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Abstract

While it is known how players may learn to play in a game they know, the issue of

how their model of the game evolves over time is largely unexplored. This paper in-

troduces small forgetfulness and shows that it may destabilize standard full-memory

solutions. Players are repeatedly matched to play a game. After any match, they for-

get with in¯nitesimal probability the feasibility of any opponents' unobserved action,

and they are reminded of all actions that they observe. During each period, they play

an equilibrium consistent with their perception of the game. We show that the unique

backward induction path drifts into a non-Nash, self-con¯rming equilibrium, in a class

of extensive-form games that are fully characterized. Such a long-run prediction is

always Pareto-undominated, and may Pareto dominate the original backward induc-

tion path. In one-shot simultaneous-move games, forgetfulness yields a re¯nement

stronger than trembling hand perfection. Our results imply that there are games

that players may never fully learn.
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1 Introduction

Unlike formal games, most social interactions are not accompanied by a list of written, ¯xed

rules describing all actions that can be taken. Individuals who are repeatedly involved in the

same social interaction may hold di®erent perceptions of available actions at di®erent times.

Their mental image of the game typically depends on their past experiences. Our model

allows any player to forget with in¯nitesimal probability some possible opponents' actions,

particularly if these actions have not been observed in previous periods. While large-

probability forgetfulness is not a convincing assumption in economic settings, in¯nitesimal

forgetfulness should not be dismissed. This paper shows that perfect-memory solution

concepts may be destabilized by in¯nitesimal forgetfulness.

In our model, players from di®erent large populations are repeatedly matched to play a

game. During the ¯rst period, each player is fully aware of all possible actions in the game;

however, with in¯nitesimal probability, the player may later forget some of them. During

each period, players coordinate on an equilibrium consistent with their possibly partial

model of the game, and they recall any observed action previously forgotten. Equilibrium

play given awareness, together with the evolution of awareness resulting from forgetfulness,

de¯ne a dynamic transition on the players' perception of the game. The results concern

the long-run aggregate distributions of play.

We ¯rst allow players to forget only opponents' actions that were not taken during the

previous period of play, building on the supposition that one is usually less likely to forget

one's own possible choices or recently observed actions. Even under these conservative

assumptions, full-awareness solutions may be destabilized. In extensive-form games, we

prove that perfect equilibria may drift to a non-Nash, and not even unitary, self-con¯rming

equilibrium. Such a long-run prediction is always Pareto-undominated by the original

backward induction path, and may Pareto-dominate it. We characterize the class of generic

perfect-information games in which the unique backward induction path is destabilized.

When opponents' observed actions are also allowed to be forgotten, the backward induction
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path is destabilized in games with a non-credible threat (formally de¯ned in section 4.3). In

this paper, players are always fully aware of their own feasible options. Some issues related

to own actions' forgetfulness are presented in the Conclusion. The interested reader may

request our extended version, Squintani (1999).

Turning to normal-form games, we ¯rst remark that such a representation is not appro-

priate to deal with forgetfulness in games that display a dynamic nature. Thus we restrict

attention to one-shot simultaneous move games, and we prove that forgetfulness of oppo-

nents' actions which are unobserved at equilibrium may destabilize entire Nash equilibrium

components. That result would hold even if all forgetfulness were only temporary, so that

all players always recall any forgotten action after a short time regardless of whether they

observe it or not. To relate our work to other normal form solution concepts, we character-

ize the set of Nash equilibria not destabilized by forgetfulness. Weak dominance, trembling

hand perfection, and properness are shown not to be stronger than our re¯nement. How-

ever, the assumption that observed actions may not be forgotten renders all pure-strategy

equilibria stable. Once that assumption is relaxed, our stability concept is stronger than

trembling hand perfection.

This paper introduces a new question in the literature about learning and evolution

in games (see Weibull 1992, Samuelson 1997, and Fudenberg and Levine 1998). In many

treatments, players are assumed not to have any knowledge of the game beyond their own

possible choices, in other ones, the main question is how players learn to play in a game

they fully know. Instead, by explicitly analyzing how players forget, and recall what they

and their opponents can do in a social interaction, we address the issue of how players

learn the game itself. Our work is motivated by the supposition that, when learning how

to deal with a complex economic interaction, the most di±cult task is often to establish

all the relevant possibilities, and once the modeling step is accomplished, coordinating on

a model's equilibrium becomes relatively easy.

This paper focuses on the long-run behavior reached from initial full awareness. This

assumption is not to be taken as a de¯nite; rather it is an obvious benchmark to use in
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dealing with forgetfulness. To derive a complete picture of how players learn the rules of

the game, one may analyze our model considering any initial awareness state. The results

we achieve imply that there are games players may never fully learn.

Some conclusions presented in this paper may be related to the results obtained by

Fudenberg and Levine (1993b) on learning with experimentation. In that paper, players

play a best reply to last-period observed play. However, with a small probability, they

experiment with di®erent strategies. While players initially coordinate on a (possibly non-

Nash) self-con¯rming equilibrium, if they are patient enough, the population play eventually

reaches a Nash equilibrium. In contrast, our players coordinate on a Nash equilibrium in the

¯rst period. Allowing for small forgetfulness, we prove that the population play deteriorates

to a (possibly non-Nash) self-con¯rming equilibrium. It would be interesting to meld these

two analyses to ascertain whether experimentation leads to Nash equilibrium when small

forgetfulness is possible.

Finally, our analysis o®ers an interpretation of learning dynamics that does require

payo® monotonicity. In evolutionary game theory, people are assumed to imitate those

players who hold the highest payo® (see Schlag 1998 for a formal argument). However, a

player may not always be able to observe the payo® obtained by the other players in the

population, whereas she always observes the move made by opponents' with whom she is

matched. Thus, the di®usion of a strategy in the population may be determined by how

often the strategy is used, rather than by its payo®. Consistently with that view, this paper

rules out the observation of other players' payo®s, and focuses on the awareness of actions.

The paper is presented as follows. The second section informally presents the model

and some introductory examples. The third section concerns normal form games, and the

fourth section extends the presentation to the perfect-information games. The conclusion

presents a few possible extensions, and is followed by the Appendix, which lays out the

proofs.
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2 Motivational Examples

In this section we informally explain the main features of the model, and present some

examples to introduce the relevance of forgetfulness.

Players from large populations are repeatedly, randomly and anonymously matched

to play a game. Each match is formed by a player from each population. All players

in the same population have the same action set and utility function. However, each

player may hold a di®erent perception of the game, identi¯ed by a subset of the action

space. At each period, before being matched to play, each individual gathers information

in order to formulate a conjecture regarding her opponents' strategies. That information

is meaningful only when it is consistent with her interpretational model of the interaction.

To represent that scenario, we say that, while she may not infer her opponents' strategies,

each player correctly assesses the aggregate distribution of strategies in the populations, as

long as they refer to actions of which the player is aware. When that is not the case, she

completes her conjecture by attaching positive probability to actions that are rationalizable

given her description of the game.1 Given her conjecture, and her perception of the game,

each player takes a sequentially rational strategy. This construction yields an equilibrium

concept consistent with incomplete perception of the game in the population.2

After any period of play t; each player may forget with in¯nitesimal probability some

of the actions, but she will be reminded of all actions that she has observed on the path

of play. The path observed by each player, and thus her individual perception transition,

depend on the strategy of the players with whom she is matched. The aggregate transition

of the awareness distribution is obtained compounding the probability of a match between

1It would be unfair to present results that depend on players holding completely unjusti¯able beliefs,

when their opponents play actions they are unaware of.
2Instead of assuming players to hold correct beliefs on the aggregate distribution of equilibrium strate-

gies, we could propose that they formulate beliefs based on their past observations of play. While intuitively

appealing, that modeling approach is much less tractable than the one we present in this paper, and yields

almost the same results. In fact, the only di®erence with respect to the characterization presented in this

paper concerns normal-form games full-support mixed strategies equilibria. Also, since we want to isolate

the e®ect of forgetfulness on standard analysis, we think it meaningful to maintain as close as possible to

the spirit of standard equilibrium concepts.
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Figure 1: Extended Trust Games

di®erent players, with the probability of individual transition in that match. Given the

time t+1 awareness distribution, we can calculate time t+1 equilibrium. We assume that

all players initially hold a full description of the game. Our results are in terms of the

long-run distribution of play, obtained compounding the awareness distribution with each

player's strategy.

In this informal presentation, we restrict forgetfulness to opponents' unobserved actions,

and consider ¯rst extensive-form games. Since our model requires that players play a Perfect

Bayesian Equilibrium (given the possibly incomplete perception of the game), and at each

period forgetfulness is in¯nitesimal, one expects the long run prediction to be close to perfect

equilibrium. In the following example, however, the unique long-run prediction is a non-

Nash, non-unitary self-con¯rming equilibrium.3 In¯nitesimal forgetfulness of opponents'

unobserved actions has such a radical e®ect on extensive form games equilibria because

o®-path unawareness can accumulate over time, and upset the backward induction path.

Example 1 (Extended Trust Game) Two populations of players are repeatedly anony-

mously randomly matched to play a version of the trust game by Kreps (1990), which we

depict in ¯gure 1. Each player from population 1 needs to choose whether to trust (T ) her

opponent, or not (N). If trusted, the second player may honor (H) the ¯rst player's trust,

or cheat (C). In case her trust is abused, the ¯rst player may enter a costly ¯ght (F ) with

3In our extended version (Squintani 1999) we show that any stationary distribution of play is a hetero-
geneous self-con¯rming equilibrium.
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the opponent, or accept (A) her abuse. The backward induction path is N : the players in

population 1 will not trust their opponents.4

We assume that each player from population 2 can forget the possibility of action A

with in¯nitesimal probability ¼A whenever she does not observe it on the path of play.

Since the backward induction path is N; action A is o®-path and can be forgotten. Players

unaware of A will honor the trust, as they believe to be punished if they do not. The ratio

at of players unaware of A will increase over time as long as it is less then 1=2: In fact, each

player from population 1 will expect to face with probability at an opponent who plays H

and with probability 1 ¡ at one that plays C: For at < 1=2; she prefers not to enter the

agreement, but by doing so, she renders A o®-path, allowing at to increase with increment

¢at = (1¡at)¼A:However, when at > 1=2; the player prefers to play TA: Players unaware of

A cannot be reminded of it, as they play H which makes A o®-path. None of the aware ones

can forget A; as their observed path is TCA: The unique full-awareness Perfect Bayesian

Equilibrium is destabilized, even though, at each period, players coordinate on the only

PBE conditional on their awareness. Moreover, for ¼A small enough, the only aggregate

stable state is approximately (TA;H=2; C=2) which is not a full awareness PBE, nor a full

awareness Nash equilibrium, and not even a unitary beliefs self-con¯rming equilibrium (it

is an heterogeneous beliefs self-con¯rming equilibrium).

The aggregate stable path Pareto-dominates the backward-induction solution, and pre-

dicts that players from population 1 will trust their opponents, and their trust will be

honored with nonnegligible probability. ¦

By repeating the analysis for any values of initial awareness a0 2 [0; 1), one can easily

verify that the players will never be able to fully learn the game in Example 1. For

a0 2 [1=2; 1); in fact, the unique steady state with in¯nitesimal forgetfulness is a¤ = 1=2;

whereas for a0 2 [0; 1=2); the steady state a¤ coincides with a0: In both instances, at steady

4While the reputation literature points out that in a repeated game the ¯rst player will punish her
opponent in order to establish a reputation for toughness (see Kreps and Wilson 1982, Milgrom and
Roberts 1982, Kreps 1990), that explanation does not apply to random matching games.

7



state, there is a nonnegligible portion of the population that is not aware of at least part

of the game.

The result depends on the structure of Example 1. The action F can be interpreted

as a non-credible threat \nested" within the credible threat C: The second player poses

a credible threat to the ¯rst one: if she plays T; the second player will play C: The ¯rst

player may then respond to that threat by announcing: \If you play C; I will play F". But

that threat is non-credible: if asked to choose between F and A; the ¯rst player will play

A: Because of that, if required to pick H or C; the second player will take C; so that her

threat is credible. Nevertheless, any player who forgets the feasibility of action A believes

the ¯rst player's threat: for him, it is credible. She thus takes H; and her threat to play C

is non-credible. So when enough players in the population 2 have forgotten A; the players

in population 1 rationally switch from action N to action A:

The assumption that players in population 1 always know how many players in popula-

tion 2 have forgotten action A is not necessary to let forgetfulness destabilize the backward

induction path of Example 1. Assume in fact that players' beliefs are adaptive. In par-

ticular, when initially playing the backward induction solution, players who never play T

always maintain the belief that all players in population 2 play C in response to T: Say,

however, that the players in population 1 may forget action C with probability ¼C if they

do not observe it on their path of play. Players who forgot C at time t ¡ 1 will play T at

time t: At time t+1 they will switch back to N if and only if they faced an aware opponent

at time t: So, the proportion c of players unaware of C; and the proportion a of players

unaware of A follow this transition.½
ct+1 = ctat + (1¡ ct)¼c
at+1 = at + (1¡ ct)(1¡ at)¼a

The system reaches the steady state (c¤ = 1; a¤ = 1); which corresponds to the path TH:

a Nash equilibrium outcome. Consistently with Fudenberg and Levine (1993b), if players

form beliefs in an adaptive manner, and strategies are slightly perturbed at each period of

play, a Nash equilibrium is reached at steady state. Their perturbations are motivated by
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experimentation, ours are implied by forgetfulness.

Since Example 1 relies on forgetfulness of unobserved actions, one may believe that in

normal-form games no Nash equilibrium is destabilized, as all the NE actions are observed.

While this is true for pure strategy equilibria, when a mixed strategy is played, the players

will not observe all the actions in the support, only the realized one. As they will be

able to forget some unobserved actions in the support of the strategy, their choice may

change. Each opponent's equilibrium belief changes to account for these new equilibrium

actions, and this change may be enough to o®set the original Nash equilibrium. Unlike

the previous example, destabilization does not require unawareness to accumulate over

time. Destabilization will occur also when forgetfulness is temporary, i.e. players recall any

forgotten action after just one period of unawareness, even if they do not observe them.

