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Abstract

We consider a general model of dynamic common agency with symmet-
ric information. We focus on Markov perfect equilibria and characterize
the equilibrium set for a refinement of the Markov perfect equilibria.

Particular attention is given to the existence of a marginal contribution
equilibrium where each principal receives her contribution to the coalition
of agent and remaining principals. The structure of the intertemporal
payoffs is analyzed in terms of the flow marginal contribution. As a by-
product, new results for the static common agency game are obtained.

The general characterization results are then applied to two dynamic
bidding games for a common agent: (i) multi-task allocation and (i) job
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1 Introduction

Common agency refers to a broad class of problems in which a single individual,
the agent, controls a decision that has consequences for many individuals with
distinct preferences. The other affected parties, the principals, may attempt to
influence the agent with payments that are contingent on the action chosen by
the agent. The static model of common agency under perfect information was
introduced by Bernheim & Whinston (1986a) as a model of an auction where
bidders are submitting a menu of offers to the auctioneer. Since then it gained
prominence in many applications, such as procurement contracting, models of
political economy (Dixit, Grossman & Helpman (1997) or Dixit (1996)), as well
as strategic international trade (Grossman & Helpman (1994)).

The objective of this paper is to examine the structure of dynamic common
agency problems. The extension of the model beyond the static version is of
particular interest for the applications above. Political choices are rarely made
only once, and the future implications of a current policy are often more impor-
tant than its immediate repercussions. If the politician and the lobbyists cannot
commit to future actions and transfers, a dynamic perspective is needed. Sim-
ilarly, many procurement situations involve staged development with bidding
occurring at each stage of the process.

The dynamic perspective also broadens the reach of common agency models.
Consider for example a dynamic matching problem where the employee works in
each period for at most a single employer, but may change employers over time.
In the language of common agency, the employee has only one principal in each
period, but with specific or general human capital the future employers may
have preferences over the career path of the employee. Thus the intertemporal
element introduces a more subtle aspect of common agency to the job matching
problem.

We start our analysis with the static common agency model of Bernheim &
Whinston (1986e), who concentrated on a refinement of Nash equilibrium, called

truthful equilibrium. A strategy is said to be truthful relative to a given action



if it reflects accurately the principals’ willingness to pay for any other action
relative to the given action. For the static game, we show that the truthful
equilibrium is unique if and only if the marginal contributions of the principals
to the value of the grand coalition are weakly superadditive. We show that in
such equilibria, all principals receive their marginal contributions as payoffs. We
call equilibria satisfying this property marginal contribution equilibria.

Marginal contribution equilibria are particularly attractive from a welfare
point of view. Even if the actual game is preceded by an ex ante stage with
actions that cannot be contracted upon, the resulting equilibrium in the overall
game is socially efficient. As an example, one may think of a government agency
choosing between two suppliers. The ex ante stage could consist of an oppor-
tunity for one of the suppliers to install a new cost reducing technology. If the
common agency game fails to have such equilibria, then the incentives at the
ex ante stage are misspecified, and the overall equilibrium need not be efficient.
The second part of the paper derives conditions for the existence of a marginal
contribution equilibrium in the dynamic framework. Since we assume that the
players lack commitment power over periods, the interplay between the payoffs
received at different stages of the game becomes important.

To illustrate the issues arising in the dynamic game, consider the following
two period example. The agent can allocate an indivisible unit of time in each
period to one of two potential projects. Each project is owned by a separate
principal and yields a value of one to the principal if the agent works for the
project in one of the periods. The project yields no additional value if the agent
works in it for a second period. Assume that it is costless for the agent to work
in either of the projects, but that he also has the option of refusing to work
in a given period. With transferable utility, efficiency coincides with surplus
maximization and therefore efficiency requires that the agent works for one
period in each project. This yields an overall social value of 2. The marginal
contribution of each principal (or her project) is easily seen to be 1 and therefore
the sum of the marginal contributions does not exceed the marginal contribution

of the union of the two principals. In other words, the marginal contribution is



superadditive on the principals. This game, however, fails to have a marginal
contribution equilibrium. To see this, notice that the agent would get a payoff
of zero in any such equilibrium. But the agent can always guarantee a payoff of
1 by not working in the first period. In this case, the marginal contribution of
both firms is zero in the second period, and therefore the agent will receive the
entire surplus of 1 by standard Bertrand type arguments.

Notice that in this example, the agent can reduce the marginal contribution
of both agents from 1 to zero by not working in the first period. This reduction in
marginal contributions more than offsets the efficiency loss of 1 that deviating
from the efficient path entails. We show that the intuition coming from this
example is general in the sense that a marginal contribution equilibrium exists
if and only if at each stage the welfare loss from choosing an inefficient action
outweighs a possible reduction in future marginal contributions.

The dynamic model of the common agency is formulated with a general
state space and can be equally well interpreted as a deterministic or a stochastic
model. We concentrate on the Markov strategies since we want to study the
effects of payoff relevant changes on the dynamics of the game in isolation from
the effects created by conditioning on payoff irrelevant histories. In the spirit
of Bernheim & Whinston (1986a), we are particularly interested in truthful
Markovian policies. We also extend the concept of a coalition proof equilibrium
to the dynamic context and note that the equivalence result between truthful
and coalition proof equilibria in Bernheim & Whinston (1986a) carries over to
the dynamic model: The set of thruthful Markov Perfect equilibria is outcome
equivalent to the set of dynamic coalition-proof Markov Perfect equilibria.

Since we are focusing on a demanding concept, i.e. the marginal contribu-
tion equilibrium, it is important to know that the set of games that possesses
such an equilibrium includes economically important models. To this end, we
analyze a model of optimal scheduling of tasks when the reward from each task
evolves according to a deterministic process. This model may represent the
equilibrium utilization of an asset with finite capacity, such as a depleting nat-

ural resource, by competing users. The second example is a basic job matching



problem & la Jovanovic (1979), where a number of firms learn about the firm
specific human capital of a given worker. In each of these cases, the unique
marginal contribution equilibrium is characterized.

These two examples also illustrate an additional reason to be interested in
the existence of marginal contribution equilibria. In the job market example, for
instance, one might argue that the present model allows for an unrealistically
large number of possible transfers between the firms. In particular, wages paid
to the worker when working in a different firm are rarely observed. We show
that whenever a marginal contribution equilibrium exists in these models, a
marginal contribution equilibrium also exists in a related game, where each
principal’s payment depends only on whether the agent worked for her. We
show also that whenever a marginal contribution equilibrium fails to exist in
the common agency model, the model with restricted transfer opportunities
fails to have an efficient truthful equilibrium. This gives an additional reason
for caution in interpreting the efficiency of equilibria that are not marginal
contribution equilibria.

The papers that are the most closely related to the current paper are those
by Bernheim & Whinston (1986a), Dixit, Grossman & Helpman (1997), and
Laussel & LeBreton (1995), (1996). Our paper extends the static model of
common agency in Bernheim & Whinston (1986a) to a dynamic setting. The
second major point of departure relative is our insistence on marginal contribu-
tions equilibria as an interesting solution concept in this class of games. Another
recent extension of the basic model of common agency may be found in Dixit,
Grossman & Helpman (1997), where the assumption of quasi-linear preferences
is dropped. Whereas the motivation for that extension is based on concerns re-
lating to the distribution of the payoffs within the single period of analysis, our
motivation is based on the distribution of payoffs between the players over time
when commitment is precluded. The work by Laussel and LeBreton analyzes
the payoffs received by the agent in a class of static common agency games.

The techniques developed in the paper are then applied to an intertemporal

task allocation problem and to a job market matching model in the spirit of



Jovanovic (1979). We do not allow the firms to commit to future wages and as
a result, we create a genuine surplus sharing problem between the firms and the
worker. By considering a more general framework than Felli & Harris (1996)
who treat the case of two potential employers, it becomes clear that marginal
contributions equilibria are possible only if the job performance of the worker
in one firm is essentially independent from that in others. In a related model,
Bergemann & Vilimiki (1996), we analyzed a duopolistic market for experience
goods. Again, the general results in the current paper show the directions in
which the earlier work may be extended fruitfully.

