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Abstract

An absorbing game is a repeated game where some of the ac-
tion combinations are absorbing, in the sense that whenever they are
played, there is a positive probability that the game terminates, and
the players receive some terminal payoff at every future stage.

We prove that every n-player absorbing game admits a correlated
equilibrium. In other words, for every ε > 0 there exists a probability
distribution pε over the space of pure strategy profiles such that if
a pure strategy profile is chosen according to pε and each player is
informed of his pure strategy, no player can profit more than ε in any
sufficiently long game by deviating from the recommended strategy.
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1 Introduction

There are many ways to formulate the notion of Nash equilibrium in undis-
counted stochastic games. The strongest of these is uniform ε-equilibrium.
A strategy profile is a uniform ε-equilibrium if for any n sufficiently large,
no player could increase his expected average payoff in the first n periods
by more than ε by deviating. A payoff vector is a uniform equilibrium
payoff if it is the limit (as ε goes to 0) of the payoffs that correspond to a
sequence of uniform ε-equilibrium strategy profiles. Arguments in favor of
this formulation of Nash equilibria can be found in Aumann and Maschler
(1995).

Existence of uniform equilibrium payoffs in n-player undiscounted stochas-
tic games while suspected is still not proven. Progress on this question has
been slow and hard won. A major step was made by Mertens and Neyman
(1981) when they proved that every two-player zero-sum stochastic game
admits a uniform value. Subsequently Vrieze and Thuijsman (1989) proved
the existence of a uniform equilibrium payoff in two-player non zero-sum
absorbing games. A decade and a half after the paper by Mertens and Ney-
man, Vieille (1997a,b) proved the existence of a uniform equilibrium payoff
in two-player non zero-sum stochastic games. The argument is arduous and
extending it to more than two players appears difficult. Some progress in
this direction is described in Solan (1999) where existence of uniform equi-
libria is established for three-player absorbing games, and in Solan and Vieille
(1998b) where existence of uniform equilibria is established for a class of n-
player quitting games.

While Nash equilibrium is the most popular solution concept for a game it
is not the only one. For games in strategic form, Aumann (1974) proposes the
notion of correlated equilibria, which are probability distributions over the
space of strategy profiles, such that if a strategy profile is chosen according
to this distribution, no player can profit by not following the strategy chosen
for him.

For finite games in strategic form, correlated equilibria have a number
of appealing properties. They are computationally tractable. Existence is
verified by checking a system of linear inequalities rather than a fixed point.
The set of correlated equilibria is closed and convex. Aumann (1987) argues
that it is the solution concept consistent with the Bayesian perspective on
decision making. Nor does one need to assume that the correlation device is
a deux et machina in the game. In Foster and Vohra (1998) it is argued that
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players can use the history of past plays as a correlation device. Indeed, our
colleague Roger Myerson has been quoted as saying:

‘If there is intelligent life on other planets, in a majority of them,
they would have discovered correlated equilibrium before Nash
equilibrium.’

For sequential games (ones played in stages), one can define a strategic
form correlated equilibrium in an analogous way to that of finite games. That
is, a probability distribution over the space of strategy profiles such that if a
strategy profile is chosen according to this distribution, no player can profit
by not following the strategy chosen for him. It is this form of correlated
equilibrium that is the focus of the paper.

An absorbing game is a repeated game where some of the action combi-
nations are absorbing, in the sense that whenever they are played, the game
terminates with positive probability, and the players receive some terminal
payoff at every future stage. We show that every absorbing game admits
a uniform correlated equilibrium payoff. The proof uses the ideas in Solan
(1999). First an auxiliary game is defined with non-absorbing payoffs that dif-
fer from those in the original game. Then we consider the limit of discounted
stationary equilibria in this auxiliary game. The asymptotic properties of
this sequence suggest the form that a uniform correlated equilibrium must
take.

An equivalent formulation of correlated equilibria is to consider an ex-
tended game that includes a correlation device. The device chooses a signal
for each player before start of play, and reveals to each player the signal cho-
sen for him. A correlated equilibrium is a Nash equilibrium of the extended
game. In this formulation, a uniform correlated equilibrium is a uniform
equilibrium in a game where the signal space of each player coincides with
his strategy space, and the signal to each player is a recommended strategy.

Another generalization of correlated equilibrium for sequential games in-
volves a correlation device that sends to each player a signal before the start
of each round. This signal can depend on the history of past signals as well as
past plays. In contrast with the problem of existence of uniform equilibrium
payoff, existence of a uniform correlated equilibrium of this kind was proved
for every n-player stochastic game by Solan and Vieille (1998a).

We start in section 2 with some examples that illustrate the main ideas the
proof relies on. We then provide the model and the main result in section
3. In section 4 we study correlated equilibria in the subclass of quitting
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games. Many of the ideas that are used throughout the proof appear already
here. In section 5 we provide sufficient conditions for existence of uniform
equilibrium payoff and uniform correlated equilibrium payoff. We also study
the way information can be transmitted in absorbing games. In section 6 we
prove that in every absorbing game at least one of the sufficient conditions
hold.

2 Examples and Main Ideas

We provide a series of examples involving quitting games that illustrate the
main ideas of the proof.

A quitting game is a sequential game where each player has two actions:
to quit (Q) or to continue (C). The game continues as long as all players
decide to continue. The moment at least one player decides to quit, the game
terminates. The terminal payoff depends on the subset of players that quit
at the terminating stage. If the game continues forever, then the payoff to
the players is some fixed payoff vector. Quitting games are a special case of
absorbing games

2.1 Example 1

Consider first, the following three-player quitting game that was studied by
Flesch et al (1997).

Q

C

C Q C Q
C Q

1, 3, 0 ∗
0, 0, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

Every absorbing entry, which corresponds to at least one player quitting,
is denoted with an asterisk. Flesch et al. prove that the following profile is
a uniform equilibrium.

• At stage 3n+ 1, the players play (1
2
C + 1

2
Q,C,C).

• At stage 3n+ 2, the players play (C, 1
2
C + 1

2
Q,C).

• At stage 3n+ 3, the players play (C,C, 1
2
C + 1

2
Q).

4



Here n = 0, 1, . . .. The corresponding uniform equilibrium payoff is (1, 2, 1).
In a quitting game each pure strategy can be associated with a posi-

tive integer t that specifies the first period in which the player quits. The
uniform equilibrium that Flesch et al. identify corresponds to a probability
distribution p = p1⊗ p2⊗ p3 over the space of pure strategy profiles given by

pi(3n+ i) = 1/2n ∀n = 0, 1, 2, . . . , i = 1, 2, 3.

Note that neither this distribution nor the uniform equilibrium payoff are
symmetric. In fact, Flesch et al. prove that the game possesses no symmetric
uniform equilibrium payoff, even though the payoff matrix is symmetric.

The probability distribution p that is defined by

p(1,∞,∞) = p(∞, 1,∞) = p(∞,∞, 1) = 1/3 (1)

is a uniform correlated equilibrium payoff with payoff

(4/3, 4/3, 4/3) =
1

3
(1, 3, 0) +

1

3
(0, 1, 3) +

1

3
(3, 0, 1).

Our interpretation of the equilibrium is that a correlation device chooses
one of the players uniformly at random (the chosen one) and told to quit in
the first stage. The other two players are told never to quit. Suppose player
1 is informed that he was chosen. Notice that if player 1 alone disobeys the
instructions by never quitting his payoff will be 0. If player 1 quits at some
later stage, this does not increase his payoff.

Consider now a player not chosen, say, player 3. He does not know the
identity of the chosen one; its as likely to be player 1 as it is player 2. So,
if he follows his instructions to play C, his expected payoff will be 1.5. On
the other hand, if player 3 quits in the first round, his payoff will be 1/2.
He cannot know whether he can profit by deviating and quitting at the first
stage, and therefore he should not deviate.

The construction described above is sensitive to two things. The first is
the incentives that the chosen player has to never quitting. The second is the
payoff to an unchosen player from two players quitting at the same stage. If
this were large enough, in our example above, player 3 would want to quit
at the first stage.

The second of these can be accomodated by masking the stage at which
the chosen player quits. For example, the chosen player is told to quit in
each stage with probability ε > 0. Now player 3 is ignorant of who the first

5



player is to quit as well as the stage at which they will quit. In fact with
high probability any stage that player 3 chooses to quit in, he will be the
only player to be quitting. The joint probability distribution p consistent
with this formulation is:

p(n,∞,∞) = p(∞, n,∞) = p(∞,∞, n) = ε(1− ε)n−1/3 ∀n ∈ N. (2)

Dissuading the chosen player from quitting at a stage other than that
prescribed by the device, or continuing indefinitely, is more difficult. The
next example shows that this is a real possibility.

2.2 Example 2

Consider a slight modification of Example 1, where only the non-absorbing
payoffs are changed.

Q

C

C Q C Q
C Q

1, 3, 0 ∗
2, 2, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

The correlated equilibrium proposed for the first example does not apply
here. Players 1 and 2 get higher payoff in the non-absorbing state. Thus,
if player 1 is the chosen one, why should he quit? The other two players
don’t know that he is the chosen one. To deal with this possibility we will
ensure that one of the unchosen players can punish player 1 for his deviation.
The idea is to instruct the unchosen players to play C for a certain number
of rounds and then play Q. To force compliance by player 1, the payoff to
player 1 by continuing forever should be at most 1.

In this example each player i has a single punisher - a player j 6= i that
by quitting yields player i a low payoff. Player 1 is the punisher of player
3, player 2 is the punisher of player 1 and player 3 is the punisher of 2. A
simple modification of the previous equilibrium scheme suggests itself: the
device chooses a player uniformly at random to quit at the first stage, and
informs his punisher that he should quit at the second stage if the chosen
one has not quit at the first stage.

The flaws are obvious. First, the punisher knows who the chosen one is,
and might profit by quitting on the first period too. This problem does not
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arise in this example. In this example, Second, the player who is neither the
chosen one nor the punisher receives some information too. If player 3 is
neither the chosen one nor the punisher, he can deduce that player 1 is the
chosen one. Therefore player 3 would rather quit at the first stage.

To avoid these flaws the device must inform the punisher while masking
the identity of the chosen one. One way of doing this is described below.

Define the following joint probability distribution over the space of pure
strategy profiles. With probability 1/3 player i is the chosen one. W.l.o.g.
assume that player 1 is the chosen one. Denote by (n1, n2, n3) a pure strategy
profile. As before, since player 1 is the chosen 1, n1 is uniformly distributed
in {1, . . . ,M}, where M > 1/ε2. Player 2 is the punisher of 1, so n2 is
uniformly distributed in {M+1, . . . , 2M}. n3 = n2+Y , where Y is uniformly
distributed in {1, . . . , |1/ε|}.

Let us verify that with high probability no player can profit by not quit-
ting at the stage recommended by the device.

The chosen player knows that he was chosen, since his quitting stage is at
most M , whereas the quitting stages of the other two exceed M . If the chosen
player does not quit, he will be punished and get 0. Moreover, the probability
he will correctly guess the quitting stage of his punisher is low. Hence he
has no reason to disobey the recommendation. With high probability the
punisher and the third player received a signal in {M + |1/ε|, . . . , 2M}. In
this case, the conditional probability that each is a punisher is 1/2, so they
have no reason to deviate also. Thus, this joint probability distribution is a
uniform correlated ε-equilibrium.

2.3 Summary - Quitting Games

To construct correlated equilibrium for general quitting games we divide
play into two phases: a quitting phase and a punishment phase. The device
chooses one player to be the quitter according to a known probability dis-
tribution µ. It then chooses a quitting stage for each player, making sure
that the chosen one receives the earliest stage, and his punisher receives the
second earliest stage. The difficulty is to prove that there exists a µ that
(i) is supported by players who have punishers and (ii) the corresponding
average absorbing payoff is high for every player.
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2.4 Example 3

Absorbing games can be viewed as quitting games where the players have
more than one ‘quitting’ action and more than one ‘continue action’. Thus
a player may be able to punish two different players with different ‘quitting’
actions. For example, player i punishes player j1 with a quitting action
Q1 and he punishes player j2 with a quitting action Q2. If the correlation
device instructs him to use Q1 instead of Q2, he is in a position to infer
the identity of the chosen one. This problem is solved by assuming that the
game is generic, i.e. the payoffs in all the entries are different. We then
consider only punishing actions which maximize the payoff of the punisher
amongst his quitting actions. When a player has two continue actions then,
by playing one or the other continue actions in various stages, he can send
public signals to the other players. This feature can be used to construct
a correlated equilibrium different from the one constructed before. This is
illustrated in our next example.

