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Abstract

This paper analyzes the equilibrium play in a random matching model with a

changing environment. Under myopic decision making, players adopt imitation strate-

gies similar to those observed in evolutionary models with sampling from past play

in the population. If the players are patient, equilibrium strategies display elements

of experimentation in addition to imitation. If the changes in the environment are

infrequent enough, these strategies succeed in coordinating almost all of the players

on the dominant action almost all of the time. The myopic rules, on the other hand,

result in mis-coordination for a positive fraction of time.
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1 Introduction

When economic agents can observe sample outcomes from the past play in the population,

they can react to the observations in two possible ways. They may decide to imitate the

players who are using the most e®ective actions, or to experiment with an alternative

strategy that they did not observe in the population sample. When the environment is

stable, models in evolutionary game theory predict that under mild regularity conditions,

myopic players adopt imitative behavior and select the dominant action whenever it exists.

This paper considers an equilibrium model where the environment changes from period to

period and dominant actions become dominated at random times. With myopic players,

imitation strategies are still selected in equilibrium, but the players are not coordinated on

the dominant action all the time. However, in a model with forward-looking players, we

show that sampling from population play yields an equilibrium where both imitation and

experimentation are present. Even though experimentation provides a public good in the

model, the equilibrium experimentation is su±cient to coordinate almost all the agents on

the dominant action almost all the time if the changes in the environment are infrequent

enough.

The model we analyze has two states of nature and two actions. In the ¯rst state, the

¯rst action is dominant, in the second, it is dominated. In order to represent informa-

tion transmission through sampling from the population play, we imagine a continuum of

identical players matched according to a Poisson arrival process. As is customary in the

evolutionary game theory literature, we are interested in the relative payo® comparison

between individuals, rather than the absolute payo®s received by a single player. In line

with that purpose, we assume that the players are matched to play a zero sum game with

the following property. Whenever the players choose the same action, the game ends in

a draw regardless of the true state, so that the match is not informative on the state of

nature. If, on the other hand, a player wins by playing the ¯rst action, then she (and her

opponent) can deduce the true state of the world at the moment of the match. The state
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changes according to a stationary Markov transition process, independently of any actions

taken in the game.

We consider ¯rst the case in which players observe the entire history of play and maxi-

mize their myopic utility. The equilibrium in this game takes a form familiar in evolutionary

game theory: players adopt purely imitative strategies where all players choose the same

action as in the previous period until a loss is observed. Our main result in this context is

that under these imitation dynamics, the population play is not responsive to state changes.

In fact, while the population shares of players choosing either strategy take all the values

in the open unit interval in¯nitely often, the population fraction of players choosing, say,

the ¯rst action crosses any ¯xed value in the unit interval very infrequently in comparison

to the frequency of state changes. In other words, most of the state changes do not a®ect

the play of most of the players.

In the second model, we introduce forward-looking behavior, and assume that all players

maximize their expected future stream of utilities. For simplicity we assume that players

retain only single period histories and hence they condition only on the outcome in the

previous match.1 It is not hard to see that a symmetric adoption of the purely imitative

strategies cannot constitute an equilibrium for this game. If almost all players in the

population are playing a ¯xed action regardless of the true state of nature, then it is

optimal for an individual player to experiment, i.e. choose an action di®erent from the

previous action following a draw. To see this, notice that the losses from an experiment

last for a single period since the choice of a dominated action results almost certainly in the

detection of the true state in the next period, and hence the play will revert to original play.

A successful experiment, however, has payo® implication beyond the single period. The

bene¯ts from an experiment accumulate until the next state change. If the state changes

are infrequent enough, then the bene¯ts outweigh the losses, and the symmetric adoption

of imitating strategies cannot be an equilibrium.

1We will show that this bounded-rational strategy yields almost the same payo® of fully-rational strate-

gies for our case of interest.
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We show that the model with forward-looking players has a symmetric (and stationary)

mixed strategy equilibrium where all the players randomize with the same probability

following the observation of a draw in the previous match. The main result of the paper

is the characterization of these equilibria for infrequent state changes. In particular, it is

shown that the fraction of time that any ¯xed population share spends on the dominated

action converges to zero as state changes become infrequent. In other words, almost all of

the players choose the dominated action almost all of the time as the state changes become

rare. A consequence of this result is that with infrequent state changes, it would not be in

any given player's self interest to sample additional past observation at a positive cost.

The techniques that we develop for the analysis might be of use in other contexts such as

search models in a changing economic environment. Between the state changes, aggregate

play in this model is deterministic by the law of large numbers. When the state changes,

the law of motion changes for the aggregate population. The resulting compound stochastic

process is an example of a piecewise-deterministic process as described in Davis 1993. The

ergodic theory of these processes is quite simple, and we can make repeated use of renewal

theory.

The paper is organized as follows. Section 2 presents the literature review. Section 3

introduces the model. Section 4 analyzes myopic players. Section 5 contains the equilibrium

analysis for the case of forward-looking players. Section 6 analyzes the adoption of new

technologies. Section 7 concludes, and the proofs are in Appendix.

2 Related Literature

This paper is connected to three strands of literature. In the herding literature, Ellison and

Fudenberg (1995) identify conditions under which players will select the \correct" action

given the state of the world, when sampling from population play and adopting a \must-

see-to-adopt" rule (i.e. players may change their action only if they sample some players

taking a better alternative). Banerjee and Fudenberg (1996) allow players to adopt fully-
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rational decision rules and show that if players sample from the population in a proportional

fashion, and signals are informative enough to outweight the prior, at the only stationary

outcome all agents make the correct choice. To our knowledge, this paper is the ¯rst to

study experimentation and social learning in a changing environment with forward looking

agents. Smith and Sorensen (1999) explicitly introduce forward-looking behavior in a ¯xed

environment and show that the set of stationary cascades shrinks as individuals become

more patient. Moscarini, Ottaviani and Smith (1998) analyze a social learning model in

a changing world with myopic players, their result on the fragility of cascades depends on

exogenous private signals relative to the state of the world.

The implications of sampling from population play have been studied extensively in

the evolutionary games literature. A preliminary contribution is the work of Boylan (1992)

that identi¯ed matching schemes that allow the approximation of the stochastic population

evolution by means of a dynamic system. Nachbar (1990), Friedman (1991) and Samuel-

son and Zhang (1992) independently introduce payo®-monotonic dynamics and show that

in continuous time, iterated strictly dominated strategies will be extinct in the long-run

population if the initial population play is full support (see also Dekel and Scotchmer 1992,

Cabrales and Sobel 1992, Bjornestedt 1993, and Hofbauer and Weibull 1996). Speci¯c char-

acterizations of payo®-monotonic dynamics have then been derived in models of `learning

by sampling the population play' by Bjornestedt (1993), Bjornestedt and Weibull (1993),

Schlag (1998), and Borgers and Sarin (1999).

Models of experimentation in a changing world were treated in the single agent case

by Rustichini and Wolinsky (1995) and by Keller and Rady (1999), in a setting where

a monopolist needs to choose between a sure action and an uncertain alternative whose

value changes randomly over time. They show that patient players will converge on the

optimal action almost all the times if the state changes are infrequent enough. In our

model, the forward looking optimal experimentation aspect of these models is combined

with the e®ects of social learning and imitation.
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3 The Model

A continuum population of players indexed by the points in the unit interval are matched

according to a Poisson process with parameter ¹ to play one of two symmetric 2£2 contests,
G1 or G2: In other words, the probability that player j 2 [0; 1] is matched to play within

the time interval (t; t+¢t) is ¹¢t for ¢t small. The two possible payo® matrices G1 and

G2 are given by:

G1 :
a1 a2

a1 (0; 0) (1;¡1)
a2 (¡1; 1) (0; 0)

G2 :
a1 a2

a1 (0; 0) (¡1; 1)
a2 (1;¡1) (0; 0)

:

Note that action ai is strictly dominant in game Gi for i = 1; 2:2 If the players are not sure

which Gi they are playing, they can tell the two games apart conditional on observing an

outcome o® the main diagonal. A diagonal outcome does not help the players in distin-

guishing between the two games. This simple speci¯cation allows us to focus our attention

on the informational content on relative payo® comparison among individuals, and to rule

any informational content of the absolute value of a player's payo®. Denote the set of player

i0s opponents in period t by j (t) 2 [0; 1] [ ;; where j (t) = ; if j is not matched in period

t: De¯ne the function mj (t) ´ sup fm < t j j (m) 6= ; g. Notice that because of Poisson

matching, Pr fmj (t) < tg = 1; and mj (t) has an interpretation as the last time before t

in which j was matched. Since the payo®s are de¯ned as expectations over the matching

probabilities and other variables, we can assign any behavior to the zero probability events

where mj (t) = t without changing payo®s.