The paper is organized as follows. In Section 2 we introduce the common
agency model in its dynamic version. The notion of marginal contribution is
introduced here as well. Section 3 introduces the basic results for the static
model of common agency. Section 4 presents the main results for the dynamic
common agency. The characterization of the truthful Markov Perfect equilib-
rium is given here and necessary and sufficient conditions for its uniqueness
are stated as well. In Section 5 the equivalence between truthful and dynamic
coalition-proof equilibria is established. Section 6 illustrates the general results
with two applications. The first is a model of dynamic task allocation and the

second is a stochastic job matching model.

2 Model

2.1 Payoffs

We extend the common agency model of Bernheim & Whinston (1986a) to a
dynamic setting. The set of players is the same in all periods, but actions
available to them as well as payoffs resulting from the actions may change from
period to period.

The principals are indexed by i € T ={1,...,I}. Time is discrete and is
denoted by t = 0,1, ..., T, where T is finite or infinite. After each history h¢, the

agent can select in each period an action a; € A (h;), where A (h;) is assumed



to be a finite set for every h;, and without loss of generality n = |A (h¢)| for
all h;. Each principal i offers a reward scheme r; (as, hy) € R%, which can
depend on the history h; and the action a; chosen by the agent in period ¢. Let
re 2 (r1 ()0t (), a2 (ao, ..y at,...) and ¥ £ (rg, ..., Tt,...). The future
in period t is the sequence of future actions (a*,7*) = (@t41, ..., Te41,...). We
denote by H (h;) the set of all possible histories h;1 which are accessible from
history A, and similarly H (a¢, ht) the set of all possible histories h¢,; generated
by h: and a;.

We want the actions in all periods to be sequentially rational from all players’
point of view. In other words, we do not allow the agent to commit to strings of
actions and accordingly, current period payments depend only on current period
actions.

The stage game is not necessarily stationary and the transition may be
deterministic or stochastic. The payoff relevant state of the world (in the sense
of Maskin & Tirole (1997)) in period ¢ is 8;. The cost of action a; in period ¢
to the agent is given by c(at, 0:). The benefit to principal ¢ is v; (a¢, 8;), which
may again depend 6;. The sum of the contributions by a subset of principals
ScIis:

rs (as, he) 2 ) rias, he),

€S
and the sum of the benefits is

vs (ag, 0;) 2 Zvi (az,6:) .
iE€ES
The aggregate benefits are denoted by v (as, 6;) £ vr (as, ;) and the aggregate
rewards similarly by 7 (at, ht) = rz (at, he). Without loss of generality we shall
assume that v; (a¢,0:) > 0 and c(a¢,0:) > 0 for all a; and 6;. We also assume
the existence of a (default) action a; € A; (6:) such that c(aq, ;) = 0 for all 6.
The history of the game is hy £ (ag,....,@¢_1,70, ---sTt—1,800, ---,0¢). The
transition function, g {f¢11 |as, 8¢ ) is assumed to be Markovian in the sense that
the probability of the payoff relevant state being 6;,; in period ¢ + 1 depends

only on current actions, a; and the current state 6;. Let H; be the set of all



possible t period histories. All agents maximize expected discounted value and

their common discount factor for future periods is 6.

2.2 Social Values

With transferable utility between the agent and the principals, Pareto efficiency
coincides with surplus maximization. The value of the socially efficient program
is denoted by

W (6:) 2 Wz (6:),

and the value of the efficient program with a subset S of principals and the
agent is denoted by Ws (6;). These values are obtained from a familiar dynamic
programming equation:

W,s (0t) = N Iél/% )E{'Us (at, Ot) - c(at,Gt) + 6Ws (0t+1)} .

Similarly the value of a set of firms Z\S is denoted by W_s (8,). In this game, it
is relatively easy to assign values to coalitions other than the grand coalition. In
all of the value calculations, we include the agent in the coalition of principals
under study. The excluded set of principals cannot affect the value to the
coalition under study and thus we avoid some of the usual problems in finding
the characteristic function of a normal form game.

The marginal contribution of principal 7 is given by
M; (6:) £ W (6:) — W_; (6:) .- (1)

The marginal contribution of a subset of principals & C Z to the value of the
program is defined by:

Ms (8:) 2 W (8:) = W_s (6,). @

In words, the marginal contributions of an individual principal or of a coalition
of principals measure the increase in the total value of the grand coalition from

adding a particular principal or a coalition of principals respectively.



3 Static Common Agency

This section presents the equilibrium concept and new characterization results
for the static common agency game. The basic model and the equilibrium
notions were first introduced by Bernheim & Whinston (1986a).

A strategy for principal ¢ is a reward function r; : A — Ry by which the
principal offers a reward to the agent contingent on the action chosen by him.
The net benefit from action a to principal i is n; (@) £ v;(a) — 5 (a). The
vector of net benefits is n(a) = (n1(a),...,ns (a)) and the aggregate benefits

for a subset S is ns (a) = Y _;csmi (a). The net benefit to the agent is given by

r(a) — c(a)-
Definition 1 (Best response)

1. An action @ is a best response to the rewards r (-) if

a cargmax r(a) —c(a).
a€A

2. A reward function r; () is best response to the rewards r_; (-), if there does

not exist another reward function 7; (-) and action & such that

v; (&) — 7 (&) > v; (a) —-T; (a)
where a and & are best responses to (r; (-),r—; (*)) and (7; (-) ,r—i (*)) re-
spectively.

Definition 2 (Nash equilibrium) A Nash Equilibrium of the common agency
game is an n-tuple of reward functions {r} ()}{=1 and an action a* s. th. v} (")

and a* are best responses.

Definition 3 (Marginal Contribution equilibrium) A Marginal Contribu-
tion Equilibrium of the common agency game is a Nash Egquilibrium where

n; (a*) = M; for all i.

Bernheim and Whinston suggested that the focus be put on a subset of

the Nash equilibria where all strategies satisfy an additional restriction, called



truthfulness in Bernheim & Whinston (1986a). In addition, they showed that
the set of thruthful equilibria is outcome equivalent with the set of coalition-
proof equilibria. In this section, we shall restrict ourselves to the discussion of
the thruthful equilibria and refer the reader to Bernheim & Whinston (1986b)
and Bernheim, Peleg & Whinston (1987) for results on the equivalence between
the two solution concepts. In section 5, we take up this equivalence again in the

dynamic model.
Definition 4 (Truthful strategy)

1. A reward function r; (-) is said to be thruthful relative to ag if and only if
for all a € A, either

(a) n;(a) =n; (ag), or,

(b) n;(a) < n; (ap), and r; {a) = 0.

2. The strategies {{’r:‘ ()}{=1 ,a*} are said to be a Truthful Nash Equilibrium
if and only if it is a Nash Equilibrium and {r} ()}{=1 are truthful strategies

relative to a*.

A truthful strategy by player ¢ reflects accurately the relative value of two
actions to 7 unless the nonnegativity constraint on the reward function is bind-
ing. The set of Truthful Nash Equilibrium can then be characterized by a set of
inequalities, relating the social value of the grand coalition to the social value
of smaller coalitions. Bernheim & Whinston (1986b) show that the set £ of
equilibrium net payoffs for the principals is described by

HVSCT, ns<W-W_
&={neR’ @ e = s . (3)
(#4) n > n’, for all n’ satisfying ().
Note that we are not including the state variable 6, as an argument for W and
W_s since we are analyzing the static model for the moment. Next we present

two equivalent conditions for the uniqueness of the truthful equilibrium.
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Theorem 1 (Uniqueness)
1. The truthful equilibrium payoff vector is unique iff
VSCI,> M;<Ms. (4)
€S
2. The unique truthful equilibrium is a marginal contribution equilibrium.

3. A sufficient condition for uniqueness is that Ms is superadditive:

VS, T,SNT =0, Ms + Mr < Msur. (5)

Proof. See Appendix. B

Condition (4) requires that the sum of the marginal contributions of each
firm i € S to 7 is less than the marginal contribution of the entire set S to
Z. Condition (4) is referred to as weakly superadditive. The superadditivity
condition (5) is a sufficient condition for (4) and it agrees with (4) if |Z] = 2.

We have the following corollary relating truthful equilibria to strong equilibria.’

Corollary 1 If the truthful equilibrium is unique, then it is also a strong equi-

librium.