We modify example 2 by adding one more action, C2, for player 1.

C2

Q

C

C Q C Q
C Q

2, 2, 0

1, 3, 0 ∗
2, 2, 0

0, 4, 4 ∗
1, 0, 1 ∗
0, 1, 3 ∗

0, 4, 4 ∗
0, 1, 1 ∗
3, 0, 1 ∗

0, 4, 4 ∗
0, 0, 0 ∗
1, 1, 0 ∗

Any correlated equilibrium payoff of Example 2 is also a correlated equi-
librium payoff here. We use this example to illustrate the use of public
signalling in constructing correlated equilibria.

To describe the correlated equilibrium profiles it will be convenient to use
a correlation device that sends signals to the players in an arbitrary signal
space. It is easily verified that the signal space that we use is equivalent to
the space of strategy profiles.

As before, the device chooses a player uniformly at random. This player
is informed that he should quit in the first M stages.

If the chosen player does not comply, the device will reveal his identity.
Since only player 1 can transmit information (by playing either C or C2 while
the other two continue), it is his task to reveal the identity of the chosen one.
However, he must not know the identity before the start of play, otherwise
he might profit by deviating in the quitting phase.
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Information about the identity of the chosen one will be split between the
players, so that the information any one player has tells him nothing about
the identity of the chosen person, while the information of player 1 with any
of the other players is enough to identify the chosen one. First, let us see
how players 2 and 3 can verify whether player 1 is the chosen one.

The device chooses a password, and sends it to players 2 and 3 before
the start of play. Player 1 receives the password if and only if he is not the
chosen one. In this context, a password is a sequence of actions in {C,C2}

If the chosen person has not terminated the game by stage M , player 1,
if he was not chosen, should play according to the password. This is called
the revelation phase. If player 1 was not chosen, he received the password
and can play according to it. If player 1 was chosen, he does not know the
password. In this case, we do not care what he plays. If the password is long
enough, the probability that he can mimic it will be arbitrarily small.

Notice that when player 1 plays C2, the other players profit by quitting,
to make deviations during this revelation phase non-profitable the password
has to be stochastic.

Since we are interested in Nash equilibria of the extended game, we con-
sider only unilateral deviations. Thus, if the chosen one has not deviated, the
game terminates during the quitting phase and does not reach the revelation
phase. If the game reaches the revelation phase, it means that the chosen
one has deviated, hence once player 1 has repeated the password, we need
not worry about him deviating in the sequel.

If player 1 can not repeat the password, he is revealed as the chosen one,
and is punished by the others. Otherwise, since there are only three players,
the remaining unchosen player can deduce the identity of the chosen one. If
there are more than three players, the remaining unchosen players still do
not know the identity of the chosen one. To reveal it, the device chooses a
permutation π over the set of players, each permutation is chosen with equal
probability. Players 2 and 3 receive π, whereas player 1 receives π(i), where i
is the chosen player. After player 1 has repeated the password, he transmits
π(i). The other players can now easily calculate the identity of the chosen
player i.

Note that even though 2 and 3 know the value of i, the chosen one, player
1 does not know it, and therefore cannot take part in a punishment.

If i = 2, since player 3 is the punisher of 2, he can punish player 2 as
was done in Example 2. If i = 3, his punisher is 1 who does not know
who the chosen one is. However, if the chosen player is either 1 or 2, he is
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punished within a bounded time. If this bound is exceeded and no one has
been punished, player 1 can deduce that player 3 was the chosen one. At
that point player 1 knows that i = 3, and that he is the punisher.

2.5 Summary - General Case

In the general case, the profile that we construct is divided into three phases:
a quitting phase, a revelation phase and a punishment phase. The device
chooses a player to quit during the quitting phase. If the chosen player does
not comply, play enters the revelation phase where some players transmit
information that reveals the identity of the chosen one. Finally the chosen
one is punished by his opponents.

We will see different forms of transmission of information, according to
the number of players who can transmit information. In quitting games, no
player can transmit information, hence the revelation phase is skipped. In
other cases, where certain joint actions cause the game to terminate, the
quitting and revelation phase are interleaved.

3 The Model and the Main Result

In this section we introduce notation and state the main result.

Definition 3.1 An n-player absorbing game G is given by (N, (Ai, ri, ui)i∈N , w)
where:

• N is a finite set of players.

• Ai is a finite set of actions available for player i. Let A = ×i∈NAi.

• ri : A → R for i ∈ N . For every a ∈ A, ri(a) is the daily (non-
absorbing) payoff for player i.

• w : A → [0, 1]. For every a ∈ A, w(a) is the probability the game is
absorbed if the action combination a is played by the players.

• ui : A → R for i ∈ N . Given the game was absorbed by action com-
bination a ∈ A, ui(a) is the constant payoff player i receives at every
future stage.
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The game is played as follows. At every stage n ∈ N each player i ∈ N
chooses, independently of his opponents, an action ain ∈ Ai. The action
combination an = (ain)i∈N determines a daily payoff r(an) and a probability
of absorption w(an). With probability 1 − w(an) the game continues to
the next stage, and with probability w(an) the game is absorbed, and the
players receive the absorbing payoff u(an) at every future stage. We assume
standard monitoring, so at every stage n all the moves played before that
stage are known to all players.

For every finite set K, ∆(K) is the set of all probability distribution over
K, and for every µ ∈ ∆(K) and every k ∈ K, µ[k] is the probability of k
under µ.

We assume w.l.o.g. that 0 ≤ r, u ≤ 1, and denote X i = ∆(Ai) and
X = ×i∈NX i, the set of mixed-action combinations. For every subset L ⊆ N
of players, we denote AL = ×i∈LAi and A−L = ×i6∈LAi. Each action ai ∈ Ai
is identified with the probability distribution in X i that gives weight 1 to ai.
We also assume that each player has at least 2 actions; that is, |Ai| ≥ 2 for
every player i ∈ N .

Let Hn = An be the space of all n-stage histories, and H = ∪n∈NHn be
the space of all finite histories.

A (behavioral) strategy for player i is a function σi : H → X i. A
profile is a vector of strategies, one for each player. A stationary strategy
can be identified with an element xi ∈ X i, and a stationary profile with
a vector x = (xi)i∈N . The mixed extension of w to X is still denoted by
w. A stationary profile x ∈ X will be called absorbing if w(x) > 0 and
non-absorbing otherwise. In particular, xi[ai] is the per-stage probability
to play ai according to xi, and x[a] is the per-stage probability to play the
action combination a under x.

A strategy σi of player i is pure if σi(h) ∈ Ai for every finite history
h ∈ H. A profile σ = (σi) is pure if each σi is pure. Let S i denote the space
of pure strategies of player i, and S = ×i∈NS i.

We endow S i with the σ-algebra generated by finite cylinders: for every
n and every vector of actions ~ai = (ai(h)) ∈ (Ai)H1∪···∪Hn , the set {σi ∈ S i |
σi(h) = ai(h), ∀h ∈ H1 ∪ · · · ∪ Hn} is measurable. S is endowed with the
product σ-algebra.

Every profile σ induces a probability measure over the space of infinite
plays. We denote by Eσ the corresponding expectation operator. In partic-
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ular, every profile σ defines an expected payoff during the first n stages:

γn(σ) = Eσ

[
1

n
(r(a1) + r(a2) + . . .+ r(aθ) + 1θ<n(n− θ)u(aθ))

]
where θ denotes the absorption stage.

Definition 3.2 Let ε > 0. A probability measure p over S is a (uniform)
correlated ε-equilibrium if there exists a positive integer n0 ∈ N such that
for every player i ∈ N and every measurable function f : S i → S i,

Ep[γ
i
n(σ)] ≥ Ep[γ

i
n(σ−i, f(σi))]− ε ∀n ≥ n0.

A payoff vector γ ∈ RN is a (uniform) correlated equilibrium payoff
if for every ε > 0 there exists a correlated ε-equilibrium pε and a positive
integer n1 ∈ N such that

‖ Epε [γn(σ)]− γ ‖∞< ε ∀n ≥ n1.

The payoff vector γ ∈ RN is a (uniform) equilibrium payoff if it is
a correlated equilibrium payoff, and for every ε > 0 the probability measure
pε is a product measure pε = ⊗i∈Npiε, where each piε is a probability measure
over S i.

Intuitively, a probability measure pε over S is a correlated ε-equilibrium if
there is only a small probability under pε that given the pure strategy chosen
for him, a player can profit a lot by disobeying the recommendation.

The main result of the paper is:

Theorem 3.3 Every n-player absorbing game admits a correlated equilib-
rium payoff.

Since payoffs are bounded, if for every ε > 0 there exists a correlated
ε-equilibrium then a correlated equilibrium payoff exists. Moreover, if p is
a correlated ε-equilibrium for some absorbing game, it is a correlated 2ε-
equilibrium for any game where the payoffs differ by at most ε. In particular,
we may assume w.l.o.g. that the function u is generic; that is, for every
player i ∈ N and every two action combinations a, b ∈ A, ui(a) 6= ui(b).
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3.1 Correlation Devices

It will be more convenient to consider an equivalent formulation of correlated
equilibria using correlation devices.

Definition 3.4 A correlation device is a pair D = (S, p) where S =
×i∈NSi is a measurable space of signals and p ∈ ∆(S) is a probability distri-
bution.

Given a correlation device we define an extended game G(D) as follows. A
signal s = (si)i∈N ∈ S is chosen according to p (which is common knowledge).
Each player i is informed of si. The game now proceeds as the original game,
but each player can use his private signal to choose an action at every stage.

In this formulation, a correlated equilibrium payoff of G is an equilibrium
payoff of G(D). This formulation is more general than the one we presented
in section 3, but it is more convenient to work with. In our construction, the
signal space S is (equivalent to) the space of pure strategy profiles S.

The information available to each player i at stage n is an element of
Si × Hn. Thus, a strategy for player i in the extended game is a function
σi : Si×H → X i. All previous definitions (e.g. profiles, induced payoff) can
be analogously defined for the extended game.

4 Quitting Games

In this section we study the class of quitting games which are themselves
a special case of absorbing games. Such games provide a useful vehicle for
conveying some of the ideas that will be used in this paper. Formally, an
absorbing game is a quitting game if Ai = {C,Q} for every player i ∈ N ,
w(C,C, . . . , C) = 0 and w(·) = 1 otherwise.

For simplicity, we denote the absorbing payoff if all players in subset S
(but none in its complement) quit, by uS. If S = {j} is a singleton, we
denote it by uj. The payoff to i if j alone quits is uij. The non-absorbing
payoff r(C,C, . . . , C) is denoted simply by r. The non-absorbing payoff of
all other action combinations is irrelevant for the analysis in this section.

Definition 4.1 A player i ∈ N is punishable if there exists some j 6= i
with uij ≤ uii.
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Player i is punishable if there is another player who, by quitting alone, can
reduce the payoff of i to at least as much as i can get by quitting himself
alone.

Lemma 4.2 If the game does not admit an equilibrium payoff then there is
a probability distribution µ ∈ ∆(N) that satisfies:

1. If µi > 0 then i is punishable.

2. For every player i,
∑
j∈N µju

i
j ≥ uii.

This lemma will be proven later, in the context of general absorbing
games. To get a sense of its importance consider the second condition first.
It says that if every player were to quit alone according to the distribution µ,
they would all make more than they could by quitting unilateraly. However,
it might be the case that a player may profit by not quitting (if his non-
absorbing payoff is high). This is where the first condition matters.

Lemma 4.3 If there exists a probability distribution µ ∈ ∆(N) that satisfies
the conditions of Lemma 4.2, then the game admits a correlated equilibrium
payoff.

To prove the lemma, we need a result in probability. Assume a probability
distribution λ = (λi) over N is given. We wish to choose for each player i a
positive integer mi such that

1. mi = minkmk for exactly one player.

2. Given mj, the probability that mi = minkmk is equal to λi for every
i ∈ N .

3. Given mj, the probability that minkmk = b is small for every b < mj.

We prove that for every ε > 0 there exists a probability distribution q over
NN (with finite support) such that 1) holds q-a.s., and 2) and 3) hold with
probability of at least 1− ε.

Lemma 4.4 For every probability distribution λ = (λi) over N and every ε >
0 there exists a positive integer M ∈ N and a probability distribution q over
{1, . . . ,M}N such that every random variable X = (Xi)i∈N to {1, . . . ,M}N
that has the distribution q satisfies:
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1. Pq(∃i 6= j s.t. Xi = Xj = minkXk) = 0.