The result is informally illustrated in the following example.

D E

A 3,1 0,2
B 0,1 3,2
C 2,0 2,0

Example 2 Each player in population 1 is randomly matched with a player in population

2 to play the above game. The game has 2 Nash Equilibrium components: the singleton

(B;E) and the weakly dominated component (C; ¾D 2 [1=3; 2=3]): Let the population

initially play any Nash equilibrium from the second component. After the ¯rst repetition

of play, a fraction ¾D of players in population 1 observes actionD; and forgets action E with

probability ¼E: A fraction 1 ¡ ¾D observes E; and forgets D with probability ¼D: At the

second repetition of play, ¼D(1¡¾D) players are unaware of D; and play B; whereas ¼E¾D

are unaware of E and play A: In equilibrium, each player in population 2 knows that if she

is matched with a player not fully aware, she will not receive action C: As that happens

with probability ¼D(1¡ ¾D) + ¼E¾D > 0; her only best response is E: Fully-aware players

in population 1 anticipate such behavior and respond playing B: The \bad" equilibrium
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has been upset in only one period of play. With in¯nitesimal forgetfulness, ¼ ! 0; the

aggregate play reaches instantaneously the \good" equilibrium (B;E): ¦

Remark 1 In the paper, whenever we refer to normal-form games, we mean one-shot

simultaneous-move games. For them, normal form is equivalent to extensive form repre-

sentation. In general, instead, the normal-form representation is inappropriate to deal with

forgetfulness. Consider Example 1 in normal-form, and let the initial state Nash equilib-

rium (NA;C): Suppose each player in population 1 may5 forget C: Now she is indi®erent

between TF and TA; and she prefers them to NF and NA: If she plays TF; her oppo-

nent responds with H; so that forgetfulness yields (TF;H): Repeating the analysis in an

extensive-form representation, however, clari¯es that it is inappropriate to say that the

unaware player is indi®erent between the strategies TF and TA: In fact, she is called to

choose between F and A only if her opponent has chosen C: Even if she is unaware of

action C at the beginning of the game, the player cannot be unaware of action C at the

moment she chooses between F and A: The choice between F and A is contingent on the

occurrence of C; it is thus meaningless to talk about a strategy TF; by which the player

commits to play F; if she is not even aware of C: ¦

3 Normal Form Games

In the interest of simplicity, we ¯rst present the model for normal-form games. In the

next section, we will extend the presentation to perfect-information extensive-form games.

Alternatively, we could present only the model for general extensive-form games, but since

that is rather involved, we relegate it to our extended version (Squintani 1999).

5Not to burden the exposition, we make our point using Example 1, and allowing for observed actions'

forgetfulness. We could present the same argument with forgetfulness of unobserved actions only, modifying

Example 1 so as to have H on backward-induction path, instead of C.
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3.1 The Model

We ¯rst de¯ne the equilibrium behavior at each period of play, then deal with the dynamics

implied by forgetfulness and learning.

Consider the normal-form game G = (I;A; u): Each i 2 I denotes a continuous pop-

ulation of players: A = £IAi is the ¯nite action space and ui : A ! <; i 2 I the utility

functions. Each player l 2 [0; 1]; in any population i holds a model of the game, denoted

by Ri; that consists of a subset of the opponents' action space assigning at least one action

to each player. Formally, Ri 2 Ri := £j 6=i(2
Aj n ?); let Ri

j be the j-th component of the

set Ri: Let ®i : [0; 1] ! Ri; be the assignment of models, and let ® = (®i)I : A strategy is

a pro¯le ¾ = (¾i)I of Lebesgue-measurable functions ¾i : [0; 1]! ¢(Ai):

At each period t; each player enters a match that includes one player from each popu-

lation. The matches are formed randomly, anonymously, and independently over time. We

assume the players play an equilibrium called ABE (short for Awareness Bayesian Equi-

librium) described as follows. Players do not know the strategy of the players with whom

they are matched, they formulate a conjecture that coincides with the average population

play, whenever referring to actions the player is aware of. The conjecture is then completed

with a belief that is rationalizable given the player's possibly partial model of the game.6

For any model Ri; denote by E[¾jjRi] the average distribution of strategies in population

j restricted to the actions contained in Ri
j:

De¯nition 1 Given the game G and the assignment ®; the strategy pro¯le ¾ is an Aware-

ness Bayesian Equilibrium whenever, for any player l; in population i; holding model Ri;

6A simple example may help with the intuition. Consider a player in population 1, who is unaware of

action A: Players in population 2 play A or B with probability 1=2 and they do not play C: Action D is

strongly dominated by B: We require player 1 to correctly assess that one half of her possible opponents

play B; but, being unaware of A; she cannot believe the remaining ones to play A: It would not make much

sense to require her to believe them to play D either, as she knows that to be dominated by B. As long as

a mixture of B and C is rationalizable, instead, she may believe the players in population 2 play it. Thus

her beliefs would be restricted so that half probability is given to B; and the remaining half to a mixture

of B and C that is rationalizable when action A is ruled out.
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1. (Rationality) for any ai 2 Ai; ¾il(ai) > 0 only if

ai 2 arg max
âi2Ai

X
a
¡i2A¡i

"Y
j 6=i

¯l
j(aj)

#
ui(âi; a¡i)

2. (Conjectures)7 for any j 6= i;

¯l
j = E[¾jjRi

j
] +

2
41¡ X

aj2R
i
j

E[¾jjRi
j
](aj)

3
5 ^̄

j[R
i]

where ^̄
j[R

i] is any rationalizable8 belief for the game GjRi = (I; Ri; ujRi):

As the action set A is ¯nite, an ABE always exists by standard argument.

Each player's individual awareness transition will depend on her current model, on

the action pro¯le she observes, and on random forgetfulness. For simplicity, we assume

forgetfulness to occur with probabilities ¯xed over time and independently across actions

and opponents.9 Fix the matrix of forgetfulness probabilities ¼ = f¼i
aj
gi;aj : each entry is

the probability for player i to forget action aj; where j 6= i: One cannot allow actions to

be forgotten when that amounts to deleting some player's action set, or else that player's

mental model is not well de¯ned. So, for any mental model Ri de¯ne the forgettable actions

set F̂ (Ri) := faj : R
i
j n fajg 6= ?g; and the forgotten actions random set F (Ri) µ F̂ (Ri)

such that aj 2 F (Ri) with probability ¼i
aj
; independently across i and j:

To avoid burdening the formalization of individual awareness transition, we specialize it

to the case in which forgetfulness is permanent and observed actions cannot be forgotten.

Assumption 1 Each player with Ri; who observes pro¯le a and forgets F (Ri) will hold

the model R̂i = (Ri n F (Ri)) [ fag:

7This functional form is chosen to guarantee ABE existence. Say we assumed conjectures to consist of
conditional population distribution whenever possible, and rationalizable beliefs otherwise. When compos-
ing beliefs with our rationality assumption, we would obtain a Best Reply correspondence that need not
be upper-hemi-continuous.

8Cf. Bernheim 1984.
9General non-independent forgetfulness may be captured de¯ning a forgetfulness probability system ¼

s.t. 8i;8Ri let ¼(¢jRi) 2 ¢(2R
i

) and ¼(R̂ijRi) = 0 if R̂i n F̂ (Ri) 6= ?: In Squintani (1999) we show our
results to be invariant to general forgetfulness unless (in some normal form games) forgetfulness of di®erent
actions is perfectly correlated.
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To allow forgetfulness of observed actions, let R̂i = (Ri[fag)nF (Ri):Were forgetfulness

to be only temporary, Assumption 1 would be modi¯ed by substituting A
¡i for R

i in all

the assertions, so that players would recall all forgotten actions after one period of play.

Given the time t assignment ®t; De¯nition 1 allows to derive the set of ABE, E¤(G;®t):

In case of multiple ABE, each player's awareness transition depends on which ABE is

considered. We require inertia: at each period t; the players must coordinate on one of the

ABE that are closest to that played at period t: Our metric is the average across players of

the (Euclidean) distance between each player's strategies at time t + 1 and at time t: We

thus ensure that our destabilization results are due to forgetfulness only: whenever there

are multiple equilibria, a non-inertial population can drift away from the starting point

equilibrium for no reason whatsoever. Formally, given G;®t+1; let the set of inertial ABE

be:

arg min
¾2E¤(G;®t+1)

X
I

Ejj¾i ¡ ¾t
ijj

Our main result is that standard solution concept are upset by in¯nitesimal forgetful-

ness, thus we concentrate our analysis on the long-run behavior of a population of individ-

uals that hold initially a complete model of the game, and that coordinate on a equilibrium

strategy.10 Therefore we stipulate that at time t = 0; all players l in population i hold the

fully-aware model A¡i; and coordinate on the same equilibrium strategy ¾± 2 £I¢(Ai):

Formally, we assume that:

8l; ®0
il = A¡i; and ¾0il = ¾±i :

Aggregating individual awareness transitions in the population, one obtains a random

population transition description ° : (®t; ¾t) 7! ®t+1: Given the aggregate transition °;

and the initial assignment ®0; and equilibrium ¾0; the random population assignment ®t

and equilibrium ¾t may be de¯ned recursively for any t ¸ 0: That formulation, however,

10It would be inappropriate to derive such a result in terms of stationary or stable states without

considering explicitly the initial awareness. Suppose we proved stationary a non-Nash state with some

unawareness. If such state could not ever be reached from initial full awareness, the result would not be

driven by in¯nitesimal forgetfulness, but by unawareness originally present in the population.
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requires us to keep track of a rather complicated stochastic process on the space of all the

assignments and all the distributional strategies. In order to de¯ne the awareness transition

in a more tractable manner, we follow a standard approach of evolutionary game theory.

We partition the population in a ¯nite set of \types", and then invoke a \Law of Large

Numbers" argument,11 to approximate the stochastic transition ° with a deterministic

transition de¯ned on the frequencies of types.

Speci¯cally, we restrict attention to inertial ABE where players choose the same strategy,

if they hold the same mental model, and if they took the same strategy at the previous

period.12 Formally, given ¾t and ®t+1; an inertial ABE ¾t+1 is de¯ned simple if:

8i; ¾t+1

il
= ¾t+1

il0
whenever ®t+1

il
= ®t+1

il0
and ¾t

il
= ¾t

il0
:

For each population i; the restriction to simple ABE allows to assigns each player, at

each period of play, a type T i = (Ri; ¾̂i); where ¾̂i 2 ¢(Ai) denotes the strategy played

at the last period of play. Let T i denote the set of types in population i; let ¸i be the

distribution in the population, and de¯ne the product measure ¸ on £IT
i: The strategy

¾l of any player l of type T i will be denoted as ¾T i ; and her conjectures as ¯[T i]: Since the

distribution ¸ includes the distribution of strategies in the population, we can subsume all

the dynamics in the distribution ¸; write the set of simple inertial ABE as Á(G; ¸); and

de¯ne the set of associated aggregate distributions of play as '(¸; Á(G; ¸)):

In order to describe the population transition, since we are dealing with continuous

populations, and for any t; the support of ¸t is ¯nite, we can invoke a Law of Large

Numbers argument. We identify each population transition ratio ¸t

i
; with the composition

of the individual transition probabilities, across di®erent types T i; and across di®erent

observed pro¯les a; distributed according to '(¸t; Á(G; ¸t)): Given the game G; and the

11Boylan (1993), Proposition 3 shows that for ¯nite large populations there exists anonymous random-
matching schemes such that population transition ratios weakly converge to the composition across di®erent
types of individual transition probabilities. Alos-Ferrer (1999) extends the analysis to the case of a contin-
uum of players, and shows that there exist random matching processes guaranteeing that the evolution of
frequencies is (almost surely) deterministic.

12If anything, this restriction strengthens our destabilization results.
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forgetfulness probabilities ¼; we obtain the transition correspondence »(G; ¼; ¢); that assigns

a set of ¯nite support distributions ¸t+1 given a distribution ¸t: We omit the closed form

of » as it is not particularly insightful.

Given the initial equilibrium ¾±; and the transition »(G; ¼; ¢); we derive a set of solutions

f¸tgt¸0: For each solution f¸tgt¸0;we can determine the average distribution of play:

lim
T!1

TX
t=0

'(¸t; Á(G; ¸t))

T

Holding the game G; and the initial equilibrium ¾± ¯xed, we pick a sequence of matrices

¼n ! 0; so that the model generates a sequence of sets fn of average distributions of play

that depend on ¼n: We denote as f¤ the set of the limit points from any selection of fn:

With a minor notational violation, we will often identify the sets fn and f¤ with their

elements, if the sets are singleton.

De¯nition 2 Given the game G; and the sequence of matrices ¼n ! 0; the equilibrium

pro¯le ¾± is F -stable if f¤ = ¾±:

To ensure almost full memory, the analysis is conducted for sequences of matrices

¼n ! 0:What gives some degrees of freedom is the sequence along which ¼n ! 0: Whereas

all actions are in¯nitesimally forgotten, the relative probability to forget di®erent actions

may be very large.

In showing our results, it will often be the case that the game admits a unique sequence

of simple inertial ABE as a function of ¼; which shall be denoted by f¾tg
t¸0 : Moreover,

often the players' equilibrium strategies will not depend on their previous period's strategy.

So we introduce the distribution of models in each population i, denoted by ½
i
2 ¢(Ri);

with ½ = (½1; :::; ½I); and denote strategies as ¾Ri: When no confusion can occur, we will

further simplify our notation, denoting the type unaware of an arbitrary action a by [a];

the type's proportion in the population by ½
a
; and her strategy by ¾[a]; and denoting the

fully aware type by [?]:
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3.2 Forgetfulness of Opponents' Unobserved Actions

In the normal-form re¯nement literature (cf. Selten (1975), Myerson (1978) etc.) each

Nash equilibrium is selected only if it survives a given stability check. A Nash equilibrium is

trembling hand perfect, for instance, if there exists a sequence of full support perturbations

along which the equilibrium strategy is still played by all players. Analogously, a Nash

equilibrium is F -stable (for a certain sequence of matrices ¼n) if and only if it survives a

\forgetfulness" stability check: it is still played as an equilibrium after players forget actions

with probability ¼n: Thus F -stability is a re¯nement. We provide a new substantive reason

for re¯ning Nash equilibrium. Traditionally, players are assumed to fully understand the

game, but to make small mistakes while playing it. We require them to be able to correctly

play any game once they have written down its representation. However, we presuppose

that when facing a complex social interaction, they may be unable to fully represent all its

relevant alternatives.