Laussel & LeBreton (1995) also consider the structure of the equilibrium
payoffs in the static common agency. The main objective of their paper is to
determine conditions under which the agent does not receive positive rents in
equilibrium. They also present the following sufficient condition for the unique-
ness of the truthful equilibrium: If the social values are strongly subadditive,

i.e. VS, T C T, such that SNT = 0,
W < W_s+W_or —W_csun),

then the truthful equilibrium is unique. It can be verified that the strong sub-
additivity of the social values is identical to the superadditivity of the marginal

contributions as stated in Proposition 1. A sufficient condition for both in turn

1Sec Aumann (1959) for the definition of strong equilibrium.
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is the concavity of the social values, which is defined as follows: VS,T C T such
that SC T and i ¢ T,

Wryi — Wr < Wsys — Ws.

The following example shows that strongly subadditive is a stronger condition

than weak superadditivity of the marginal contributions:

c() -3 -3 -2
n() 0 3 3 (6)
vw() 4 3 0
v3() 4 3 3
The example satisfies weak superadditivity of the marginal contributions, but

fails superadditivity as My + M3 > W, as well as M3 + M3 > W.

4 Dynamic Common Agency

The equilibrium of the dynamic common agency game is defined in Subsection
4.1. The general characterization is given in Subsection 4.2, where the notion of
marginal contribution in the dynamic setting is explored in some detail. Neces-
sary and sufficient conditions for the uniqueness of the truthful equilibrium are

given in Subsection 4.3.

4.1 Truthful Equilibrium

In the dynamic game, a reward strategy for principal ¢ is a sequence of mappings
T : At X Ht — R'_:'_

which assigns to every possible action a; € A; of the agent a nonnegative reward,
possible contingent on the entire past history of the game. A strategy by the

agent is a sequence of actions over time

a:R} x Hy — Ay

12



which depend on the aggregate reward in period ¢ and history until period ¢. If
the strategies do not depend on the entire history of the game, but only on the
state 8;, then the strategies are called Markov strategies. Indeed in the following
the equilibrium analysis is restricted to strategies which are contingent only on
the payoff-relevant history of the common agency game. The reason for this
modeling choice is twofold. First, we want to study the effects of changes in the
payoff relevant states of the world in isolation from the purely strategic effects
that arise from conditioning on a payoff irrelevant past. Second, if the transfers
between each principal and the agent are not observable to outsiders, it may
be hard to find continuation payoffs that allow for a richer dependence on the
past. In Bergemann & Valimaki (1998), we show that in a repeated dynamic
common agency game with transfers that are not observable to outsiders, only
Markovian equilibria, i.e. repetitions of stage game survive as truthful equilibria
in the repeated game. Hence the restriction to Markovian strategies may be seen
as a simple model yielding the same restrictions as a more complicated model
with imperfect observability.

The expected discounted payoff with a history h; for a given sequence of
reward policies r and action profiles a is denoted by Vj (h:) for the agent and
V; (hy) for principal i. When a and r are Markov policies, then the values are
given V; (6;) and V; (6,) if the state is 6, in period ¢t. In this context EV; (ay, 6;)
represents the expectation of the continuation value in period ¢ + 1 if in period
t the action was a; and the state was 6;. While the transition from 8, to 0y,
may be stochastic, we shall omit the expectations operator E[-] for simplicity

and all values are henceforth understood to represent expected values.
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Definition 5 (Markov Perfect Equilibrium)
The strategies {r} (at,0:)};c7 and a* (r (-),6:) form a Markov Perfect Equilib-
rium (MPE) if

1. V0.,V (-), a* (r(-),0:) is a solution to
max {r(at,0:) — c(as,8:) + Vo (as,0)},
2. Vi,V0;, there is no other reward function #; (as,8;) such that
v; (¢, 0:) — 7; (G¢, 0:) + 6V; (8¢, 0¢) > vi (af,0:) — i (af,0:) + 6Vi(ag,0:),

where a* and & are best response actions to (r} (-),r%; (-)) and (7 (-),r=;(:))

1 i —g

respectively.

Truthful strategies are defined as in the static game by the property that they
reflect correctly each principal’s net willingness to pay. The major difference to
the static definition is that the aliocation relative to which truthfulness is defined
is now an action a; and a state 6;. The intertemporal net benefit n; (as, ;) of
an allocation a; in the state 8; is the flow benefit v; (a¢, 0:) — r; (as, 0¢) and the

continuation benefit §V; (a:, 6;):
n; (at,0¢) = v; (ar,01) — i (at,0:) + 6Vi (az,6:) . (7)

With this extension to the dynamic framework, the definition of a truthful
(Markov) strategy and an associated MPE in truthful strategies is immediate.

Definition 6 (Truthful (Markov) strategy)

1. A reward function r; (at,6;) is said to be thruthful relative to (a,6:) if and
only if for all a; € A(6y), either
(a) n;(as,0:) = n;(a,b:), or,

(b) n;(a,6:) < n;(a,b;), and r; (at,0:) = 0.

2. The strategies {r} ()}{=1 and a* (r (), 0) are said to be a Markov Perfect
Equilibrium in truthful strategies if and only if it is a Markov Perfect

equilibrium and {r} (-)}_, are truthful strategies relative to a* (-).

14



4.2 Characterization

The characterization of the set of truthful equilibria relies as in the static model
on the marginal contribution of each principal. The marginal contribution of

principal ¢ is, as defined earlier,
M; (6:) = W (6:) — W_ (6:) . (8)

It can be decomposed into the flow and the future contribution along the efficient

path:
Mi (Bt) =m; (Gt) + 5M1 (a, gt) . (9)

Here M; (a, 6;) is the marginal contribution in period t+1, which depends on the
state 6; and the efficient action a in period t. The socially optimal allocation in
state 8, is denoted by a £ a7 if the set T of principals is present, and by a_s if
only a subset Z\S of principals participate in the game. As the future marginal

contribution is given by
M; (a,6:) = W (a,6:) — W_i(a,0),
we can identify the flow contribution by (8) and (9) as:

mi(6:) = (v(a,6:) —c(a,0:)) - (v-i (a-i,0:) — c(a—s,6:))  (10)
+6W_i (a, et) - 6W_i (a_i, Ot) .

The flow contribution m; (6;) can be decomposed into two elements. The first
component is the difference in the social flows generated by the intertemporally
optimal action relative to Z and T\ {i}, respectively.. The second component
reflects the intertemporal aspect. Action a by the agent today precludes action
a_; which is more favorable to 7\ {¢}. The extent to which this affects the
future payoffs to I\ {i} is reflected by 6W_; (a—;,0:) — 6W_; (a,8;) which has
to be attributed to the flow contribution of ¢ today, since the coalition I\ {:}
will not be able to recover this difference in the future. The flow contribution
m; (6¢) is not identical to the contribution of i were we to consider to add or

remove ¢ only in period ¢.

15



If the optimal action in state 6, is independent of the presence of principal

i in the entire game and a = a_;, then m; (6;) reduces to
m; (0:) = v; (a,6) . (11)

In contrast, if the addition of ¢ influences the efficient allocation and a # a._;,

then

(v—i(a,0:) — c(a,0:)) — (v=i(a—;,8¢) — c(a—i,0:))
+6W_; (a, Ot) —6W_; (a_,~, Ot) <0,

and it follows that
m; (0:) < v (a,6¢). (12)

Inequality (12) states that if the addition of principal ¢ leads to a change in
the action relative to the optimal action with the set of principals 7\ {¢}, then
the flow contribution of i is less than the gross benefit to principal i, v; (a, 6:),
from action a. It is easy to extend the characterization of the flow marginal

contribution in (10) for S = {¢} to any larger subset S of principals, or

ms(6) = (v(a,6:) —c(a,b:))— (v_s(a_s,0:) —cla-s,0:)) (13)
+6W_s (a, et) —6W_s (a_s, 9:) .