2. For every i, j ∈ N , Pq (Pq(Xj = minkXk | Xi) = λj) ≥ 1− ε.

3. For every i ∈ N and every b < Xi, Pq (Pq(minkXk = b | Xi) < ε) ≥
1− ε.

Proof: Let c > 1/ε and d > c/ε be fixed integers. Denote M = c + d. Let
Y1, . . . , Yn be i.i.d. uniformly distributed random variables over {1, . . . , c}.
Let L be a uniformly distributed random variable over {1, . . . , d}. Let I be
a random variable over N with the distribution λ = (λi). Define the random
variable X = (Xi) as follows:

XI = L

Xj = L+ Yj j 6= I

Denote by q the joint distribution of (Xi)i∈N . Observe that minkXk = L. It
is clear that requirement 1) holds.

P(Xi = L | Xi = a) = P(L = a | Xi = a)

=
P(Xi = a | L = a)P(L = a)

P(Xi = a)

=
λiP(L = a)

λiP(L = a) + (1− λi)
∑a−1
t=1 P(L = a− t, Yi = t)

=
λiP(L = a)

λiP(L = a) + (1− λi)
∑min{c,a−1}
t=1 P(L = a− t, Yi = t)

.

For every a ∈ {c+ 1, c+ 2, . . . , d} and every t ∈ {1, . . . , c}, P(L = a− t, Yi =
t) = 1/cd and P(L = a) = 1/d, hence for every such a, P(Xi = L | Xi =
a) = λi. Since c/d < ε, P(a ∈ {c+ 1, c+ 2, . . . , d}) > 1− ε, and 2) is proved
for j = i.

By the construction of X, for every j, k 6= i,

P(Xj = L | Xi = a)

P(Xk = L | Xi = a)
=
λj
λk

and 2) follows for every i, j. If Xi > 1/ε then 3) holds, and this event occurs
with probability larger than 1− ε.
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Proof of Lemma 4.3: Fix an ε > 0. Let µ be a probability distribution
satisfying the assumptions. For each punishable player i ∈ N let j(i) ∈ N
be a player such that uij(i) ≤ uii. Player j(i) is the punisher of player i. Let
Sj = {i | j = j(i)} be the set of players that j punishes.

Let λj =
∑
i∈Sj µi be the probability that j is a punisher. Then λ = (λj)

is a probability distribution over N . Let q be the probability distribution
over NN defined by Lemma 4.4 w.r.t. λ and ε. The signal space of each
player i is the set {1, . . . , n0}, where n0 is any integer larger than M + 1/ε
and M is defined in Lemma 4.4.

The correlation device chooses a vector m = (mi) ∈ NN according to
q. Let j = argminmi be the player with minimal integer. Call this player
the punisher. The device now chooses a player i (the designated quitter) in
Sj according to the induced probability distribution µ over Sj. Finally, the
device chooses a positive integer d uniformly distributed in {1, . . . , D}, where
D is the smallest integer greater than 1/ε.

Player i receives the signal si = d. All other players k receive the signal
sk = D+mk. Note that P(si = mink s

k) = µi. The signals can be interpreted
as specifying the stage at which the receiver should quit.

We now define the strategy profile in the extended game. For every player
j define σj(sj, n) = 1sj=nQ+ 1sj 6=nC; that is, player j quits with probability
1 at the stage which is recommended to him by the correlation device, and
continues with probability 1 at all other periods.

If the players follow the strategy profile σ = (σj) then their expected
payoff is

∑
j∈N µjuj. An informal argument for why the players should heed

the signals is that given his signal, the chosen one knows that if he does
not, he will be punished by his punisher. All other players k, however, know
only that they are possible punishers and with high probability they have no
further information on the identity of the designated quitter.

Clearly if µi = 1 for some i, then the identity of the designated quitter is
known, and σ is an ε-equilibrium.

Denote by γin(si, σ) the expected payoff of player i in the first n stages
given his signal is si.

To verify that no player can profit more than ε by deviating fix a player
i who receives the signal si. Consider a pure deviation τ i of player i, where
instead of quitting at stage si he quits at stage m.

First assume that si ≤ D; that is, player i is the designated quitter. In
that case, γin(si, σ) = uii for every n ≥ n0.

If m ≤ D, we still have γin(si, σ−i, τ i) = uii. If on the other hand m > D,
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then P(m = minj 6=i s
j | si) < ε. Since payoffs are bounded by 1, for every

n ≥ n0 γ
i
n(si, σ−i, τ i) is bounded by

P(m < min
j 6=i

sj | si)uii + P(m = min
j 6=i

sj | si) + P(m > min
j 6=i

sj | si)uij(i) ≤ uii + ε.

Second, assume that si = D + mi, and let n ≥ n0. Then γin(si, σ) =∑
j 6=i µju

i
j/(1 − µi) ≥

∑
j∈N µju

i
j ≥ uii. By Lemma 4.4(2), with probability

higher than 1− ε player i has no information about the identity of the desig-
nated quitter. Thus, with probability at least 1− ε, if m ≤ D then for every
n ≥ n0 γ

i
n(si, σ

−i, τ i) is bounded by

P(m < min
j
sj | si)uii+P(m = min

j
sj | si)+P(m > min

j
sj | si)

∑
j 6=i

µju
i
j/(1−µi)

≤
∑
j 6=i

µju
i
j/(1− µi) + ε = γin(si, σ) + ε.

If m > D, then γin(si, σ−i, τ i) = γin(si, σ).
Thus, with probability at least 1 − ε player i cannot profit more than ε

by deviating in any sufficiently long game. It follows that with probability
at least 1− |N |ε no player can profit more than ε by any deviation. Since ε
is arbitrary,

∑
j∈N µjuj is a correlated equilibrium payoff.

4.1 Probabilistic Quitting Games

A probabilistic quitting game is a quitting game where, if a subset S of
players quit at some stage, the game is absorbed with a positive probability
wS > 0, which may be strictly less than 1. In quitting games it suffices for
one player to get the signal that he is the quitter. In probabilistic quitting
games, even if the ‘designated quitter’ quits the game can continue. Once he
quits, his identity is revealed to everyone. Since some players may get low
payoff if the game is actually terminated by the designated quitter, a new
designated quitter must be chosen. Since signals are sent only before start of
play, this player needs to know in advance that, if the game is not terminated
by the first quitter, he should do the job. As we will see, the fact that the
game might continue even if someone quits does not pose any difficulty.

Lemma 4.5 If there exists a probability distribution µ ∈ ∆(N) that satisfies
the conditions of Lemma 4.2, then the probabilistic quitting game admits a
correlated equilibrium.
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Proof: Fix ε > 0 sufficiently small. Let s(1), s(2), . . . be an infinite sequence
of independent outcomes of the correlation device described in the proof of
Lemma 4.3. Thus, for each k, s(k) ∈ {1, . . . ,M +D}N . The signal of player
i is the sequence (si(1), si(2), . . .).

Intuitively, players play as in the proof of Lemma 4.3 with the signal
s(1). If the designated player does not quit, all players realize that someone
deviates at stage D + 1. At stage t, where t is the stage in which the pun-
isher according to s(1) should quit, the identity of the punisher is revealed.
From that stage on, the punisher quits at every stage with probability ε, and
everyone else continues.

The punisher quits with probability ε at every stage, rather than with
probability 1, so that the designated quitter would not know when the pun-
isher will actually quit, and use this information to profit by quitting exactly
at the same stage.

If the designated player indeed quits and the game does not terminate,
the players forget the history, and they play as in the proof of Lemma 4.3
with the signal s(2), and so on until absorption occurs.

Since there is a probability |N |ε that given s(k) some player may get some
information on the identity of the designated quitter, and this probability
aggregates, ε should be small compared to minS 6=∅wS.

Let us now verify that no player i can profit by a unilateral deviation.
Clearly if µj = 1 for some player j then σ is an ε-equilibrium. If the game

terminates by the kth designated quitter (that is, the quitter designated by
s(k)), the payoff to i is uii if i is the kth designated quitter, and

∑
j 6=i µju

i
j/(1−

µi) ≥ uii if i is not the kth designated quitter. Hence the expected payoff
to i by following the equilibrium strategy is at least uii whatever signal he
receives, which is, as we saw in the proof of Lemma 4.3, the most (up to a
small error) he can get by a unilateral deviation.

5 Non-Absorbing Profiles

Non-absorbing profiles generalize the ‘everyone continues’ profile in quitting
games. This section will do three things:

1. We catalogue the different kinds of non-absorbing profiles into four
groups.
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2. We study the way information can be transmitted between players in
absorbing games.

3. We identify sufficient conditions for the existence of correlated equilib-
rium in each kind of non-absorbing profile. Many of them will have
the flavor of Lemma 4.3. They will consist of two parts. First the
non-absorbing profile induces a distribution over payoffs with certain
incentive properties. Second, ‘deviations’ from this non-absorbing pro-
file can be ‘punished’.

In the last section of this paper we show that every absorbing game admits
either an equilibrium payoff, or a non-absorbing profile where one of these
sufficient conditions must hold, so proving the main result.

5.1 Exits and Equilibrium

In this section we reproduce from Solan (1999, 1997) sufficient conditions
for the existence of an equilibrium payoff in absorbing games. First some
notation.

Definition 5.1 The real number vi ∈ R is the min-max value of player
i if for every ε > 0 there exists a positive integer n0 ∈ N such that for every
profile σ−i there exists a strategy σi of player i that satisfies:

γin(σ−i, σi) ≥ vi − ε ∀n ≥ n0

and there is a profile σ−iε of N \ {i} such that for every strategy σi of player
i,

γin(σ−iε , σ
i) ≤ vi + ε ∀n ≥ n0.

The profile σ−iε is an ε-min-max punishment profile against player i.

Thus, players N \ {i} can reduce the payoff of i to vi, but they cannot reduce
it any more.

Existence of the min-max value was proved by Mertens and Neyman
(1981) for two-player stochastic games, and by Neyman (1988) for N -player
stochastic games.

Remark: In our construction, a deviator is punished with the min-max
level and not by the max-min level. There are two reasons for that. First, we
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would like to reduce the amount of correlation needed by the players. Second,
results that are proven here might be useful in the study of equilibrium payoffs
in n-player stochastic games. The cost is that the definition of punishment
level is slightly more involved, and the proof (of Lemma 6.4) is longer.

The multi-linear extensions of r to X are still denoted by r. Define an
extension of u to X by

ui(x) =
∑
a∈A

x[a]w(a)ui(a)/w(x)

whenever w(x) > 0, and ui(x) = 0 otherwise. Note that w(x)ui(x) is multi-
linear.

Definition 5.2 Let γ ∈ RN be a payoff vector. A mixed action combination
x is individually rational for γ if for every player i ∈ N γi ≥ vi and for
every action ai ∈ Ai such that w(x−i, ai) > 0,

γi ≥ ui(x−i, ai).

x is individually rational for γ if no player i can get more than γi by an
absorbing deviation.1

In absorbing games it is sometimes the case that absorption requires
coordinated action on the part of a group of two or more players.

Definition 5.3 Let x ∈ X be a non-absorbing mixed-action combination.
An exit (w.r.t. x) is a vector aL ∈ AL such that (i) ∅ ⊂ L ⊆ N , (ii)
w(x−L, aL) > 0, and (iii) w(x−L

′
, aL

′
) = 0 for every proper subset L′ of L.

We denote by E(x) the set of all exits w.r.t. x. If L = {i} contains a single
player, we denote the exit simply by ai, and call it a unilateral exit of
player i. If |L| ≥ 2 the exit is a joint exit. For every probability distribution
µ ∈ ∆(E(x)) we define the expected absorbing payoff given µ by

u(µ) =
∑

aL∈E(x)

µ[aL]w(x−L, aL)u(x−L, aL)/
∑

aL∈E(x)

µ[aL]w(x−L, aL).

To motivate the importance of the sufficient conditions we will present,
we recall from Solan (1999, Theorem 4.5) that in any absorbing game there
is a profile x0 which satisfies one of the following conditions:

1Usually, deviations can be followed by punishment with the min-max level, hence one
gets a stronger definition of individual rationallity (see Solan (1997)). In our context
players may not know the identity of the deviator, hence the deviator may deviate several
times without being detected.
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1. x0 is non-absorbing and individually rational for r(x0).

2. x0 is absorbing, individually rational for u(x0), and ui(x0) = ui(x−i0 , a
i)

for every i ∈ N and every ai ∈ supp(xi0) such that w(x−i0 , a
i) > 0.