Denote the event that game Gi is played in period t by f! (t) = !ig: The state space
describing uncertainty about the game in period t is then given by  = f!1; !2g : The key
ingredient in this paper is that the state changes exogenously over time. For concreteness,

we assume that the state change process is another Poisson process with parameter ¸:3 Let

2The normalization to unit gains and losses o® the diagonal is made for convenience. The main results
of the paper would go through in the more general case as well.

3Alternatively, we could suppose that the state durations are drawn independently from a known dis-
tribution, Fi (T ) ; for state !i: In other words, if there is a state change at instant t to state !i; then
Pr (! (s) = !i for t < s < u) = Fi (u¡ t) :
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aj (t) denote the action that player j would choose if matched at instant t: The evolution

of play in the population is governed by the strategies of the players and the random state

changes.

4 Myopic Optimization

Consistently with previous contributions in evolutionary games literature, we assume in

this section that each player maximizes her payo® in a myopic fashion.

We ¯rst de¯ne the history observed by player j: Let t be the vector of previous match-

ing times of j. The vector of actions chosen by j in the previous matches is then denoted

by aj; and the actions taken by j0s opponents are denoted by aj(t): Let uj

¡
aj;aj(t)

¢
de-

note the vector of realized payo®s. The history observable to player j at t is hj (t) =¡
aj; aj(t); t;uj

¡
aj; aj(t)

¢
; t
¢
; where the last component underlines that strategies may de-

pend on calendar time.

A pure strategy of an arbitrary player j at instant t is then

sj : hj (t)! fa1; a2g :

Denoting by a (t) the random action of a player from the population at time t; we will

assume that player j prefers action a1 to action a2 at time t if

E
£
u (a1; a (t) ; ! (t)) jhj (t)

¤ ¸ E
£
u (a1; a (t) ; ! (t)) jhj (t)

¤
:

The ¯rst Proposition shows that the unique equilibrium is such that players will always

adopt the imitation rule.

Proposition 1 If players are myopic optimizers, for any ¸, and ¹; the equilibrium strategy:

s (a1; 1) = s (a1; 0) = s (a2;¡1) = a1 (1)

s (a2; 1) = s (a2; 0) = s (a1;¡1) = a2:
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The intuition is simple. Since the gain for successful experimentation coincides with

the loss for unsuccessful experimentation, players will deviate from experimentation only

when assessing the state changed has occurred with probability at least a half. This is

never the case under Poisson arrivals, because the probability that no state change has

occurred dominates the probability that one and only one state change has occurred, and

the probability that exactly 2k state changes has occurred dominates the probability that

2k + 1 state changes have occurred, for any k > 0:

We denote the strategies derived in Proposition 1 as imitation strategies. It is important

to notice that if Gi is the game played in all t, this dynamics leads to an asymptotic steady

state where all players correctly assess the state of the world !i and play action ai: The

following analysis shows that in changing environments, imitation strategies do not allow

players to correctly assess the state of the world over time.

Denote the population fraction of players using a1 in period t by x (t), i.e. using the

law of large numbers, we have

x (t) = Pr fa (t) = a1g

for a randomly picked player in t: To obtain a characterization of the rates of change of

the actions in the population, we need to make a distinction according to the state of

nature that prevails at t. Since the state changes according to a Poisson process, the time

derivatives of the population fractions exist almost everywhere. In !1; the law of motion

for x (t) is given (almost everywhere) by:

¢

x (t) = ¹ (1¡ x (t))x (t) :

Of all the matched players (that have instantaneous °ow rate of ¹), only those playing a2

(fraction (1¡ xt)) that are matched with players playing a1 (fraction x (t)) adjust their

behavior with positive probability. The solution to this di®erential equation yields the
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population share x (t) given an initial condition x (0) :

x (t) =

x(0)
1¡x(0)

e
¹

2
t

x(0)
1¡x(0)

e
¹

2
t + e¡

¹

2
t
=

1

1 + 1¡x(0)
x(0)

e¡¹t
: (2)

The dynamics for the population fraction playing a2 follows immediately from the constant

population assumption. A similar derivation can be done for state !2 to yield:

x (t) =
1

1 + 1¡x(0)
x(0)

e¹t
: (3)

The main task in this section is to patch these two dynamics together to yield an overall

population dynamics in the changing environment. Start the system without loss of gener-

ality at x (0) = 1
2
; ! (0) = !1: Denote the random times of state changes by f¿ ig1i=1 ; where

¿ i is the physical instant of i
th state switch. Notice that for i odd, the switches are from

!1 to !2 and for i even, they are from !2 to !1. As the state changes are characterized by

a Poisson arrival process, the expected waiting time between ¿ i and ¿ i+1 is
1
¸
. To derive

the asymptotic properties of this process, consider the population shares at the switching

times, x (¿ i) : We know that x (¿ i) < x (¿ j+1) for i even and the reverse inequality holds

for i odd. Consider ¯rst the following limit:

xA = lim
T!1

R T

0
IA (x (t)) dt

T
; for A ½ (0; 1) ;

where IA(x (t)) = 1 if x (t) 2 A and IA (x (t)) = 0 if x (t) =2 A: This limit measures

asymptotically the fraction of time that x (t) spends in an arbitrary set A. The next

lemma shows that this limit is 0 for all closed A.

Lemma 1 If players are myopic optimizers, for any ¸, and ¹; then xA = 0 for all closed

A ½ (0; 1) :

We need the following de¯nition to make precise the notion that the play in the popu-

lation as described by x (t) is not very sensitive to state changes.

De¯nition 1 State !i is ²-undetected for duration i if x (t) ¸ 1 ¡ ² for ¿ i � t � ¿ i+1, i

odd and !1 is ²-undetected for duration i if x (t) � ² for ¿ i � t � ¿ i+1, i even.
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In words, all but at most ² fraction of players in the population play the dominated

action for the time interval in question. The previous lemma can be used to prove the

following proposition.

Proposition 2 If players are myopic optimizers, for any ¸, and ¹; in the long run, a half

of the state durations is ²-undetected for all ² > 0.

In words, the proposition above characterizes the frequency of large shifts in the pop-

ulation play in relation to the frequency of the state changes. An alternative statement

would be that in the long run, the population play reacts to only a negligible subset of

actual state changes, and as a result, the majority of the population play a constant action

for a time interval that is by far longer than a single state duration.

Therefore even if the prior is correctly assigned and payo® comparisons are perfectly

informative about the state of the world, sampling from population play fails to keep track of

state changes with myopic agents. In evolutionary game theory terms, strictly dominated

strategies do not vanish in the stationary distribution implied by any payo®-monotonic

regular dynamics.

Remark 1 In case the state changes occur with di®erent probability, or gains for taking

the dominant action do not coincide, the players will not always adopt imitative strategies.

Suppose in fact that the state changes from !j to !i with rate ¸i; and without loss of

generality, that ¸2 > ¸1: Then the optimal decision rule includes histories after which a

player adopts action a2 even though at the previous match she played a1 and tied with the

opponent. The main result of the section, Proposition 2, however continues to hold in the

sense that the population play concentrates on the action a2 in the long run: Therefore the

!1-state durations will be ²-undetected for all ² > 0. The same result holds in the case

that u (a2; a1; !2) > u (a1; a2; !1) : In sum, dominated actions are adopted in the long run

by a majority of the population of myopic players for fractions at least min
n

¸1
¸1+¸2

; ¸2
¸1+¸2

o
of the total time. More details are in the Appendix.
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5 Forward-Looking Optimization

In this section, we assume that each player cares about her own payo® as well as about the

her current payo® as well as the future payo®s. At the same time, for analytical tractability,

we assume use stationary strategies with a single period memory. We will see at the end

of the section that such an assumption does not entail signi¯cant predictive loss. As in the

previous section, we present only the case for ¸1 = ¸2:
4

We can de¯ne the history observable to j at t as

hj (t) =
³
aj
¡
mj (t)

¢
; aj(m

j(t)) ¡mj (t)
¢
; uj

¡
mj (t)

¢´
:

In fact, some of the information is super°uous since the action of the opponent can be

deduced from the payo® realization. Therefore it is more convenient to de¯ne the history

as hj (t) = (aj (mj (t)) ; uj (mj (t))). Notice that we are implicitly assuming here that players

do not know mj (t), i.e. the strategies do not depend on calendar time. A pure strategy of

an arbitrary player j at instant t is then

sj : hj (t)! fa1; a2g :

In order to simplify the calculations, we use the overtaking criterion rather than the dis-

counted sum of payo®s for evaluating sequences of outcomes.5 Formally, let fmkg1k=0 ´ m

be the random sequence of future matching times for j. The sequence of future actions cho-

sen by j is then denoted by faj (mk)g1k=0 ´ aj; and the actions taken by j0s opponents are

denoted by
©
aj(mk) (mk)

ª
1

k=0
´ aj(m): To evaluate the utilities from various action pro¯les,

we consider the following in¯nite summations:

¼
¡
aj;aj(m)

¢
=

1X
k=0

u
¡
aj (mk) ; a

j(mk) (mk) ; ! (mk)
¢
:

4The case for ¸1 6= ¸2 yields indistinguishable results. The Appendix, when presenting the proofs of
the statements presented in this section, also points out the di®erences for the case when ¸1 6= ¸2.