We begin the exposition by pointing out some simple general properties of F -stability.

Proposition 1 For any sequence of matrices ¼n > 0; ¼n ! 0; if ¾± is a pure-strategy, or

a full-support isolated13 mixed-strategy equilibrium, then it is F -stable.

Because forgetfulness of observed actions is not allowed, if ¾± is a pure strategy equilib-

rium, no player may ever forget an opponent's equilibrium actions. Inertia then requires all

players to stick to the pure strategies initially played, so that ¾± is F -stable. Full-support

mixed-strategy equilibria are shown to be F -stable as follows. Say at time 1 some unaware

types take a strategy di®erent than ¾±: Inertia requires fully-aware players to slightly ad-

just their strategy so that the aggregate distribution of play is ¾±: In this case, the ratio of

unaware players always remains very small, so that fully-aware players may always adjust

to yield ¾±:

13A Nash equilibrium ¾¤ is isolated if 9" s.t. 8¾ : jj¾ ¡ ¾¤jj < "; ¾ is not a Nash equilibrium. There are
(somewhat uncommon) games with full-support, non-isolated Nash equilibria.
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Since there exist pure-strategy weakly dominated equilibria, F -stability is not stronger

than weak dominance, and hence trembling-hand perfection or properness. However, we

can show that F -stability is also not weaker than properness, and hence trembling-hand

perfection or weak dominance.

A B C V W

D 1,0 0,2 1,3 2,1 2,2
E 2,3 0,2 2,0 1,2 1,1

Example 3 Extending the analysis of Example 2, one sees that all the Nash equilib-

ria in the component (¾±
D
2 [1=3; 2=3]; ¾±

B
= 1) are F -destabilized for any sequence of

strictly positive ¼n matrices. In fact, (1 ¡ ¾±
D
)¼D players in population 2 will forget D

and play A; and ¾±
D
¼E will forget E and play C: As V and W are strictly dominated by

mixtures of (A;B) and (B;C) respectively, aware players in population 2 will never play

them. Thus aware players in population 1 must play E at ABE, and aware players in

population 2 respond with A; so that f¤(A;E) = 1: However, all the equilibria in the NE

(¾±
D
2 [1=3; 2=3]; ¾±

B
= 1) are undominated because V renders D undominated. In 2-player

games, undomination implies trembling hand perfection, so all NE (¾±
D
2 [1=3; 2=3]; ¾±

B
= 1)

are also THP. Properness is stronger than THP and, allowing only trembles ordered with

equilibrium utility, it follows closer F -stability, as it mimics the requirement of players to

play an ABE at each period of play. However, the Nash equilibrium (¾±
D
= 1=2; ¾±

B
= 1)

is proper, and F -destabilized. In fact all non-Nash actions of player 2 yield the same14

utility against ¾±
D
= 1=2: Pick trembles assigning "=4 probability to each action A; C; V;

and W : then U1(D;¾
±

"
) = 2(1¡ ") + 3"=2 = U1(E; ¾

±

"
); so player 1 may randomize against

the perturbation, and the equilibrium is proper. ¦

Example 3 suggests that, unlike some apparently more appealing re¯nements as weak

dominance, trembling hand perfection and properness, F -stability is invariant to deletion of

14The example makes use of a tie in the upsetting actions. It would be nice to ¯nd out whether properness

implies F-stability in games with generic upsetting strategies.
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strictly dominated strategies. That intuition is con¯rmed by Proposition 2 below: whatever

model of the game a player may hold, since she is always aware of all her strategies, she will

never play a strictly dominated strategy. So the addition of a strictly dominated strategy

does not change the evolution of the population in games of normal-form. Moreover, any

normal-form solution concept meant to be stable with respect to forgetfulness, should not

be invariant to deletion of strictly dominated strategies.

Proposition 2 Let F ¤(G) be the set of F -stable NE of a game G: If G0 is derived from G

by deleting strictly dominated strategies, then F ¤(G) = F ¤(G0):

We conclude our analysis of F -stability by giving a complete characterization for 2£ 2

games. First, we say that a game with action space fA;Bg £ fC;Dg is a (normal-form)

entry game if15 u2(B;C) = u2(B;D); and [(u1(A;C) � u1(B;C); u1(A;D) > u1(B;D) or

(u1(A;C) > u1(B;C); u1(A;D) � u1(B;D)]: The name is inspired by the following game.

C: ¯ght D: accept

A: enter 0,1 3,2
B: out 2,0 2,0

Theorem 3 For any 2 £ 2 game G; and any sequence of matrices ¼n > 0; ¼n ! 0; the

Nash equilibrium ¾± is F -destabilized if and only if G is an entry-game16 and ¾±

C
2 (0; 1):

Proof. Consider an entry game, without loss of generality pick u2(B;D) = u2(B;C);

u1(A;C) � u1(B;C) and u1(A;D) > u1(B;D): Consider the case u2(A;D) 6= u2(A;C);

without loss of generality, say u2(A;D) > u2(A;C): We want to show that any NE

(¾±

C
2 (0; 1); ¾±

B
= 1) is F -destabilized for any ¼n ! 0; ¼n > 0; 8n: In fact, say any such NE

is played at stage 0: At time 1, ½1
C
= (1¡¾±

C
)¼C > 0 and ¾[C](A) = 1 : a positive fraction ½1

C

15
The characterization is obviously invariant to relabeling of strategies, and of players. So that, for

instance, it includes also u2(A;C) = u2(A;D); and u1(A;C) < u1(B;C); u1(A;D) ¸ u1(B;D) or
u1(A;C) ¸ u1(B;C); u1(A;D) < u1(B;D)]:

16Actually, not to burden the statement, we left out one special case: in entry-games where u2(¾) is
independent of ¾; all non-full-support equilibria are F-stable. See the proof in Appendix, for details.
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of players in population 1 will forget C and therefore play A: As D is the only best response

when A; is played with positive probability, all aware players in population 2 must respond

D: ¾?(D) = 1: As ½2
?
= (1 ¡ ¼A)(1¡ ¼B); for ¼ small enough, the unique best-response is

A; so that all the aware players in population 1 play A: So, for ¼ small, the population play

jumps very close to (A;D): As u2(A;D) > u2(A;C) and u1(A;D) > u1(B;D); a ¼ small

enough can be found so that forgetfulness at periods further than 1 is irrelevant. Since

f¤ = (A;D); ¾± is F -destabilized. The case for u2(A;D) = u2(A;C) and the only if part

of the proof are in the Appendix.

The above analysis characterized F -stable NE; a natural question is whether a destabi-

lized population will settle on a (F -stable) Nash equilibrium. We show a slightly di®erent

result: any stationary state of the transition » (with in¯nitesimal forgetfulness) is a NE.17

The result complements the analysis of F -stability as a re¯nement: when a Nash equilib-

rium is destabilized by in¯nitesimal forgetfulness, if the population is ever to rest, it will

reach a F -stable Nash equilibrium. Given a game G; let S¤

n = f¸nj¸n = »(G; ¼n; ¸n)g

denote the set of stationary points of the transition »; given the forgetfulness matrix ¼n:

Proposition 4 For any sequence of matrices ¼n > 0; ¼n ! 0; if ¸¤ is a limit point of a

sequence from fS¤

ngn>0; then f¤ = '(¸¤; Á(G;¸¤)) is a Nash equilibrium of G:

Players are fully aware of their own actions and will remember any action they observe.

So at a stationary state, when forgetfulness is very small, their beliefs on path must be

almost right, and by continuity, they play a self-con¯rming equilibrium. As forgetfulness

generates di®erent mental models in the population, the players' beliefs may be heteroge-

neous: since G is a normal form game, f¤ is a correlated equilibrium. As the awareness

distribution is independent across populations, f¤ is a Nash equilibrium.

On the other hand, the population play need not reach a stable state: it allows for

cyclical behavior, even with initial full awareness and in¯nitesimal forgetfulness.

17We think that the result may be extended to include time averages over stable sets.
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D E

A 3,2 0,0
B 2,1 2,1
C 0,0 3,2

Example 4 Assume ¼n
D
= ¼n

E
=: ¼n;8n and for simplicity, say that 8a1 2 A1; ¼

n
a1

= 0:

We will show that a population with initial full awareness will jump from one extreme of

the NE component (B; ¾±
D
2 [1=3; 2=3]) to the opposite one, hitting (B; ¾±

D
= 2=3) in even

periods, and (B;¾±
D
= 1=3) in odd ones. Start with (¾±

D
= 2=3; ¾±

B
= 1): At time 1, ¼=3

players in population 1 forget D and 2¼=3 forget E so that ½1
E
= 2¼=3 and ½1

D
= ¼=3

and the ABE is s.t. ¾[E](A) = 1; ¾[D](C) = 1: As we want to ¯nd the inertial ABE, we

want aware players in population 2 to randomize, so it must be that 2[½1
E
+ ¾?(A)] = f1

A
=

f1
C
= 2[½1

E
+ ¾?(C)]: As ½E > ½D we need ¾?(C) > 0: Consider aware players in population

1: their best reply is A if f2
E
� 1=3; it is B if f2

E
2 [1=3; 2=3] and it is C if f2

E
¸ 2=3:

Thus, their inertial ABE strategy is: ¾?(C) = (½E ¡ ½D); ¾?(A) = 0; ¾
¤
(E) = 2=3: At

time 1, f1 = ([2¼=3]A; [1¡4¼=3]B; [2¼=3]C; [1=3]D; [2=3]E): Because of that at time 2, 1=3

of the players in population 1 will not observe E and 2=3 will not observe D : now ½2
E
=

½1
E
=3+¼(1¡½1

E
)=3 = 2¼=9+¼=3¡o(¼) and, ½2

D
= 2½1

D
=3+2¼(1¡½1

D
)=3 = 2¼=9+2¼=3¡o(¼):

Again we want aware players in population 2 to randomize, but now ½2
E
< ½2

D
; so we

need ¾?(A) > 0: The inertial ABE aware strategy is: ¾?(A) = (½D ¡ ½E); ¾?(C) = 0;

¾?(E) = 1=3; so that the inertial ABE displays f2 = ([2=3]D; [1=3]E): By induction, for

any t; if f t¡1 = ([2=3]D; [1=3]E); then ½t
E
= ½t

D
+¼=3¡ o(¼); so that f t = ([1=3]D; [2=3]E);

and then ½t+1
E

= ½t+1
D

¡ ¼=3 ¡ o(¼); so that f t+1 = ([2=3]D; [1=3]E): So that, for ¼ ! 0;

one obtains that the sequence f t obscillates hitting ([1=3]E; [2=3]D;B) in even periods

and ([2=3]E; [1=3]D;B) in odd ones. Nevertheless, the time-average distribution of play is

f¤ = ([1=2]E; [1=2]D;B); which is a Nash equilibrium. ¦
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3.3 Forgetfulness of Observed Actions

In this subsection we extend the analysis by allowing also forgetfulness of opponents' ob-

served actions. Repeating the proof, it can be shown that Proposition 4 continues to hold.

Nevertheless, the characterization of F -stability is di®erent. Since we are allowing a larger

set of actions to be forgotten, we will upset a larger set of Nash equilibria. In particu-

lar, we will get rid of the \bad" pure-strategy equilibria that survived F -destabilization

in the previous section. In fact, pure-strategy equilibria were una®ected by forgetfulness

only because observed actions could not be forgotten, and inertia thus required all players

to stick to the pure strategies initially played. If observed actions may be forgotten, on

the other hand, some players may deviate from the initial equilibrium, and upset it. As a

consequence of that, we will be able to establish the main result of this section, Theorem

5, and show that F -stability is stronger than Trembling Hand Perfection if forgetfulness of

observed action is allowed.

Unlike Theorem 1, the results in Theorem 5 do not hold for any sequence of forgetfulness

matrices. Example 5 shows that there are some very peculiar games, in which some non-

THP equilibria are F -stable along some forgetfulness sequence.

C D E

A 1,1 0,0 2,1
B 1,1 1,0 2,1

Example 5 Consider the non-THP equilibrium (A;C): At any time t; regardless of what

they forget, inertia requires all players in population 2 to play C: At time 1 a ratio ½1CE =

¼C¼E of players in population 1 forget C and E; and play B: However all players who

forget only C or E still play A by inertia, as well as do all players who forget D: At time

2; all players of type [CE] will be reminded of C; but by inertia they will still play B:

Players who forget D will always remain unaware of it, and so may not forget both C

and E anymore. So, if ¼nE = ¼nD = ¼nC; 8n; then (A;C) is F -stable. In fact, for any t;
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let ¸t<CE> denote the ratio of players that have been unaware of C and E at any time

T � t; and de¯ne ¸t<D>as the ratio of players unaware of D who have never been unaware

of both C and E: Simple algebra shows that ¸t<CE> = t¼n
C
¼n
E
+o(¼n

C
¼n
E
) = o(¼n

D
)t; whereas

¸t<D> = t¼nD + o(¼nD): So that, for ¼nD ! 0 and any t; ¸t<CE> ! 0; and f¤(A;C) = 1: On

the other hand, if18 ¼nD=(¼
n
C¼

n
E) ! K 2 <++; then the population play will slowly drift

from (A;C) to a mixture of (A;C) and (B;C): Also any Nash equilibrium of the form

(®A+ (1¡ ®)B;C); with ® 2 (0; 1); is F -destabilized. ¦

To simplify the statement of the following results (proved in the Appendix), we call ¾±

always F -stable if it is F -stable for any sequence of forgetfulness matrices ¼n > 0; ¼n ! 0:

Theorem 5 If ¾± is a strict equilibrium then it is always F -stable.19 If ¾± is always F -

stable, then it is trembling hand perfect.