3. x0 is absorbing and there exists a probability distribution µ ∈ E(x0)
such that x0 is individually rational for u(µ).

Lemma 5.4 below shows that G admits an equilibrium in the first case. By
Lemma 5.5 the same holds for the second case. The third case meets all but
one of the conditions of Lemma 5.6. This is the interesting case that requires
special attention. Proofs of Lemmas 5.4 and 5.5 can be found in Vrieze and
Thuijsman (1989) or Solan (1999). The proof of Lemma 5.6 can be found in
Solan (1997). Is is also a special case of Solan (1999, Lemma 5.3). Here we
only give the intuition.

Lemma 5.4 If x ∈ X is non-absorbing and individually rational for r(x)
then r(x) is an equilibrium payoff.

The equilibrium strategies are as follows. Each player i plays the station-
ary strategy xi, while checking for deviation of his opponents. Those checks
include:

• Whether the realized action of each player j are compatible with xj.

• Whether the distribution of the realized actions of each player j is
approximately xj.

The first player who fails one of these tests (or the player with minimal index
in the case that more than one player fails these tests at the same stage) is
punished forever by his min-max level.

With an additional condition one can extend lemma 5.4 to the case when
x is absorbing.

Lemma 5.5 Let x ∈ X be an absorbing mixed action combination, that is (i)
individually rational for u(x) and (ii) satisfies ui(x) = ui(x−i, ai) for every
i ∈ N and every ai ∈ supp(xi) such that w(x−i, ai) > 0. Then u(x) is an
equilibrium payoff.

The equilibrium strategies are the same as above. The conditions imply that
u(x) is an equilibrium payoff.
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Lemma 5.6 If there exists a non-absorbing profile x ∈ X, and a probability
distribution µ ∈ E(x) such that x is individually rational for u(µ) and µ[aL] >
0 implies that |L| ≥ 2 then u(µ) is an equilibrium payoff.

Let supp(µ) = {aL1
1 , . . . , aLKK } and ε > 0 be given, and let δ > 0 be suf-

ficiently small. We construct an ε-equilibrium profile, where the equilibrium
path has a cycle of length K. At stage t, the players try to be absorbed
with a small probability δ by the exit aLkk , where k = t mod K. In fact each
player i 6∈ Lk plays xi, whereas each player i ∈ Lk plays (1 − δk)xi + δka

i
k,

where δk = (
δµ[a

Lk
k ]

w(x−Lk ,a
Lk
k

)
)1/|Lk|. Note that w(x−Lk , aLkk )δ

|Lk|
k = δµ[aLkk ]. Hence,

at stage k the probability that the exit aLkk is used is δµ[aLkk ]. In particular,
if the players follow this profile and δ is sufficiently small then the game will
be absorbed with high probability after 1/δ2 stages, and the expected payoff
is approximately u(µ).

Since players need not be indifferent between the various exits in supp(µ),
suitable statistical tests are needed to make deviation non-profitable, and
they can be performed effectively since |L| ≥ 2 for every aL ∈ supp(µ).

For the statistical test, the players consider at stage t only stages j < t
such that j = t mod K. All other stages are ignored.

• Check for each i if i’s realized action is compatible with this profile;
that is, if it is in supp(xi), and, if i ∈ Lk, it may be also aik.

• Check for each i if the distribution of i’s realized actions, when re-
stricted to supp(xi), is approximately xi.

• For each player i ∈ Lk check if i plays the action aik with frequency δk.
Formally, the realized frequency p that player i plays aik at stages j < t
such that j = t mod K, should satisfy | p

δkt/K
− 1| < ε.

The first two tests are used in the previous sufficient conditions as well,
and, if δ is sufficiently small, can be employed effectively. It was proven in
Solan (1999 or 1997) or in Solan and Vieille (1998a) that the third statistical
test can be employed effectively if δ is sufficiently small.

Notice that Lemma 5.6 does not apply to profiles that admit unilateral
exits. The remainder of this paper deals with precisely this situation. We
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will show that absorbing profiles that admit unilateral exits can be put into
one of four categories. For two of these categories, a modification of Lemma
5.6 holds. For the other two categories, an additional condition having to do
with punishability is needed.

We close this subsection with another sufficient condition for existence of
an equilibrium payoff, that was established by Vrieze and Thuijsman (1989)
for N = 2 and by Solan (1997) for general N .

Lemma 5.7 Let x be a non-absorbing action combination. If there exists a
player i ∈ N and an action bi ∈ Ai such that (i) w(x−i, bi) > 0, (ii) x is
individually rational for u(x−i, bi) and (iii) ri(x) ≤ ui(x−i, bi), then u(x−i, bi)
is an equilibrium payoff.

u(x−i, bi) is an equilibrium payoff even if ri(x) ≤ ui(x−i, bi) does not hold,
but in our setup the second inequality holds whenever this lemma is invoked.

Consider the following profile:

• All j 6= i play xj in each round.

• Player i plays xi with probability 1 − δ and bi with probability δ in
each round.

Here δ > 0 is chosen sufficiently small.
If the players follow this profile the expected payoff for the players is

u(x−i, bi) in any sufficiently long game. To deter deviations, check for each
player j, that the distribution of his realized actions is approximately xj, and
that his realized actions are compatible with this profile. The first player who
fails the statistical test (or the player with minimal index, if more than one
player fail the test at the same stage) is punished with his min-max value
forever.

Since ri(x) ≤ u(x−i, bi), player i is worse off by not letting the play
terminate by bi. Since x is individually rational for u(x−i, bi), no player can
profit too much by deviating.

5.2 Signalling

Since players do not have an explicit signalling device, they rely on their
strategy choices to signal information. To construct an equilibrium where
players will signal to each other one must ensure that no player has the

23



incentive to deviate during a signalling phase. We state sufficient conditions
that allow for the transmission of public information.

Definition 5.8 Let x ∈ X be a non-absorbing profile and i ∈ N a player.
Player i is a signaller w.r.t. x if for every finite message set M and every
ε > 0 there exists a vector of strategies of player i, σi = (σim)m∈M , a positive
integer n0 and a partition P = (Pm)m∈M of Hn0 such that

• ‖ σim(h)− xi ‖∞< ε for every finite history h ∈ H and m ∈M .

• Px−i,σim
(Pm) > 1− ε for all m ∈M .

• w(x−i, σim(h)) = 0 for every finite history h with length at most n0.

Thus the signaller can associate with each message a unique set of non-
absorbing histories. If the realized history at stage n0 is h ∈ Hn0 , and if
Pm is the unique element in P that contains h, all players understand that
message m was sent. The first condition is needed to make deviations during
the signalling phase non-profitable.

In our context, players in N \ {i} have an encrypted message, but only
player i has the decryption key. Since player i is ignorant of the contents
of the message, no player knows the content of the message. Once player i
publicly transmits the key, every player in N \ {i} can read the message.

Lemma 5.9 Let x be a non-absorbing profile and i ∈ N a player. If there
exist two mixed actions yi1, y

i
2 ∈ X i that satisfy

• w(x−i, yik) = 0 for k = 1, 2.

• ‖ yik − xi ‖∞< ε/2 for k = 1, 2.

• ‖ yi1 − yi2 ‖∞> ε/4.

then i is a signaller w.r.t. x.

Proof: Intuitively, player i who wants to send a message m ∈ {1, . . . ,M}
will send a message of M bits, all 0 except one that corresponds to the
message m. The mixed action yi1 is used to transmit the bit 1, and yi2 is used
to transmit the bit 0.
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Let M = {1, . . . ,M} be a finite message space and ε > 0 be fixed. For
k = 1, 2, let nk be sufficiently large such that for every sequence of i.i.d. r.v.
(Yj) with distribution yik we have for every n > nk,

P(‖ (Y1 + · · ·+ Yn)/n− yik ‖∞> ε/8) < ε/|M |.

Let n∗ = max{n1, n2} and n0 = |M |n∗.
For every m ∈M define a strategy σim as follows.

σim(h) =

{
yi1 h ∈ Hn, n∗(m− 1) < n ≤ n∗m
yi2 otherwise.

Define a partition P = (Pm)m∈M of Hn0 as follows. For each history
h ∈ Hn0 let ait(h) be the action taken by player i at stage t according to
history h. A history h is in Pm if (i) ‖ ∑n∗m

t=n∗(m−1)+1 a
i
t(h)/n∗ − yi1 ‖∞< ε/8

and (ii) for every m′ 6= m, ‖ ∑n∗m′

t=n∗(m′−1)+1 a
i
t(h)/n∗ − yi2 ‖∞< ε/8. All

histories that do not satisfy any of these conditions are divided arbitrarily.
By construction,

Px−i,σim

‖ n∗m∑
t=n∗(m−1)+1

ait(h)/n∗ − yi1 ‖∞< ε/8

 ≥ 1− ε/|M |

and for every m′ 6= m

Px−i,σim

‖ n∗m∑
t=n∗(m−1)+1

ait(h)/n∗ − yi2 ‖∞< ε/8

 ≥ 1− ε/|M |.

Thus, Px−i,σim
(Pm) ≥ 1− ε, as required.

Corollary 5.10 Let x be a non-absorbing profile and i ∈ N a player. If
either (i) |supp(xi)| ≥ 2 or (ii) there exists an action ai 6∈ supp(xi) such that
w(x−i, ai) = 0, then player i is a signaller w.r.t. x.

Proof: If (i) holds, there exists ai ∈ supp(xi) such that xi[ai] ≤ 1/2. Define
yi1 = xi and yi2 = (1 − ε/2)xi + (ε/2)ai (interpret this to mean play xi with
probability 1− ε/2 and ai with probability ε/2). If (ii) holds, let yi1 = xi and
yi2 = (1− ε/2)xi + (ε/2)ai.
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It is clear that the condition in Corollary 5.10 is also a necessary condi-
tion. Indeed, otherwise, there is only one history that is non-absorbing when
N \ {i} play x−i.

Note that σim depends on the message set M , as well as on xi and ε.
M , xi and ε also determine the number of periods n0 required to transmit a
message. From now on, whenever we specify in a profile that some signaller
i sends a message m, we mean that player i plays for n0 stages the strategy
σim, and any other player j 6= i plays the mixed action xj. It will always be
clear from the context what is the stationary profile x to be used.

During the signalling period, players who are not signallers may deviate
in two ways. They can either alter the frequency in which they play actions
in supp(xi), or they can play actions outside supp(xi). The second type of
deviations is detected immediately and can be punished with the min-max
value. If x is individually rational for the expected payoff of the players
conditioned on the message sent, this type of deviations can be deterred.
The first type of deviations does not change the message that is sent, since
P depends only on the actions of the signallers.

We conclude this section with a definition of weak-signallers:

Definition 5.11 Let x be a non-absorbing profile that admits one signaller
i1. A player i2 6= i1 is a weak-signaller w.r.t. x if there exist ai1 ∈ Ai1 and
ai2 ∈ Ai2 such that w(x−i1 , ai1) = w(x−i1,i2 , ai1 , ai2) = 0.

Since i2 is not a signaller w.r.t. x, w(x−i2 , ai2) > 0.
A weak-signaller cannot transmit information, since he is not a signaller.

However, as we will see later, with the help of the signaller he can transmit
information.

5.3 Classification of Non-Absorbing Profiles

Here we divide non-absorbing profiles into four groups, according to the way
information can be transmitted.

Definition 5.12 A non-absorbing profile x is isolated if it admits no sig-
nallers. It is semi-isolated if it admits exactly one signaller, but no weak
signallers. It is weak if it admits exactly one signaller and at least one weak
signaller.
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We assign no appelation to non-absorbing profiles that admit at least two
signallers. We refer to isolated profiles also as isolated actions, to emphasize
that they are pure action combinations.

For example, consider the following two-player absorbing games where
each player has 2 actions, and only the absorbing structure is given (an
asterisked cell means that the probability of absorption is positive, and a
non-asterisked cell means that the probability of absorption is 0):

∗ ∗
∗

B

T

L R

Game 1

∗ ∗B

T

L R

Game 2

∗B

T

L R

Game 3

In game 1, (T, L) is an isolated profile. In game 2, any convex combina-
tion of (T, L) and (T,R) is semi-isolated. In game 3, (T, L) and (B,R) are
weak, as is any convex combination of (T, L) and (T,R) which gives positive
probability to (T, L), and any convex combination of (T,R) and (B,R) which
gives positive probability to (B,R). The profile (T,R) admits two signallers.

It is easy to see that the support of any isolated action is disjoint from
the support of any semi-isolated or weak profile, and that the support of any
semi-isolated profile is disjoint from the support of any weak profile.