5The limit of means criterion is does not discriminate enough bewteen sequences of outcomes for our
purposes since the e®ect of any individual decisions is vanishing in the limit (the processes that result from
the analysis are strongly mixing).
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If the summation above does not converge, assign the value ¡1 to ¼: Since the players

are randomly matched, an expectation must be taken over the future opponents when

evaluating the payo®s.

Consider player j at the moment of her decision between a1 and a2; let her choice be

called ai, and notice that a1 and a2 induce di®erent distribution of continuation plays. Let

the future actions conditional on an initial choice ai by a
j
i so that a choice at matching

instantmk following initial choice ai is given by a
j
i (mk) : Letm; aji and the actions of future

opponents, aj(m), be drawn from their respective distributions.

According to the overtaking criterion, player j prefers action a1 to action a2 if there is

a K <1 such that for all K ¸ K;

E
KX
k=0

u
¡
aj1 (mk) ; a

j(mk) (mk) ; ! (mk)
¢ ¸ E

KX
k=0

u
¡
aj1 (mk) ; a

j(mk) (mk) ; ! (mk)
¢
;

where the expectations are taken with respect to the random matching probabilities. In the

last part of the section, the impact of the current choice on the future choices and payo®s

is made explicit.

We solve for the symmetric stationary equilibrium strategies of the game. Formally, we

are looking for a strategy s 2 S such that it is optimal for each player to use s if all the

other players use s: Notice that here we are assuming that a player's own future choices

comply with s:

The ¯rst two results of this section make the case for imitation and experimentation.

The following Lemma, in particular, shows that the optimal strategy must yield imitation

after a history that reveals the state of the world.

Proposition 3 For any ¹ and ¸; at equilibrium, s(a1; 1) = s(a2;¡1) = a1; and s(a2; 1) =

s(a1;¡1) = a2:

While imitation is settled as the optimal strategy when the history reveals the true

state of the world, the next result establishes the value of experimentation after histories

that do not reveal the state of the world. As long as the states do not change too often,
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there does not exist an equilibrium where players play imitation after any such histories.

In what follows, we use ¾ to indicate the mixed strategy of any given player.

Proposition 4 For all ¸; there is a ¹ (¸) such that, at the stationary, symmetric equilib-

rium,

Pr fs (a1; 0) = a1g < 1, Pr fs (a2; 0) = a2g < 1

whenever ¹ ¸ ¹ (¸) :

The intuition behind this result is quite simple. If all the other players are using the

imitation strategies from the previous section, then it is optimal for a given individual

to change her action conditional on observing a tie in her previous match. The reason

for this is that the play within the population does not react to most state changes in

the long run, and therefore a single trial leads to a large expected number of wins in the

future if the population is currently concentrated on the inferior action. If the population

is concentrated on the dominant action, a change of actions leads to a single period loss.

Therefore the gains are obtained over many periods if the meeting rate is high, and losses

take place in a single period, and it is optimal to change actions if ¹ is high enough.

Given that the state changes with the same rate from !1 to !2 and from !2 to !1; it is

meaningful to restrict attention to equilibria where Pr fs (a1; 0) = a1g = fs (a2; 0) = a2g ;
and we introduce " = 1¡Pr fs (ai; 0) = aig : In words, the relevant strategies always choose
the dominant action in the previous match if it is identi¯ed by the outcome. If the state

is not revealed in the previous match, then the same action, ai; as before is chosen with

probability 1¡ ":

For each ¯xed ¹; and for any choice of the experimentation parameter "; we can derive

the law of motion for the population choices of actions. As before, let x" (t) denote the

fraction of players choosing action a1 in period t: Note that we are parametrizing the process
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of population play by the relevant experimentation probabilities. In state !1; we have:

¢

x" (t) = ¹x" (t) (1¡ x" (t)) + ¹" (1¡ x" (t))
2 ¡ ¹"x" (t)

2

= ¹
£
"+ x" (t) (1¡ 2")¡ x" (t)

2¤ :
It is easy to calculate the long run level of x" (t) in the case where the state does not change.

For this, we simply set the rate of change in the above equation equal to zero and solve for

the stationary x": The relevant root of the quadratic equation is:

¹x"1;"2 =
1¡ 2"+

p
1 + 4"2

2
:

The same reasoning leads to the following law of motion and the corresponding long

run steady state in state !2

¢

x" (t) = ¹
£
"¡ x" (t) (1 + 2") + x"1;"2

(t)2
¤
; and

x
"1;"2

=
1 + 2"¡p1¡ 4"2

2
:

Notice that for " > 0; ¹x" < 1; and x
"
> 0: In other words, the process of population play is

bounded away from the boundary of the unit interval. This induces a qualitative change in

the behavior of the system as compared to the case with pure strategies. For example, it is

easy to see that x (t) has a unique invariant distribution on the open interval (x
"
; ¹x") :

6 This

is in sharp contrast with the pure strategy case where the process spends asymptotically

all of its time arbitrarily close to the boundary of [0; 1] :

An easy intuition for the di®erence in the results is the following. By introducing the

randomization, the time symmetry in the process is broken. In particular, in state !1, the

rate of increase of x (t) approaches 0 as x (t) converges to ¹x": On the other hand, the rate

of decrease (i.e. also the rate of increase of action a2) at ¹x" is bounded away from zero for

all " > 0:7

6Unfortunately the calculation of the invariant distribution is not an easy matter. For general results
on stochastic processes of the type described above, see e.g. Davis (1996).

7The exact laws of motion in the two states can be solved by performing a simple change of variables.
Since the formulas are not used later, they are omitted here.
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In order to start the analysis of the individual decision problem, we need to make an

assumption about the initial distribution of the action pro¯le in the population as well as

the initial state !0: Since we do not want to give any particular signi¯cance to the initial

period and since the joint process (x (t) ; ! (t)) is ergodic on (x"; ¹x")£ ; a natural initial

condition seems to be that all variables are drawn from the relevant invariant distribution.

The implicit assumption then is that this game has been played during an arbitrarily long

history prior to the start of the analysis. A consequence of this modeling choice is that the

decision problem of all the individuals is the same prior to observing the outcome in the

previous match

To address the optimal choice of an action by any given player, we use a statistical

technique called coupling. The idea is to generate two independent copies of a random

process on the same probability space and deduce payo® consequences from the joint evo-

lution. The key observation for this analysis is that the process determining the future

opponents of a player and the population shares of the actions in the population at the

matching times are independent of the past actions of the player. As in all equilibrium

analysis, each player takes the actions of all other players (including her own future ac-

tions) as given and chooses a best response. The current choice of a player has implications

for her future payo®s only through the observations that are generated by that choice. The

following proposition however states formally that the di®erence in the distribution of the

continuation play induced by a di®erent initial action choice vanishes in ¯nite time.

Lemma 2 For almost all m; aji and aj(m); there exists a K < 1 such that aj
1 (mk) =

aj2 (mk) ; for all k > K: Furthermore, EK <1; where the expectation is taken with respect

to the distribution of m;aji and a
j(m):

Since the payo®s are evaluated according to the overtaking criterion, we can concentrate

on the di®erences in the payo®s during the ¯rst K periods. We start by showing that

the game has no symmetric pure strategy equilibria. Recall that under the assumption

"1 = "2 = "; any proposed symmetric stationary equilibrium pro¯le is characterized by
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a single parameter, ": The exogenous environment is parametrized by (¸; ¹) : We hold ¸

¯xed throughout the discussion and let ¹ vary. This is without loss of generality since the

model with parameters (p¸; p¹) is equivalent to (¸; ¹) apart from a linear scaling in the

units of measurement for time. Fix a particular player, j; and denote her set of optimal

experimentation probabilities when all others experiment at rate "; and the rate of matches

is ¹ by ®¹ (") :

Lemma 3 There is a ¹¹ such that for all ¹ ¸ ¹¹; ®¹ (0) = 1:

As a result, we conclude that zero experimentation is not a symmetric equilibrium. The

next Lemma shows that the rate of experimentation in a symmetric equilibrium cannot be

very high if the frequency of matches is high.

