assumption 2), the density function � is positive over the interior of �[�]. This proves the
corollary. Q.E.D.
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