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Abstract

When a principal and an agent operate with simple contracts, at equilibrium, renegotiation will
occur after the action is taken. Also, since renegotiation makes incentive contracts non-credible,
the principal may prefer non-renegotiable monitoring options. Current literature does not fully
reconcile these predictions with the observation of simple non-renegotiated incentive contracts. We
model a principal-agent interaction in a social learning framework, and assume that when
renegotiation is not observed, players may forget its feasibility, with infinitesimal probability.

The unique stable state of our model predicts that the second-best simple incentive contracts occur
with non-negligible positive frequency.
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1 Introduction

This paper characterizes the stable outcome of a simple social learning model of a moral-
hazard game. We introduce a minimal departure from standard assumptions: if rene-
gotiation is not observed its feasibility may be forgotten with infinitesimal probability.
We suggest that this exercise may be helpful in refining current literature’s predictions

with respect to simple moral-hazard scenarios.

In the classic formulation (Mirrlees 1976) of the two-action principal-agent problem,
for the relevant parameter values, the agent takes high effort when offered a second-best
contract, which is an incentive scheme that makes her indifferent between taking high or
low effort, and rejecting the offer. However, if the principal can renegotiate the contract
after the agent has chosen her effort and before output is realized, Fudenberg and Tirole
(1990) insightfully show that the second-best contract will be renegotiated, and thus will
not elicit high effort. When the parties sign a “simple” contract (i.e, a contract that does
not require the agent to report the action taken to the principal), one may show that the
principal will offer renegotiation on the equilibrium path.! In fact, if contracts do not
depend on messages, but just on the outcome, the only means to separate high-effort
from low-effort workers is to offer a renegotiation that only the latter will accept.

Current literature does not fully reconcile this prediction with intuition about simple
moral-hazard scenarios. Consider for instance, a contractor building a house for a young
professional. The parties do not use a menu-contract, but rather a simple incentive
scheme: if the project is delayed, the constructor is subject to a penalty. We believe
that most often renegotiations are not proposed.

One may offer the conjecture that the principal forms a reputation that includes a

IThat result is folk-knowledge according to personal communication with Steve Matthews. We will
formally prove it in the second section of this paper. Hermalin and Katz (1991) and Matthews (1995)
prove the same point in different models.



commitment not to renegotiate incentive schemes, along the lines of the corporate-culture
proposal by Kreps (1990). While the reputation framework (see Kreps and Wilson 1982,
and Milgrom and Roberts 1982) plausibly explains the rarity of renegotiation in two-
player repeated interactions, that need not be the case for complex societies modeled as
random-matching games. In fact, when renegotiation is not observable by third parties,
the existence of a reputation equilibrium requires the agent to report the principal when
offered renegotiation.? But, as the principal makes the agent better-off when offering
renegotiation, the agent should not respond by ruining the principal’s name. It is instead
intuitive that principal and agent will cooperate and secretly renegotiate the contract,
to their mutual advantage.

This brings us back to the question of how to explain the rarity of renegotiation in
simple moral-hazard scenarios. An implicit assumption in the original principal-agent
model is that the principal will achieve a higher payoff by designing a (second-best)
incentive scheme, than by suffering a dead-weight loss to monitor the agent’s action.
With the introduction of renegotiation, there may instead be scenarios in which the
second-best outcome dominates the monitoring option, but implementing the latter is
more profitable than the solution of Fudenberg and Tirole (1990). In fact monitoring is
implicitly non-renegotiable when the dead-weight loss in profit is paid before, or while,
the agent takes her action,® thus, unlike renegotiation-proof contracts, it may elicit high
effort. Therefore, monitoring can explain the rarity of renegotiation, but it does not

account for the prevalence of second-best simple contracts.

In formulating our social learning model, we take a small departure from standard

assumptions, based on the perception that the relevance of renegotiation is not im-

2For a folk theorem in random matching games, see Kandori (1992).

30Qur homeowner, for instance, may go onto the site to monitor the progress of the construction.
This form of monitoring is hardly renegotiable. Border and Sobel (1987}, instead, consider situations
in which the monitoring cost is paid after the player takes her action.



mediately apparent when faced with a principal-agent. Because of that, a model that
includes renegotiation may be more difficult to formulate that a simpler moral-hazard
model. Specifically, consider a large population of players that live two periods.* At
the second period, they are randomly paired to (myopically) play an interaction with
a moral-hazard structure. At the first period they observe their parents play. The
assignment in the role of principal or agent is anonymous, and independent over time.?