Lemma 4 For any ¹" > 0; there is a ¹¹ (¹") such that ®¹ (") = 0 for all " ¸ ¹" and ¹ ¸ ¹¹:

The intuition for this result is also quite straightforward. If there is su±cient hetero-

geneity in the population, it is very unlikely for a player to realize the bene¯ts from an

experiment for a long string of matches. At the same time, the action that resulted in a

draw is more likely to be the dominant action, and since a (relatively) large fraction of the

opponents are experimenting, the myopic gain from not experimenting is quite high.

Since the payo® function of player j is continuous in the population experimentation

rate " since it is a time integral of a payo® that is continuous in " against a Poisson arrival

process, Lemma 3, Lemma 4 and a simple application of the intermediate value theorem

allow us to conclude the main existence result of this section.

Proposition 5 For all ¹; there is an " > 0 such that " 2 ®¹ (") : Furthermore, lim¹!1 "(¹) =

0; where "(¹) = sup f" j " 2 ®¹ (")g :

In words, we have demonstrated the existence of symmetric equilibria. Furthermore, we

have shown that for large ¹; the equilibrium experimentation probabilities are small. The

remainder of this section investigates the asymptotic rate at which " converges to zero as ¹
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increases. This is exercise is essential if we want to get a good idea of how well coordinated

the population is on the dominant action in the long run as the state changes become very

rare in comparison to the matches.

In order to obtain estimates on the rate of convergence, it is useful to look at an auxiliary

random process that approximates the population process x (t) for large ¹: The key to the

approximation that we perform is the observation that the real time that it takes for the

frequency of action a1 to grow from an arbitrarily low level ± to 1 ¡ ± is extremely short

for ¹ large. As a result, for ¹ large, x (t) spends most of its time close to 0 or 1. Hence we

approximate the process x (t) by a simpler process that lives on the two asymptotic values

calculated above for the real population process.

Let x̂¹ (t) 2 fx"; ¹x"g be the approximate population process. To make the approxi-

mation valid as ¹ ! 1; we need to describe how much time is spent in each of the two

possible states. Let T (¹; ") be the amount of real time that the approximating process

spends in state x": The approximation is valid if we require that T (¹; ") equals the amount

of time that it takes for the population to increase from x" to
1
2
: At the same time, we must

make sure that T (¹; ") is such that each player is indi®erent between experimenting and

not experimenting. Combining these two requirements, we obtain a characterization of the

aggregate equilibrium behavior as ¹!1:

Proposition 6 For any " (¹) such that " (¹) 2 ®¹ (" (¹)) ;

lim
¹!1

¹T (¹; " (¹)) = O (
p
¹)

lim
¹!1

"(¹) ¼ 1

2
e
p
2¹

The validity of the approximation used to get this result is also shown in the appendix.

The message of the theorem is clear. Since the total expected number of matches grows

linearly in ¹; and since the number of matches before the state change is 1
2
¡detected in the

terminology of the previous section (and also 1¡ ° detected for any ° > 0) grows linearly

in
p
¹; almost all the players are choosing the dominant action almost all of the time when
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¹!1: Thus we are close to full optimality in a qualitative sense even though the public

goods nature of experimentation leads to some suboptimality.

In the remainder of the section, we sketch out an argument to show that it is not in

any player's interest to buy costly information about past matches, and to keep track of

calendar time. With that in mind, we may interpret the model as one of endogenously

imperfect recall.

Fix as a baseline the full information optimal strategy: play a1 if and only if !(t) = 1:

Consider the expected loss of the bounded memory strategy along a renewal cycle (¿k; ¿k+1);

where !(t) = 1 for t 2 (¿ k; ¿ k+1): Consider T such that. x(T + ¿k) = 1¡ ¹x" ¡ ±: For each

¯xed ±; we know that T ! 0 for ¹ ! 1: Again set ¸ = 1: Against the 1-period-memory

equilibrium population, the optimal strategy average payo® per renewal cycle is bounded

above by [T + (¹x" + ±)(1¡ T )]:

We know that ¹x" ¼ " ! 0 so the limiting payo® from using the optimal strategy is

bounded from above by ±: If the players were able to purchase full information in each

period at cost C; their optimal average payo® would thus be bounded above by ± ¡ C:

Consider the average payo® per state duration in !1 when using the equilibrium strategy.

By revealed preference we know that such a payo® is not larger than the average payo®

obtained by a player using the pure imitation strategies of the second section. This payo®

is bounded below by ¡1=¹; as with probability close to 1, player j will face an opponent

taking a1; receive a payo® of ¡1 and play a2 thereafter. For an arbitrary C > 0; we can

choose ± > 0 small enough and ¹ large enough to have ¡ 1
¹
> ± ¡ C:

If information about past moves and calendar time came for free, the optimal strategy

of player j would be summarized by a sequence of switching times fTkg1k=1 we call alarm-

clocks. Letting T0 denote the time of the last matching revealing the state of the world,

player j will play the pure-imitation action at times t 2 (Tk; Tk+1) k even, and the opposite

action at times t 2 (Tk; Tk+1): The optimal sequence fTkg1k=1 represents the instants in

which the expected di®erential payo® for reverting action crosses a threshold derived from

the indi®erence principle. Since non-revealing matches such as (a1; 0) are informative of the
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population play the optimal sequence does not only depend on the time of the last state-

revealing match, but also on the instants of subsequent non-revealing matches. Because of

that, the exact determination of optimal alarm-clocks becomes rather messy.

6 Conclusion

In this paper, we considered the evolution of play in a changing environment. The particular

model was chosen to re°ect the idea that players can learn from relative payo® comparisons,

but not from their absolute stage game payo®s. A more realistic assumption would be to

allow for some learning from own past choices regardless of the actions that other agents

chose. The techniques developed here would be useful for those models as well as long as

social learning is not swamped by learning from own past experiences.

Consider, for example, a model where the players choose between a safe action whose

payo® is independent of the state of the world, and an uncertain action that yields a high

payo® in one of the states and a low payo® in the other. Assume also that prior to choosing

their next action, the players observe the action and the payo® of a randomly selected player

in the population. Using the techniques of this model, we could show that equilibria of

that model are approximately e±cient as the state changes become infrequent enough.

7 Appendix

7.1 Proofs Omitted from Section 4

Proof of Proposition 1. Since players are myopic, the bene¯t for successful exper-

imentation is +1; and the loss for unsuccessful experimentation is ¡1: Without loss of

generality, set equal to 0 the time of the last match that revealed the state of the world.

Thus a player's payo® depends only on whether an odd or even number k of renewals has

occurred since time t = 0: For any x ¸ t;the renewal equation is simply,

Pr(0; (x; t); 1) = e¡¸(t¡x)

Pr(k; (x; t); 1) =

Z t

x

¸e¡¸s Pr(k ¡ 1; (s; t); 2)ds
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iteratively for any k > 0: Recursive calculations show that for any t > 0; and any l ¸ 0;

Pr(2l; (0; t); 1) > Pr(2l+1; (0; t); 1): Therefore the optimal strategy is always imitation.

Proof of Lemma 1. Given the monotonicity of xA in the set inclusion, it is su±cient

to check that the claim holds for all closed intervals, A = [²; 1¡ ²] :

De¯ne the sequence of random variables f¾kg, fy1kg ; and f¯kg as follows. Let ¢1s

= ¿2s+1 ¡ ¿ 2s and ¢2s = ¿ 2s ¡ ¿2s¡1: Then for i = 1; 2; ¢is » exp
³

1
¸i

´
; i.i.d.

ys = ¢1s ¡¢2s; ¾k =
kX

i=1

yi; ¯k = ¾k + y1k+1

f¾kg is a random walk with a strictly positive, but bounded variance. Then ¯k > ¾k and

¾k+1 < ¯k: Notice that ¯k is also a martingale for k ¸ 1. It is easy to check that

x (¿ 2k) = x (¾k) =
1

1 + 1¡x0
x0

e¡¹¾k
:

For any "; choose K (") such that

x (K (")) =
1

1 + 1¡x0
x0

e¡¹K(")
¸ 1¡ ":

whenever ¾k > K (²) : Note that this also yields x (¿ 2k+1) < ² whenever ¯k < ¡K (²) :

Since both ¾k and ¯k are driftless random walks with strictly positive (and constant)

variance for all k, the expected time to re-entry to [¡1;K (²)] by ¾k is in¯nite (and

similarly for ¯k) by the contrapositive of the Wald equation (see Durrett 1996). Start-

ing inside [¡K (²) ;K (²)] ; the expected hitting time for ¾k (and for ¯k) to [K (²) ;1]

[ [¡1;¡K (²)] is bounded above by K (²)2 =E[y21] < 1: In fact ¾2
k ¡ kE[y21] is a martin-

gale, and letting T = inffk : ¾k =2 [¡K (²) ;K (²)]g; and starting with ¾2
k = 0 it follows

that K (²)2 = E[¾2
T ] = E[T ]E[y21]:

Thus we know that

lim
T!1

R T

0
I[¡K(²);K(²)] (x (t)) dt

T
= 0 a.s.