The relationship between the flow marginal contribution mg (6;) and the flow
payoff vs (a, 8;) is analogous to the one derived for the individual principal ¢ in
(11) and (12):

mg (0;) = vs(a,6;) & a=a_sg,

ms (6:) < vs(a,0:) © a#a_s.
The social value which a set S of principals can achieve in equilibrium is limited
by the value which the complementary set 7\S can realize by itself. In the static
world this value was achieved by selecting the action a_s which maximizes the
flow payoffs v_g (a) — ¢ (a) to the remaining principals 7\S in conjunction with

the agent. In the dynamic setting, the set Z\S cannot commit itself to exclude

16



the participation of the set S forever. But the set 7\S can seek to maximize

the joint payoff

> (vi (ar,6¢) + 8Vi (az, 6¢)) — (az, 6:) + Vo (at, b)
¢S

for given equilibrium continuation payoffs V; (a,, 6;) induced by selecting action
a; in period t. To this effect, we define W (8; |a; )} to be the social value of the
program which starts with an arbitrary and not necessarily efficient action ay,
but thereafter chooses an intertemporally optimal action profile. Similarly, let
M; (6¢lar) = W (0:]ar) — W_; (6 |ae) .

The next theorem shows that any truthful equilibrium has to be efficient.
Since the equilibrium continuation play is also efficient, the value of the subset

7\S is maximized along the equilibrium path by selecting a; so as to solve

max {W (6t lar) — vs (ae, 0:) — ) _ 6Vi (s, at)} : (14)

€S
As a result, the maximal value the set S of principals can extract from the
remaining players is given by the difference between W (6;) and the maximand
of (14). If the members of S were receiving more than the difference, there
would be a coalitional deviation available for Z\S. Since we have fixed the
continuation play, we can appeal to the equivalence result between coalition
proof equilibria and truthful equilibria in Bernheim & Whinston (1986a) to
obtain the same restriction for truthful equilibria. The net value ngs (6;) of the

set S of principals in truthful equilibrium must then satisfy:

ns (6¢) < W (6) — max {W (B¢ laz) — vs (ar,0:) — Y 6V; (as, ot)} .
€S

The maximal value ns (6;) which can be secured by coalition S can be related to
its marginal contribution in period ¢ and its equilibrium continuation values in
period ¢ + 1. By relating the equilibrium continuation values V; (8;) recursively

to the marginal contributions M; (6;), we obtain the following:

17



Theorem 2 (Efficiency)
1. All Markov equilibria in truthful strategies are efficient.

2. Foralli and S,
D Vi(6:) < Ms(6:). (15)

=
Proof. See Appendix. B
The equilibrium characterization in the static game permitted an additional

result relating the equilibrium payoffs to the marginal contributions. Namely,
for all i, there is a set S, with i € & such that the joint equilibrium payoff of
the set S of principals equals their marginal contribution, or

> Vi=Ms.

i€S
This lower bound on the equilibrium payoffs for any set S of principals is no
longer valid in the dynamic environment as the example given in the introduc-

tion illustrates.

4.3 Marginal Contribution Equilibrium

The dynamic common agency game preserves the efficiency of the static game.
The intertemporal aspects of the game weaken the position of the principals
as neither an individual principal nor any group of principals can receive their
marginal contribution in general. In this section, we give necessary and sufficient
conditions for a marginal contribution equilibrium to exist. It is useful to note
first that the equivalence between the uniqueness of the truthful equilibrium

and the marginal contribution equilibrium is still valid in the dynamic game.

Theorem 3 (Uniqueness) The truthful equilibrium payoff vector is unique if

and only if the equilibrium is a marginal contribution equilibrium.

Proof. See Appendix.
The equivalence result is particularly interesting for the equilibrium analysis

as the description of the marginal contributions is in many settings a much
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simpler task than the explicit derivation of the equilibrium strategies which
support the marginal contribution payoffs. This will be illustrated further with
the applications in Section 6. There are two obvious candidates for necessary
conditions for the marginal contribution equilibrium. The first is the weak
superadditivity of the marginal contribution M; (6;) and the second is the weak
superadditivity of the flow marginal contribution m; (6):

> mi(6:) <ms(8:), VS,V6;.

1ES
The second condition is obviously stronger as it implies the weak superadditivity
of the marginal contribution since

Ms (8;) = iﬁTms (6,)

=t

holds for all S C 7.

Theorem 4 (Necessary Conditions)
If a marginal contribution equilibrium ezists, then

> M;(8:) < Ms (6:), VS,V8;.

=
Proof. See Appendix. B

The weak superadditivity of M; (6;) is however not a sufficient condition for

the marginal contribution equilibrium as the two period example in the intro-
duction illustrates. The marginal contribﬁtion M; (6;) does not track sufficiently
precise how the distribution of the future surplus is affected by the current de-
cision of the agent. This suggest that if a marginal contribution equilibrium is
to exist, then the current decision by the agent should not be motivated too
strongly by his interest to depress the future shares of the principals relative
to the shares along the efficient path. Since the agent is the residual claimant
after the principals receive their marginal contribution, a formal statement of
this requirement is that the social loss from a deviation from the efficient policy
exceeds the loss in the marginal contributions of the principals, or

W(Gt |at) - W(gt) S Z(M,, (0t |at) - M,‘, (Ot)) s Vat € At, VS
1€S
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Recall that W (6; |a;) is the social value of the program which starts with an

arbitrary action a;, but thereafter chooses an intertemporally optimal action

profile, and if follows that W (6, |a;) — W (6;) < O for all a; # a.

Theorem 5 (Existence)

The marginal contributions equilibrium exists if and only if

37 (M; (8:) — M; (B: |ae)) < W (82) = W (8¢ laz), Vas € As, VS, (16)

i€S

Proof. See Appendix. B

The equilibrium characterization by the inequality (16) is quite powerful
in applications. Since all values entering the inequality can be obtained from
appropriate efficient (continuation) programs, the inequality can be established
independetly of any equilibrium considerations. As efficient programs are in
general easier to analyze than dynamic equilibrium conditions, the technique
suggested here may be usefully applied to a wide class of dynamic bidding
models. The applications presented in section 6, while of interest in their own,
also serve to illustrate this point. In the case of a repeated common agency
game, condition (16) reduces to the condition of weak superadditivity of the
marginal contributions in the static game as the transition from period ¢ to
t+1 is of course independent of the action chosen in period t. It should also be
pointed out that the weak superadditivity of the flow contributions as obtained
from the efficient program:

Zmi (6:) < ms(6t)
€S

is neither a necessary nor sufficient condition for the marginal contribution equi-
librium. The example in the introduction provides an example where the flow
marginal contributions are additive, but a marginal contribution equilibrium
fails to exist. To see that the weak superadditivity of flow marginal contribu-
tions is not necessary either, consider the following example. The agent can
choose in each period between two actions, which have zero cost to the agent.

If the agent chooses a; in the first period, then the continuation payoff is given
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by the gross payoff matrix (17), if he chooses a it is (18). For simplicity, the
action in the first period doesn’t provide any direct payoffs and only determines
the payoff matrix in the next period. The gross payoffs to the principals are:
v () v2() w3()
a2 2 1 (17)
a2 0O 0 0

and
vi() w2 () wvs()

a1 9 0 0 (18)

axp 0 5 0
The flow contributions in the first period are ms = 0 for all S = {i}, but
mi2 = —1. However, there is now a marginal contribution equilibrium where
the agent chooses action a; in the first period. Thus the weak subadditivity of
the flow contributions is not a necessary condition either.

The inequality (16) which is both a necessary and a sufficient condition

suggests however an interpretation in terms of a modified notion of the flow
marginal contribution. For any state 8; and for all allocations a; in period £,

define VS, V6, :

’ﬁls (Ot) 2 {W (gt) - Z(SM, (a, Gt)}—nﬁx {W (0t |at) — Vs (at, Gt) - 26M1 (at, 0t)

€S €S

as the dynamic flow contribution of a subset S of principals. Notice that for
S = {i}, we have m; (0;) = 7;(6;). However for a set S with |S| > 1, the
equality fails. Since
ms (0:) = (v(a,6) —c(a,b:)) — (v-s (a-s,0:) — c(as,b4))
+($W_s (a, Ot) - 5W_s (a_s, Gt) s
we have in general
ms (0:) # Ms (6¢) -
The example above illustrates how ms and s may differ, but since m; (6;) =

; (6:), we know that in the special case of two principals, the weak superad-

ditivity of the flow contributions is in fact a necessary condition. Notice that

21

} |



the main difference between the flow marginal contribution, ms (6;), and the
dynamic flow contribution, 7 (6;) lies in the differential treatment of the con-
tinuation values to the coalition. While mgs (6;) attributes the entire future
marginal contribution of coalition S to its members, s (6;) attributes only the
sum of individual marginal contributions. In general these two will be different,
and the latter will be relevant for the characterization of a marginal contribution
equilibrium. With the dynamic flow contribution, we can formulate an alterna-
tive condition for the uniqueness of the truthful equilibrium more in the spirit

of the static condition.