We also show that trembling hand perfection coincides with F -stability in 2£ 2 games

we call double-sided,20 i.e. games where there is not any player i such that 8¾
¡i; ui(ai; ¾¡i)

is independent of ai:

Corollary 6 For any double-sided 2£ 2 game, ¾± is a trembling hand perfect equilibrium

if and only if it is always F -stable.

4 Games with Perfect Information

4.1 Extending the Model

Consider a perfect-information game ¡ = (X;Z; I; ¶; A; u1; ¢ ¢ ¢ ; un); the formal de¯nition

is in Appendix. To represent a player's perception of the game while she is playing, it is

18This is essentially equivalent to require that each player in population 1 forgets action E whenever she

forgets action C; instead of forgetting them independently. As her optimal choice against action C and E

is the same, she may collapse them in a single opponent's \action".
19Actually the statement can be strengthened to include all quasi-strict isolated equilibria.
20We suspect that these games have already been classi¯ed with a di®erent terminology, but we were

not able to ¯nd a de¯nition established in the literature.
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necessary to allow di®erent mental models at di®erent decision nodes. In fact, suppose

player i is unaware of an action a at her ¯rst decision node x1: In case her opponent takes

action a; player i may ¯nd herself at a decision node x2; of which she was unaware when

taking her choice at node x1: She will then need a description of the game di®erent from

the one she had at x1:

De¯nition 3 Each player in population i holds a mental frame Ri µ A s.t. 8x 2 X;

Ri \ A(x) 6= ?; and Ai ½ Ri: At node y; she holds the mental model21 Ry de¯ned as

follows:

1. Let Ay be the union of Ri and the path between x0 and y: That is,

Ay = Ri [ fa 2 Ajx0 = a(x); x0 ¹ x; x0 ¹ yg:

2. Let the pair (Y y; Ry) be the largest tree with root x0; and contained in (Y;Ay): I.e,

Y y = fx0g [ fy
0 2 Y j9n; fa1; :::; ang µ Ay s.t. x1 = a1(x0); x2 = a2(x1); ¢ ¢ ¢ ;

y0 = an(xn¡1)g; and R
y = AyjY y :

We extend the de¯nition of ABE to account for perfection, and obtain the concept of

Awareness Perfect Bayesian Equilibrium. For brevity, we directly present simple APBE.

As di®erent types of opponents may take di®erent actions, there could be a \separat-

ing" equilibrium in which a player identi¯es the types of players she is matched with, by

observing their play at predecessor nodes. To account for that, we allow each player to

Bayes update her beliefs (with respect to her opponents' types), at every decision node.

For any x; y 2 Y; and ¾ 2 £X¢(A(x)); de¯ne ¹(yj¾; x) =
Q

a:x0!ax00;x¹x0;x00¹y ¾x0(a) the

probability of reaching y from x under the behavioral strategy pro¯le ¾: For any node x;

and mental model Rx de¯ne by ¯T j [Rx] the conjecture of any player at x holding Rx with

respect to the strategy of type T j:

21For imperfect-information games, mental models Rh are de¯ned on each information set h; and they
satisfy the following requirement. Consider the predecessor set h0 : if h is not in ¡j

Rh
0 ; then Rh must

include at least a path from Rh
0

to h: Because of that an awareness type must not only include forgotten
actions, but also actions that would be recalled in case an opponent took an action the type is unaware of.
The problem is solved in Squintani (1999).
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De¯nition 4 Given game ¡ and state ¸; the behavioral strategy pro¯le ¾ 2 £I(£Xi
¢(A(xi))

T i

)

is a simple awareness perfect Bayesian equilibrium whenever for any role i; any type T i;

any decisional node x : ¶(x) = i;

1. (Bayesian Update) for any opponents' type pro¯le T¡i 2 T ¡i; de¯ne ÃRx(T¡i) such

that

ÃRx(T¡i) =
¹(xj¯T [R

x]; x0)¸
¡i(T¡i)

E¸
¡i[¹(xj¯T [R

x]; x0)]
\whenever" possible,

2. (Sequential Rationality) For any a 2 A(x); ¾T i(a) > 0;

a 2 argmax
A(x)

EÃRx

"X
Z

¹(zj¯T [R
x]; a(x))ui(z)

#

3. (Conjectures) For any j; and T j; supp(¯T j [Rx]) µ Rx
j and

¯T j [Rx](aj) = ¾T j(aj) +

2
41¡ X

âj2R
x
j

¾T j(âj)

3
5 ^̄

Rx(aj)

Where ^̄
Rx is a backward induction solution22 strategy for the game ¡jY x:

Given any type pro¯le T; the terminal-node path distribution ³
T
2 ¢(z) is such that

8z; ³T (z) = ¹(zj¾T ; x0): The aggregate path f 2 ¢(z) is such that 8z; f(z) := E¸[³T (z)]:

For any mental model Ri the forgettable actions set is F̂ (Ri) := fa 62 Ai j 8x;

[Ri \ A(x)] n fag 6= ?g: The forgotten actions set F (Ri) is de¯ned as for normal form

games. Each player of type T i; who observes path z and forgets F (Ri) will change to

type T̂ i = ((Ri n F (Ri)) [Rz; ¾T i) when observed actions cannot be forgotten, and to type

T̂ i = ((Ri [Rz) n F (Ri); ¾T i) when they can be forgotten. Each player i's individual tran-

sition depends on her type Ri; on her random set F (Ri); and on the observed path z: The

latter depends on the type of opponents she is matched with, through ³
T
: The transition »

is constructed by aggregating individual random transitions, across di®erent types T i; and

across di®erent types opponents' type matches T¡i: Inertia, and the de¯nition of F -stability

are treated similarly to the normal-form case.

22Battigalli (1997) shows that backward induction coincide with his extensive form rationalizability

concept in terms of path of play.
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4.2 Forgetfulness of Opponents' Unobserved Actions

Example 1 in the second section shows that the backward induction path may be desta-

bilized by in¯nitesimal forgetfulness. It must be pointed out, however, that the BI path

of Example 1 may be F -destabilized only if ¼n
H
= 0; for n large enough. So one can only

conclude that F -destabilization may occur for some sequence of weakly positive matrices

¼n; where ¼n ! 0: That is a somewhat weak result, because it seems to suggest that for-

getfulness destabilizes the BI path only if it is restricted to some particular actions. To

clear up the issue, we modify the Example 1 and show that F -destabilization may occur

for some sequence of strictly positive matrices ¼n that converge to 0:

Example 6 Consider the game illustrated in the ¯gure 2.

The backward induction solution is (NA;ZC). Let ¼n ! 0; ¼n > 0; 8n such that

lim¼n
A
=¼n

F
> b > 1: The formal analysis is lengthy and thus relegated to the Appendix.

Intuitively, some players from population 2 will forget A as it is o® path, and so play H:

When the ratio of players unaware of A becomes larger than 1=2; all the players aware

of H will play T instead of N: Now Z is o®-path, so some players from population 1 can

forget it. At the same time, some players from population 1 will forget H if faced with

players from population 2 that did not forget A: One obtains that at the steady state,

½¤
Z
> 0; ½¤

H
> 0; ½¤

Z
+½¤

H
= 1; and 0 < ½¤

F
< 1=2; ½¤

F
+½¤

A
= 1: The limit average path will be

a mixture: f¤(NZ) = 1¡½¤
Z
; f¤(TH) = ½¤

Z
½¤
A
; f¤(TCA) = ½¤

Z
½¤
F
: This is not Nash and not

even unitary self-con¯rming. Note, though, that the result does not hold for all vanishing

sequences of strictly positive matrices. If one requires that 8n; ¼n
A
< ¼n

F
; the backward

induction path is stable. ¦

Example 6 di®ers from Example 1 because of the addition of player 2's actions Q and Z

after player 1's action N: The addition of the action Z is trivial, as the payo® for the path N

in Example 1 is equal to the payo® for the path NZ in Example 6, moreover the addition of

the action Q is irrelevant for the backward induction solution, as it is conditionally strictly
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       Q 2   N        1 T  2          C     1    F 
      l         l l      l  
   -1,-1        1,-1
     Z              H                    A

                 1,1 2,2                     0,3

Figure 2: Pseudo-Tripede

dominated by Z at player 2's decision node.23 Yet the di®erence in terms of forgetfulness

is substantial. In fact, the BI path of Example 1 is F -destabilized only if ¼n
H
= 0 for n

large enough, whereas that of Example 6, is F -destabilized for any sequence of matrices

¼n ! 0 such that 8n; ¼n
A
> ¼n

F
; regardless of the magnitude of ¼n

H
: As the two examples

can be used to represent the same economic situations, an apparent contradiction arises.

In fact, the comparison shows that the sequence along which forgetfulness vanishes is what

really matters. If the modeler deems that ¼A > ¼F ; she would be mistaken concluding that

forgetfulness does not matter when ¼H > 0; on the basis of Example 1. She should instead

consider the \complete" model represented in Figure 2.

As already pointed out in the second section, the action F can be interpreted as a non-

credible threat nested in the credible threat C: We will de¯ne all games displaying such

structure games with nested threats, and show that the backward induction outcome of a

game ¡ can be F -destabilized if and only if ¡ is a game of nested threats. In particular, the

BI path is F -destabilized if the non-credible threat can be forgotten with \high" in¯nites-

imal probability, and the action alternative to the credible threat cannot be forgotten at

all. The characterization of games where the BI path is F -destabilized when all the actions

can be forgotten can be simply derived from the games of nested threats, as shown in the

previous discussion comparing Examples 1 and 6.

23An action a 2 A(x) is conditionally strongly dominated, if there exist â 2 A(x) such that for any
¹ 2 ¢(fz : a(x) Á zg) and any ¹̂ 2 ¢(fz : â(x) Á zg);

P
Z
u¶(x)(z)¹(z) <

P
Z
u¶(x)(z)¹̂(z): See Fudenberg

and Tirole (1991).
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We will ¯rst introduce our formal characterization and then interpret it in terms of

nested threats. Consider a generic perfect-information game. Let a±

x be the backward

induction choice at node x, and let u±(x) be the backward induction value of x: Denote by

a±(¡) the backward-induction path of game ¡: For any player i and any node x; we will also

de¯ne as backward-inductive maximin value ¹ui(x); the value obtained by i if at any choice

following (and including) x player i maximizes her utility and her opponents minimize it

(the formal de¯nitions is in the Appendix). Finally, for notational ease, let the pair (x; a)

be called a deviation whenever a 2 A(x); and a 6= a±

x: As customary, subscripts of actions

and nodes denote the player assigned the move, and to avoid trivialities, we will restrict

attentions to games such that 8x;#A(x) > 1 and 8a 2 A(x); ¶(a(x)) 6= ¶(x):

De¯nition 5 A perfect-information generic extensive-form game is a game of nested threats

if there exists deviations (xi; ai) [xi on path], and (xj; aj) [ai(xi) ¹ xj] such that:

1. u±

i (aj(xj)) > u±

i (xi)

2. 8x : xi Á x ¹ xj; [u
±

¶(x)(aj(xj)) ¸ ¹u¶(x)(a
0(x)); 8a0 2 A(x)]:

The mathematical interpretation in terms of nested threats is as follows. For any i; x;

and ai 2 A(x); call the outcome z a threat to (x; ai) if ai(x) Á z and ui(z) < u±

i (x): The

threat z to (x; ai) is trivial if it can be reached only when player i does not maximize her

utility at some node,24 the threat z to (x; ai) is credible if u±(ai(x)) = u(z); if a threat is

neither credible, nor trivial, it is non-credible. De¯nition 5 requires25 that there exists z;

credible threat to some (xi; ai); xi on path, and that there exists z0 non-credible threat to

some (xj; a
±

xj
); where ai(xi) ¹ xj: In fact, by assumption, xi is on path and there exist

xj such that ai(xi) ¹ xj: Denote by z the terminal node reached from ai(xi) along BI

solution. Since ai is not on path, u±

i (xi) > u±

i (ai(xi)) = ui(z): we have established that z is

24See Appendix for the formal de¯nition.
25The remaining requirements in De¯nition 5 are only imposed so that the nested threats are relevant

for all players' choice. For instance, if it were not the case that u±i (aj(xj)) > u±i (xi); then a deviation of
player j from a±xj to aj would be irrelevant for player i:
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a credible threat to (xi; ai): Also, applying Requirement (2) to xj and a
±

xj
; one obtains that

¹ui(a
±

xj
(xj)) < u±

j(aj(xj)) < u±

j(a
±

xj
(xj)): Let z

0 be the terminal node reached from a±xj(xj)

along BI-maximin on j: we have established that z0 is a non-credible threat to (xj; aj):

Theorem 7 The BI solution a±(¡) is F -destabilized for some weakly positive sequence

¼n ! 0 if and only if ¡ is a game of nested threats.

Su±ciency is established setting ¼n as follows. For any xk on the path from xi to xj (xj

included), consider all actions ak that do not lead into xj (or that di®er from xj): Allow

forgetfulness of all and only the actions alternative to the BI-maximin path starting at any

ak(xk): De¯nition 5 requires i to deviate from the BI path when all such actions have been

forgotten.

We prove necessity through three di®erent claims. Since all the actions on path cannot

be forgotten, the ¯rst claim establishes that for the BI path to be F -destabilized, a deviation

aj must occur in the continuation of an action ai; that is itself alternative to an action on

path. Suppose now that the BI path is F -destabilized, and the new path goes through

ai: the second claim requires that at least a deviation (xj; aj) (in the continuation of ai)

occurs because the BI value of aj is larger than the BI-maximin value of a±xj : In fact, along

the new path, players may be reminded of actions of which they were previously unaware.