Proof of Proposition 2. We need to show that for all ² > 0;

lim
i!1

#fi odd : x (t) ¸ 1¡ ² for ¿ i � t � ¿ i+1g+#fi even:x (t) � ² for ¿ i � t � ¿ i+1g
i

=
1

2
:

By the previous result, choose K (²) to be such that ¯k > K (²)) x (¯k) > 1¡²: , we know
that x (t) spends all of its total time in (0; ²) [ (1¡ ²; 1) : The claim is then true unless the

process crosses from (0; ²) to (1¡ ²; 1) on a positive fraction of the total state changes. But

this would contradict x[²;1¡²] = 0:
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7.2 Myopic Players with ¸1 6= ¸2

In this section we characterize the optimal strategy of myopic players when the state changes

occur with di®erent probabilities, and show that the population will concentrate on the

action correspondent on the state with highest °ow rate, so that all durations in the smallest

°ow state will be undetected.

The determination of the optimal decision of players conditioning their choice on the

complete history of play and on calendar time is rather involved when ¸1 6= ¸2 is rather

involved and it is thus postponed to further research. For our current purposes, it su±ces

to point out that it will not consists of purely imitative strategies.

First note that if ¸1 is very dissimilar to ¸2; the optimal strategy cannot be imitation.

It is in fact straightforward to notice that ¸1=¸2 ! 1; and ¹ is ¯xed, the problem ap-

proximates one where no signi¯cant uncertainty about the environment occurs, and so the

optimal strategy is to play always a2; the dominant strategy when the true state of the

world is !2: Also since strategies depend on calendar time, for any triple (¸1; ¸2; ¹), one can

¯nd histories after which players will not adopt the imitation. Suppose in fact that ¸2 > ¸1;

pick any player j with history (a1; 0) ; and let ¿ denote the last time j was matched. For

¿ large enough, since the process is strongly mixing, the relative probability of the state

being !1 will approximate ¸1=[¸1 + ¸2]; and thus player j will play action a2:

On the other hand, if ¸2 > ¸1; a straightforward extension of the proof of Proposition

1 yields that at equilibrium s(a1;¡1) = s(a2; 0) = s(a2; 1) = a2: players never abandon

action a2 unless it was defeated at the previous match.

In the next Proposition we will show that if ¸2 > ¸1; the !1-state durations will not be

detected by the population dynamics induced by pure imitation. The result holds a fortiori

for the dynamics induced by equilibrium strategies, because, under the latter, a1 is played

after a non-larger set of histories than implied pure imitation.

Proposition 7 If ¸1 < ¸2; then x (t) converges to 1 (almost surely) as t goes to in¯nity.

If ¸1 > ¸2 then xt converges to 0 (almost surely) as t goes to in¯nity.

Proof. The sequence f¾kg is a random walk with a strictly positive, but bounded

variance. The recurrence properties of this walk depend on whether ys has a zero mean.

If the mean is positive, i.e., ¸1 < ¸2, then by strong law of large numbers, for all K;

Pr f¾k < K for in¯nitely many kg = 0: It is easy to check that

x (¿ 2k) = x (¾k) =
1

1 + 1¡x0
x0

e¡¹¾k
:
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For any "; choose K (") such that

x (K (")) =
1

1 + 1¡x0
x0

e¡¹K(")
¸ 1¡ ":

Since ¾k > K (") for all but ¯nitely many k; the almost sure convergence of the process to

1 follows. A similar construction applies to the case where ¸1 > ¸2:

An easy way of understanding the intuition behind this result is to notice the symmetry

of equations 2 and 3. Hence we could interpret the two imitation processes as motions

along the same curve in di®erent directions. To ¯nd out what happens to the position

of a particle, we need to look at the combined impact of the two processes on the total

displacement. But this is obtained simply by multiplying the speed by expected time to

next state change, and the result follows.

7.3 Proof Omitted from Section 5

Proof of Proposition 3. Since the player knows the state of the world at the last

meeting, her optimal choice will depend only on the probability of the next meeting m to

occur exactly after k and before k+1 state-switches. Let that event be: f¿k < m < ¿k+1g:
The renewal system is as follows:½

Prf¿k < m < ¿k+1g =
R
1

0
Prf¿k¡1 < m¡ t < ¿kg¸e¡¸tdt if k>0

Prf¿0 < m < ¿ 1g =
R
1

0

£R
1

s
¸1e

¡¸tdt
¤
¹e¡¹sds = ¹

¹+¸

By induction, we obtain:

Prf¿k < m < ¿k+1g = ¹¸kQk+1
t=1 [¹+ t¸]

:

Since Prf¿k < m < ¿k+1g = Prf¿ k¡1 < m < ¿kg ¸
¹+(k+1)¸

; it follows that

Prf¿ k < m < ¿ k+1g is strictly decreasing in k:

Then, for any k odd, Prf¿k < m < ¿k+1g < Prf¿ k¡1 < m < ¿ kg: So that

Prf!m = 2j!1g =
1X
k=0

Prf¿ 2k+1 < m < ¿ 2k+2g <
1X
k=0

Prf¿2k < m < ¿2k+1g = Prf!m = 1j!1g:

Since the payo®s are symmetric, the conclusion is that the optimal strategy is imitation,

regardless of ¹:

In case with ¸1 6= ¸2, since the player knows the state of the world at the last meeting,

her optimal choice will depend only on the probability of the next meeting m to occur
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exactly after k and before k+1 state-switches, when the state at the current meeting is !1

(the analysis for !2 is symmetric). Let that event be: f¿k < m < ¿k+1j!1g: The renewal
system is as follows:½

Prf¿ k < m < ¿ k+1j!1g =
R
1

0
Prf¿k¡1 < m¡ t < ¿kj!2g¸1e¡¸1tdt if k>0

Prf¿ 0 < m < ¿1j!1g =
R
1

0

£R
1

s
¸1e

¡¸1tdt
¤
¹e¡¹sds = ¹

¹+¸1

By induction, we obtain that

Prf¿ k < m < ¿ k+1j!1g =
8<
:

¹¸
k¡[k=2]
1 ¸

[k=2]
2Qk

t=1[¹+[t=2]¸1+(t¡[t=2])¸2]
if k is odd

¹¸
[k=2]
1 ¸

k¡[k=2]
2Qk

t=1[¹+(t¡[t=2])¸1+[t=2]¸2]
if k is even

As Prf¿k < m < ¿ k+1j!1g is continuous in ¹; ¸1; ¸2; it follows that there is a M(¹) s.t. if

j¸1 ¡ ¸2j < M(¹); the optimal strategy is imitation, and M(¹) > 0;8¹:
The payo® for playing the imitation strategy is strictly increasing in

1X
s=0

[Prf¿2s < m < ¿2s+1j!1g ¡ Prf¿2s+1 < m < ¿ 2s+2j!1g]

which is increasing in ¹: So it follows that M(¹) is increasing in ¹:

Finally: since Prf¿0 < m < ¿ 1j!1g ! 1 for ¹ ! 1 and any ¯xed ¸1 and ¸2; and

the optimal strategy is imitation when Prf¿ 0 < m < ¿ 1j!1g > 1=2; it easily follows that

M(¹)!1 for ¹!1:

For ¸1=¸2 ! 1; and ¹ ¯xed, however, Prf¿ 1 < m < ¿ 2j!1g ! 1; so that the optimal

strategy is a2: the player will not choose imitation.

Proof of Proposition 4. Consider ¯rst the case for ¸1 6= ¸2; and say that ¸1 > ¸2:

Proceed by contradiction, and suppose that (pure-strategies) imitation is an equilibrium.