If x and y are semi-isolated, then either supp(x) and supp(y) are disjoint,
or they have the same signaller, and any convex combination βx+ (1− β)y
is also semi-isolated. In particular, there are disjoint sets B1, . . . , BK that
form the maximal supports of semi-isolated profiles: the support of any semi-
isolated profile is contained in some Bk, and for each k there is some semi-
isolated profile whose support is Bk. We call each set Bk a maximal semi-
isolated set. In game 2, K = 1 and B1 = {(T, L), (T,R)}.

If x is non-absorbing and E(x) contains a joint action, then x admits at
least two signallers. In particular, if x is isolated, semi-isolated or weak, E(x)
includes only unilateral exits.

In section 5.4 we deal with isolated actions, in section 5.5 with semi-
isolated profiles, and in section 5.6 with all other non-absorbing profiles.
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5.4 Isolated Actions

In this section we consider isolated actions. We show that the punishability
condition stated for probabilistic quitting games can be used in this setup.
To make the analogy complete we define what it means to be punishable in
this context.

Fix an isolated action a. Since the function u is generic, each player
i has a unique action bi(a) that maximizes the expression ui(a−i, di) over
di 6= ai. If the other players play a−i then bi(a) is i’s best absorbing re-
sponse. Let gi(a) = ui(a−i, bi(a)) be the best absorbing response payoff:
the maximum that player i can get by a unilateral deviation from a. Set
pi(a) = minj 6=i u

i(a−j, bj(a)) to be the punishment level of player i, and let
ji(a) be a player that minimizes this expression. Player ji(a) is the punisher
of i at a. Player i ∈ N is punishable at a if pi(a) ≤ gi(a).

Thus, in an isolated action a player may punish an opponent only by his
best absorbing response.

The proof of Lemma 4.5 yields:

Lemma 5.13 Let a be an isolated action. If there exists a probability distri-
bution µ ∈ ∆(N) that satisfies the following two conditions:

1. If µi > 0 then i is punishable at a.

2. For every player i,
∑
j∈N µju

i(a−j, bj(a)) ≥ gi(a).

then
∑
i∈N µiu(a−i, bi(a)) is a correlated equilibrium payoff.

To build equilibria around action combinations that are not isolated we
need players to signal to each other. How this is done is described next.

5.5 Semi-isolated Profiles

In this section we study semi-isolated profiles. We define the punishability
notion for these profiles, and we give a condition on existence of correlated
equilibrium payoff using the signalling strategy we described earlier.

5.5.1 On Punishments

First we extend the notion of punishment level and punisher to semi-isolated
actions. As discussed in example 3, in a semi-isolated profile, the identity of
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the designated quitter will be revealed to everyone but the signaller i0. In
particular, player i0 can be punished with his min-max level, whereas any
player j 6= i0 can be punished either by i0 or jointly by N \{j, i0}. It is easier
to restrict ourselves to punishments by single players.

Let x be a semi-isolated profile with unique signaller i0. Then |supp(xj)| =
1 for every j 6= i. Since the game is generic, there is a unique action bi0(x)
that maximizes ui0(x−i0 , di0) over di0 ∈ Ai0 . For each player i ∈ N define
gi(x) = maxdi∈Ai u

i(x−i, di) to be the maximal absorbing level of player i
given that the other players follow x. Notice that gi0(x) is independent of
xi0 , and depends only on x−i0 .

Any player i ∈ N can be punished by any player j 6= i. Define

pii0(x) = ui(x−i0 , bi0(x))

and for every j 6= i, i0

pij(x) = min
dj 6=xj

ui(x−j, dj). (3)

The definition reflects the idea that any player j 6= i knows the identity of i,
and therefore can choose the action that punishes i the most, whereas player
i0 does not know the identity of the punished one, so he must use only one
action to punish.

Finally, define the punishment level of each player i 6= i0 by

pi(x) = min
j 6=i

pij(x) (4)

and the punishment level of i0 by

pi0(x) = min{ri0(x),min
j 6=i0

pi0j (x)}.

That is, players N \ {i0} can either punish player i0 by some absorbing
action, or by never absorbing, whichever yields i0 a lower payoff. Player i is
punishable at x if pi(x) ≤ gi(x).

Let ji(x) be the punisher of player i at x; that is, it is the player j that

minimizes pij(x) over all j 6= i. Denote by b
ji(x)
i (x) the action of player ji(x)

that minimizes the payoff of i.
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5.5.2 A Sufficient Condition

Lemma 5.14 Let x be a semi-isolated profile with signaller i0 and µ ∈ ∆(E(x)).
Assume that the following conditions hold.

1. If i 6= i0 and
∑
ai∈E(x) µ[ai] > 0 then i is punishable at x.

2. x is individually rational for u(µ).

3. If ai, bi ∈ E(x) are two unilateral exits of i and µ[ai] > 0 then ui(x−i, ai) ≥
ui(x−i, bi).

Then u(µ) is a correlated equilibrium payoff.

Proof: Note that since x is semi-isolated, µ is supported by unilateral exits.
Let µi =

∑
ai∈E(x) µ[ai] be the overall weight of unilateral exits of i in µ. Then

(µi)i∈N is a probability distribution. If µi > 0, define yi =
∑
ai∈E(x)

µ[ai]
µi
ai

to be the probability distribution induced by µ over the unilateral exits of
player i.

We define the following mechanism:

1. The correlation device chooses a player i according to the probability
distribution (µi)i∈N .

2. The device sends i the signal “you have been chosen”.

3. The device chooses a verification key v ∈ {1, . . . , K}, where K ≥ 1/ε,
with the uniform distribution.

4. The device chooses an encrypting key k ∈ {1, . . . , K} with the uni-
form distribution.

5. If i 6= i0, the device sends to i0 both v and k. If i = i0 it does not.

6. The device sends to each player j 6= i, i0 both v and the sum k +
i mod K.

7. In the first 1/ε2 stages,2 all unchosen players j play xj, and player i
plays the mixed action (1− ε)xi + εyi.

2Whenever we refer to a non-integer number t of stages, it should be understood as the
smallest integer larger than t.
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If the players follow this mechanism, the expected payoff if absorption
occurs is u(µ), and absorption occurs with probability greater than 1 − ε.
Moreover, for every unchosen player j 6= i and every j′ 6= j, the probability
that j′ = i conditional on the information revealed to player j by the device
is µi/(1 − µj). Therefore by condition 2 no player j ∈ N \ {i, i0} has a
profitable deviation.

If i 6= i0, player i0 might profit by deviating from xi0 . To make such a
deviation non-profitable, we add a standard statistical test: players inN\{i0}
check whether the distribution of the realized actions of i0 is approximately
xi0 . If a deviation is detected, they punish him with his min-max value.

By condition 3, player i cannot profit by altering the probability in which
he plays absorbing actions.

It is in the interest of the chosen player to never play an absorbing action
if ri(x) > gi(x). If absorption has not occurred in the first 1/ε2 stages, the
identity of the chosen player should be revealed so that he can be punished.
To accommodate this we add the following instructions to the mechanism.
If the chosen one did not play an absorbing action until stage 1/ε2, do the
following.

8. Player i0 publicly sends v. Denote by v′ the actual message sent.

9. If v 6= v′, players N \ {i0} punish i0 with his min-max value.

10. If v′ = v, player i0 publicly sends k. Now every player j 6= i0 knows
the identity of i.

11. For 1/ε2 stages all players j that are not the punisher of i play xj, and
player i0 plays xi0 . If the punisher ji(x) of i is not i0, then this player

plays (1− ε)xji(x) + εb
ji(x)
i (x).

12. If absorption has not occurred yet within 1/ε2 stages (which happens
through the luck of the draw or if ji(x) = i0), from then on player i0
plays (1− ε)xj + εbi0(x), and all the other players play x−i0 .

In step 8 player i0 reveals whether he is the chosen one or not. If he is not
the chosen one, the probability that he can duplicate v is smaller than ε.

The only thing left to specify is, what happens if the chosen one plays a
unilateral exit and the game is not absorbed. As in the proof of Lemma 4.5,
the device actually chooses an i.i.d. sequence of chosen players, verification
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keys and encrypting keys, one for each attempt to use an exit. If play is
not terminated by the first chosen player, it is the turn of the second chosen
player to use one of his unilateral exits, and so on until the game terminates.

Let us now verify that the mechanism induces a correlated Rε-equilibrium
for some fixed R ∈ R. As in the proof of Lemma 4.5, since the sequence the
device chooses is i.i.d. and by condition 2, it is sufficient to check that no
player can profit by deviating in the first round of this mechanism.

Let us first check that the chosen player i cannot profit by deviating. The
expected payoff of i is gi(x) if absorption occurs while he uses a unilateral
exit, and by condition 3 at least gi(x) if the play continues. If he does not
use one of his unilateral exits with positive probability under µ, his identity
is revealed in step 8 or 10, and he is punished by pi(x) ≤ gi(x). By the
definition of the signalling mechanism, player i cannot profit too much during
the signalling process.

Let us now verify that each unchosen player j cannot profit by a deviation.
Since the probability that any player k 6= j is actually the chosen one given
the information of i is exactly µk/(1 − µk), the expected payoff of j is at
least uj(µ) ≥ gj(x) if the play is absorbed by the designated quitter, and at
least gj(x) if it continues. The most he can get by deviating is gj(x). The
only opportunity for profit is if j guesses correctly the stage in which i uses
a unilateral exit, but this chance is small. As before, deviations during the
signalling process cannot yield high profit.

5.6 Other Non-Absorbing Profiles

In this section we deal with weak profiles and non-absorbing profiles that
admit at least two signallers. In these two cases the identity of the chosen
one can be revealed to every player, so that he can be punished with his
min-max level, rather than by single punishments.

Lemma 5.15 Let x be a non-absorbing profile and i1, i2 be two distinct sig-
nallers w.r.t. x. If there exists a probability distribution µ ∈ ∆(E(x)) such
that for every i ∈ N

1. x is individually rational for u(µ).

2. If ai, bi ∈ E(x) are two unilateral exits of i and µ[ai] > 0 then ui(x−i, ai) ≥
ui(x−i, bi).
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Then u(µ) is a correlated equilibrium payoff.

The conditions of the lemma are similar to those in Lemma 5.6, except
that we have at least two signallers, and unilateral exits may have positive
weight in µ. If, for every such unilateral exit we had ui(x−i, ai) = ui(µ) then,
as was proved in Solan (1999, Lemma 5.3), u(µ) would be an equilibrium
payoff. If players are indifferent to their unilateral exits, no statistical tests
are needed to ensure that players use their unilateral exits as they should.
In general we cannot guarantee that this condition holds, and we can only
guarantee the weaker form presented here.

As seen in the proof of Lemma 5.6, joint exits can be controlled by the
players. To control unilateral exits the device chooses whether any player
should use a unilateral exit, and if so who it is. The signallers will then
reveal the identity of the chosen player. Since there are at least two signallers,
the identity is revealed to everyone, and if the chosen player does not use a
unilateral exit, he can be punished. If one of the signallers misreports, the
report of the other signaller is still consistent with the realized play. So such
a deviation can be detected by the other players.

Proof: Recall that the profile described in the proof of Lemma 5.6 was
played in rounds. Each round consists of |supp(µ)| stages, and in each stage
players use a different exit in supp(µ). In Lemma 5.6 we had only joint exits,
whereas here we also have unilateral exits. The mechanism we construct is
similar to the one presented in Lemma 5.6, but at the end of each round we
add a revelation period, where the signallers reveal whether any player was
supposed to use one of his unilateral exits during that round. If that player
has not used his unilateral exit, he is punished with his min-max value.

For each player i let µi =
∑
ai∈E(x) µ[ai] be the overall probability that

player i should use a unilateral exit according to µ. If µ contains joint exits,
then

∑
i∈N µi < 1. Let η ∈ (0, 1) to be chosen later. Let (Yt) be a sequence

of i.i.d. r.v. with values in {0}∪N and distribution P(Yt = i) = ηµi for each
i ∈ N and P(Yt = 0) = 1−∑i∈N P(Yt = i).

The interpretation of Yt is that if Yt = i for some i ∈ N then player i
should use a unilateral exit during the tth round.

Let i1, i2 ∈ N be two distinct signallers.
Before start of play, each player i receives all rounds t such that Yt = i.

In addition, the device sends, for each round t the following:
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• For each l = 1, 2, if Yt 6= il, player il receives a uniformly distributed
verification key vlt ∈ {1, . . . , K} and a uniformly distributed en-
crypting key klt ∈ {1, . . . , K}, where K > 1/ε.