Corollary 2 A truthful equilibrium is a marginal contribution equilibrium if

and only if V8;,VS :
Zﬁli (68:) < s (6:) (19)

€S

Proof. See Appendix. B

5 Coalition-Proof Equilibrium

In this section we show the equivalence between the thruthful equilibria charac-
terized in Section 4 and coalition-proof equilibria. The static notion of coalition-
proof Nash equilibrium is introduced in Bernheim, Peleg & Whinston (1987),
who also suggest a dynamic extension, called perfectly coalition-proof Nash
equilibrium. We adopt a slightly different notion which captures the idea of
coalition-formation over time in a perhaps more natural way. We briefly com-
ment on the differences after stating the definitions. Naturally, a dynamic notion
of coalition-proofness faces similar challenges as any notion of renegotiation-
proofness. As renegotiation-proofness, it is relatively unambiguous in finite
horizon games, and more open for challenge in infinite horizon games. The fi-
nite horizon version of the concept was introduced by Ferreira (1996) under the
name of communication-proof equilibrium.

In the static common agency game, consider any subset S of players, in-

cluding the agent, and a collection of strategies, {r;(-)};,¢s. We define the
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component game I's relative to {r; (-)},¢5 as:

fs A1/ {r (.)}i¢8 = {8, {{vi (V}ies ¢ () +7-s (')} ) {{Ti(')}ieS\O ’“}} .

The component game is the restriction of the original game to the principals in
S and the agent, holding the strategies {r; (-)},4s of the remaining principals
fixed.

Definition 7 (Coalition-Proof Nash Equilibrium)

1. In a common agency game with a single principal , {r1 (*),a} is a coalition

proof Nash equilibrium if and only if it is a Nash equilibrium.

2. In a common agency game with |Z| > 1 assume that a coalition proof Nash

equilibrium has been defined with fewer than |I| principals. Then,

(a) {{ri(V}icz a} is self-enforcing if for all S C I, {{ri(")}ics a} is
a coalition-proof equilibrium in the component game I's

() {{ri(")}scz,a} is a coalition-proof equilibrium if it is a self-enforcing
Nash equilibrium and the equilibrium net payoffs ns are not Pareto

dominated by any other self-enforcing Nash equilibrium.

Denote by I' (h¢) the finite horizon game starting with history h;. The
dynamic coalition-proof equilibrium is defined by induction on 7 with ¢t =T — 7.

Continuation strategies in period ¢ are denoted by (at, ).
Definition 8 (Dynamic Coalition-Proof Equilibrium: T < oo)

1. Define the set £ (hr) as the set of all coalition-proof equilibrium profiles
of the stage game T (hT).

2. Suppose the set € (hs) has been defined for all hy € H, with s > t. The set
of dynamic coalition-proof equilibria at hy in period t is the set of strat-
egy profiles {as,m: (-)} such that {a;, ¢ (-); at,7* (")} is a coalition proof

equilibrium when (at,rt) € £ (hey1) -
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3. A strategy profile {a® 1°(-)} is a dynamic coalition-proof equilibrium if
{a®, 70 ()} € € = £ (o).

The dynamic extension defines coalition-proofness recursively by an induc-
tion on the number of remaining periods 7. In period t = T — 7, the strategy
space for any coalition of players is formed by the current actions and any se-
quence of future actions which in itself has to be part of a coalition-proof equi-
librium in the continuation game. Any coalitional deviation is hence required
to pick continuation strategies which are immune to deviations in the continu-
ation game with all players. In contrast the extension suggested by Bernheim,
Peleg & Whinston (1987) is based on an induction across coalitions and time
periods simultaneously. It implies in particular that the self-enforceability of a
coalition is verified in the entire subgame without allowing the subset to join
after one period. In finite horizon games of perfect information a dynamic
coalition-proof equilibrium always exists and the equilibrium set is a subset of
the set of subgame perfect equilibria. In contrast, Peleg (1992) shows that a
perfectly coalition-proof equilibrium does not always exists even in games of
perfect information.

The extension of dynamic coalition-proofness to games with an infinite hori-
zon 1s based on recursive consistency as well. Consider a subgame perfect equi-
librium profile (a,r). The set £ now denotes the set of continuation profiles of
(a,r) for all possible histories h; € H; for all t. We denote by & (6;) the set of

continuation profiles in state ;.

Definition 9 (Dynamic Coalition-Proof Equilibrium: T' = o0)

A strategy profile (a,r) is a dynamic coalition-proof equilibrium if for all contin-
uation profiles (a,r) = {(ao,r0), (a% 1)} there exists no other profile (&%) =
{(@o,70), (8°, f'o)} such that

1. (a%#%) €€,
2. (a,+) is a coalition-proof equilibrium with (a°,r%) € £,

3. V;(a,%) > V;(a,r) for all i with at least one strict inequality.
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The notion of dynamic coalition-proof for the infinite horizon is weak in the
sense that it only refers to the set generated by an equilibrium profile itself,
and may be regarded as an internal consistency requirement. For games with
two players, the notion is almost equivalent to the notion of weak renegotiation
proof equilibrium by Farell & Maskin (1989) and consistency by Bernheim &
Ray (1989). For two players, our notion is slightly stronger as we require that
the set of continuation profiles £ should not allow the players to generate an
equilibrium which is Pareto improving and only uses the stage game strategies
and continuation strategies from the set £ itself.2 In two player, finite horizon
games it is equivalent to the notion of consistency by Bernheim & Ray (1989)

and similar notions for finitely repeated games.
Theorem 6 (Equivalence in Markov Strategies)

1. For every truthful equilibrium, there exists an equivalent dynamic coalition-

proof equilibrium.

2. Every dynamic coalition-proof equilibrium in Markov strategies is payoff-

equivalent (in every state ;) to a truthful equilibrium.

Proof. See Appendix. B

The qualification to payoff-equivalent is necessary as there are coalition-proof
equilibria in Markov strategies in which the strategies are not equivalent to any
truthful equilibrium, but the difference is not payoff relevant as it concerns
contribution to actions off the equilibrium path. In the earlier section we chose
to define truthful strategies only with respect to the current allocation and the
payoff relevant state of the world. If we were to generalize the notion of truthful
with respect to entire history, then the equivalence statement in Theorem 6
could be made generally and without the Markovian restriction. The proof

would proceed similarly.

2Ray (1989) suggests a stricter condition of internally renegotiation-proof by going beyond

the cousideration of current and continuation payoffs, to set of all self-generating payoffs.
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6 Applications

In this section we present two applications of the dynamic common agency
framework. In Subsection 6.1 an agent can process a finite number of tasks
in each period. The principals compete for the services of the agent and their
aggregate demand exceeds the total number of tasks the agent can perform in
a single period. The principals then try to influence the scheduling of the task
by the agent through the transfer payments. In Subsection 6.2 we consider
job matching under uncertainty and show how common agency arises from in-

tertemporal considerations.

6.1 Multi-Task Allocation

Consider an agent who offers his services over time to many principals. Each
principal has a finite or infinite number of projects she wishes to complete. The
realization of each project requires the services of the agent. The agent can
supervise at most n projects in every period. The supervision of any one of
the projects is costless for him, as long as the total number of projects under
supervision does not exceed n per period. ) The agent in the model may be
thought to have an asset with a capacity constraint in his possession. As a
consequence the agent has to decide the order in which he services the competing
principals. Such a situation arises frequently in the context of outsourcing of
services. Consider for example an agent with a computing facility, such as a
supercomputer, and several principals are bidding for computing time on the
facilities. Another example arises in deregulated electricity markets where the
distributors bid in spot markets for electricity by a given supplier.