In the previous section we proved that, for any ² > 0; under imitation strategies, eventually,

x(t) 2 (0; ²):

Consider a triple of consecutive state renewals: f¿ k¡1; ¿k; ¿ k+1g: So that ! = 1; on

(¿k¡1; ¿k) and the population play is x(t) ¼ 0; 8t 2 [¿ k; ¿ k+1]:

Once experimented at the encounter m 2 (¿k¡1; ¿k); the player will know that the true

state is !1 and play a1 until her ¯rst encounter m1 2 (¿k; ¿k+1): As x(t) 2 (0; ²); at m1;

she will detect the state change with probability close to 1. Thus her expected gain from

experimenting is approximately ¹[¿ k ¡m]: If she experiments at m 2 (¿k; ¿k+1); instead,

she will lose only a payo® of 1. Solving a simple compound renewal (Poisson) process,

we obtain that Pr(m 2 (¿k; ¿k+1)) = ¸1=[¸1 + ¸2] and Pr(m 2 (¿k¡1; ¿k)) = ¸2=[¸1 + ¸2]

independently of ¹: Since matchings and state renewals are independent processes, her
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average net gain on (¿ k¡1; ¿ k+1) from experimenting with probability ® is approximately:

®

"
¸2

¸1 + ¸2

Z
(¿k¡1;¿k)

¹[¿ k ¡m]

¿ k ¡ ¿ k¡1

dm¡ ¸1
¸1 + ¸2

#

which is strictly larger than zero for ¹ large enough.

For ¸1 = ¸2; it follows that ¸1=[¸1 + ¸2] = 1=2 = ¸2=[¸1 + ¸2]; that x(t) 2 f(0; "); (1 ¡
"; 1)g almost always, and that 1=2 of the state durations are ²-undetected, for any ² > 0: The

above argument holds unchanged for ²-undetected durations. When a renewal is detected

by the population play, the player expected gain from experimenting with probability ®

is bounded below by ¡1: Compounding ²-detected with ²-undetected durations, it follows

that the future average net gain from experimenting with probability ® is larger than

¹2=16¡ 3=4:

Note that the above derivation implies that if the population is playing the pure imita-

tion strategy, each single player at each match will prefer to deviate and experiment with

probability 1:

Proof of Lemma 2. Each player j will take an experimentation decision at matching

time t either with history (a1; 0) or (a2; 0):

Step 1: Construction of the joint process.

Consider ¯rst the case in which the true state of the world is !1; and hj(t) = (a2; 0):

Consider the sequence of matching times m =fmkg1k=1: mk > t; and of the state-switches

¿=f¿ kg1k=1 : ¿ k > t; for any matching time mk; denote by xk the fraction of the population

playing a1 at time mk:

The realizations of m and ¿ are independent of whether j takes action a1 or a2: For

any ¯xed population strategy identi¯ed by " experimentation level, the actions of the j0s

opponents at future matches are independent of ai: Conditional on ai; the transition of j

opponents are identically distributed.

As long as a state-switch has not occurred, the players strategies can be described

as a Markov chain with states S = f(a1; 0); (a2; 0); (a1; 1); (a2;¡1)g: We proceed by pair-

ing di®erent states representing di®erent continuations that depend on whether player

j experimented or not. Speci¯cally, we construct a non-autonomous Markov process as

follows. Consider state space be S2 where the ¯rst component of the couple refers to

states that belong to continuation generated by j taking ai = a1; and the second compo-

nent refers to states relative to ai = a2: De¯ne by coupling event the union of the states

such that their equilibrium strategy is the same. Formally, let C = f(s1; s2)jPr(a1js1) =
Pr(a1js2)g: Conditional on the event C; the distribution on the continuations given ai = a1
is identical to the distribution on the continuations given ai = a2: The coupled pro-

cess is thus summarized by a 5-state non-autonomous Markov transition with state space
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S = f(a1; 1; a2; 0); (a1; 0; a2;¡1); (a2;¡1; a1; 0); (a2; 0; a1; 1); Cg; and transition matrix,

P =

2
66664
(1¡ xk)(1¡ ") 0 "(1¡ xk) 0 0

(1¡ ")xk 0 "xk 0 0
0 "xk 0 (1¡ ")xk 0
0 "(1¡ xk) 0 (1¡ ")(1¡ xk) 0
" 1¡ " 1¡ " " 1

3
77775 :

The initial distribution of the coupling process for hj(t) = (a2; 0) is (a1; 1; a2; 0) with

probability 1¡ x(t); and (a1; 0; a2;¡1) with probability x(t):

The same transition matrix above describes the coupled process when hj(t) = (a1; 0);

as long as the ¯rst component is now meant to represent j taking ai = a2; and the second,

j taking ai = a1: The two cases are subsumed by saying that the ¯rst component of the

duplicated process refers to instances following (pure-strategies) experimentation and the

second component, to instances following imitation. The initial distribution of the coupling

process for hj(t) = (a1; 0) is thus (a2; 0; a1; 1) with probability 1 ¡ x(t); and (a2;¡1; a1; 0)
with probability x(t):

In a completely analogous fashion, the transition is constructed for the case that ! = 2:

The probability of the next matching to occur after a state ! renewal has been calculated in

a previous Lemma, it is shown to be positive. By expanding the state space to account for

the transition under both !1 and !2; and compounding the relative transition probabilities

we obtain a non-autonomous Markov Process we denote by fXkg1k=1:
Step 2: The expected time of coupling is ¯nite.

Looking at the above matrix, one can appreciate the key property of fXkg1k=1 : for

any state s 6= C; the transition probability to C, p(s;C) is either " or 1 ¡ " (i.e. the

process is not decomposable); and p(C;C) = 1 (i.e. C is absorbing). When " 2 (0; 1); as

that value is independent of time, we can treat the issue of recurrence of C as if we were

dealing with an autonomous Markov process, to immediately conclude that, for any s 6= C;

Ps(TC < 1) = 1; where TC = inffkjXk = Cg and Ps is the probability induced on the

process by Xm = s:

The case for " = 0 has already been ruled out from equilibrium analysis. For the case

for " = 1; it follows that p((a1; 1; a2; 0); C) = p((a2; 0; a1; 1); C) = 1: Since 8k; xk < ¹x1 < 1;

p((a1; 0; a2;¡1); (a2; 0; a1; 1)jmk) = p((a2;¡1; a1; 0); (a1; 1; a2; 0)jmk) = (1 ¡ xk) > 0: Thus

the same result derived for " 2 (0; 1) obtains.

Proof of Lemma 3. Already shown in the Proof of Proposition 4.

Proof of Lemma 4. Fix any " ¸ ¹": Consider any meeting where an individual j

holds history h = (a2; 0): Let x = fx0; x1; ¢ ¢ ¢ ; g be an arbitrary increasing sequence of
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population plays at j0s future meetings, until the next ! renewal. Clearly x0 denotes the

population play at the present meeting, x1 the population play at the next meeting and so

on. Let M be the cardinality of x:

Step 1: The net gain for experimentation ¢U(a2; 0j!1; x; "); when h = (a2; 0); ! = 1;

and the population experimentation is "; admits a ¯nite upper bound, independently of x:

Consider the Markov transition derived in the proof of Proposition 2.

With probability x0; j's opponent plays a1: In such case, the process starts at (a1; 0; a2;¡1);
player j gains a payo® of 1 from experimentation, and the path exits with probability 1¡":

The net gain if it will never enter in (a1; 1; a2; 0) is at most 0; and with probability smaller

than 1¡ (1¡ ")¡ "(1¡ ") it will eventually reach (a1; 1; a2; 0): Thus

¢U(a1; 0; a2;¡1jx; ") < 1 + [1¡ (1¡ ")¡ "(1¡ ")]¢U(a1; 1; a2; 0jx¡ fx0g; ")

< 1 + "2
M¡1X
k=0

(1¡ ")k < 1 + "

Putting both cases together we obtain

¢U(a2; 0j!1;x; ") < x0
1

"
+ (1¡ x0)(1 + ") <

1

¹"
+ 2 = ¹¢ <1;

the key observation is that the bound we have obtained is uniform in x:

Step 2: The net loss ¢U(a1; 0j!1; x0; x; ") admits a strictly positive bound.