After being matched, each player in the population needs to construct a (subjective)
model of the interaction, that model may or may not include the possibility to renegotiate
contracts. If a player’s model is incomplete, she will never propose a renegotiation or
expect a renegotiation offer; but if she is offered renegotiation, we assume that she readily
understands its value, and accepts the offer if that is convenient to her. Each player
enters into play holding her parents’ model, unless one of the two following possibilities
occurs. If the model of a player’s parents is incomplete, but her parents are proposed
a renegotiation, the player will immediately learn that renegotiation is possible, and
include it in her interpretational model. At the same time, if a player’s parents are
aware of renegotiation, but they are not offered that option, with small probability, a
player may forget that renegotiation is feasible.

As forgetfulness occurs with infinitesimal probability, we may believe that it is irrel-
evant for the analysis: all players are aware of renegotiation, at least in the long-run, so
that the second-best contract is still precluded. To the contrary, full awareness cannot
be a steady state, so that second-best contracts (and hard-working agents) will be ob-
served with positive frequency in the long-run. In fact, when it is common knowledge
that the entire population is aware of the feasibility of renegotiation, players in the role

of principals choose to monitor. Their opponents do not observe renegotiation, and thus

4As customary with evolutionary game theory, the model should not be taken too literally.
5That assumption is for analytical tractability only. Our results hold as long as offsprings may be
in a role different than their parents with positive probability.
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their offsprings will forget that it is possible.

Once established that full awareness cannot be a stationary description of the society,
we proceed to characterize the actual stable state. Since forgetful agents believe that
they are playing a simple game without renegotiation (and thus that their opponents
are forgetful as well), they will work hard when offered the second-best contract. For
the same reason, forgetful principals will offer a second-best contract, and will not offer
to renegotiate it. Aware players on the other hand, will condition their strategy on their
conjecture with respect to their opponents’ awareness type: they offer a second-best
contract with renegotiation when assessing their opponents to forgetful, and choose to
monitor if assessing them to be aware. While players cannot observe their opponents’
state of mind, following a fairly customary approach in evolutionary game theory,® we
do assume that aware players correctly assess the population distribution of types.

This paper is concerned only with long-run predictions, and thus our assumption can
be motivated by noticing that, in the long-run, aware players should not be systemati-
cally incorrect when assessing average population awareness. Suppose in fact that each
aware player adopts her parents’ assessment. When forgetfulness is infinitesimal, the
number of consecutive periods in which a complete model is maintained across genera-
tions is very large. After her period of play, any aware agent will be able to perfectly
infer her opponent’s awareness and use that information to update her assessment: in
fact, she knows that her opponent chose a non-renegotiated second-best contract if and
only if she was a forgetful player. The inference problem for an aware principal is more
complex, but since role assignment is independent across generations, almost all aware
players will hold approximately the same conjecture in the long-run, and such a conjec-

ture cannot be systematically and significantly wrong.

6See for example Stahl (1993), Saez-Marti’ and Weibull (1999), Dekel, Ely and Yilankaya (1998), or
Heller (1999).



Under the above assumption we can pin down aware players’ strategies as a function
of the average population awareness, and we can complete our analysis. Whenever too
many players are aware of the possibility of renegotiation, aware principals choose to
monitor. Their opponents do not observe renegotiation, and thus they may forget it.
When the ratio of forgetful players is large enough, aware principals play the second-
best contract and renegotiate it to offer the full-insurance contract. The system is at
rest only when the amount of aware players forgetting renegotiation equals the number
of forgetful players recalling it. Forgetful principals offer non-renegotiated second-best
contracts, that thus appear with stable significantly positive frequency.

Somewhat unexpectedly, the stable frequency of second-best contracts is increasing in
the payoff of the monitoring option. In fact, that frequency coincides with the value that
makes aware principals indifferent between the second-best contract and the monitoring
device. When the latter is more valuable, aware principals will choose to monitor for

lower ratios of forgetful players in the population.

As in other works (e.g. Stahl 1993, or Saez Marti’ and Weibull 1999), the different
types in the population do not identify a strategy, but rather, a mental model. While this
paper is concerned with different interpretational models of the game, the other works
has analyzed different bounded levels of rationalizability. Unlike standard evolutionary
analysis, our learning dynamics are not payoff-monotone,” and the diffusion of a strategy
in the population depends by how often it is used, rather than by its payofl.