The undiscounted value of any particular project of principal ¢ is denoted
by v; (T;) > 0, where T; is indexing the projects of each principal. The projects
are ordered inversely by the index T3, i.e. v; (T3) > v; (T; + 1) for all 7 and all
T;. We refer to this set-up as the decreasing returns model. Denote by T; (t)

the number of services provided to principal 7 until and including period ¢. The
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state ; in period t is then simply the vector of counting times
0,=(T(t-1),Te(t-1),.,Tr(t—-1))3 (20)
An allocation policy is given by
a:9 — A,

where the action associates to every state 6 a subset of principals whose projects
are realized in t, which in turn generates a new vector 6;11 =(T1 (t), T2 (t), ..., T (t))-
The agent is free to supervise more than one project of any given principal at
any given period. An allocation policy a(-) is socially efficient if it maximizes

the discounted payoff over time:

oo I Ti(t)
max Z &t Z Z vi (T2)
a() 15 i=1 T;=T;(t—1)+1

The socially optimal policy in this environment is simply to select in every

period among the remaining tasks the n tasks which yield the highest payoff.
We characterize the equilibrium of the scheduling game using techniques

suggested by Theorem 3 and 5. The optimal policy assigns every project T; by

principal ¢ its rank 7 in the sequence of all realized projects:
7i : N— NU {oc}, (21)

where 7; (T;) = oo means that project T; of principal ¢ is never realized by the
optimal policy. The assignment 7; for every ¢ implies that the value v, of a

project of rank 7 is equal to v (T3) if and only if 7; (T;) = 7:
vr =0 () & () =7.

In the following it will be more convenient to use the one-dimensional order

7 and the associated value v, induced by the optimal path, rather than the I

3The identification is unique if, as we assume, principal i can only realize the projects in
the order specified earlier. This is without loss of generality as it is optimal, both privately

and socially to first realize the project with lowest remaining T;.
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dimensional vector of counting times (71, ..., T7). Since the agent can employ
up to m projects in each period, the index 7 runs at n times the speed of real
time. To write the value functions using the ranks given by 7 but respecting
the true discounting, we need to introduce the function ¢ (7) that gives the real
time period in which the project with rank 7 is employed under the allocation

policy that always chooses the n projects with the lowest rank. To this end, let
T
t(r) =max{t|t€N, t< E}'

The social value under the new clock 7 is then given by

W (1) =) 6471y, (22)

s=T
Define the counter Tj (1) to keep track of how many times principal 7 has ob-

tained the services of the agent under this new and faster clock 7:
T (1) 2 {#s|vs =v: (), s<T. }.
Associated with each counter T; (7), is an accelerated counter:
oi(T) 2min{s|s—T;(s)=7}.

The counter o; (7) associates with to 7 and v, another time o; (7) and corre-
sponding allocation v,,(,). The counter o; (7) accelerates T by excluding prin-
cipal 7 from the set of alternatives. It is needed when calculating the marginal
contribution of principal 7. The counters T; (7) and o; (7) can be localized by

starting them at an arbitrary v > 0:

Ti(tly) 2 {#slvs =vi (), y<s<T. },

and

oi(rly) £min{s|s—T;(sly) =7}. (23)

Consider then the optimal policy in the absence of principal i. As the rewards

are decreasing over time, the optimal policy is simply to accelerate the original
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policy. By scheduling alternative o; (7) instead of 7, the value of the remaining
program is

oo
W—z‘ (T) — Z,Bt(s)—t(‘r)vai(sh)-

s=T1

The marginal contribution of principal i is given by

M;(r) = Zﬂt(S)—t(‘r) (,U.9 _ 'Uai(sl-r)) , (24)

8=T
and the flow marginal contribution is

[e <]

m; (T) = Zﬁt(s)-_t(f) ('Uo'i(sl-r+1) - 'UO‘,'(.S!T)) ) (25)

s=T7
with the convention that
Voi(rir+1) = Ur-

Consider first the situation where n = 1 and each principal has a single
project requiring the assistance of the agent. With n = 1, we have t (1) = 7 for
all 7. The socially optimal arrangement is to order the principals according to
the value of their project. We identify principal ¢ with the time 7; at which the
project is realized optimally. Since each principal has only one project we have
oi(s|t+1)=sand o;(s|t) =s+1 for all s > 7 if 7 = 7;. The flow marginal

contribution can then simply be written as

mi (1) = Y BT (vs — Vst1),

s=T4
if 7 = 74, and zero otherwise. The immediate contribution of principal ¢ is the
difference in value between v,, and the next best project v,, ;. But the avail-
ability of project v,, also allows to postpone all future realizations by exactly
one period. As these benefits only occur in the future, they are appropriately
discounted, but they have to be attributed to principal ¢ in 7;, since after its
realization in 7; its benefit is sunk. The marginal contribution of principal 7 is
then simply M; (7) = 87 "m; (1:) for 7 < 1;, M; () =0 for 7 > ;.

The question is then whether principal ¢ is able to realize her marginal

contribution in equilibrium. By Theorem 5, this is equivalent to satisfying the
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inequality
W (1) - W (r|k) > (Mi(r) — Mi(T|k)). (26)
=
Without loss of generality, assume 7 = 0. The realization of task k in period 0

entails delaying the efficient plan by one period until period & . After k, the two

plans are identical. The net change in the social value is thus:

k-1
W(©0) - W (Ok)=(1-8) B — (1-8°)w 27

8=0
The change in the marginal contribution for principal ¢ is due to the postpone-
ment of its realization, and we have

k-1

M; (0) = M; O[k) = (1= B) 57 3 B (vs — vat1) . (28)

The early realization of vy has no private benefit to principal i. Notice that the
marginal contribution of principal ¢ with 7; > k is not affected by the change
from the optimal policy to the modification by k, as the time of its realization
remains unchanged. Since M; (0) — M; (0|k) > 0, the inequality (26) is most
demanding for S = {0,1,....,k — 1}. After inserting (27) and (28) and dividing
by (1 — ) we can write (26) as:

k-1 k=1 k-1
Z (ﬁsvs - ,Bkvk) 2 Z Z ﬂs ('Us - 'Us+1) . (29)
s=0 7i=08=7;

The lhs of (29) expresses for every vy with s < k, the value difference between

v, and vy in the optimal program:
ﬂsva - ﬂkvk 2 0.

The rhs also presents for every v, a differential expression between v, and vy,
but it proceeds in steps v, — v,;41 which accumulate less value as they are
increasingly discounted. This reflects the value difference between v, and vy
in terms of the marginal contribution. Since the marginal contribution only
picks up the inframarginal differences in every period, it follows directly that
the inequality (26) holds.
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The equilibrium payoffs are computed with the assistance of the marginal
contribution. Principal i receives in 7; his marginal contribution m; (7;). The

agent receives in 7; the residual:

o0
vr, —mi (Ti) = Vrip1— Z 6% (Vs — Vs1)
s=T;+1
oo
= (1-6) ) & v,
s=Ti+1

which is the value of the next best project minus the future marginal contribu-
tion of this alternative. Equivalently, it is the average flow value of the sequence
of all future projects. The truthful equilibrium strategies are also represented
with the assistance of the marginal contribution. We restrict ourselves to the
on-the equilibrium-path strategies and the state 8; can simply be represented
by time t itself. Consider first principal 7 who already realized her project along
the equilibrium path and 7; < ¢. Her future payoff is M; (t +1|u) = 0 for
all current allocations u, not necessarily equal to ¢, and hence the requirement
for a truthful strategy is r; (t,t) = r; (u,t) and the only best response is to set
the rewards r; (¢t,t) = r; (u,t) = 0. Consider then any principal who along the
equilibrium path realizes their project after ¢, or 7; > t. A truthful strategy

requires that

—ri (u,8) + BM; (¢ + 1]u) < —ri (8,8) + BM; (¢ +1]t), for u # 7,

vr, — i (T4, 8) < —ri (t,t) + BM; (t+1}t), for u=T,.