With probability x0; j's opponent plays a1: In such case, the process starts at (a2;¡1; a1; 0);
player j's net gain is ¡1, the process exits with probability 1 ¡ ": With probability ";

the process enters the state (a1; 1; a2; 0); with probability 1 ¡ x1 and the state the state

(a1; 0; a2;¡1); with probability x1: Since this is exactly the event (a2; 0j!1;x n fx0g; "); her
net gain is bounded as:

¢U(a2;¡1; a1; 0jx; ")
< ¡1 + "¢U(a2; 0j!2;x n fx0g; ") = ¡1 + "[x1

1

"
+ (1¡ x1)(1 + ")] = (1¡ x1) ("

2 + "¡ 1)

With probability (1 ¡ x0); j's opponent plays a2; and the process starts at (a2; 0; a1; 1):

Player j's net gain is ¡1, the process exits with probability "; and with probability less than
1¡"; the process enters the state (a2;¡1; a1; 0): The player cannot make any positive gains
unless the latter event occurs. The probability that the process loops inside (a2; 0; a1; 1) is

(1¡ ")(1¡ x1): So

¢U(a2; 0; a1; 1jx; ") < ¡1 + (1¡ ")¢U(a2;¡1; a1; 0jx; ")
= ¡1 + (1¡ ")f¡1 + "[x1

1

"
+ (1¡ x1)(1 + ")]g = (x1 ¡ 1) ("3 +¡2"¡ 1)¡ 1:
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Wrapping up the two subcases:

¢U(a1; 0j!2;x; ")

< x0[¡1 + "[x1
1

"
+ (1¡ x1)(1 + ")]] + (1¡ x0)[¡1 + "[¡1 + "[x1

1

"
+ (1¡ x1)(1 + ")]]]

= (¡1 + x1 + x0 ¡ x1x0 (m)) "3 + (¡x0x1 + x0) "
2 + (x0x1 ¡ x0 + 2¡ 2x1) "+ x0 ¡ 2 + x1

= p(x1; x0; ")

Direct calculations show that p(¹x"; ¹x"; ") < 0 uniformly in "; so there must exist ± > 0 such

that p(x1; x0; ") < 0 for x0 > ¹x" ¡ ± and x1 > ¹x" ¡ ±: Note that since x is increasing, we

reduce the condition to x0 > ¹x" ¡ ±:

So we conclude that ¢U(a1; 0j!1;x; ") > ¢̂ > 0; which holds for any x s.t. x0 > ¹x"¡±0:

Step 3: When the di®erence in utility ¢U(a2; 0) is expanded conditioning on the events

fx0 < ¹x" ¡ ±0g ; and fx0 > ¹x" ¡ ±0g ; the ¯rst term vanishes.

For any x; denote by 1 ¡ x the sequence f1 ¡ xkg where xk 2 x: Using the transition

matrix, and keeping in mind that payo®s are symmetric, we note that, conditional on the

sequence x the following relationships hold8<
:

¢U(a2; 0j!2; 1¡ x; ) = ¢U(a1; 0j!1;x)
¢U(a2; 0j!2; 1¡ x) = ¡¢U(a2; 0j!1;x)
¢U(a1; 0j!2; 1¡ x) = ¡¢U(a1; 0j!1;x)

Now we can exploit the upper and lower bound, and the symmetry expanding ¢U(a2; 0; ")

as follows (for notational ease, we shall drop " from the formula).

¢U(a2; 0) = ¢U(a2; 0j!1) Pr(!1ja2; 0) + ¢U(a2; 0j!2) Pr(!2ja2; 0) (4)

=

Z
fxjx0<¹x"¡±0g

[¢U(a2; 0j!1;x) Pr(!1j(a2; 0);x) + ¢U(a2; 0j!2;x) Pr(!2j(a2; 0);x)]
¢dPr(xjx0 < ¹x" ¡ ±0) Pr(x0 < ¹x" ¡ ±0)

+

Z
fxjx0>¹x"¡±0g

[¢U(a2; 0j!1;x) Pr(!1j(a2; 0);x) + ¢U(a2; 0j!2;x) Pr(!2j(a2; 0);x)]
¢dPr(xjx0 > ¹x" ¡ ±0) Pr(x0 > ¹x" ¡ ±0)

=

Z
fxjx0<¹x"¡±0g

f¢U(a2; 0j!1;x)[Pr(!1j(a2; 0);x)¡ Pr(!2j(a2; 0); 1¡ x)]g
dPr(xjx0 < ¹x" ¡ ±0) ¢ Pr(x0 < ¹x" ¡ ±0)

+

Z
fxjx0>¹x"¡±0g

f¢U(a2; 0j!1;x)[Pr(!1j(a2; 0);x)¡ Pr(!2j(a2; 0); 1¡ x)]g
dPr(xjx0 > ¹x" ¡ ±0) ¢ Pr(x0 > ¹x" ¡ ±0)

Consider the ¯rst term in the above equation. Let T (±; "; ¹) be the time taken by the

population play to reach ¹x" ¡ ±; starting from x(0) = x"; when !1: Solving from the
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law of motion, we know that T (±; "; ¹) ! 0 for ¹ ! 1: Also we know that the law of

motion is increasing, which motivates our restriction to increasing x:We know that for any

time ¿ when the state switch from !2 to !2; the population play x(¿) > x" therefore the

time T̂ (±; "; ¹; ¿); taken by the population play to reach ¹x"¡±; starting from x(¿) when !1;

satis¯es T̂ (±; "; ¹; ¿) < T (±; "; ¹): Since the expected time until the next renewal is 1=¸1 > 0

one concludes that Pr(x0 < ¹x" ¡ ±0)! 0 for ¹!1:

Consider now the second term of Equation (4). Introduce the likelihood ratio:

¤ =
Pr(!1j(a2; 0);x)

Pr(!2j(a2; 0); 1¡ x)
=

Pr(!1; (a2; 0);x)

Pr(! = 2; (a2; 0); 1¡ x)

If we can show that Pr(!2; (a2; 0); 1¡ x) ¼ Pr(!1; (a1; 0);x); since both are bounded away

from zero, we obtain that

¤ ¼ Pr(!1; (a2; 0);x)

Pr(! = 1; (a1; 0); 1¡ x)
=

Pr(a2; 0j!1;x)

Pr(a1; 0j!1; 1¡ x)
=

1¡ x0
x0

< 1¡ b

for some positive bound b: In which case, since ¡1 < ¢̂ < ¢U(a2; 0j!1;x) < ¹¢ <1; we

conclude that the second term is negative of the equation and dominates the ¯rst term,

for ¹ large enough. That concludes that ¢U(a2; 0; ") < 0: Invoking the symmetry already

pointed out, we also note that ¢U(a2; 0; ") = ¢U(a1; 0; "):

In Proposition 4 we showed that P (TC < 1) = 1; p(C;C) = and ¢U(a2; 0; ") = 0

conditional on C: Therefore ¢U(a2; 0; ") < 0 implies that

E
K0X
k=0

u
¡
ajk2 ; a

jk(mk); ! (mk)
¢
> E

K0X
k=0

u
¡
ajk1 ; a

jk(mk); ! (mk)
¢
;

where K 0 is the random match such that mK0 = TC: The overtaking criterion then implies

®(") = 0:

Step 4: Pr(!2; (a2; 0); 1¡ x) ¼ Pr(!1; (a1; 0);x):

Since Pr(!2) = Pr(!1); we only need to show that Pr(a2; 0; 1¡ xj!2) = Pr(1¡ xj!2) =

Pr(xj!1) = Pr(a1; 0;xj!1):

Consider a triple of state-switch times (¿k¡1; ¿k; ¿ k+1): We know that the law of motion

has the following property: conditional on x(¿ k¡1) = 1 ¡ x(¿ k); and on ¿k+1 ¡ ¿ k =

¿k ¡ ¿k¡1 = T; it follows that, for any t 2 (0; T ); x(t+ ¿ k¡1) = 1¡ x(t+ ¿ k):

For ¿k large enough, x(t+¿ k¡1)¡x(t+¿ k) is negligible because E(¿k+1¡ ¿k) = E(¿ k¡
¿k¡1); the process is strongly mixing, and ¹ is large. Since matchings run independently of

state-renewals, the distribution of the matching times on !1 approximates the distribution

of the matching times on !2:
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Since the sequence x on !2 depends only of x(t + ¿k¡1) and of the matching times on

!2; and the sequence 1¡x on !1 depends only of 1¡x(t+¿k) and of the matching times on

!1; the two previous observations imply that Pr(xj!2) ¼ Pr(1¡ xj!1) for ¿ k large enough,

and ¹ large enough.

For ¸1 6= ¸2; the above reasoning can be extended as long as j¸1¡¸2j < M(¹); for some

M(¹); where as in Lemma 3, M(¹) is strictly positive, strictly increasing and M(¹)!1
for ¹!1:

Proof of Proposition 5. Say without loss of generality that at matching mk player

j's history is (a2; 0): Player j must choose the optimal experimentation ® out of the compact

set [0; 1]: Consider the coupling process previously introduced. Let M denote the set of

all sequences m of matching times. Let ¢u(s) = 1 for s = (a1; 1; a2; 0); (a1; 0; a2;¡1);
¢u(s) = ¡1 for s = (a2;¡1; a1; 0); (a2; 0; a1; 1); and ¢u(C) = 0:

The payo® di®erence at matching mk is

¢U(a2; 0; ") = E [¢u(s) Pr(sjt;m; !;mk; (a2; 0))] :

Since the population law of motion x(t) is continuous in "; looking at the matrix in the

Proof of Lemma 2, one concludes Pr(sjt;m; !;mk; (a2; 0)) to be continuous in "; so that, for

all s; ¢u(s) Pr(sjt;m; !;mk; (a2; 0)) is continuous in ": Integrating a function continuous

in " against a measure independent of "; we obtain a continuous ¢U(a2; 0; "):

Since P (TC < 1) = 1; p(C;C) = 1 and ¢U(a2; 0; ") = 0 conditional on C; repeating

the argument of the previous Lemma, the overtaking criterion implies that ® = 1 is optimal

if and only if ¢U(a2; 0; ") > 0; ® = 0 if and only if ¢U(a2; 0; ") < 0; and, ® = [0; 1] when

¢U(a2; 0; ") = 0: Since ¢U((a2; 0); 1) < 0 (Lemma 4) and ¢U((a2; 0); 0) > 0 (Lemma

3), by continuity and the intermediate value theorem, there must exist a " such that

¢U(a2; 0; ") = 0: That implies " 2 ®¹(") = [0; 1]; so that such experimentation value " is

an equilibrium. In Lemma 4 we showed that for ¹ large, ¢U(a2; 0; ") < 0 unless " is small

enough. That shows that lim¹!1 "(¹) = 0; where "(¹) = sup f" j " 2 ®¹ (")g :

Proof of Proposition 6. The ¯rst step consist of setting up the equilibrium condition

on the auxiliary process.