So if players deviate in the wrong belief to obtain more than the BI value, sooner or later,

an action that deludes their expectations will be taken, and thus at next period they will

avoid taking the deviation. For the backward induction path to be destabilized through

action ai; and the new path to reach the last deviation aj; the third claim simply requires

it to be the case that forgetfulness of actions leads all the choices from xi onwards into aj:

The second part of our characterization will point out that whenever a game is rich

enough, the BI path may be F -destabilized. Given a generic game ¡ = (X;Z;Á; I; ¶; A; u);

we construct a generic game ¡0 that contains the game ¡; and such that the BI path of

¡0 coincides with that of ¡ on their common nodes. Formally the game ¡0 is a backward-

induction-irrelevant expansion of ¡ if X ½ X 0; (I; ¶;Á; A) = (I 0; ¶0jX ;Á
0 jX; A

0jX) and
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8x 2 X; u±(x) = u±(x)0: In terms of full memory analysis, the games ¡0 and ¡ represent

the same strategic interaction, and ¡0 is a richer, more complete, model than ¡: Intuitively,

a BI-irrelevant expansion can be obtained by attaching trivial or conditionally dominated

actions to the original game. Trivial actions are payo®-irrelevant, and so they do not change

the BI solution, they are usually interpreted as \inaction". By de¯nition, conditionally

strictly dominated actions are never chosen (under full memory), and so they are irrelevant

for backward induction. Proposition 8 points out that we can construct a game with the

payo® structure of Example 6, around the last choice on the BI path of ¡: That choice

is thus upset by forgetfulness, and also upstream BI choices may be upset in a \domino

e®ect". Let a±(¡) be the BI path of the game ¡; and let f¤(¡0)jA be the long-run prediction

for the game ¡0 restricted to the action set A:

Proposition 8 For any n-player game ¡ with n > 1; there exist a BI-irrelevant expan-

sion ¡0 and a sequence of matrices ¼n > 0; ¼n ! 0; such that a±(¡0) is F -destabilized,

f¤(¡0)jA 6= a±(¡); and f¤(¡0) Pareto dominates a±(¡):

Theorem 7 seems to restrict the F -destabilization result to a class of games with some-

what convoluted strategic properties. Nevertheless, Proposition 8 proves that forgetfulness

may matter in all games that are rich enough. The analysis underlines that the funda-

mental ingredient in dealing with the issue of forgetfulness is not the game it is applied to,

but the relative probability of forgetting di®erent actions in the game. Any game can be

expanded without modifying the full-memory BI solution, so that there exist a sequence

of forgetfulness matrices for which the BI solution is F -destabilized. However, the exercise

is irrelevant, if the modeler believes players forget actions of the expanded game according

to relative forgetfulness probabilities, for which the BI solution is not F -destabilized.

4.3 Forgetfulness of Observed Actions

To introduce the characterization for the case in which also forgetfulness of opponents'

observed actions is allowed, consider the following example.
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 1  I     2          F
 l     l          -1, 1

   O        A
 

0, 1    1, 0

Figure 3: Chain-Store Game

Example 7 Consider the game in Figure 3: the only BI solution is IA: The players in

population 1 forget with probability ¼F the action F and so play I or forget with probability

¼A the action A and then play O; in which case they will never observe A as they make it

o®-path. Thus the system evolves as½
½t+1A = ¼A(1¡ ½tA ¡ ½tF ) + ½tA
½t+1F = ¼F (1¡ ½tA ¡ ½tF ) + ½tF

the only stationary state of the system is ½¤A > 0; ½¤F > 0; ½¤A+ ½¤F = 1: The limit stationary

distribution is f¤(O) = ½¤A; f
¤(IA) = ½¤F : ¦

The main feature of Example 7 is that the action F is a non-credible threat to the

action I on path. We will extend the characterization of Theorem 7, to show that the BI

solution of a game ¡ is F -destabilized for some sequence of forgetfulness matrices also if ¡

is a game with a non-credible threat to an action on path. Moreover, given a game ¡ whose

BI path cannot be F -destabilized, the addition of just one conditionally strictly dominated

action yields a BI-equivalent game ¡0 whose BI path is F -destabilized.

Proposition 9 The backward induction path a±(¡) is F -destabilized for some weakly pos-

itive sequence ¼n ! 0 if and only if ¡ has a deviation (xj; aj) such that 8x ¹ xj;

[u±¶(x)(aj(xj)) ¸ ¹u¶(x)(a
0(x)); 8a0 2 A(x)]:

The proof is analogous to that of Theorem 7 and is thus omitted. It can be easily checked

that the characterization includes games of nested threats from De¯nition 5, and that the
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condition in Proposition 9 is implied by non-credible threats to nodes on path. Say, in fact,

that z is a non-credible threat to (xi; a
±

xi
) xi on path, then ¹ui(a

±

xi
(xi)) � ui(z) < u±i (a

±

xi
(xi)):

The remaining requirements of Proposition 9 are only imposed to make sure that such non-

credible threat is relevant for i's behavior. They essentially mean that if i believes to reach

z when playing a±xi ; she will prefer to permanently deviate to a di®erent path.

At the same time, note that, any game satisfying the characterization, such that xj

is the last node x ¹ xj; x is on path, has a credible threat to a node on path. In fact,

u±j(a
±

xj
(xj)) > u±j(aj(xj)) > ¹uj(a

±

xj
(xj)); let z be the terminal node reached by BI-maximin

path starting at a±xj
(xj): As a

±

xj
(xj) Á z and uj(z) = ¹uj(a

±

xj
(xj)) < u±j(a

±

xj
(xj)); it follows

that z is a non-credible threat to (xj; a
±

xj
):

5 Conclusion and Possible Extensions

In this paper we have shown that in¯nitesimal forgetfulness of unobserved opponents'

actions may destabilize standard solutions. The unique backward induction path drifts into

a non-Nash self-con¯rming equilibrium in any perfect-information game of nested threats.

The class of `games of nested threats' includes all games that are rich enough. In one-

shot simultaneous-move games, forgetfulness allows for a simple characterization of stable

equilibria in 2£2 games. In general, while all pure-strategy equilibria are stable, some \bad"

proper equilibria are destabilized, and all long-run predictions are Nash equilibria. Allowing

forgetfulness of all opponents' actions, we obtain a normal-form re¯nement equivalent to

trembling hand perfection in 2£ 2 games, and generally stronger.

A meaningful extension consists of a general dynamic analysis of the model. The as-

sumption of initial full awareness is here made only to highlight our destabilization results,

and to focus the exposition. One may want to address the question of whether players may

learn the game starting from a situation of partial awareness. The key issue then becomes

the analysis of the basin of attraction of any stable states of the dynamics, without restrict-

ing attention to those reached from an initial state of full awareness. The characterization
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of stable cycles, and of their attraction sets, would then complete the analysis.

Another direction in which to extend this work is to allow players' awareness of their

own possible actions to evolve over time. If one extends the analysis presented in this paper

in that direction, she faces the problem that, once a player has forgotten the possibility

to play a certain action, she may never recall that option again. In Squintani (1999),

in particular, we show that, even if forgetfulness is restricted to own unobserved actions,

some non-self-con¯rming-equilibrium outcomes may be stable even in normal-form games.

One possibility to let players regain awareness of forgotten actions is to consider repeated

matching with changing roles instead of ¯xed ones. However, Squintani (1999) shows that

if one allows for role mobility, some long run predictions are not self-con¯rming equilibrium

even when ruling out forgetfulness of own actions.

A Appendix: Normal Form Games

Proof of Proposition 1. Let a± be a pure strategy equilibrium of G : 8i; 8ai 2 Ai;

ui(a
±) ¸ ui(ai; a

±

¡i): We claim that 8t; 8i; if 8T i 2 supp(¸t¡1i ); ¾t¡1
T i (a

±

i ) = 1 then 8T i 2

supp(¸ti); ¾
t
T i(a±i ) = 1; too. In fact, for any i; since observed actions may not be forgotten,

8Ri 2 supp(½ti); a±
¡i 2 Ri: Suppose each player j; and type T j plays a±j ; then ¯[T

i](a±
¡i) = 1;

since a±
¡i 2 Ri: So 8Ri 2 supp(½ti);

P
A¡i ui(ai; a¡i)¯[T

i](a¡i) = ui(ai; a
±

¡i); 8ai 2 Ai;

and thus pro¯le a± is concluded to be a ABE. By inertia, 8T i 2 supp(¸ti); ¾t
T i(a±i ) = 1:

Countable induction proves the ¯rst claim.

Take ¾± full support isolated mixed strategy NE. For any i; de¯ne BT i := fT i =

(Ri; ¾̂i)jR
i 6= Ag [the set of unaware types], and let GT i = T i nBT i: Take any distribution

¸ such that 8i; ¸i(BT i) < minf¾±i (ai)ji 2 I; ai 2 Aig: Fix any strategy pro¯le ¾» :=

((¾T i)BT i)I : For any i; consider the system E¸i [¾T ijBT i] + E¸i[¾T i jGT i] = ¾±i Since it is

linear and non-degenerate, it has a set of solutions (¾T i)GT i =: ¾i?: Since 8i; ¸i(BT
i) <

minf¾±i (ai)ji 2 I; ai 2 Aig; it follows that 8ai; E
¸i [¾T i(ai)jBT

i] < ¾±i (ai); so that there

are some ¾i? 2 ¢(Ai)
#(GT ): Since for any i; '

¡i(¸; (¾?; ¾»)) = ¾±
¡i; and ¾± is an full-

support equilibrium, ui(ai; '¡i(¸; (¾?; ¾»))) is constant across all ai 2 Ai: Thus optimal

strategy of any type in GT i is any ¾i 2 ¢(Ai): So any ¾i? is an ABE strategy pro¯le

against (¾¡i? ; ¾¡i
»
); for any i: Since ¾» was arbitrary, there is a set of pro¯les (¾?; ¾»)
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which are ABE. As ¾± is isolated, if ¸i(BT
i) is small enough, inertia requires all players

of any type T i 2 GT i; in any population i to play a pro¯le ¾? that belongs to one of

those ABE: that pro¯le satis¯es 'i(¸; (¾?; ¾»)) = ¾±i : To prove that 8t; 8i; ¸i(BT
i) is

small enough, as » is continuous, one can use a ¯rst order expansion, together with an

induction argument. So suppose that, for any i; 8¿ < t; '(¸¿ ; ¾¿ ) = ¾±
¡i; then 8(j; a

0

j 2 Aj);

¸tif(R
i; ¾i) : aj 62 Ri

jg ¼ ¼iaj
Pt

¿=1(1 ¡ ¾±j(aj))
¿ ! ¼iaj=¾

±

j(aj): Since 1=¾
±(aj) is bounded,

for ¼iaj ! 0; ¸tif(R
i; ¾i) : aj 62 Ri

jg ! 0; independently of t: That concludes the induction

argument.

Proof of Proposition 2. To show that the F -destabilization is robust with respect

to the addition of strictly dominated strategies, take ai 2 Ai s.t. 8¾¡i 2 ¢(A¡i); 9âi 2

Ai : ui(âi; ¾¡i) > ui(ai; ¾¡i): Because own actions cannot be forgotten, 8t; i; T i 2 supp(¸ti);

where T i = (Ri; ¾̂i); 8¾¡i 2 ¢(Ri); 9âi 2 Ai: ui(âi; ¾¡i) > ui(ai; ¾¡i): So ¾T i(ai) = 0 for

any ABE ¾: Therefore, 8t; the presence of the strategy ai does not in°uence the inertial

ABE ¾t:

Proof of Theorem 3. Consider a 2 £ 2 game and label actions A1 = fA;Bg and

A2 = fC;Dg: We know that if ¾± is either a pure strategies or an isolated full-support

strategies NE, then it is F -stable. Let us pick ¾± s.t. ¾±B = 1; ¾±C 2 (0; 1) to represent any

non-full-support mixed-strategy equilibrium. For ¾± to be a NE, it must be the case that

u2(B;D) = u2(B;C):

Consider the ¯rst the case that u2(A;D) 6= u2(A;C); and say without loss of generality

that u2(A;D) > u2(A;C): Now, for ¾
± s.t. ¾±B = 1 to be a NE, B cannot be weakly

dominated. Say B dominates A; then at any t, any type R1 plays B: Inertia then implies

that f tC = ¾±C and f tB = 1 for any t; so that ¾± is F -stable. So we are left with the case

that neither A nor B dominate each other. We deal with the case for entry games in the

main body of the paper. Now we need to consider the case when u1(A;C) � u1(B;C)

and u1(B;D) = u1(A;D): In such case, ¾± is F -stable because the (1 ¡ ¾±C)¼C fraction of

players in population 1 who forgets C; will still play B; by inertia.

Then, we repeat the analysis for the case u2(A;D) = u2(A;C): Again, if B dominates A;

then ¾± is F -stable, and the same occurs if u1(A;C) � u1(B;C) and u1(B;D) = u1(A;D):

Moreover, for u1(A;C) � u1(B;C) and u1(A;D) > u1(B;D); ¾± is F -stable, because all

aware players in population 2 are always indi®erent between C and D; and, because of

inertia, they will stick to strategy ¾±C; thereby keeping the ratio of unaware players in
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population 1 in¯nitesimal for ¼ ! 0:

Finally, we deal with full support, non-isolated equilibria. In 2£2 games, there exists a

full support, non-isolated equilibrium only if 9i : ui(¾) = ui(¾
0) 8¾; ¾0 2 ¢(A); and neither

action of player j dominates the other. Ruling out the case in which u1(¾) = u1(¾
0) and

u2(¾) = u2(¾
0); 8¾; ¾0 2 ¢(A); we are left with games that belong to the entry-game set.

Say without loss of generality, that u1(A;C) � u1(B;C) and u1(A;D) > u1(B;D);

and u2(¾) = u2(¾
0) 8¾; ¾0 2 ¢(A): Given any full-support equilibrium ¾±; some players

in population 1 may forget C and play A; some others may forget D and play B: Since

u2(¾) = u2(¾
0) 8¾; ¾0 2 ¢(A); by inertia, all players in population 2 maintain strategy

¾±C: Against such strategy all aware players in population 1 are indi®erent (since ¾± is a

full-support equilibrium), and so, by inertia, they maintain ¾±A: At next period unaware

types will be reminded, but again by inertia they will play last period strategy. As long as

¼nC 6= ¼nD; f
¤
A 6= ¾±A so that f¤ 6= ¾±:

Proof for Proposition 4. First consider the transition » for ¼ = 0 at the stationary

point ¸¤: In the remainder of the proof, for notational ease, take ¸ to denote the measure

associated with the distribution ¸: For any i; Ri; since F (Ri) = ?; it follows that ¸¤i [T
ijRi =

supp(Á(G; ¸¤))] = 1; 8i; or else ¸¤ = °(¡; ¼; ¸¤; Á(¡; ¸¤)) is violated. That implies that, for

any pair T i; T j in supp(¸¤), it follows that ¯[T i] = Á(¡; ¸¤)¡i: Since ¸
¤ is a product measure,

E¤(G; ¸¤) is a set of Nash equilibria of the game G: Pick a sequence f¸ngn¸1; ¸n 2 Sn;8n:

By upper-hemi-continuity of the ABE correspondence, E¤(G; ¸n) µ E¤(G; ¸¤) for n large

enough.