The paper is presented as follows. The second section presents a traditional treatment
of moral-hazard with simple contracts. The third section presents our social learning

model. The fourth section derives the results. Some of the proofs are in the Appendix.

"Payoff-monotone dynamics where first analyzed by Nachbar (1990). Schlag (1998) formally derives
imitative payoff-monotone dynamics. For a general review of evolutionary literature, see Fudenberg and
Levine (1998), and Weibull (1995).



2 Moral-Hazard with Simple Contracts

A principal P may motivate a prospective agent A through an incentive contract C
or through the use of a monitoring device M. The agent accepts, y, or refuses, n, the
principal’s proposal and then takes a privately observed action a, consisting of high
effort H or low effort L. That action will influence the probability p, that a high h or a
low [ output will be produced to the principal. High output will be more likely under
high effort (i.e. py > pr). The incentive contract C prescribes agent’s compensation
profile (cp, c;) dependent on the output realized. When using the monitoring device, the
principal pays k to know the action taken by the agent, and compensates her with the
profile M = (myg,my) dependent on her action.

The utility of the agent is V = U(c) — e(a), where e(H) = e > e(L) = 0, c is
the compensation received, and the reservation utility is ¥ = 0. The function U(-) is
strictly increasing and strictly concave, while the a risk-neutral profit-maximizer. When
the parties sign an incentive contract, the agent’s Von Neumann-Morgestern expected

utility, and the principal’s profit are
V(Cia) = (1—p)U(c)+pU(cn) — ea)
I(C,a) = (1—pa)(l—c)+pa(h— cn).
If the principal proposes and the agent accepts a monitoring device, the payoffs are
V(M,a) = U(m,) — e(a)

II(M,a) = (1—po)l+psh—mg—Ek.

To make the problem non-trivial, we assume the principal to prefer to motivate the agent
to work hard, or to monitor her, over letting her shirk and giving her no compensation

(we denote such a contract by C' = 0). That is, there exist a contract C' s.t. II(C, H) >

7



I1{0, L) and V(C,H) > V(C, L), and there exist a compensation M s.t. V(M,H) >
V(M, L) and II(M, H) > II(0, L).

A renegotiation R is a new contract, proposed after the action is taken and before the
output is realized, that assigns new wages (7, 7). If the agent accepts the renegotiation,
the payoffs will be V(R,a) and II(R,a). The option not to renegotiate is denoted by
N. Unlike the incentive contract, the monitoring option is not renegotiable, because the

dead-weight cost is paid before the agents chooses effort.

First we consider the case when the principal may not propose renegotiation. In
equilibrium, it is well known that the principal offers the agent a “second-best contract”
C* = (¢, cf): an incentive scheme that guarantees her reservation utility if she takes

high effort, and that makes her indifferent between low and high effort:

V(C*, L) == (1 —p)U(c)) +pLU(c}) =V(C*,H) .= (1 —pg)U(c]) + puU(c}) —e=0.

The agent accepts the contract C* and chooses high effort (H). By construction,
I(Cc*, H) > (0, L) > II(C*, L).

When renegotiation is allowed, the second-best outcome cannot be achieved at equi-
librium anymore. Consider the principal’s decision after contract C* has been proposed
and accepted, and the agent has taken her action. The agent has played H, thus the prin-
cipal knows that the output h will occur with probability py. Moreover, the agent’s cer-
tainty equivalent U (e) is less than her expected compensation (1—py)cf+prc), because
she is risk averse. Thus the principal can increase her expected profit by renegotiating
the second-best contract C* and offering the agent full-insurance R* := (U~*(e), U~1(e))
before the output is revealed. The profit of the full-insurance contract R* after the agent
played H is

II(R*, H) = (1 — pg)l + pgh — U™ (e) > TI(C*, H)

8



because U” < 0. The agent’s utility is again V(R*, H) = 0. But then, when offered the
second-best contract C*, the agent knows that the principal will eventually renegotiate

it and propose R*. If she plays L instead of H, she obtains
V(R*,L)=e>V(R*",H) = 0:
the principal gets “cheated” and her expected profit is
I(R*,L) = (1 = pr)l + prh — U™ (e).

At equilibrium, the principal first proposes a contract making the agent indifferent
between working or shirking, the agent shirks with positive probability, and finally the
principal offers in renegotiation a full-insurance contract that only the shirking agent

accepts. The following proposition is proven in the Appendix.