For all u < 7;, we showed earlier that M; (t + 1|u} = M; (¢t + 1|t), and hence
i (u,t) = r; (¢,t), and the only best response is again to set r; (u,t) = r; (¢,t) =
0. Finally, the direct reward offered to the agent for the realization of project ¢
is given by

i (Ti,t) = vr, — 87 'my (14), (30)
in which principal i offers the agent the entire difference between her marginal
contribution m; (7;) which she receives in 7; and the value of the project to-

day. It follows that in equilibrium, each principal offers transfers only for the
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realization of her own project, and no other transfers. The rewards offered by
(30) allow us to verify that the agent is in equilibrium indifferent only between
projects t and t + 1, and the indifference is resolved in equilibrium in favor
of project t. Thus, while the principals can offer general reward schemes, in
equilibrium they offer non-trivial rewards only for the realization of their own
projects. It follows that the marginal contribution equilibrium is also an equi-
librium in a more restricted bidding game where each principal can only bid
for services provided directly to her. We summarize the results for the general

model.
Theorem 7
1. The dynamic scheduling game has a unique truthful equilibrium.

2. Each principal i receives in period t:
> mi (7)
V{r|t(r)=t,T:(r)#Ti(v-1) }

8. The agent receives in period t:

> (w2 > min)

{r|t(r)=t} €T {7|Tu(r)#Ti(r—1) }

Proof. See Appendix. B

The extension to many principals with many tasks faces at least one poten-
tial difficulty, which we briefly illustrate. With a single project, each individual
principal receives the marginal contribution of the project as her payoff. When
one principal has multiple tasks, the marginal contribution of all her tasks gen-
erally exceeds the sum of the marginal contributions of the individual tasks.
Consider, e.g. a model with two principals, one with a single task of value 1,
the other with two task of values 2 and 1, respectively. The marginal contribu-
tions of the projects are then 62,1+ 62 and 62 respectively, but the marginal
contribution of the second principal is 1+ 6+ 62 > 1+ 262. The first principal is
willing to pay the agent 1 — 62 in the first period. In the unique truthful equi-
librium of this game, the second firm pays only 1— 4, but the agent accepts this
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lower payment since scheduling the first firm’s project would make it impossible
to obtain any future payments as firm 2 would face no competing projects and
thus extracts all surplus. By scheduling the second firm’s task first, the agent
makes sure that she receives a payment of 1 — § in the next period as well.
Thus, even though the marginal contributions of the projects of principal i do
not satisfy weak superadditivity, a marginal contributions equilibrium exists.
We conjecture that the theorem can be generalized to an arbitrary and not
necessarily decreasing return model, as long as the returns v; (T;) for principal
i depend only the history of her own projects. The extension would rely on

techniques to be introduced in the next example.

6.2 Job Matching

The second application we consider is a model of job matching under uncertainty
as first introduced by Jovanovic (1979). Each principal ¢ has an employment
opportunity for the agent. The productivity of the agent in the job offered
by principal ¢ is v; (6;). The state variable §; may represent the information
in period ¢t about the agent’s productivity in different jobs. While the agent
is employed by at most one principal at any point of time, he may change
his employers over time as more information about the quality of the various
matches becomes available. We refer to the assignments over time as the career
path of the agent. The agent may have a variety of talents, and for this reason
future employers may have preferences over his current employer. This may in
turn prompt future employers to influence the agent’s current assignment by
offering rewards conditional on his current choice. The following example may
illustrate the interaction between current and future employers.

There are three principals with whom the agent can work and two states
of the world. In w; the productivity of the agent is (5,4,0) and in state ws it
is (5,5,7). State w, is as likely as state we and suppose that § = 1/2. The
productivity of the agent is thus initially known with principal 1, but unknown

with principal 2 and 3. However, after the first match with either principal
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2 or 3, the true state of the world is revealed and the productivity with both
principals becomes known. The efficient career path is for the agent to first work
with principal 2 and then switch either to principal 1 or principal 3 conditional
on the information arising with the experience of the match in the first period.
The match with principal 2 is as informative as the match with principal 3,
but as the expected return with principal 2 is higher, the optimal match in
the initial period is with principal 2. The marginal contribution is M; (0) = 3,
but due to the correlation M3 (0) = 3 as well. Thus a marginal contribution
equilibrium cannot exist. The failure of the marginal contributions to be weakly
superadditive leads to multiple equilibria. The following contributions form the

set of truthful equilibrium schedules in period 0:
3
1 (,0) (41101 0)
T2 (!0) (0,4+1‘,0)
r3(-,0) = (0,1—x,4% —:c)

{l

forany x € [0, %] . For every z, the principals 2 and 3 achieve their joint marginal
contribution, and for the extreme points of the interval, either principal 2 or
3, respectively also obtain their individual marginal contribution, but at the
expense of squeezing the surplus of the other principal to 0.

Suppose next that we would restrict attention to contribution schemes in
which transfers only occur in concurrence with match formation. We refer to
transfers satisfying this restriction as spot wages. Then the only equilibrium
using truthful strategies is the match formed between the agent and the first
principal. In this equilibrium all principals offer wages r; (i,t) = 4% and the
agent selects the first principal in every period.

This example suggests that the existence of a marginal contribution equi-
librium requires independence in the information structure across the different
principals. We shall call jobs independent if () the state variable 6; can be
represented by a vector ; = (Otl, ey OF ), (1) the productivity in job i satisfies

v; (@t) = v; (8;) for all 8, with 9: = 6! and (iii) 6 = &) 41 if the agent works
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with principal 7 in period t for all j # i. The optimal solution of the match-
ing problem with independent jobs can be characterized by dynamic allocation
indices developed in the theory of multi-armed bandits (Whittle (1982)). The
independence structure implies in particular that the order in which the agent
should pass through the (remaining) jobs is not affected by the removal of any
particular alternative j. As a consequence, the flow contribution of all but the

matched alternative are zero.
Theorem 8

1. The stochastic job matching model has a unique truthful equilibrium.

2. The employing principal i receives: m; (0:) = v; (6;) — r; (3,0:) and all

other principals receive m; (6¢) = 0.
3. The agent receives only spot wages: v (i,0¢) = 7; (i,6¢).

Proof. See Appendix. l
With independent jobs a marginal contribution equilibrium exists, and due
to the structure of the flow marginal contribution, it can even be sustained by

spot wages. The flow marginal contribution of the efficient employer i is
m; (0¢) = v; (0:) — vj_, (6:) + 6W_; (3,6:) — 6W_; (-4, 60¢),

where j_; is the efficient match in the absence of i. The flow contribution of

any inefficient employer j is
m; () = v; (6¢) — v; (8:) + 6W_; (3,8,) — W_; (3,8;) = O,

since the absence of j doesn’t change the optimality of the match with ¢ in 6;.
The payoff for employer i therefore consists of two parts: (¢) the productivity
difference between the job offered by i and the next best job j_;, and (iZ) the
intertemporal component: §W_; (i, 6;) — 6W_; (§—_:, ;). With independent jobs
W_; (3,0:) = v;_, (6¢) + 6W_; (j—i,0:), since more information about 7 is with-

out value when considering the optimal match structure for all jobs but ¢. Since
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the value functions W (#;) and W_; (6;) are convex in 6; due to the value of
information, it follows that §W_; (2,6;) — 6W_; (j—i,6:) < 0 and hence the in-
tertemporal component represents the opportunity cost for the coalition 7\ to
match with 4 rather than with j_;. If the set Z contains only two alternatives
{i,7}, 6W_;(¢,8¢) — 6W_;(4,6:) = O for all 6;, and the flow contribution re-
duces to the static productivity differences. We can conclude that the only
transfers arising in equilibrium are the direct payments from current employer
to the agent. The marginal contribution equilibrium is therefore also a subgame
perfect equilibrium of a game where no other transfers but wage payments are
permitted.

In this context, the common agency framework can be regarded as technical
device to analyze dynamic games with a Bertrand type pricing structure. The
analysis of the job matching model with I alternatives is rather intractable as
pricing policies (here wage offers) depend on the continuation values over which
very little can be said in general. In contrast, the detour via general reward
schemes allows us to first establish efficiency. The intertemporal structure of
the marginal contributions leads in a second step to the conclusion that simple
Bertrand prices (here spot wages) are sufficient to form the equilibrium with
the structure established in the first step.

In the context of the job matching model, we conjecture that the order
independence in the match formation, which lead to at most one nontrivial
flow marginal contribution being different from zero, is also a necessary condi-
tion for a marginal contribution equilibrium to exist. Similarly, we expect any
equilibrium in spot wages to be inefficient without order independence in the

alternatives.