Proof of Theorem 5. To show that strict equilibrium are not F -destabilized, take a±

(pure-strategy) strict NE. For any j; denote by GT j := f(Rj; ¾̂j)ja
±
¡j 2 Rjg (good types)

and BT j := f(Rj; ¾̂j)ja
±
¡j 62 Rjg (bad types). De¯ne GT = £j2IGT

j and BT = £j2IBT
j:

Similarly to the proof for Theorem 1 on full-support mixed strategies, we ¯rst claim

that for any pro¯le ¾BT ; if for any j; ¸j(BT
j) is small enough, then there exists a ABE

s.t. ¾T j(a±) = 1; 8T j 2 GT j; 8j: In fact, as A is a ¯nite set, there exists a ± > 0 s.t.

minfi2I;ai2Aig[ui(a
±) ¡ ui(ai; a

±
¡i)] > ±; 8ai 6= a±i : Therefore for any i; ¸t¡i(GT

¡i)[ui(a
±) ¡

ui(ai; a
¤
¡i)] > E½t

¡i

hP
a
¡i2A¡i

¾T¡i(a¡i)[ui(a
¤
i ; a¡i)¡ ui(ai; a¡i)]

i
; as long as for any j 6= i;

¸j(BT
j) is small enough. Now set ¼ = maxi;j ¼

i
aj
: Suppose that 8(¿ � t; i); ¸¿i (BT

i) �

¼+ o(¼); and ¾¿
T j(a±) = 1; 8T j 2 GT j;8j: For ¼ small enough, by the above argument, for

any ¾BT ; there is a ABE s.t. ¾t
T j(a¤j) = 1;8T j 2 GT j; 8j: One of these ABE is inertial, and
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so we may select it for our argument. At time t+1; all types in BT j will be reminded of a±j

with probability of at least ¸¿¡j(GT
¡j): Therefore, ¸¿i (BT

i) � (¼+ o(¼))(1¡ (1¡ ¼)I¡1) +

¼(1¡ (¼ + o(¼)) = ¼ + o(¼): The result then follows by induction.

Let us then prove that if ¾± is not THP, then it will be F -destabilized for some ¼n >

0; ¼n ! 0: Consider the transition » at t = 1: Because all opponents actions can be forgot-

ten, for any i and any model Ri; it is the case that ½1i (R
i) =

Q
(aj 62Ri

j
;j2I) ¼

i
aj

Q
(aj2Ri

j
;j2I)(1¡

¼iaj) > 0: Say that ¾1 is an inertial ABE, and for any j 2 I; let f̂1j = E¸j

£
¾(Rj;¾̂j)jR

j 6= A¡j
¤
:

If 8j 2 I; supp(f̂1j ) = Aj; then 9i : ¾i? 6= ¾±i : If not, as f
1
¡i = ½¡i(A¡i)E[¾¡i?] + f̂1¡i; for any

j; f1¡i ! ¾± for ¼ ! 0; and since ¾±i 2 BRi(f
1
¡i) and i is arbitrary, we would contradict

the hypothesis that ¾± is not THP (cf. Fudenberg and Tirole 1991, pg. 352). Moreover,

as f1; the distribution at time 1 is full support, then for any t; also f t is full support.

Suppose that there were a f t ! ¾± for ¼ ! 0: Since ¾± is not THP, 9i; ai 62 supp(¾±i ) s.t.

ui(ai; f
t
¡i) > ui(¾

±
i ; f

t
¡i): Since own actions may not be forgotten, it cannot be the case that

f t ! ¾±:

Even in the case that f1 is not full support, it may be still be the case that, for ¼ ! 0;

f1 6! ¾±; as long as 9i; ai 62 supp(¾±i ) s.t. ui(ai; f
1
¡i) > ui(¾

±
i ; f

1
¡i): However, for t > 1;

the relative ratios of unaware types for k 6= j may be very di®erent than for t = 1; so

we cannot guarantee that f t stays away from ¾± for small forgetfulness. On the other

hand, we can show that (selecting some particular sequences ¼n > 0; ¼n ! 0); ¾± will be

destabilized even if 8i; ¾±i 2 BRi(f
(n);1
¡i ): As such arguments holds also if 8i; ¾±i 2 BRi(f

(n);t
¡i )

and f (n);t ! ¾±; it takes care also of the case just mentioned. Since ¾± is not THP, for any

full-support ¾n ! ¾±; there is an i and an ai 62 supp(¾±i ) s.t. ui(ai; ¾
n
¡i) > ui(¾

±
i ; ¾

n
¡i); as by

de¯nition of NE, ui(ai; ¾
±
¡i) � ui(¾

±
i ; ¾

±
¡i); it is also the case that ui(ai; ¾

±
¡i) = ui(¾

±
i ; ¾

±
¡i):

Moreover, there is a j s.t. ui(ai; ¾
n
j ; ¾

±
¡ij) > ui(¾

±
i ; ¾

n
j ; ¾

±
¡ij); and so there is an aj s.t.

ui(ai; aj; ¾
±
¡ij) > ui(¾

±
i ; aj; ¾

±
¡ij): Therefore, even if f¡ij = ¾±¡ij; any best reply ¾ ¹T i by

types ¹T i with model ¹Ri; := (Aij £ fsjg) is s.t. supp(¾ ¹T i) \ supp(¾±i ) = ?: At times

t ¸ 2; each player with model ¹Ri may be reminded of actions âj 6= aj; denote with

GT i; the set of types so generated. Even in the case that f¡i = ¾±¡i; however, ai is an

inertial ABE strategy for any T i 2 GT i: In fact, supp(¾ ¹T i) \ supp(¾±i ) = ? implies that

jj¾ ¹T i ¡ ¾±i jj ¸ jj¾ ¹T i ¡ aijj (with a minor notational violation, we let ai denote the mixed

strategy that gives all mass to ai) and we know that ui(ai; ¾
±
¡i) = ui(¾

±): For any t;

¢½ti( ¹R
i)+¢¸ti(GT

i) > 0: Set ¼iaj = o(
Q

âj 6=aj
¼iâj) = ¼l

ak
for any (l; k) 6= (i; j): Then, at any

35



t; for any type (Ri; ¾̂i) 62 GT i; [Ri 6= ¹Ri; and Ri 6= A¡i]; ¸t
i(R

i; ¾̂i) = o(½ti( ¹R
i) + ¸t

i(GT
i));

so that at steady state ½¤i (
¹Ri) + ¸¤i (GT

i) ¼ 1: Therefore, even if for any t; f t
¡i = ¾±

¡i; still

for t!1; f t
i ! ¾±i : F -destabilization occurs in the form of a slow drift.

Proof of Corollary 6. We want to show that in 2 £ 2 games, all THP equilibria

are F -stable. Say that ¾± is THP, then it is undominated (in 2-player games). For both i;

there is an a¡i s.t. ui(ai; a¡i) is not constant in ai: Therefore, for ¾
± to be undominated, it

must be either strict or (isolated) full-support. In both cases, as we know, it is F -stable.

B Appendix: Perfect Information Games

De¯nitions A perfect-information game ¡ = (X;Z; I; ¶;A; u1; ¢ ¢ ¢ ; un): is de¯ned as fol-

lows. The set X represents decisional nodes, and the set Z terminal nodes, I = f1; :::; Ig

is the set of players, (there is a population continuum of size 1 for each i 2 I; ) ¶ : X ! I

labels the decision nodes to players. The functions ui : Z ! < are the utilities obtained

by reaching a terminal node. They are extended on ¢(Z) according to the multilinear

expansion formula. The action space A is introduced as follows. Let Y = X [ Z; and

introduce <; an irre°exive, acyclic ordering on Y satisfying the following requirements: [

8z 2 Z; /9y 2 Y s.t. z < y ]; [ 9 ! x0 2 Y s.t. 8y 2 Y; y 6< x0; ]; and [ 8y 2 Y 6= x0; 9

! x 2 X : x < y ]: We will often denote by Á the transitive closure of <; and x ¹ y will

mean that either x Á y or x = y: Let A the subset of Y 2 generated by <: it is customary

to write x!a y to mean a = (x; y): The pair (Y;A) is thus a tree26 with root x0 2 X and

leaves Z: A path from node x to node y on a tree G = (Y;A) from node x to node y is the

unique set of actions fa0; ¢ ¢ ¢ ; ang s.t. x!
a0 y1; y1 !

a1 y2; ¢ ¢ ¢ ; yn !
an y: We partition A

into fA(x) : x 2 Xg where 8x;A(x) is the set of actions exiting x:

Given a perfect information game ¡; let Y0 = Z; and for any j ¸ 1; set Yj = fx 2

Y n ([j¡1

k=0Yk)j /9x
0 2 Y n ([j¡j

k=0Yk); x Á x0g: The backward-induction solution a± is de-

¯ned as follows. Set u±(z) = u(z); 8z 2 Z; and for any j ¸ 1; and 8x 2 Yj; let

a±
x
= argmaxa2A(x) u

±

¶(x)(a(x)) and u±(x) = u±(a±
x
(x)): For any player i; the backward-

inductive maximin values ¹ui are de¯ned as follows. Set ¹ui(z) = ui(z); 8z 2 Z; and for any

26In fact, (Y;A) is an orientation of connected, acyclic graph, and 8y 6= x0; the number of edges entering
y is 1, and 8z 2 Z the number exiting edges is 0. See Diestel (1997), ¯rst chapter.
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j ¸ 1; 8x 2 Yj; let ¹ax = argmaxa2A(x) ¹ui(a(x)) if ¶(x) = i; ¹ax = argmina2A(x) ¹ui(a(x)) if

¶(x) 6= i; and ¹ui(x) = ui(¹ax(x)): For any player i; to de¯ne her trivial threats proceed as fol-

lows. Let A¡i be the set of all a¡i; selections of an action ax 2 A(x) for each x : ¶(x) 6= i: Fix

a¡i; let ûi(z) = ui(z); 8z 2 Z; and for any j ¸ 1; 8x 2 Yj; let âx = argmaxa2A(x) ¹ui(a(x))

if ¶(x) = i; âx = A¡i(x) if ¶(x) 6= i; and ûi(x) = ui(âx(x)): Let ẑ(a¡i; x) be the terminal

node reached by the path from x along the â solution. Let Ẑi(x) := fẑ(a¡i; x) for some

a¡ig be the set of i-non-trivial outcomes from node x: A threat z to (xi; ai) is trivial if

z 62 Ẑi(ai(xi)):

Formal Analysis for Example 6. The list of the types and APBE strategies in the

population is as follows: for player 1, ¾[A] = HZ; ¾[F ] = CH = ¾1
[?]; for player 2, ¾[QH] =

¾[H] = NA; ¾[QC] = ¾[ZH] = ¾[ZC] = ¾[C] = ¾[Z] = TA; and ¾[Q] = NA = ¾2
[?] if f

1(HZ) >

f1(CZ) and TA vice-versa.

Instead of keeping track of all these types, we will ¯rst simplify the system. Consider

the transition of types [A] and [C] when f1(HZ) > f1(CZ): The fully aware types in

population 1 will forget C because they play N and cannot see C on path. The types

[C] play T and thus observe A on the path TCA unless they face type [A]: The fully

aware types in population 2 will forget A unless they play against types [C] or not [Z]

(or any mixture with one of the two). The types [A] play H and thus will never observe

A on path and be reminded of it anymore. Therefore, the system for (½A; ½C) follows:

½t+1
A = ½tA+¼A(1¡½

t
A¡½

t
F )(½

t
H+½

t
Q+½

t
QH+½

t
2) (where the latter is the amount of fully aware

types in population 2) and ½t+1
C = ½tC½

t
A+¼C(1¡½tC¡½tZ¡½tQ): As ¢

t(½A) > 0 and ½1A > 0;

this system has only one attractor state which displays ½¤A > 0; and ½¤C = ¼C
1¡½¤Z¡½Q
1¡½¤A+¼C

¼ 0

with ¼C ¼ 0: Moreover, 8t;¢t(½C) = ½tC(½
t
A ¡ 1 ¡ ¼C) + ¼C(1 ¡ ½tZ ¡ ½tQ); that is, for

¼C small enough, ¢(½1C) > 0 and ¢(½t+1
C ) < 0; 8t > 1: Therefore, we can conclude that

½tC ¼ 0; 8t; as ½1C = ¼C ¼ 0; for ¼ small enough.