• For each l = 1, 2, each player i 6= il receives vlt and klt + Yt mod K.

We now recall the profile constructed in the proof of Lemma 5.6. Let
δ ∈ (0, ε) be sufficiently small. Let supp(µ) = {aL1

1 , . . . , aLkk }, and for each k
set δk = (δµ[aLkk ]/w(x−Lk , aLkk ))1/|Lk|.

We define a strategy σi in rounds. We first define only the first |supp(µ)|
stages of the round, which form a quitting period. Let t be the current
round.

• If Yt = i, player i chooses at the beginning of the round a unilateral
exit ai ∈ E(x), each action ai is chosen with probability µ[ai]/µi.

At the kth stage of the round, player i plays as follows:

• If i 6∈ Lk, he plays xi.

• If i ∈ Lk and |Lk| ≥ 2, he plays (1− δk)xi + δka
i
k.

• If Lk = {i} and Yt 6= i, he plays xi.

• If Lk = {i}, Yt = i and aik is the unilateral exit he chose at the beginning
of the round, he plays aik. If aik is not the unilateral action he chose, he
plays xi.

If the players follow σ = (σi) then the game will be absorbed. Moreover,
provided that δ is sufficiently small, there exists η ∈ (0, 1) such that the
probability that each exit aLkk is used is approximately µ[aLkk ], thereby the
expected payoff for the players is approximately u(µ).

Since it might be in the interest of some player i to alter the frequency
with which he plays different actions in supp(xi), or in which he perturbs to
aik in stages that correspond to a joint exit, we employ the same statistical
tests that are used in the proof of Lemma 5.6.

Since it might be in the interest of a player supposed to use a unilateral
exit not to use it, we append a revelation period to the end of the first
|supp(µ)| stages every round t.

Revelation Period:
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• Player i1 publicly sends v1
t .

• Player i2 publicly sends v2
t .

• Player i1 publicly sends k1
t .

• Player i2 publicly sends k2
t .

At the end of the revelation period all players know (with high probability)
whether some player was supposed to use his unilateral exit and did not, and
who it was.

Let us now verify that no player i can profit too much by deviating. Since
x is individually rational for u(µ), no player can profit too much by playing
an action that is not compatible with this profile, or alter the probability in
which he plays actions in supp(xi).

Moreover, since the value of Yt is revealed at the end of the round, if
Yt = i, player i cannot profit by not using one of his unilateral exits, and by
condition 2 he is indifferent between them.

By the construction of the signalling mechanism, no player can profit too
much by deviating during the signalling process.

If i is a signaller, say i1, he can signal an incorrect signal at some round.
Clearly he cannot profit by sending an incorrect verification key, but maybe
he can profit by altering k and having another player punished. Such a
deviation cannot happen in a round t where Yt = i1, since in that round
player i1 does not have the verification key. Since i2 does not deviate, his
report contradicts the report of i1. Whatever the value of Yt, the report of
i2 coincides with the realized play, whereas the report of i1 does not, hence
i1 is declared a deviator, and is punished by his min-max value. Hence no
player can profit too much by any deviation.

Recall that a weak non-absorbing profile x admits exactly one signaller,
and at least one weak signaller. Moreover, in this case E(x) contains only
unilateral exits.

Lemma 5.16 Let x be a weak non-absorbing profile. If there exists a proba-
bility distribution µ ∈ ∆(E(x)) such that for every i ∈ N

1. x is individually rational for u(µ).

2. If ai, bi ∈ E(x) are two unilateral exits of i and µ[ai] > 0 then ui(x−i, ai) ≥
ui(x−i, bi).
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Then u(µ) is a correlated equilibrium payoff.

The proof of this Lemma is similar to the proof of Lemma 5.14. However,
since we have only one signaller, the identity of the chosen player must be
revealed by the signaller and the weak signaller together.

Proof: Denote by i0 the unique signaller w.r.t. x, and by i1 one of the
weak signallers. Let ai0 ∈ Ai0 and ai1 6∈ supp(xi1) such that w(x−i0 , ai0) =
w(x−i0,i1 , ai0 , ai1) = 0.

For each player i let µi =
∑
ai∈E(x) µi[a

i]. Since µ is supported by uni-

lateral exits,
∑
i∈N µi = 1. If µi > 0, define yi =

∑
ai∈E(x)

µ[ai]
µi
ai to be the

probability distribution induced by µ over the unilateral exits of player i.
The steps describing the correlation device from Lemma 5.14 are repro-

duced below with ammendments.

1. The correlation device chooses a player i according to the probability
distribution (µi)i.

2. The device sends i the signal “you have been chosen”.

3. The device chooses a verification key v ∈ {1, . . . , K} and an en-
crypting key k ∈ {1, . . . , K}, where K ≥ 1/ε, both with the uniform
distribution.

4. If i 6= i0, the device sends to i0 both v and k. If i = i0 it does not.

5. The device sends to each player j 6= i, i0 both v and the sum k +
i mod K.

6. The device chooses |N | different numbers t1 < t2 < · · · < tN in the
range {1, . . . , T} with the uniform distribution,3 where T is sufficiently
large so that P(tN < T − 1/ε) > 1− ε. To each member of {i0, i1} who
was not chosen, the device sends these numbers.

7. The players play as follows for 1/ε2 stages. Every unchosen player j 6= i
plays xj, and the chosen one plays (1− ε)xi + εyi.

Next, the revelation phase is modified:

3That is, every increasing sequence of N numbers in this range has the same probability
to be chosen.
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8. Player i0 publicly sends v. Denote by v′ the actual message he sent.

9. If v 6= v′, players N \ {i0} punish i0 with his min-max value.

10. If v = v′ player i0 publicly sends k. Now every player j 6= i0 knows the
identity of i. In particular, i1 knows it. Let t be the stage of the game
where this step is over.

11. In the next T stages, the players play as follows.

• Each player j 6= i0, i1 plays xj.

• If i0 was not chosen, he plays ai0 at every stage t+ tj. At all other
stages he plays xi0 .

• If i1 was not chosen, he plays ai1 at stage t + ti, and xi1 at all
other stages.

Since w(x−i0 , ai0) = w(x−i0,i1 , ai0 , ai1) = 0, if the players follow the reve-
lation phase the game is not absorbed.

At the end of the revelation phase all players know the identity of the
chosen player i. Indeed, if i = i0, his identity is revealed in step 9. If i 6= i0,
i’s identity is revealed to all but i0 in step 10. i0 can then infer the identity
of i at the end of step 11. Indeed, if at stage t+ tk player i1 plays ai1 , then i0
concludes that i = k, whereas if i1 never plays ai1 , i0 concludes that i = i1.
If i1 plays ai1 at a stage t 6∈ {t1, . . . , tN}, his identity is revealed (and the
game might be absorbed). If he never plays it, his identity is also revealed.

It is easy to verify that no player can profit too much by any type of
deviation.

6 An Auxiliary Game

In this section we introduce an auxiliary game that is ‘close’ in some sense
to the original absorbing game. By studying the asymptotic behavior of
a sequence of discounted equilibria of the auxiliary game, we establish the
existence of a stationary profile that satisfies one of the sufficient conditions
identified in the previous section.
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6.1 Definition of an Auxiliary Game

In Solan (1999) an auxiliary game is defined by changing the non-absorbing
payoff of the original game. For every discount factor λ ∈ (0, 1) the auxiliary
game is shown to admit a stationary λ-discounted equilibrium xλ. Moreover,
the limit of the λ-discounted min-max values of the auxiliary game is equal
to the min-max value of the original game. It is then proved that if there is
no uniform ε-equilibrium where the players play the limit stationary strategy
x0 = limλ→0 xλ and statistically check for deviations of their opponents, then
there exists a probability distribution µ over the exits E(x0) such that x0 is
individually rational for u(µ). We cannot apply this result directly to our
case since we require the µ to satisfy an additional punishability condition.
Nevertheless it is still possible to execute something similar.

For every function r̃ : X → RN and every discount factor λ ∈ (0, 1) we
define an auxiliary discounted game Gλ(r̃), where the payoff associated with
every strategy profile σ is:

γ̃λ(σ) = Eσ

(
λ
∞∑
n=1

(1− λ)n−1(1n≤θr̃(xn) + 1n>θu(xθ))

)
where xn is the mixed-action prescribed by σ at stage n, and θ is the stage
of absorption. That is, the absorbing game with non-absorbing payoff r̃, but
at stage n if the game is not yet absorbed, instead of getting the payoff r(an)
the players get the payoff r̃(xn).

If for every i ∈ N the function

x−i 7→ argmaxxi∈Xi γ̃iλ(x
−i, xi) (5)

has non-empty, convex values and is upper-hemi-continuous, by Kakutani’s
Fixed Point Theorem the game Gλ(r̃) admits a stationary equilibrium.

It is easy to see that if γ̃iλ is continuous and for every x−i ∈ X−i and every
c ∈ R the set {xi ∈ X i | γ̃iλ(x−i, xi) ≥ c} is convex, (5) holds.

Lemma 6.1 If for every i ∈ N the function r̃i is continuous, and for every
fixed x−i ∈ X−i the function r̃i(x−i, ·) is quasi-concave on X i, then Gλ(r̃)
admits a stationary equilibrium.

Proof: It is well known (see, e.g., Vrieze and Thuijsman (1989) or Solan
(1999)) that for every discount factor λ ∈ (0, 1) and every stationary profile
x

γ̃λ(x) =
λr̃(x) + (1− λ)w(x)u(x)

λ+ (1− λ)w(x)
. (6)
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In particular, γ̃λ is continuous.
Let x−i ∈ X−i, xi, yi ∈ X i, β ∈ [0, 1] and c ∈ R. Denote x = (x−i, xi),

y = (y−i, yi) and z = βx + (1 − β)y. We assume that γ̃λ(x), γ̃λ(y) ≥ c, and
prove that γ̃λ(z) ≥ c. By the previous remark, that would suffice to prove the
lemma. By assumption, λr̃(x) ≥ c(λ + (1− λ)w(x))− (1− λ)w(x)u(x) and
λr̃(y) ≥ c(λ+ (1−λ)w(y))− (1−λ)w(y)u(y). By the linearity of w and wu,
and the quasi-concavity of r̃, λr̃(z) ≥ c(λ+ (1− λ)w(z))− (1− λ)w(z)u(z).
By (6), γ̃λ(z) ≥ c.

A similar proof proves that the ratio of two multi-linear functions with a
positive denominator is quasi-concave.

So that the game Gλ(r̃) admits a stationary equilibria, we will make sure
that r̃i is continuous and quasi-concave on X i for every fixed x−i ∈ X−i.

Let B ⊆ A be the set of all non-absorbing action combinations, and let
X ′ = {x ∈ X | supp(x) ⊆ B} be the collection of all the non-absorbing
stationary profiles. Define a function r̃ : X ′ →R as follows:

r̃i(x) =


pi(x) x is isolated
pi(x) x is semi-isolated
min{ri(x), vi} otherwise

(7)

Before proving that r̃ can be extended to a continuous quasi-concave
function on X, we need the following result.

Recall that B1, . . . , BK are the maximal semi-isolated sets.

Lemma 6.2 Let Bk = ×i∈NBi
k be a maximal semi-isolated set and let i0 be

the unique player such that |Bi0
k | > 1. Then the function pi0 : ∆(Bi0

k ) → R
can be extended to a continuous quasi-concave function on X i. The extended
function is still denoted by pi0.

Proof: Since the minimum of a finite number of continuous quasi-concave
functions is continuous and quasi-concave, it is sufficient to prove that for
every i 6= i0 and every ai ∈ Ai such that w(x−i, ai) > 0, the function
ui0(x−i,i0 , ai, ·) : ∆(Bi0

k ) → R can be extended to a continuous and quasi-
concave function from X i0 .

Since Bk is a maximal semi-isolated set and i 6= i0,

w(x−i,i0 , ai, xi) > 0 ∀xi0 ∈ ∆(Bi0
k ). (8)
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Every xi0 ∈ X i0 such that xi0 [Bi0
k ] < 1 can be uniquely decomposed

to a sum xi0 = xi0 [Bi0
k ]xi01 + (1 − xi0 [Bi0

k ])xi02 , where supp(xi01 ) ⊆ Bi0
k and

supp(xi02 ) ∩Bi0
k = ∅. If xi0 [Bi0

k ] = 1, define xi01 = xi0 and xi02 arbitrarily.
Define

ũi(x) =
w(x−i0 , xi0)ui(x−i0 , xi0) + (1− xi0 [Bi0

k ])

w(x−i0 , xi0) + 1− xi0 [Bi0
k ]

.