Proposition 1 At any Perfect Bayesian Equilibrium, the principal initially proposes the

second-best contract C* = (c},c}). For any initial contract C s.t. V(C,H) = V(C, L),
. . . .. U~l(e

the agent chooses the high effort action with probability o4(H|C) € [0, mﬁ].

For any other contract C, oa(H|C) = 0. The principal renegotiates offering M =

(UY(V(C,L)), U (V(C,L))) the agent accepts the offer if and only if she has taken

the low action.

The equilibrium principal’s payoff is:®
U=He)[(1 = pa)(l = ) + pr(h — )]+
T [(1 = pu)ci +puch, — U (e))[(1 = pr)l +ph — U™ ((1 = pr)ef +prc;)]
(1 — pu)c; + pud;,

It is easy to obtain that II(C*, H) > II*.

8 As customary in the renegotiation literature, we select the equilibrium where the agent takes the
most favourable action to the principal.



We finally consider the monitoring option. If, in equilibrium, the principal opts for

monitoring, she will choose the contract
M* = (my,m}) such that 0 = V(m}, H) > V(m}, L).

In fact by assumption, there exist a compensation M such that V(M, H) > V(M, L)
and (M, H) > TI(0, L). By definition of M*, U(m}) = e so M* maximizes II(M, H).
Suppose agent played L with positive probability after accepting M*, or did not accept
M*. Then the principal’s best-response would be empty, as Vmpy > mj};, the agent’s
sequentially rational response is to accept M and work hard. We restrict attention to
those games where II(M*, H) > II* : the principal’s payoff for (optimally) monitoring
the agent is larger than the payoff for the equilibrium of any subgame following an
incentive contract with renegotiation. Thus the unique Perfect Bayesian Equilibrium is
such that the principal plays M*, and the agent replies by playing H (off-path beliefs

are as specified in Proposition 1).

3 Social Learning Model

At any time ¢, a continuous population is randomly matched to play the principal-
agent game with renegotiation and monitoring; we denote by p; the fraction of players
aware of renegotiation. Forgetful players believe that they are playing against forgetful
players only. Aware players believe that they are matched with a aware opponent with
probability p;. We assume that, when presented with an unforeseen renegotiation offer,
forgetful agents do not revise their probability assessment on the occurrence of A and
[. In each period, we assume players play a Perfect Bayesian Equilibrium, restricted by
their possibly partial model of the interaction. As is customary in evolutionary game

theory, we assume myopic play’ Before we define the equilibrium requirement, it is

91t can be shown, however, that such an assumption is irrelevant for our results.
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A

Figure 1: Reduced Game G

expositionally useful to slightly reduce the model, without loss of generality.

First, we note that by a standard argument, there are no equilibria where any agent
refuses any contract that makes her indifferent. Thus we can assume that any principal
offers only contract that make agents at least indifferent, and that her opponent accepts
such contracts. That allows us to eliminate that agent’s choice from the game tree.
In particular, we are saying that if a forgetful agent is presented with an (unforeseen)
renegotiation offer by a principal, she will accept it if at least as good as the initial
contract. Secondly, we formulate the payoffs as expected payoff before nature decides
whether output is h or I. Thus the principals’ decision at the renegotiation stage map
directly into the end-nodes. Let the reduced model be called game G, see Figure 1.

In order to model equilibrium play of a player with an incomplete description of the
game, we shall make use of the Harsanyi model of games of incomplete information with
subjective priors (see Harsanyi 1967), and specifically of a game-structural concept called
elaboration, (see also Fudenberg, Kreps and Levine 1988). Informally, we shall assign

to each unaware player the belief that if a renegotiation is ever proposed, both players
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will be very harshly punished. With respect to equilibrium strategies, that is equivalent
to impose that they will never offer renegotiation, or expect it to be offered. Aware
players know that renegotiation is not punished at all, and believe to play against an
aware opponent with probability p. In order to accommodate forgetful players incorrect
beliefs, and aware players’ second-order beliefs, we need to formulate a state space
that independently specify each player’s belief, and the nature’s choice, on whether
renegotiation is punished or not. That introduces the need for an elaboration of the
game.