After dropping types [C]; from the analysis, will drop types [QH]; [QC]; [ZC]; and [ZH]:

Note that ¾[ZH] = ¾[ZC] = ¾[Z] = TA and that type [H] cannot forget Z and we ruled out

type [C]; whereas type [Z] can forget either H or C; and ¯nally Z is o®-path for type [ZC];

and [ZH]; thus the latter cannot be recalled of Z; instead they can be recalled of H or C:

So we can group [ZH] and [ZC] with [Z] and the modi¯cation of the system is irrelevant

for the results. Analogously, group [QH] and [CH] with [H]:
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As long as ½tA �
1
2
; the system evolves now as follows.8>>>><
>>>>:

½t+1
A ¼ ½tA + ¼A(1¡ ½tA ¡ ½tF )(1¡ ½tZ)
½t+1
F = ½tF + ¼F (1¡ ½tA ¡ ½tF )
½t+1
H ¼ ½tH + ¼H(1¡ ½tH)(1¡ ½tA)
½t+1
Q = ½tQ(1¡ ¼H) + ¼Q(1¡ ½tQ ¡ ½tH ¡ ½tZ)
½t+1
Z ¼ 0

All the steady states of this system display ½¤A+½
¤

F = 1; and as ¼A=¼F > b > 1; it is the case

that 8t; ¢(½tA) > ¢(½tF ) > 0 and ½tA > ½tF : Thus the only attractor is s.t. ½¤A > 1=2 > ½¤F :

Nevertheless, consider ¿ s.t. ½¿¡1
A � 1=2 < ½¿A : at time ¿ , all the types A1 and Q will

switch to T . Thus the system will now evolve as follows.8>>>><
>>>>:

½t+1
A ¼ ½tA + ¼A(1¡ ½tA ¡ ½tF )½

t
H

½t+1
F = ½tF + ¼F (1¡ ½tA ¡ ½tF )
½t+1
H ¼ ½tH + ¼H(1¡ ½tH ¡ ½tZ)(1¡ ½tA)
½t+1
Q = ½tQ(1¡ ¼H) + ¼Q(1¡ ½tH ¡ ½tQ ¡ ½tZ)
½t+1
Z ¼ ½tZ + ¼Z(1¡ ½tH ¡ ½tQ ¡ ½tZ)

The only attractor steady state for the system is as follows: for player 1, ½¤Q = 0; ½¤H >

½¿H + ½¿Q; ¹½Z > 0; ½¤Z + ½¤H = 1; for player 2, 0 < ½¤F < 1=2; ½¤F + ½¤A = 1: Thus for any ¼n the

average path will be a mixture: f¤(NZ) = 1¡ ½¤Z; f
¤(TH) = ½¤Z½

¤

A; f
¤(TCA) = ½¤Z½

¤

F :

It is only left to show that f¤ is not a Nash. As the game is generic and 2-player, every

unitary self-con¯rming equilibrium is Nash, (cf. Fudenberg-Levine (1993a), pg. 541.) The

path f¤ can be originated by a Nash equilibrium ¾¤ only if ¾¤N > 0; ¾¤TA > 0; ¾¤TF = 0 and

¾¤HZ > 0; ¾¤CZ > 0; ¾¤HQ = 0; ¾¤CQ = 0: Thus to show that f¤ is not a Nash, it is enough to

show that it is not Nash in the reduced normal form given by fN;TAg£fHZ;CZg: It can

be easily checked that in such reduced normal form CZ weakly dominates HZ; so that it

cannot be a best reply against any mixed belief. ¦

Proof of Theorem 7. The proof will be divided in two separate parts.

Part 1 Necessity.

Proof. For any node x; type T i with frame Ri; model Rx; beliefs (Ã; ¹); and ac-

tion a 2 A(x); let uRi(ajÃ; ¹) :=
P

T ¡i ÃRx(T¡i)
P

Z ¹(zj¾T [R
x]; a(x))ui(z); AT i(xjÃ; ¹) =
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argmaxA(x) uRi(ajÃ;¹); and aT i(xjÃ; ¹) as the element of the previous set when it is a sin-

gleton. Also, with a minor notational violation, we de¯ne f¤x as the distribution on the

actions A(x) induced by f¤:

We shall prove necessity through 3 di®erent claims. The ¯rst one establishes that if

the backward induction is F -destabilized, a deviation must occur in the continuation of an

action ai alternative to an action on path.

Claim 1 The BI path a±(¡) is F -destabilized only if [9ai 2 A(xi) : u
±(xi) = u±(x0); ai 6=

a±xi]; [9a 2 A(x) : ai(xi) ¹ x; a 6= a±x]; and [9z0 : a(x) ¹ z0; u±(z0) > u±(xi)]:

Proof. Enumerate the backward induction nodes xj in natural number index, main-

taining the order of the sets Yj they belong to.

Take x1 (the last decision node on the BI path), and denote i := ¶(x1): Suppose that

f¤x(a
±

x) = 1 for all nodes x Á x1 [i.e. the deviation from the BI path induced by F -

destabilization occurs at node x1]. For any ai 2 A(x1); either ai(x1) 2 Z or ¶(ai(x1)) 6= i;

since the game has no trivial actions. By construction, a±x1(x1) 2 Z: By assumption,

8(t; T i 2 supp(¸t
i)); A(x1) ½ Rx1: So if ai(x1) 2 Z; then uT i(aijÃ; ¹) = u±i (ai(x1));8Ã;¹: In

case ai(x1) 62 Z; if 8(t; T i 2 supp(¸t
i)); uT i(aijÃ; ¹) � u±i (a

±

x1
); then the backward induction

path is not destabilized by ai and we can take another action. If instead, at some time

t; 9T i 2 supp(¸t
i) s.t. uT i(aijÃ; ¹) > u±i (a

±

x1
); then 9z0 : ai(x1) Á z0 : ¹(z0) > 0; ui(z

0) >

u±i (a
±

x1
) = u±i (x1):Moreover, as u±i (ai(xi)) < ui(z

0); there exist z 6= z0 s.t. u±i (z) = u±i (ai(xi)):

Let x as the last node s.t. x Á z and x Á z0 and let a 2 A(x) s.t. a(x) Á z; it follows

that a 6= a±x: We have shown that if f¤x(a
±

x) = 1 for all nodes x Á x1; then [9ai 2 A(x1) :

ai 6= a±x1]; [9a 2 A(x) : ai(x1) ¹ x a 6= a±x]; and [9z0 : a(x) ¹ z0; u±(z0) > u±(xi)]:

Consider now x2 let ¶(x2) =: j; and suppose that f¤x(a
±

x) = 1 for all nodes x Á x2:

If 8(t; T j 2 supp(¸t
j)); a

±

x1
2 Rx2; then the argument goes as above. To let there be a

t; T j 2 supp(¸t
j) : a

±

x1
62 Rx2; there must exist ¿ < t; and a node xl Á x2; [¶(xl) =: k] and a

type T k 2 supp(T ¿
k ) s.t. AT k(xlj¹; Ã) 6= fa±(xk)g: If not, as ½

0

? = 1; f0(a±) = 1; it follows

that the BI path is played from x0 to x2: As for any T
j 2 supp(¸¿

j ); aT j(x2j¹; Ã) = a±x2; and

for any Ri 2 supp(½¿i ); aT j(x1j¹; Ã) = a±x1; it follows that f
t reaches a±x1: As a

±

x1
2 Z; we

conclude that ³t¡1

T j (a±x1) = 1 [type T j observed a±x1 at time t¡ 1] and thus a±x1 2 Rj; 8Rj 2

supp(½tk): That is to say: to have a deviation from BI path at node x2 at time t; there must
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have been a deviation on node xk Á xj at time ¿ < t: Thus node x2 is irrelevant and we

can proceed directly with node x3:

Let k := ¶(x3): If 8(R
j; ¾̂j) 2 supp(Ã); a±x1 2 Rj (player k believes to play against a type

T j s.t. a±x1 2 Rj); then we can apply the same argument used for node x2 to the two cases

a±x1 62 Rx3; and a±x2 62 Rx3; to conclude that node x3 is irrelevant and move further up. If

instead 9(Rj; ¾̂j) 2 supp(Ã) s.t. a±x1 62 Rj; such types do not play a±x2; and may have enough

weight to make k deviate from a±x3: However, let ¿
0 be the ¯rst time in which 9(Rj; ¾̂j)

j 2

supp(Ã) s.t. a±x1 62 Rj: As Ã is generated by ¸¿ 0

; 9(Rj; ¾̂j) 2 supp(¸¿ 0

) s.t. a±x1 62 Rj:

Analogously as before, there must exist a time ¿ < ¿ 0 and a node xl Á x2; (¶(xl) =: l) and

a type T l 2 supp(¸¿
l ) s.t. AT l(xlj¹; Ã) 6= fa±(xl)g: In case xl = x3; since ¿

0 is the ¯rst time

at which 9(Rj; ¾̂j) 2 supp(Ã) s.t. a±x1 62 Rj; k cannot have deviated from a±x3 because she

believed to play against a type Rj unaware of a±x1: Again the argument showed for node x1

holds. If xl Á x3; then again x3 is irrelevant, and we can move further up.

Repeating the argument by (backward) induction on xj : u±(xj) = u±(x0); the ¯rst

claim is proved.

The second claim shows that for the backward-induction path to be F -destabilized, and

the new path to go through ai; there must exist a deviation (in the continuation of ai) that

leads into a path where no further deviations from backward induction occur.

Claim 2 Suppose that the BI path a±(¡) is F -destabilized, and f¤x(a
±

x) = 1; 8x Á xi; but

f¤xi
(ai) > 0; xi on path, ai 6= a±xi

: Then 9aj 2 A(xj) [ai(xi) ¹ xj and aj 6= a±xj
] s.t.

u±j(aj(xj)) > ¹uj(a
±

xj
(xj)):

Proof. To show that if there is not any aj 2 A(xj) [ai(xi) ¹ xj and aj 6= a±xj ] s.t.

u±j(aj(xj)) > ¹uj(a
±

xj
(xj)); then #(t � T : f¤xi

(ai) = 0)=T ! 1; for ¼n ! 0:

We will consider all nodes xj : ai(xi) ¹ xj; and look for times t and types T j 2 supp(¸t
j)

and Ã; ¹ s.t. AT j(xjjÃ; ¹) 6= fa±xj
g: If we could not ¯nd any such xj; by claim 1, it

would follow that f t
xi
(ai) = 0: First note that since own actions cannot be forgotten,

8[xj; T
j; Ã; ¹; a 2 A(xj)]; uT j(a(xj)jÃ; ¹) ¸ ¹uj(a(xj)):

Start with any x1 2 Y1; ai(xi) ¹ x1 [the last decision nodes in the continuation of ai],

denote l := ¶(x1): Again, as own action cannot be forgotten, 8[t; T l 2 supp(¸t
l)]; A(x1) ½

Rx1: Since al(x1) 2 Z; uT l(a1jÃ; ¹) = u±i (a1(x1)); 8Ã; ¹: Thus aT l(x1jÃ; ¹) = a±x1; 8Ã; ¹: So
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that in any case, x1 is irrelevant and we can proceed with other nodes x1 2 Y1 and with other

sets Yk; k = 2; ¢ ¢ ¢ ;K: Consider now any x2 2 Y2; ai(xi) Á x2 let ¶(x2) = j: If 8aj 2 A(x2)

[aj 6= a±x2]; uT j(a2jÃ; ¹) < ¹uj(a
±

x2
(x2)) � uT j(a±x2(x2)jÃ; ¹); then aT j(x2jÃ;¹) = a±x2: So if

8[t; T j 2 supp(¸t
j); ¹; Ã; aj 2 A(x2)]; uT j(a2jÃ;¹) < ¹uj(a

±

x2
(x2)) the node x2 is irrelevant

and we can proceed with other nodes in Y2 and with other sets Yk; k = 3; ¢ ¢ ¢ ;K: So say that

9[t; T j 2 supp(¸t
j); ¹; Ã]; s.t. aj 2 A(x2); uT j(ajjÃ; ¹) > uT j(a±x2(x2)jÃ; ¹) ¸ ¹uj(a

±

x2
(x2)):

If uT j(ajjÃ; ¹) 6= u±j(aj(x2)); then u±j(aj(x2)) > ¹uj(a
±

x2
(x2)); and the claim is proved taking

xj = x2: So suppose that uT j(ajjÃ; ¹) > u±j(aj(x2)); and that u±j(aj(x2)) < ¹uj(a
±

x2
(x2)): For

clarity, we remind that we want to see whether aj can upset the backward induction path

through ai:

Say that aj 2 AT j(x2jÃ; ¹); and that 9T i 2 supp(¸t
i); s.t. aT i(xijÃ; ¹) = ai; where ¹

and Ã are induced by the APBE strategy ¾T j(x2jÃ; ¹); and by rational choices at nodes

xk : xi Á xk Á xj: There are two cases: either xj is reached by f t; or there exists xk; T
k 2

supp(¸t
k); s.t. aT k(xkjÃ; ¹) 6= a±xk ; where ¹ and Ã are induced by aT j(x2jÃ; ¹) = aj; and

by rational choices at nodes x : xk Á x Á xj: The latter case is equivalent to the situation

in which Rxk \ A(x2) = fajg and A(x) ½ Rxk ;8x : xk Á x Á xj: Therefore, it can be

subsumed in the analysis for node xk : it is as if x2 did not cause f t to deviate along ai so

that we can proceed with another node. Whenever x2 is reached by the path of play f t; any

type T j 2 supp(¸t
j) that is called to play at x2 and plays aj will observe the choice at node

aj(x2) [let ¶(aj(x2)) = l]: Since aj(x2) 2 Y1; as proved before, for any [T l 2 supp(¸t
l); ¹; Ã];

aT l(aj(x2)jÃ; ¹) = a±
aj(x2)

: So that ³tT j(a±aj(x2)) > 0; and with positive probability players of

type T j; assume at time t+1 the model R̂j : a±aj(x2) 2 R̂x2, so as to be grouped in type T̂ j:

Since uT̂ j(ajjÃ; ¹) = u±j(aj(x2)) < ¹uj(a
±

x2
(x2)); aj 62 AT̂ j(xkjÃ; ¹):

Now, let T [aj] := fRj : aT j(xkjÃ; ¹) = aj; for some Ã; ¹g: For ¼n small enough, the

transition function »¿ implies that ½¹¿j (Raj) is decreasing in ¹¿ > t; and, if x2 were to be

reached on path forever, ¸¹¿
j (T [aj]) ! 0; for ¹¿ ! 1: Since the game is generic, there

exists an " > 0 s.t. if ¸¹¿
j (T [aj])(n) < "; the e®ect of the Raj types is irrelevant on the

payo® of choices ak [ak(xk) ¹ x2]: Thus there exists a ¯nite ¹¿ s.t. aj cannot upset the

BI path at time ¹¿ : There could be other âj s.t. âj 2 AT̂ j(x2jÃ; ¹): Yet, repeating the

analysis for action aj; one sees that at time t + 2; each player of type T̂ j would assume

model ~Rj : a±
âj(x2)

2 ~Rx2: Therefore, for ¼n small enough, there exists a ¯nite time ¹¿ s.t.