By (8), ũi is well defined, and clearly it agrees with ui on ∆(Bi0
k ).

Since wu and xi0 7→ xi0 [Bi0
k ] are linear in xi0 , one can verify as in the

proof of Lemma 6.1 that ũi is quasi-concave, and clearly it is continuous.

Lemma 6.3 For every i ∈ N there exists a continuous, quasi-concave func-
tion r̃ : X → R that agrees with (7) on X ′.

Proof: Fix i ∈ N , and let ε > 0 be sufficiently small. Let B0 be the collection
of all the non-absorbing action combinations that are neither isolated nor
semi-isolated. Define

r̃i(x−i, xi) =


pi(x−i, ai) ∃ai ∈ Ai s.t. (x−i, ai) is isolated
pi(x−i, ai) ∃ai ∈ Ai s.t. (x−i, ai) is semi-isolated with signaller i0 6= i
pi(x−i, xi) ∃ai ∈ Ai s.t. (x−i, ai) is semi-isolated with signaller i0 = i
min{ri(x−i, xi), vi} ∃ai ∈ Ai s.t. supp(x−i, ai) ⊆ B0

(9)
Let BK+1 be the collection of all isolated actions. Then B = B0 ∪

(∪kk=1Bk) ∪BK+1 is the set of all non-absorbing action combinations.
Let B−i be the projection of B on X−i: b−i ∈ B−i if and only if there

exists ai ∈ Ai such that (b−i, ai) is non absorbing.
For every x−i ∈ X−i, x−i[B−i] is the probability that x−i gives to the set

B−i.
Note that r̃ was already defined for every x such that x−i[B−i] = 1.

Define Bε
k = {y−i ∈ X−i | y−i[Bk] ≥ 1 − ε}. Since all the sets (Bk)

K+1
k=0

are compact and disjoint, one can choose ε sufficiently small so that the sets
(Bε

k)
K+1
k=0 are compact and disjoint. For every y−i ∈ Bε

k \Bk there is a unique
decomposition y−i = y−i[Bk]y

−i
1 + (1 − y−i[Bk])y

−i
2 where supp(y−i1 ) ⊆ Bk

and supp(y−i2 ) ∩Bk = ∅.
Define for every y−i ∈ Bε

k \Bk and every xi ∈ X i

r̃i(y−i, xi) = (1− y−i[Bk]/ε)r̃(y
−i
1 , xi)
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and for every y−i 6∈ ∪K+1
k=0 B

ε
k and every xi ∈ X i

r̃i(y−i, xi) = 0.

One can easily check that the function r̃i is continuous. Moreover, for
every x−i ∈ ∪K+1

k=0 Bk the function r̃i(x−i, ·) : X i → R is quasi-concave by
definition, for every x−i 6∈ ∪K+1

k=0 B
ε
k it is identically 0, hence quasi-concave,

and for every other x−i it is a multiplication by constant of a quasi-concave
function, hence quasi-concave.

By Lemmas 6.1 and 6.3, for every discount factor λ the game Gλ(r̃)
admits a stationary equilibrium xλ. γ̃λ(xλ) is the corresponding discounted
equilibrium payoff. By taking a subsequence, we assume w.l.o.g. that the
limits x0 = limλ→0 xλ and γ̃0 = limλ→0 γ̃λ(xλ) exist, and that for every i ∈ N ,
the support supp(xiλ) is independent of λ. In the sequel we will assume using
the same reasoning that other limits we take exist.

Lemma 6.4 γ̃i0 ≥ vi for every player i ∈ N .

The proof of this lemma is postponed to Section 7.

6.2 Asymptotic Analysis

Recall that for every discount factor λ ∈ (0, 1) and every profile x

γ̃λ(x) = αλ(x)r̃(x) + (1− αλ(x))u(x)

where
αλ(x) = λ/(λ+ (1− λ)w(x)).

We define
α0 = lim

λ→0
αλ(xλ).

Note that if y is an absorbing profile and yλ are stationary profiles such
that yλ → y then limλ→0 γ̃λ(yλ) = u(y).

In this section we study the asymptotic properties of the sequence (xλ)λ→0

of λ-discounted equilibria of Gλ(r̃).
If x0 is absorbing then it is easy to prove, as in Vrieze and Thuijsman

(1989) or Solan (1999) that the conditions of Lemma 5.5 are satisfied.
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If x0 is non-absorbing, we have 8 cases, according to whether x0 is an
isolated action, semi-isolated profile, weak profile or neither, and according
to whether α0 = 1 or α0 < 1. In each of these cases, we invoke one of the
sufficient conditions stated before, as summarized by the following table:

α0 = 1 α0 < 1

x0 is isolated Lemma 5.4 , Lemma 5.7 Lemma 4.5
x0 is semi-isolated Lemma 5.4 , Lemma 5.7 Lemma 5.14
x0 is weak Lemma 5.5 Lemma 5.16
Otherwise Lemma 5.5 Lemma 5.15

The definition of the function r̃ was involved because it must ensure two
different things: for α0 = 1 the existence of a uniform equilibrium, and for
α0 < 1 the existence of a good convex combination that is supported by
punishable players.

We first prove that if player i has some action ai that is absorbing against
x−i0 , then his absorbing payoff by using ai cannot exceed γ̃i0.

Lemma 6.5 If ai ∈ Ai satisfies w(x−i0 , a
i) > 0 then ui(x−i0 , a

i) ≤ γ̃i0.

Proof: Since w(x−i0 , a
i) > 0 it follows that limλ→0 αλ(x

−i
λ , a

i) = 0. Therefore

γ̃i0 = lim
λ→0

γ̃iλ(xλ) ≥ lim
λ→0

γ̃iλ(x
−i
λ , a

i) = ui(x−i0 , a
i).

The following corollary follows easily from the definition of individual
rationality and Lemmas 6.4 and 6.5.

Corollary 6.6 x0 is individually rational for γ̃0.

Lemma 6.7 If x0 is absorbing then u(x0) is an equilibrium payoff.

Proof: We prove that x0 satisfies the conditions of Lemma 5.5. By Corollary
6.6, x0 is individually rational for γ̃0.

Since x0 is absorbing, γ̃0 = u(x0). By Lemma 6.5, for every player i ∈ N ,

ui(x0) =
∑
ai∈Ai

xi0[a
i]w(x−i0 , a

i)ui(x−i, ai)/w(x0) ≤ ui(x0),

hence ui(x−i, ai) = ui(x0) whenever ai ∈ supp(xi0) with w(x−i0 , a
i) > 0, and

the second condition holds.
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If α0 = 1 then γ̃0 = lim γ̃λ(xλ) = r̃(x0). In this case, as shown below, G
admits an equilibrium payoff.

Lemma 6.8 If α0 = 1 then G admits an equilibrium payoff. In particular no
correlation amongst the players is needed.

Proof: Since α0 = 1, γ̃0 = r̃(x0) and x0 is non-absorbing. By Corollary 6.6,
x0 is individually rational for γ̃0. We have three cases:

1. x0 = a is an isolated action.

2. x0 is a semi-isolated profile.

3. None of the first two cases hold.

Consider the last case first. Since the support of x0 does not include
either isolated actions nor semi-isolated profiles r̃(x0) = min{r(x0), v} by
the definition of r̃. Now

v ≤ γ̃0 = r̃(x0) = min{r(x0), v} ≤ r(x0).

By Lemmas 6.4 and 6.5 and Corollary 6.6, x0 satisfies the conditions of
Lemma 5.4, hence r(x0) is an equilibrium payoff.

Assume now that x0 = a is an isolated action. If ri(a) ≥ gi(a) for every
player i then by Lemma 5.4 r(a) is a uniform equilibrium payoff. Suppose
then there is i1 ∈ N such that ri1(a) < gi1(a).

By the definition of r̃ at isolated actions and by Lemma 6.5, pi(a) =
r̃i(a) = γ̃i0 ≥ gi(a) for every i ∈ N . But this implies that for every j 6= i,
ui(a−j, bj(a)) ≥ gi(a). In particular, for every player i ∈ N , ui(a−i1 , bi1(a)) ≥
gi(a). It follows that the conditions of Lemma 5.7 hold w.r.t. x0, i1 and
bi1(a).

Assume now that x0 is a semi-isolated profile with signaller i0. By the
definition of r̃i(x0) and by Lemma 6.5 it follows that pi(x0) = r̃i(x0) = γ̃i0 ≥
gi(x0) for every i ∈ N . In particular, for i = i0, r

i0(x0) ≥ pi0(x0) ≥ gi0(x0).
If for every i 6= i0, r

i(x0) ≥ gi(x0), then by Lemma 5.4 r(x0) is a uniform
equilibrium payoff. Otherwise, there exists a player i1 6= i0 with ri1(x0) <
gi1(x0). As above, the conditions of Lemma 5.7 are satisfied for x0, i1 and
di1 , where di1 6= xi1 maximizes ui1(x−i1 , di1).
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Assume now that x0 is non-absorbing, but α0 < 1. In particular, xλ is
absorbing for every λ sufficiently small. For every exit aL ∈ E(x0) define

xλ[a
L] =

∏
i∈L

xiλ[a
i]
∏
i6∈L

xiλ[x
i
0].

This is the per-stage probability that the exit aL is played if the players play
xλ. xλ induces a probability distribution over E(x0) as follows:

µλ[a
L] = w(x−L0 , aL)xλ[a

L]/
∑

bL∈E(x0)

w(x−L0 , bL)xλ[b
L].

This is the conditional probability that the game is absorbed by the exit aL

when the players follow xλ, given that an exit in E(x0) is used.
We define for every aL ∈ E(x0)

µ0[a
L] = lim

λ→0
µλ[a

L].

Then µ0 is a probability distribution over E(x0).
It is easy to verify that (Solan 1999, Lemma 6.6)

lim
λ→0

u(xλ) =
∑

aL∈E(x0)

µ0[a
L]ui(x−L0 , aL) = u(µ0).

It follows that
γ̃0 = α0r̃(x0) + (1− α0)u(µ0). (10)

If player i has a unilateral exit ai that receives a positive probability under
µ0, then his absorbing payoff by using it is γ̃i0.

Lemma 6.9 If ai ∈ E(x0) and µ0[a
i] > 0 then ui(x−i0 , a

i) = γ̃i0.

The lemma is proved in Solan (1999, proof of Theorem 4.5, Step 8). Note
that if ai ∈ E(x0) then w(x−i0 , a

i) > 0, and that by Lemma 6.5, ui(x−i0 , a
i) ≤

γi0. Since the function r̃ is not multi-linear this lemma is not an immediate
consequence of Lemma 6.5 and (10).

Lemma 6.10 If x0 is non-absorbing and neither isolated nor semi-isolated,
and α < 1 then u(µ0) is a correlated equilibrium payoff.
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Proof: If x0 is neither isolated nor semi-isolated, it is sufficient to prove that
the conditions of either Lemma 5.15 or Lemma 5.16 hold.

We first prove that u(µ) is individually rational for x0. By Corollary 6.6,
it is sufficient to show that ui(µ0) ≥ γ̃i0 for every i ∈ N .

Since x0 is neither isolated nor semi-isolated than r̃i(x0) ≤ vi ≤ γ̃0, and
in particular (10) implies that ui(µ0) ≥ γ̃i0 ≥ vi, as desired.

By Lemma 6.9, if x0 admits two signallers then the conditions of Lemma
5.15 hold, and otherwise the conditions of Lemma 5.16 hold.

We now confine our attention to the case when x0 = a is an isolated
action, or x0 is a semi-isolated action. Recall that in these cases E(x0)
includes only unilateral exits.

Lemma 6.11 If x0 = a is an isolated action and α < 1 then u(µ0) is a
correlated equilibrium payoff.

Proof: We prove that the conditions of Lemma 5.13 hold. Define µi =∑
bi∈E(x0) µ0[b

i] to be the overall weight of unilateral exits of player i under
µ0. Since E(x0) contains only unilateral exits,

∑
i∈N µi = 1.

We have to prove the following: (i) If µ[bi] > 0 then bi = bi[a] (hence
u(µ) =

∑
i∈N µiu(a−i, bi(a))). (ii) If µi > 0 then i is punishable at x0, and

(iii) uj(µ0) ≥ gj(a).
Since the game is generic, it follows by Lemma 6.9 that if µ[bi] > 0 then

bi = bi(a) and γ̃i0 = gi(a). In particular, (i) holds.
By (10), for every player i ∈ N , limλ→0 γ̃

i
λ(x
−i
λ , a

i) is a convex combination
of r̃i(a) = pi(a) and ui(a−j, bj(a)) ≥ pi(a), for j 6= i, and in particular is at
least pi(a).