The formal definition of elaboration is as follows. Given a game I', a state space
S, a type space T, and a system of (possibly subjective) priors p, an elaboration is
constructed attaching a copy I'(s) of I' to each s € S, (possibly) assigning different
payoffs to the end-nodes of different I'(s), and completing the information structure so
as to maintain the type space T In our model, the state space S = {000,001, 010,111}
will be appropriate. The states are expressed in binary notation. A 0-digit means that
renegotiation is legal, a 1-digit that it is very harshly punished. The first digit represent

nature’s choice, the second one the principal’s belief, the third one the agent’s belief.

Definition 1 Let the Augmented Game AG be the subjective-priors elaboration of G

with state space S and the following specification.

e The principal’s types are Ap := {000,001}, and Fp := {010,111}, and the princi-
pal’s prior is pp(000) = p?, pp(001) = (1 — p)p, pp(111) =1 — p.

e The agent’s types and prior are symmetrically defined.

e Nature’s choice!® is p(000) = p?, p(010) = p(001) = (1 — p)p, p(111) = (1 — p)2.

0Even though renegotiation is never really punished, if both players believe it is, at equilibrium it
is the same as if they were correct, so we may assign positive probability on the state 111, instead of
introducing the state 011.

12



o The payoffs of each G(s) assign V = —o0,Il = —o0 to all paths where R # C, in

all states s where the first digit is 1, otherwise they are the same as in G.

In each period ¢, we assume the players to coordinate on a Perfect Bayes Equilibrium

(0Ap,OFp;04,,0F,) of the augmented game AG under the type distribution p;.

The evolution of the population is as follows. Each offspring observes her actions and
payoffs. At the next round, the offspring will be randomly matched to play the game.
Matching and role assignment are anonymous, and independent across generations. Each
player enters into play holding her parents’ model of the game, except in one of the two
following cases. The offspring of a forgetful agent who receives a renegotiation offer will
become aware. The offspring of a aware agent who does not receive a renegotiation
offer, will become forgetful with probability €. The offsprings of players in the role of
principal do not observe directly the opponents’ actions. We thus assume that they
maintain their parents’ model of the game. Alternatively we could assume that they
forget the feasibility of renegotiation with probability ¢ if their parents do not offer it,
our results would be unchanged under that specification.

The equilibrium given a type distribution, together with the evolution of the type
distribution define a stochastic process that we can approximate with a deterministic
system by Theorem 6.4, Alos-Ferrer (1999).1! Our results concern the long-run aggregate
distributions of play f, calculated by compounding the strategies played by the different
types, with the distribution of types. Formally, let {10y = orog be the distribution
induced on the terminal nodes of G by a principal of type T and an agent of type Q.

11 Alos-Ferrer 1999 constructs matching schemes under which a continuous population stochastic
evolution may be approximated with a dynamic system. Boylan 1992, proposes a similar result for
finite large population, with an argument often referred to as a “Law of Large Numbers” in evolutionary
games.
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The aggregate distribution of play is
f=0*Can + (1= p)pllra + Cam] + (1 — p)*{Fp)-

4 Long-Run Results

We now show that in the long run, the non-renegotiated second-best contract C*C*
appears with significant positive frequency. Moreover, that frequency turns out to be

increasing in the value of the monitoring option.

Proposition 2 For any € sufficiently small, the unique stable distribution of play f
satisfies:

(M, H) - TI(R*,L)  8[f(C"C")]
I(R*,H) —II(R*,L)’ O[lI(M*, H)]
II(R* H) —II(M*, H)
O(R* H) —II(R*,L)

f(C*C) =~ >0,

f(C*R*) = 0, f(M*) =
The stable distribution is reached in finite time, regardless of the initial distribution.

A technical issue arises because the game AG allows for multiple Equilibria when
p = [I(M*, H)—II(R*, L)]|/[II(R*, H) — II(R*, L)]. Depending on the equilibria selected,
a stable distribution of play may or may not exist. In the following proof we will
nevertheless show that, even if a stable distribution does not exist, we can calculate the

average frequency of non-renegotiated second-best contracts over time, and show that:

1 e (M*, H)—TI(R*,L)
%ﬂof;ft(c ) = I(R*, H) - H(R*,L)

Proof of Proposition 2. From here onwards, for brevity, we shall use the following

short-hand notation.
b=II(R*,H), m=I(M*" H), s= II(R*, L).