¸¹¿
j (GT ) ¸

Q
A(x2)

(1 ¡ ¼a) ¼ 1 where GT := fT j : AT j(xjjÃ;¹) 6= fa±xjg;8Ã;¹g: Fix ¼N
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small, and call ¿(N) the ¯rst (¯nite) time s.t. x2 is reached on path. If ¿(N) does not exist

for any N; we can move to a di®erent node. If ¿(N) exists, for any ¯xed t < ¿(N); the

transition function ° implies that ¸tj(GT )(n) ! 1 for N < n! 1 (¼n ! 0 with n): Since

the game is generic, there exists an " > 0 s.t. if ¸tj(GT )(n) < "; the e®ect of the RG types

is irrelevant on the payo® of choices ak (ak(xk) ¹ x2): Thus, ¿(N)!1 for ¼N ! 0:

Denote by ¿ 2(N) the second time s.t. x2 is reached on path. Above we proved that for

small ¼N ; at time ¿(N) + T; the ratio of \bad" types ¸¹¿
j (GT ) ¼ 1: That means that at

time ¿(N) + ¹¿ ; aj does not perturb the backward induction path. Thus we can substitute

time ¿(N) + ¹¿ for time 0, and time ¿2(N) for time ¿(N); to see that ¿2(N)¡ ¿(N) ! 1

for ¼N ! 0: Going on, for any k; ¿ k(N) ¡ ¿ k¡1(N) ! 1: Thus, if aj were to perturb a±;

that would be a small-time deviation: #(ft � ¹¿ : f t 6= a±g)=¹¿ ! 0; for ¼n ! 0:

Having completed with the nodes in Y2; take a node x3 2 Y3; ai(xi) Á x3 let ¶(x3) =

k; and consider ak 2 A(x3): The argument seen on node x2 may repeated for x3 until

considering the case when uT̂k(akjÃ; ¹) > u±(ak(x3)) and f t(ak(x3)) > 0: With a minor

notational violation, let x2 := ak(x3); x1 := a±x2(x2); z = a±x1(x1); and j := ¶(x2): If

³T k(z) > 0; the last part of the argument for node x2 may be repeated without further

ado. If instead ³T k(z) = 0; then note that 8[T j 2 supp(¸tj); ¹; Ã]; AT j(x2j¹; Ã) 6= fa±x2g: As

ak 2 AT k(x3j¹; Ã); and x3 is reached, then also x2 is reached. Since x2 2 Y2; ³T j(z) > 0; and

we have proved above that in ¯nite time the BI choice at x2 is reestablished. Yet, whenever

9T j 2 supp(¸tj); ¹; Ã; s.t. AT j(x2j¹;Ã) = fa±x2g; ³T k(z) > 0; and so we can reestablish in

¯nite time also the BI choice at x3: Repeating the argument by (backward) induction on

xl 2 Yl; the second claim is proved.

The last claim simply means that if the backward induction path is destabilized through

action ai; to reach the last deviation aj; it must be the case that all the choices from xi

onwards lead to aj:

Claim 3 Suppose that the BI path a±(¡) is F -destabilized as follows. f±

x(a
±

x) = 1; 8x Á xi;

f¤

xi
(ai) > 0; xi on path, ai 6= a±xi; f

¤

xj
(aj) > 0; ai(xi) ¹ xj; aj 6= a±xj ; and f¤

x(a
±

x) =

1;8x : aj(xj) Á x: Then u±i (aj(xj)) > u±i (xi) and 8x : xi Á x ¹ xj; [u
±

¶(x)(aj(xj)) ¸

¹u¶(x)(a
0(x)); 8a0 2 A(x)]:

Proof. If it is not the case that u±i (aj(xj)) > u±i (xi) then 8[T i 2 supp(¸t
i); ¹; Ã];

uT i(a±xijÃ; ¹) > uT i(aijÃ; ¹) and thus the BI path does not deviate at node xi: Pick
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any x : xi Á x ¹ xj: Pick a 2 A(x) s.t. a(x) ¹ aj(xj): If it is not the case that

u±
¶(x)(aj(xj)) ¸ ¹u¶(x)(a

0(x)); 8a0 2 A(x); then 9a0 2 A(x) s.t. 8[T i 2 supp(¸t
i); ¹; Ã];

uT i(a0jÃ; ¹) > uT i(ajÃ; ¹): In which case, f¤ cannot reach aj(xj):

That concludes the proof of Necessity

Part 2 Su±ciency

Proof. Pick one arbitrary pair of deviations (xi; ai); (xj; aj) as characterized in De¯ni-

tion 5. We shall construct an appropriate sequence of matrices ¼n and an o®setting path

of simple inertial ABE where each player with the same frame take the same strategy.

For any node x : ai(xi) ¹ x ¹ xj; let A
0(x) := fa 2 A(x)ja(x) 6¹ aj(xj)g; [the set of

actions that do not lead into aj(xj)]; and for any a0 2 A0(x); let ¹a(a0(x)) be the ¶(x) BI-

maximin path starting at node a0(x): Let A00(x) := fa 2 A(x0)j 9a0 2 A0(x); a0(x) Á a(x0);

¶(x0) 6= ¶(x); and a 62 ¹a(a0(x))g [the actions alternative to the BI-maximin path of actions

in A0(x)]: Enumerate the nodes x : ai(xi) ¹ x ¹ xj; in natural number index reverting

the Á order, let node xj := x1 and let K denote the index of node ai(xi): For any k; let

mk :=
P

0�l<k #(A00(xk)) (with A00(x0) := ?): For any n construct ¼n as follows. For any

k : 1 � k � K; let ¼
¶(xk)
a := 1=n1+mk for any a 2 A00(xk): For any action a 2 An([K

k=1A
00(xk))

set ¼ia = 0; 8i 2 I: By De¯nition 5, all actions a above characterized are o® the BI path

a±: As f0 = a±; at time 0, they are unobserved and may be forgotten.

First we analyze the behavior of the population when f txi(ai) = 0 (the nodes in the

continuation of ai are not reached). For any n; the awareness types distribution at node xj

evolves as follows: 8A000 µ A00(xj); ½
1(A nA000) =

Q
a2A000 ¼a; ½

1(A) = 1¡
P

A000µA00(xj)
½1(A n

A000); and 8t ¸ 1; ½t+1(A n A000) = ½t(A n A000) +
P

A000½A0000µA00(xj)
½t(A n A0000)

Q
a2A000nA0000 ¼a:

So ½1j(A n A000) = o(1=n#(A
000)¡1); but 9¿ 1(n) s.t. 8t > ¿1(n); ½

t
j(A n A00(x1)) ¼ 1: By

Requirement (2) in De¯nition 5, 8(¹; Ã); a±(AnA00(x1);¹;Ã)
(xj) = aj:

Consider now x2: 8a 2 A00(x2); ¼
¶(x2)
a := 1=n1+m2; It follows that 8A000 µ A00(x2) ½

¿1(n)
¶(x2)

(An

A000) = o((1=nl¡1)) where l ¸ #(A000) + 1: For n large enough, that is to say, ½
¿1(n)
¶(x2)

(A) ¼ 1:

Yet, the evolution of the distribution at node x2 is the same as at node xj; so there exists

a time ¿2(n) s.t. 8t > ¿ 2(n); ½
t
j(A n A00(x1)) ¼ 1: Above we proved that at such t; nearly

all types Rj 2 ½j play aj at node xj; so, by Requirement (2) in De¯nition 5, and by the
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genericity of ¡; it follows that a±(AnA00(x2);¹;Ã)
(x2) = a2 : a2(x2) = xj; for Ã induced by

½tj(A n A
00(x1)) ¼ 1 and for ¹ induced by a±(AnA00(x1);¹;Ã)

(xj) = aj:

Repeating the analysis for all nodes x3; ¢ ¢ ¢ ; xK we establish that for n large enough,

there exist a collection of ¯nite times (¿ 1(n); ¿2(n); ¢ ¢ ¢ ; ¿ k(n)) s.t. that 8k; 8t > ¿k(n);

½t¶(xk)(AnA
00(xk)) ¼ 1 and a±(AnA00(xk);¹;Ã)

(xk) = ak : ak(xk) ¹ a(xj): For any time t > ¿K(n);

that determines ¹ and Ã s.t. by Requirement (1) in De¯nition 5, a±(A;¹;Ã)(xi) = ai: So

f t 6= a±; in particular, let z the terminal node reached by the backward induction path

starting at node aj(xj; ) it is the case that 8xk; ³
t
AnA00(xk)

(z) ¼ 1: As by construction none

of the actions a 2 A00(xk) is s.t. a(x) Á z; none of the forgotten actions will ever be

observed. So for any k; ½t¶(xk)(A n A
00(xk)) is non-decreasing in t: Thus the deviation at f t

is stable: f¤(z) > 0; which concludes that f¤ 6= a±:

Now we consider the case when some node xk is reached by f t before ¿K(n): Start with

node xj; and say that f
t reaches xj before than ¿K(n): Let ¹¿ the ¯rst time that f t reaches xj:

If ¹¿ > ¿1(n); then the event has no e®ect on the analysis for node xj; as ½
t
j(AnA

00(xj)) ¼ 1

and ³tAnA00(xj)
(z) ¼ 1: So say that ¹¿ < ¿ 1(n): For any k > 1; ½¹¿¶(xk)(A) ¼ 1; therefore f ¹¿ may

reach xj; only because 9A
000 ½ A00(xj) s.t. a

±
(AnA000;¹;Ã)(xj) =: a

0
j 6= a±j ; and such types induce

Ã; ¹ so as to make all players at nodes x : xi ¹ x Á xj to switch to action a : a(x) ¹ xj:

Now, if /9¿ >¹¿ s.t f ¿ = a±, then our conclusion is reached.

Let z0 be the terminal node reached by f ¹¿ : To let there be ¿ > t : f¿ = a±; it must be

the case that 9a 2 A00(xj) s.t. a
±
(An(A000[fag);¹;Ã)(xj) = a±j : As ³

¹¿
AnA000(z) ¼ 1; moreover, it is

the case that such ¿ =¹¿+1 and that ½¿j (A n A
000) ¼ 0: The node xj may be reached several

more times (¹¿ 2; ¹¿ 3; ¢ ¢ ¢); and again ½¹¿k+1
j (AnA000) ¼ 0: However, for any t 6= ¹¿ k+1; ¢(½¹¿j (An

A00(xj))) > (1¡½¹¿j (AnA
00(xj))

Q
a2A00(xj)

¼a; and for any t = ¹¿k+1; ¢(½¹¿j (AnA
00(xj))) ¸ 0:

That directly implies that, for n large enough 9¿ 01(n) s.t. 8t > ¿ 01(n); ½
j
t(A n A00(xj)) ¼ 1:

Therefore, if f t is to reach xj for t > ¿ 01(n); then f t will also reach aj(xj): Analogously as

the argument for ¿ 1(n); also ½
¿ 0

1
(n)

¶(x2)
(A) ¼ 1:

Proceeding analogously at node xj; we ¯nd a ¿ 02(n); and iterating for k > 2; we ¯nd

¿ 0k(n); that satisfy the same conditions of the ¿ k(n) nodes found at previous passage.

Proof of Proposition 8. We say that the game ¡0 is obtained from ¡ by the

addition of the trivial action a 2 A0 if and only if 9z 2 Z; x0 2 X 0; (X;Z n fzg;Á

jX[Znfzg; I; ¶; A; ujZnfzg) = (X 0 n fx0g; Z 0 n fa(x0)g;Á0 jX0nfx0g[Z0nfa(x0)g; I
0; ¶0jX0nfx0g; A

0 n fag;
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u0jZ0nfa(x0)g) and u0(a(x0)) = u(z):

Similarly, we say that the game ¡0 is obtained from ¡ by the addition of the conditionally

strictly dominated action a0 2 A0; a0 2 A(x) if and only if (X;Z;Á; I; ¶; A; u) = (X 0; Z 0 n

fa0(x)g;Á0 jX0[Z0nfa0(x)g; I
0; ¶0; A n fa0g; u0jZnfa0(x)g) and u0¶0(x)(a

0(x)) < u¶(x)(a(x)); for some

a 2 A(x):

It is straightforward to see that, if there exist a ¯nite sequence f¡kg
K
k=1 s.t. 8k;¡k can

be obtained from ¡k¡1 by the addition of a trivial or conditionally dominated action, and

¡1 = ¡;¡K = ¡0; then the game ¡0 is a backward-induction-irrelevant expansion of ¡:

Take any game ¡; consider the BI set ordering: take xi s.t. u±(xi) = u±(x0) and

8xj : u
±(xj) = u±(x0); xj 2 Ykj ; ki < kj (xi is the last node on BI path). Relabel a±(xi)

as B and ¶(xi) as player 1: Consider the sequence of actions fZ;Q; T;H;C;A; Fg and add

them sequentially to the game ¡; in the following manner.

For the addition Z; say that x1 !
B x2 : ¶(x2) = 2; x2 !

Z zZ; u(zZ) = u(a±(xi)); thus Z

is a trivial addition. For Q : x2 !
Q zQ; u(zQ) < u(a±(xi)); so Q is a strictly dominated (at

node x2) addition. Let T : x1 !
B zT u1(zT ) < u1(a

±(xi)) and u2(zT ) > u2(a
±(xi)); thus T

is strictly dominated addition. Let C : x1 !
T x02 : ¶(x

0
2) = 2; x02 !

C zC; u(zC) = u(zT ); so

C is a trivial addition. Let H : x02 !
H zX u1(zH) > u1(a

±(xi)) and u2(a
±(xi)) < u2(zH) <

u2(zC); so H is strictly dominated addition. Let A : x02 !
Y x01 : ¶(x01) = 1; x01 !

A

zA; u(zA) = u(zC); thus A is a trivial addition. Let F : x01 !
F zF u(zF ) < u(zA) so F is

strictly dominated addition.

Then proceed exactly as in Example 6.
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