Step 1: Construction of the auxiliary process.

Consider T (¹; "); the amount of time needed for the population play xj2 to reach x(T ) =
1=2 starting from x(0) = ¹x"; when the state is !2 (by symmetry, that is also the lapse from

x(0) = x" to x(T ) = 1=2 and ! = 1: Fix ¸ = 1; for ¹ large, the probability that a renewal

occurs, before x(T ) = 1=2 is reached, converges to 0. The population play when !1; will

get arbitrarily close to ¹x": Since x
0(¹x") is bounded away from 0, T (¹; ") is close to the time
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incurred between ¿; the time an ! state switch and the time T : x(T ) = 1=2; conditional on

not there being any renewal between ¿ and T: As the expected time of renewal is 1=¸ = 1;

by ergodicity T (¹; ") may be considered also as the expected fraction of time spent by the

system in the set fx(t) < 1=2; !1g. Straightforward but tedious calculations from the law

of motion yield:

T (¹; ") =

ln

µ
1

2"
³
¡2"+

p
(1+4"2)

´
¶

¹
p
(1 + 4"2)

: (5)

Note that ¹T (¹; ")!1; for "! 0:

We write the indi®erence equation distinguishing between the fraction of time spent by

the population with x(t) � 1=2 and with x(t) > 1=2:

T (¹; ")¢U(¹; "; t � T ) + (1¡ T (¹; "))¢U(¹; "; t > T ) = 0 (6)

We know that T (¹; ") ! 1 for " ! 0 and T (¹; ") ! 0 for ¹ ! 1: Since we want to

study the value of T (¹; ") exactly for " ! 0 and ¹ ! 1; we prefer to isolate the time T

and rewrite Equation (6) as follows.½
0 = T¢U(¹; "; t � T ) + (1¡ T )¢U(¹; "; t > T )
T = T (¹; ")

(7)

We will leave the second equation as calculated in Equation (5), and approximate the ¯rst

equation for small " and large ¹: We shall obtain T as a function of ¹ and ":

Consider the population law of motion on !1: Let by x¹;"(t; x0) denote the solution

of the related Cauchy problem with initial state x0; and let T¹;"(x0; x) be the solution of

x¹;"(T; x0) = x: Fix small ± > 0; straightforward calculations show that lim"!0
T¹;"(x";x"+±)

T¹;"(x";1=2)
=

1; that T¹;"(1=2; ¹x") =1; and that lim¹!0 T¹;"(1=2; ¹x" ¡ ±) = 0:

That means that, conditional on no state-switches occurring in the duration, for " small

and ¹ large, Pr(x(t)¡x" 2 (0; ±)jx(t) � 1=2) ¼ 1; and Pr(¹x"¡x(t) 2 (0; ±)jx(t) > 1=2) ¼ 1:

As long as ¹ is large enough, the probability of a state switch is small enough, so that we can

approximate x(t) with x" + ±=2 on t < T; and with ¹x"¡ ±=2 on t > T: Note moreover that

lim"!0 lim±!0
x
"
+±

"
= 1 so we can approximate x(t) ¼ " on t � T and similarly, x(t) ¼ 1¡"

on t > T: After such simpli¯cations, we obtain that Pr(! = 1j(a2; 0); t < T ) = 1 ¡ " and

Pr(! = 2j(a2; 0); t > T ) = 1¡ ":

Step 2: The equilibrium experimentation "(¹) is approximated byµ
1

2
¹T ¡ 1

3
¹2T 3

¶
"+

1

2
¹T 2 ¡ 1 ¼ 0; (8)
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With the simpli¯cation obtained in Step 1 we can approximate the transitions in the

coupling process by omitting all terms of order "2 and above. Proceeding in the same

fashion as in Proof of Lemma 4, we derive that, when M meetings are yet to occur before

time T is reached,

¢U(a2; 0j!1;M; t < T ) = 1 + (1¡ ")
M¡2X
t=0

(1¡ 2")t ¼ 1 + (1¡ ")
M¡2X
t=0

(1¡ 2t") ¼M ¡ (M + 1)2 "

¢U(a2; 0j!2;M; t > T ) ¼ ¡1 + (1¡ ")"(1¡ (1¡ 2"))¡ "(1¡ 2") ¼ ¡1¡ "

The distribution of M the remaining meetings in the reaction stage, given the time of

meeting mk; and the order of meeting k; is Poisson of parameter ¹T: When taking the

expected value of a polynomial against a Poisson we obtain a higher ordered polynomial.

As ¹T is large, we can eliminate all lower powered terms in ¹T and we can approximate

M ¼ ¹T ¡ k: That is equivalent to treat the distribution of meetings as approximately

uniform. By the same token, the distribution of the order of meeting k can be treated as

an uniform draw out of ¹T + 1 outcomes (note that we are including the meeting of order

0; which is the last meeting before a state-renewal occurs).

¢U(a2; 0j!1; t < T ) =
1X
k=0

1X
M=0

¢U(a2; 0j!1;M) Pr(M jt < T;mk) Pr(kjt < T )

¼
¹TX
k=0

1

¹T + 1
¢U(a2; 0j!1; ¹T ¡ k) ¼

¹TX
k=0

¹T ¡ k ¡ (¹T ¡ k + 1)2 "

¹T + 1
=

1

2
¹T +

µ
¡1

3
¹2T 2 ¡ 7

6
¹T ¡ 1

¶
"

Now we can wrap up equation (7): after approximating it to eliminate higher powered "

terms and lower powered ¹T terms we obtain:µ
1

2
¹T ¡ 1

3
¹2T 3

¶
"+

1

2
¹T 2 ¡ 1 ¼ 0:

Step 3: For ¹ large, "(¹) ¼ 1
2
e¡
p
2¹:

Equation(8) is a cubic equation that has only one admissible solution T (¹; ") 2 (0; 1);

the solution is continuous in ": Since we are interested in approximation for small "; we

¯rst solve for T (¹; ") in Equation(8); with " = 0: The equation 1
2
¹T 2 ¡ 1 = 0 has solution:

T =
1p
¹

p
2
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Then we apply Dini's Theorem to obtain:

D"(T ("; ¹)) =
D"(

¡
1
2
¹T ¡ 1

3
¹2T 3

¢
"+ 1

2
¹T 2 ¡ 1)

DT (
¡
1
2
¹T ¡ 1

3
¹2T 3

¢
"+ 1

2
¹T 2 ¡ 1)

¼ ¡
1
2
¹ 1p

¹

p
2¡ 1

3
¹2( 1p

¹

p
2)3

¹ 1p
¹

p
2

=
1

6

So that, we can write a linear approximation for ¹ large and " small:

T ("; ¹) ¼
p
2¹

¹
+
1

6
"

We can ¯nally compare this with the expression for T with T ("; ¹); the actual time spent

by the system for x(t) < 1=2; as calculated from the law of motion in equation (5), so that

the equilibrium condition can be approximated the following equation, which, comfortingly,

displays "! 0; for ¹!1:

ln

µ
1

2"
³
¡2"+

p
(1+4"2)

´
¶

p
(1 + 4"2)

¼
p
2¹+

1

6
¹"

After some further approximation, we obtain:

" ¼ 1

2
e¡
p
2¹:

When ¸1 6= ¸2; system (7) is modi¯ed so as to allow for two di®erent times T1(¹; ") and

T2(¹; ") associated to the states !1 and !2: For ¹!1; it follows that T1(¹; ")=T2(¹; ")! 1

from the law of motion. So that all the solutions of the system above will be of the same

order in ¹; and rest of the analysis is similar to the previous treatment.
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