14



Lemma 3, proven in the Appendix, finds all the possible PBE of the game AG for
any distribution of types p. As in Proposition 1, we select the equilibrium where the
agent takes the action most favorable to the principal. For brevity we do not report
agents’ behavior on (off-path) subgames following contracts different from C* and M*,
the only contracts ever offered. We let oy be the probability that a aware agent plays
H under the second-best contract, and o, ocg, the probabilities that a aware principal
offers respectively monitoring M*; or the second-best contract, with renegotiation to
full-insurance (C*R*). Denote by (C*C*) the choice of offering a second-best contract
without renegotiating it. We shall henceforth drop star subscripts, to avoid burdening

the notation.

Lemma 3 In all Perfect Bayes Equilibria, all agents play H if monitored. Forgetful
principals choose CC. Forgetful agents choose H when offered C. Aware players’ choice

depends on p as follows:

ocr=1l,0g =1 if p=0

ocr=1,05 =0 7’f pSZb__T (1)
ocr € [0,1],05 =0 if p=3"2
O'M=1,O'H=p"(7;:g)—|—1 'Lf pzbb_—T

The aggregate principal’s distribution of play at any period ¢ is therefore:

fe(M) = prom(pe), fi(CR) = procr(pe), f:(CC) = (1 — pt) + procc(pr)-

The intuitive demonstration is as follows: forgetful principals offer the second-best
contract, and forgetful agents respond by working hard. Both these types play as if rene-
gotiation were not possible. Most importantly, aware principals do not initially offer any
contract different from the second best or from the implementation of the monitoring
device. The monitoring option dominates the equilibrium of the subgame starting after

an incentive contract when the players recognize the possibility to renegotiate. If, with
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large enough probability, the agent does not foresee renegotiation, the second-best con-
tract is optimal. Once the forgetful agent is motivated to work hard, it is a dominant
action to renegotiate and offer full insurance. Because of that, aware agents shirk with
positive probability if offered the second-best contract. If there are too many aware

agents, aware principals prefer to monitor.

After imposing our assumptions on individual transition, by Theorem 6.4, Alos-
Ferrer (1999), we can approximate the stochastic evolution of the large population with
a simple difference equation in p;. For expositional purposes, we analyze the problem
in a continuous-time, rather than discrete-time, dynamics. As is customary, see Hale
(1969), that is done by subdividing the length of each time interval into k& sub-intervals,
and assuming that in each subinterval, a ratio 1/k of the players is called to play (so
that all the population plays once in each time interval). Letting ¥ — oo one obtains

the following differential equation.

$i(CR) = eplfi(CC) + $M) 2
2

pt =

The dynamic analysis for any small ¢ is reported in Lemma 4 below, which we prove in
the Appendix.
A technical detail arises because the evolution of the equation 2 at time ¢ depends

on f; which in turns depends on the equilibrium o(p;) characterized in Lemma 3. By

Lemma 3, for p = 2= any value ocg € [0, 1] may be obtained. In order to have a

b—
b )-

well-defined differential equation, one needs to select a single oog(

g[b—s]
m(l—e)+eb—s?

then p = bb_%;‘ 1is the unique

Lemma 4 Let 0 < € < 1/2. If ogr(32) =
stable state, and it is global attractor reached in finite time.

Otherwise the system reaches a small neighborhood of p = bb__’;‘, from any initial

point, in finite time, but does not have any stationary state.
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Now we can derive the relative aggregate distribution of play. While in any case, the
unique stable frequency of second-best non-renegotiated contracts is:

m-— 8§

the values for f(CR) and f(M) depend on the particular ocg selected at p = 4=

In the case that

. b—s
TR = (l—e)+eb—s
we obtain:
B _ e(b—m) . (I -g)b—m)(m—s)
f(CR) = poor = m(l—g)+eb—s’ f(M) = (1=p)ocr = (b—s)(m(l—e)+eb—3s)

In any other case, the actual values of f(M) and f(CR) are undetermined (Nevertheless,
for ocgr > [eb — ec]/[m(1 — €) + b — s] we show in the that the time-average of f(M) is
larger than 0).

Taking £ — 0, we finally prove proposition 2.

5 Proofs

Proof of Proposition 1. First it is easy to convince one’s self that there is no equi-
librium in which o4(H) = 1.

Suppose otherwise: under the arbitrary, incentive compatible contract C,
V(C,H) = (1—pa)U(c) +puU(cr) —e
H(C, H) = (l—pH)(l—Cl)-f-pH(h-‘Ch).