To prove (ii), assume that µi > 0. Then

pi(a) ≤ lim
λ→0

γ̃iλ(x
−i
λ , a

i) ≤ lim
λ→0

γ̃iλ(xλ) = γ̃i0 = gi(a),

and i is punishable.
(iii) follows by (10) and since r̃i(a) = pi(a) ≤ ui(µ).

A similar argument establishes:

Lemma 6.12 If x0 is a semi-isolated profile and α < 1 then u(µ) is a corre-
lated equilibrium payoff.
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Proof: We prove that the conditions of Lemma 5.14 hold.
Let i0 be the unique signaller at x0. The proof that the second condition

holds is similar to the proof provided in Lemma 6.11 for i 6= i0, and to the
proof provided in Lemma 6.10 for i = i0.

For i = i0, r̃
i0(x0) ≤ vi0 ≤ γ̃i00 . Since α < 1 and by Lemma 6.4, (10)

implies that ui0(µ0) ≥ γ̃i00 . For i 6= i0, u
i(µ0) ≥ pi(x0) = r̃i(x0) since µ0

is supported by unilateral exits. (10) implies again that ui0(µ0) ≥ γ̃i0. The
second condition follows now from Corollary 6.6. The third condition follows
from Lemma 6.9.

7 Proof of Lemma 6.4

This section is devoted to the proof of Lemma 6.4. From now on we fix a
player i ∈ N and ε > 0.

We need to show that for every λ sufficiently close to 0, player i has a
mixed action xi ∈ X i such that γ̃iλ(x

−i
λ , x

i) ≥ vi− ε. In the sequel we use the
fact that xλ converge to a limit x0.

One way of proving the lemma would be to prove that for every λ ∈ (0, 1)
the min-max value of player i in Gλ(r̃), v

i
λ(r̃), exists and lim viλ(r̃) ≥ vi.

This would yield a stronger result than needed. This approach is taken in
Solan (1999), where r̃i was defined as min{ri, vi}, and it was proven that
lim viλ(min{r, v}) = vi. Since pi is incomparable to vi, we cannot invoke
Solan’s result to prove Lemma 6.4. However, we will use some of his argu-
ments.

We begin by proving that several quantities are at least the min-max
value of player i.

Lemma 7.1 For every isolated action a, max{pi(a), gi(a)} ≥ vi.

Proof: Consider the following profile of players N \ {i}:

1. Each player k ∈ N \ {i, ji(a)} plays ak.

2. Player ji(a), the punisher of i at a, plays (1− ε)aji(a) + εbji(a)(a).

The best that player i can do against that profile is (up to ε) max{pi(a), gi(a)}.
Thus, playersN \ {i} can bound the payoff of i from above by max{pi(a), gi(a)},
and therefore his min-max level cannot exceed that number.
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Lemma 7.2 For every semi-isolated profile x with signaller i0, if i 6= i0 then
max{pi(x), gi(x)} ≥ vi.

Proof: Consider the following profile for players N \ {i}:
1. Players k 6= i, ji(x) play xk.

2. Player ji(x) plays (1− ε)aji(x) + εb
ji(x)
i (x), where aji(x) is the sole action

in player ji(x)’s support.

The best player i can do against this profile is max{pi(x), gi(x)}, and the
lemma follows.

A correlated profile of playersN \ {i} is a function σ−i : H → ∆(×j 6=iAi).

Definition 7.3 Let x−i ∈ X−i be a mixed action combination and η > 0.
A correlated profile σ−i is (x−i, η)-perturbed if for every finite history h,
‖ σ−i(h)− x−i ‖∞< η. The profile x−i is called the base of σ−i.

In words, a perturbed correlated profile is one that is close to a station-
ary profile. Denote by Sη(x−i) the class of all (x−i, η)-perturbed correlated
profiles of players N \ {i}.

Lemma 7.4 Let B be the support of a maximal semi-isolated profile with
signaller i0. Assume that gi0(x) < vi0 for any semi-isolated x such that
supp(x) ⊆ B.4 Denote by a−i0 the unique action combination of N \ {i0} in
B. Then

max
xi0∈supp(Bi0 )

pi0(a−i0 , xi0) ≥ vi0 .

Proof: Let c = maxxi0∈supp(Bi0 ) p
i0(a−i0 , xi0). First we show that the max-

min value of player i0 in G is at most c. This implies by Neyman (1988) that
the min-max value of player i0 in G, when the minimizers are allowed to use
correlated profiles, is also at most c. We then show that the minimizers have
a minimizing correlated profile where the amount of correlation is “small”.
Finally, we approximate this correlated profile with a non-correlated profile
in G, and show that the best player i can do against this non-correlated
profile is at most c+ ε. Since ε is arbitrary, we get c ≥ vi0 , as required.

Instead of studying the original game G, we study a modification Ḡ of G.
Consider the zero-sum absorbing game Ḡ, where player i0 is the maximizer

and players N \ {i0} are the minimizers, that is defined as follows.

4Recall that gi0(x) depends only on x−i0 , and is independent of xi0 .
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• The action set of player i0 is Y i0 = {yi0 | w(a−i0 , yi0) = 0}.

• The action set of each player i 6= i0 is Ai.

• Transition w̄ and non-absorbing payoff r̄ are the same as in G.

• The absorbing payoff is ū(a−i0,i, xi0 , di) = ui0(a−i0,i, xi0 , di) for every
i 6= i0 and di 6= ai, and ū = 2 elsewhere.

• Each player i 6= i0 is restricted to play strategies that give probability
at least 1− η to ai at every period, where η is sufficiently small.

• Player i0 is restricted to play pure strategies (that is, he cannot perform
lotteries between mixed actions).

In particular, any profile (correlated or non-correlated) of players N \ {i0} in
Ḡ is in Sη(C

−i0).
The game Ḡ is the same as G, but we restricted the actions of i0, and

changed the non-absorbing payoff only at absorbing action combinations.
Extend w̄, r̄ and ū to mixed actions of players N \ {i0} as was done for

w, r and u in G. In particular, w̄, r̄ and w̄ū are multi-linear, and ū is quasi-
concave and quasi-convex. Similar argument to the one used in Lemma 6.1
show that for every fixed discount factor, the function γ̄λ that assigns to
each stationary profile in Ḡ the corresponding λ-discounted payoff is quasi-
concave in xi0 and quasi-convex in x−i0 . In particular, for every discounted
factor, the discounted min-max value and the discounted max-min value are
equal, provided that players N \ {i0} can correlate their actions.

For every fixed xi0 ∈ Y i0 , players N \ {i0} have a profile in Sη that lowers
player i0’s payoff to c: If ri0(a−i0 , x0) ≤ c, players N \ {i0} play a−i0 , and

otherwise player ji0(x) plays (1− η)aji0(x) + ηb
ji0 (x)
i0 (x) and each other player

i 6= i0, ji0(x) players ai.
It follows that for every ε > 0 and every fixed strategy of player i0 in Ḡ,

players N \ {i0} have a reply that lowers i0 expected average payoff to c+ ε
in any sufficiently long game.

Since r̄ and ū are semi-algebraic, it follows that the result of Neyman
(1988) holds for this game. In particular, the (uniform) min-max and the
max-min values of player i0 in Ḡ exist. Moreover, they are equal provided
that players N \ {i0} can use correlated profiles.
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Thus, c is at least the max-min value of player i0 in Ḡ, and therefore there
exists n0 ∈ N and a correlated profile σ−i0 ∈ Sη(a−i0) of players N \ {i0} such
that for every strategy σi of player i,

γ̄n(σ−i0 , σi0) ≥ ci − ε ∀n ≥ n0,

where γ̄in is the expected average payoff of player i0 in Ḡ during the first n
stages.

Let E be the collection of all action combinations where at least two
players in N \ {i0} play an action different then that prescribed by a−i0 .

We first note that we can assume w.l.o.g. that the probability under
σ−i0 that an action combination in E is played is 0. Indeed, since action
combinations in E are absorbing, and the corresponding absorbing payoff is
2, whereas both r̄ and ū are bounded above by 1, by redefining σ−i to give
probability 0 to action combinations in E, and normalizing the remaining
probability distribution we get a new profile that satisfies our requirements.

We now define a non-correlated profile σ̃−i0 that approximates σ−i0 . Re-
call that for every finite history h, σ−i0(h) gives positive probability only
to action combination a−i0 and to the action combinations (a−i,i0 , di) where
only player i plays an action di 6= ai.

For every finite history h, every player i and every di 6= ai, define σ̃i(h)[di] =
σ−i0(h)[a−i,i0 , di]; that is, player i plays di with the same probability that
(a−i,i0 , di) should have occurred according to σ−i0 .

Clearly σ̃−i ∈ Sη. Moreover, the probability of action combinations in E
under σ̃−i0 is small. Let h ∈ H be a finite history. Then σ̃−i0(h)[E] is at
most 2N−1 times

∑
i 6=i0

∑
di 6=ai σ

−i0(h)[a−i,i0 , di].
Since

∑
di 6=ai σ

−i0(h)[a−i,i0 , di] ≤ η, the probability of ever playing an ac-
tion combination in E under σ̃−i0 is at most η2N−1.

It follows that by playing σ̃−i0 players N \ {i} bound the payoff of i0 in
Ḡ from above by c− 2ε, provided η is sufficiently small.

Since the probability of a ever playing an action combination in E under
σ̃−i0 is low, and since gi0(x) < vi0 , by playing σ̃−i0 in the original game G
players N \ {i} bound the payoff of i0 from above by c+ ε.

Proof of Lemma 6.4: Fix a player i ∈ N . We have four cases, that
correspond to isolated actions, semi-isolated actions with signaller i, semi-
isolated actions with a signaller that is not i, and a case that deals with all
other possibilities.
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Recall that (xλ) is a sequence of λ-discounted equilibria in Gλ(r̃) that
converge to x0.

Assume that there exists ai ∈ Ai such that a = (x−i0 , a
i) is an isolated

profile. Clearly lim γ̃iλ(a
−i, bi(a)) = gi(a). By the definition of r̃, lim γ̃iλ(a) ≥

pi(a). It follows that player i can guarantee max{pi(a), gi(a)}, which, by
Lemma 7.1 is at least vi. Thus γ̃i0 ≥ vi, as desired.

Assume that there exists ai ∈ Ai such that (x−i0 , a
i) is a semi-isolated

profile with signaller which is not i. Similar arguments, using Lemma 7.2,
show that player i can guarantee vi in Gλ(r̃).

Assume that there exists ai ∈ Ai such that x = (x−i0 , a
i) is a semi-isolated

profile with signaller i. If gi(x) ≥ vi then γ̃i0 ≥ lim γ̃iλ(x
−i
λ , b

i(x)) = gi(x) ≥ vi.
Assume then that gi(x) < vi.

Let Y i = {yi ∈ X i | w(x−i0 , y
i) = 0}. By (10), for every yi ∈ Y i,

γ̃i0 = lim
λ→0

γ̃iλ(x
−i
λ , y

i) ≥ min{r̃i(x−i0 , y
i), pi(x−i0 , y

i)} = min{ri(x−i0 , y), pi(x−i0 , y
i)}.

In particular, γ̃i0 ≥ maxyi∈supp(Ci) min{ri(x−i0 , y), pi(x−i0 , y
i}. By Lemma 7.4

the latter is at least vi.
Last, assume that there is no action ai ∈ Ai such that one of the first

three case hold.
If there exists an action ai ∈ Ai such that ui(x−i0 , a

i) ≥ vi then

γ̃i0 ≥ lim
λ→0

γ̃iλ(x
−i
λ , a

i) = ui(x−i0 , a
i) ≥ vi

as desired. Otherwise, for each j 6= i let Dj = supp(xj0). The functions r̃
and r are continuous over X. Moreover, r̃ = min{r, v} on Y = ×j∈N∆(Dj).
Hence, if η is sufficiently small, r̃j(x) ≥ min{rj(x), vj} − ε for every j ∈ N
and every x ∈ X such that d(x, Y ) ≤ η. It follows from Solan (1999, Eq.
(30)) that for every λ sufficiently small there exists xi ∈ supp(Di) such that
γ̃iλ(x

−i
λ , x

i) ≥ vi − 2ε, as desired.
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