The principal can offer the renegotiation R = (U~Y(V(C, H)),U™(V(C, H))), the agent
accepts it, and, as U” < 0, the principal is better-off. However the only agent’s best-reply
vs. Ris 04(H|R) = 0 : contradiction.
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For any initial contract C, let the agent’s best-reply be o4(H|C) : when taking
her decision the agent can guarantee herself utility U = U~Y(V(C,o4(H|C))). Thus
for any initial contract C, there is an equilibrium in which o4(H) = 0 and R* =
(UH(V(C,04(HI|C))), UTH(V(C,04(H|C)))).

We finally consider the case for oy € (0, 1), requires the agent to best-respond to a
contract X such that V(X,H) =V (X, L).

Suppose first that X was the initial contract: X = C.

Given equilibrium strategy o4(H), the principal is left the option to renegotiate,
offering contract R. At the moment at which she offers the renegotiation, the agent
knows what action she has taken, i.e. she knows the realization of her mixed strategy.

The principal’s utility is thus

H(oa(H)) = oa(H)(C, H)xwvecm>vrmy) + IR, H)Xwvm<vrm) +

(1= o4(H))[I(C, L)X(v(c,.Ly>vrry + IR, LYxwv©,L)<v(rL))-

Due to the linearity of II(-, 0 4(H)) and the strict concavity of V(-,04(H)), it follows
that whenever the principal prefers to renegotiate, she will choose a perfect insurance
contract R* = (r*,7*). As V(R*, H) =U(r*) —e.

Therefore V(R*, H) > V(C,H) iff r* > U~Y(V(C, H)) + e.

Analogously, as V(R*,L) = U(r*), V(R*,L)>V(C,L) i r* > U YV (C,L)).

Thus the solution of the principal’s problem is such that she will always insure the
low type, and insure the high type only when o 4(H) is high enough. That is, she offers
R :ry =UYV(C,L)) if

oa(H)I(C, H) + (1 — o4(H))I(RL, L) > oa(H)I(Ry, H) + (1 — 0a(H))I(RY, L)

and she offers R}, : v}y = U"Y(V(C, H)) + e otherwise.
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After some algebra, one obtains that the principal offers R} iff
oa(H) € [0,UY(e)/((1 = pa)ri + para)).

Whenever R}, is offered, V (R}, H)—V (R}, L) = e > 0 thus it is not possible that the
agent randomizes, after all. Instead, when R] is offered, V(R;,L) = V(C,L) = V(C, H)
and the agent’s randomization is verified.

Now consider the case in which the original contract C' does not have the agent
randomize: V(C, H) # V(C, L). It could still be possible to get the agent to randomize
if the renegotiated contract allowed for randomization: R = X.

However we have just proven above that, when the agent randomizes, optimal rene-
gotiation results in an insurance contract. As there does not exist any X = (zp, z;) s.t.
V(X,H) =V (X, L) and z, = x;, it follows that the only equilibrium for these subgames
after C is s.t. o4(H|C) = 0.

Now we need to consider the principal’s choice for the initial contract C.

We assume that in any subgame, the players play the equilibrium most favorable to
the principal: o4(H|C) =64(H|C)=U"(e)/((1 — pr)ci + prcn).

After some substitutions, we obtain that the principal initially offers a contract C =

(¢, c), that solves

(e V(OB 1y TAHION = ) = 1) + pa(h — en)] +

(1= a(H|O))[(A = p)l + prh — UTH(V(C, L))].

As V(C,H) = V(C, L) translates as ¢, = U (e/[py — pr] + U(cr)), it follows that the

problem can be rewritten as

ax U e)/[(1 - c + U (e — +Ule
om0 parsveyzey U (/L= pr)a+prU(e/lpr = pul + U(a))]
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which is maximized for

c: (1 =pL)U(a) +prle/lpn —pr] +Ula)) =0

That solves for the second-best contract C*.

Proof of Lemma 3. The discussion in the second section yields the behavior of
forgetful types, and implies that we can rule out any monitoring contract other than M*
and say that the agent plays H after M™*.

By construction, M* strictly dominates all initial contracts C : V(C,L) > V(C, H)

unless they are renegotiated into an incentive compatible contract.

Thus we can restrict to initial contracts C : V(C,L) < V(C, H).

As in the proof of Lemma 1, the principal renegotiates such contracts: she either sell
insurance to the agents who took L or to both types of agents.

Let the population distribution of play of action H be ug :=1— p+ poy.

After an incentive contract C, the principal prefers to renegotiate and to offer full
insurance to the low type if and only if ugy < U~Y(e)/((1 — px)a + prcr). However,
when that condition holds, the principal prefers to play M* than to offer an incentive
contract C and then renegotiate to the low type.

So, in equilibrium, when an aware principal chooses an incentive contract, she then
renegotiates it to result in full insurance for both types (we denote that action by R* in
this proof). Given that, her optimal incentive contract is the second-best contract C*.

Given that she observed C*, each aware agent believes her opponent to play R* with
probability

pre = [pop(C*)op(R)]/[1 — p+ pop(CY)].

She plays H if ugr- < 0, she is indifferent for ugp. = 0 and takes L for pg. > 0.
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Set

y =
e =

I(c*, H,

pr(op(RY)I(R", H)

= II(C*, L),

+ (1 —op(R"))y) +

(1 = pu)(op(R*)s + (1 — op(R))I),

the principal offers C* if II(C*) > m, plays M* when II(C*) < m and is indifferent

otherwise.

Therefore, we have shown that the only contracts ever offered will be C*C*, C*R*,

and M*. Specifically, we obtain the following characterization for the set of equilibria

(we indicate the p restrictions in square parenthesis). For the ease of the reader we omit

stars.
case 0 | oy €1[0,1] | ocr=1
lo=0] [(1—p+ pou)b+ p(l —om)s > m]
casel | og =0 oor=1
[p > 0] [(1 = p)b+ ps > m]
case 2 | og =0 ocr € [0,1]
[0 > 0] [(1 - p)b+ ps =m]
case 3 | og =0 ocr=0
(12520 | [(1=p)b+ps<m]
case 4 on € [0 1] | ocr=0

Solving out the restriction on p that allows the different equilibria to exist, we obtain

for case 0, p = 0, for case 1, p < mm{%

(—byL_ﬂ—?)+1 for case 3, p>

>=m1 for case 2, p—b':and;(’; ';)>

, and for case 4, p > 2= and 2=

5 2 s T 1

Substituting for p in the ethbna, we derive the following characterization.

case 0 o € [y +1,1] ocr=1 p=0

case 1 og =0 oor =1 p < =

case 2 oy =0 ocr€[0,1] | p=22

case 3-4a | o € [0, p(b s) +1] om=1 bm < p< g:ﬁ:zl:;
case db | op = =5 s) +1 om =1 p2 ﬁh
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The Proposition is then proven by selecting the equilibria where the agent takes the

action most favorable to the principal.

Proof of Lemma 4. The evolution of equation 2 at time ¢ depends on f; which in
turns depends on the equilibrium oy characterized in Lemma 3. Since Lemma 3 yields
different unique equilibria, for p < %‘;’;—L, and for p > bb_TT, the equation is discontinuous.

However, as the system is piece-wise continuous, one can apply standard techniques

to the areas p > ’;‘T’g and p < ’;‘T’:, and then complete the analysis considering the
discontinuity set p = 2= For p € (0, 3=2),

2p = p—ep[(1-p))] > 0.

So that any state p < ’;)'TT is unstable.

bom 1),

For p € (
2p = —ep[(1 —p) +p] <0

Note that lim , bom p >0, and lim bom p < 0. That is, the length of the gradient does
not vanish around %__L;‘, for any time-interval ¢ of length 1. Also, for any k, the length
of the gradient any at point p is smaller than 1/k, for any time sub-interval of length
1/k. That implies that for any € > 0, the open ball B( IL_T’:) is reached in finite time,

for k large enough. The same argument also implies that there exist a finite time (not

necessarily the first time that B.(4=2) is reached by the system) after which the system
may never leave Be(3=2).

b—m

So, the only candidate stable state left is p = 2=2. By Lemma 3, for p = 22,

any

value ocg € [0, 1] may obtain. In order to have a well-defined dynamic system, one needs

to select one ocg. For the system to have a stable state, weneed p =0and p=p = bb‘_’:.
We obtain oo = —22-5¢ . When selecting that value, the above analysis shows that

m(l—e)+eb—s

the state p = IZ—TT’ is stationary, stable and global attractor.
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If ocr # ﬁiﬁm, the equation converges in finite time to p = ”b‘T’;‘; but, each time

it reaches that state, it is discontinuously “pushed” away: the state is not stationary. If

eb—ec

sy tep—s I particular, the system is pushed in the region p € (b—_—’;‘, 1), where

OCR > b—

OCR = 0.
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