4This result is first stated in Bergemann & V#lim#ki (1996) and for a continuous model in

Felli & Harris (1996).
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7 Conclusion

This paper considered common agency in a general class of dynamic games
with symmetric information. By focusing on Markovian equilibria, a detailed
characterization of the equilibrium strategies and payoffs was possible for this
class of games. As in the static analysis by Bernheim & Whinston (1986a), the
link between truthful strategies and the social value of various coalitions was
central in obtaining the results. In the dynamic context the link is even more
valuable. The continuation payoffs which determine the current bidding strate-
gies, are themselves endogenous to the equilibrium and hence of little help in
determining the equilibrium strategies. In contrast, the marginal contributions
are defined independently of equilibrium considerations.

As the “first price” menu auction represents a model of competitive bidding
over a general set of possible allocations, the model presented here is sufficiently
general to accommodate various dynamic bidding games. Even if the set of
feasible transfers permitted by the menu offers is considered too large for some
applications, the menu offers may provide an essential tool for solve for an
equilibrium with transfers of considerably smaller dimension, as exemplified
with the job matching model.

The analysis is less complete in investigating the notion of coalition-proofness.
In the static environment, the class of coalition-proof equilibria coincides with
the notion of truthful strategy. In a dynamic setting, coalition-proofness is basi-
cally an extension of renegotiation-proofness to more than two players by requir-
ing the equilibrium to be renegotiation-proof to stable coalitions. As there is no
general agreement on the appropriate notion of renegotiation-proofness even in
the two player case, we use an extension of the weakest notion of renegotiation-
proofness as defined by Farell & Maskin (1989). An open question in this
context is how different non-Markovian equilibria are from Markovian, when
we insist on coalition-proofness. Since common agency games have transferable
utility, all intertemporal utility transfers can take place in a single period. As

coalition-proofness leads to efficient allocations relative to the set of feasible
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allocations, the two facts together may point to an equivalence result between
Markovian and non-Markovian coalition-proof equilibria in dynamic games with
transferable utility.

We restricted our analysis to symmetric information environments. Bern-
heim & Whinston (1986a), however, observed that in the static context with
two bidders for a single good, the principals net payoffs are equivalent to the
equilibrium net payoffs of the Groves-Clarke-Vickrey mechanism with incom-
plete information. Recent work by Dasgupta & Maskin (1998) showed how the
Groves-Clarke-Vickrey mechanism can be extended to many goods. It is an
open question for future research to what extent the equivalence in the pay-
offs between the first price menu auction and the auction mechanism under
incomplete information can be extended to sequential bidding problems with
incomplete information. In this context, it should be noted that the asymmetry
of information between the principals is to be distinguished from the analysis
of Bernheim & Whinston (19866) or Martimort (1996), where moral hazard or

adverse selection is due to a better informed agent.
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8 Appendix

This section contains proofs to all theorems and propositions stated in the main
body of the paper.

Proof of Theorem 1.1. (<=) Suppose that Zie sMi < Ms. Set n; = M;
for all i, and by hypothesis ns < Ms. Moreover, lowering n; for a subset S,
with i € S doesn’t permit the increase of any other n;, j ¢ S, asn; = M; is a
binding constraint and hence uniqueness follows.

(=) We prove the contrapositive: If for some S C Z, Y, M; > Ms, then the
equilibrium allocation is not unique. It is convenient to distinguish two different
cases: (i) for all 4, S with i € S, M; < Mg, and (%) for some %, M; > Ms. We
start with () and construct two distinct equilibria with the greedy algorithm.
Define n; £ Mj, and in general

m S i M,

where

M:g = Ms - E nj,
JES,j<i

then one can verify that the induced allocation {ny,ng,...,nr} is an equilibrium
allocation, with, by hypothesis, ny < M;, for some ¢ > 1. Consider next a
permutation o : Z — 7 such that ¢/ — 1. By applying the greedy algorithm
to the new ordering, we again obtain an equilibrium allocation, but clearly
Ng(i) = My (i) which is distinct from the previous allocation. The case of (1) is
even easier. Suppose without loss of generality that for ¢ = 1, M; > Mgs. Then
set

ny = min Mg,
{8,185}

and for the remaining allocations apply the greedy algorithm as before. Then
there necessarily exists some ¢ > 1 with n;; = 0. By a similar permutation ¢
as before, 0 : T — Z, and o (i') = 1, we obtain r,(;) > 0, and have hence again
obtained a distinct equilibrium allocation.

2. The characterization n; = M; follows directly from the proof of 1.
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3. It is sufficient to prove that (5) is a sufficient condition for (4). Consider
sets S,7 C I, and suppose that (5) holds, then we have for any 81,82 C S,
SiNS =0, SNT =0,

Mg, + Ms, £ Mg and thus

Ms, + Ms, + M1 < Msur.

As we continue to split up § and 7 until we have coalitions consisting of single
principals on the left hand side, we obtain
> M; < Msur,

i€eSUT
which completes the claim. H
PI;OOf of Theorem 2.1. By the assumption of Markovian strategies, the con-
tinuation values for the agent and the principals depend only on the action a;
inducing the transition from 8, to 6;1. This implies by Theorem 2 and 3 of
Bernheim & Whinston (1986a) efficiency.
2. The equilibrium value function V; (#;) of principal i are required to satisfy

the following set of equalities, Vi,

I
Vi(6:) < H;%X{v(atﬂt)—C(at,et)+Z5Vk(at,9t)} (31)

k=0
—max § v—; (at, 8¢) — c(ar, ) + > 6Vi (ar, 6:)
t k#i
and inequalities VS C Z,

1
EV,-(et) < max {v(at,0t)—6(at,9t)+Z5Vk (at,at)} (32)

i€S =0

—max {U—s (at, 0:) — c(as, 6:) + Z5Vk (at;ot)} ,

k¢S

Since all thruthful equilibria are efficient by 1. we have the identity:

I
W () = max {v (ae, 0¢) — c(ar, 0:) + > _ 6V (s, ot)} .

k=0
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Next we argue by contradiction. Suppose the inequality (15) doesn’t hold for
some S, but the inequalities (31) and (32) are still satisfied. Then there 3¢ > 0
such that

D Vi(6:) — Ms (6) > e, (33)
1€ES

and a fortiori

W(Ht) - n}lat.x {'U_S (at,Bt) - c(at,é’t) + Z&Vk (at,ﬁt)} - MS (Ot) > €,
k¢S

or equivalently

w (Ot)—nllla:x {v_s (at,0¢) — c(ag, 8¢) + Z Vi (ae, Gt)}—ms (6:)—6Ms (a,8:) > &,
) kgs
(34)
with mg (6;) as defined in (13). Since the inequality in (34) holds for the
maximizing a; in (34), it has to hold for a_s as well, so that (34) may be

rewritten in this instance as

§W (a,0:) = > 6Vi (a—s,0:) —SW_s (a,6:) +6W_s (a_s,0:) —6Ms (a,6;) > e,

k¢S
(35)
and since .
W (a,8;) = 6W_s (a, ;) + 6Ms (a,8:),
it follows from (35) that
€
W—S (a—Sa at) - Z Vk (a—Sa 0t) > 2,
k¢S
which is equivalent to
€
> Vila_s,6:) — Ms (a-s,6,) > 5. (36)

i€s
But by repeating the argument, which we started at (33), it then follows that
the equilibrium value for the set S of principals increases without bound along
some path (8¢, 60¢+1, ...) which delivers the contradiction as the value of the game
is finite. I
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Proof of Theorem 3. (=) If the truthful equilibrium is unique, then the
inequalities which present an upper bound on the equilibrium value of each

individual principals must be satisfied as equalities for all ¢ and all 6, or

Vi (6:) = W (6,) — max { v_; (ae,0e) — c(ar,00) + > 6Vi(ar,0:) p . (37)
ki

Suppose then in equilibrium at least one principal receives a value less than his

marginal contribution, or 3¢ > 0 such that
M; (6:) — Vi (6:) > . (38)

We now argue that there must be some action a; such that the discrepancy

between marginal contribution and equilibrium value increases such that
€
M; (at,é?t) - ‘/1 (at,Ot) > 5

By the hypothesis (38), it must be that

n}lax {’U_i (at, 0t) — c(at, et) + Z&Vk (at, Gt) -V (Gt) > E.
¥ ki

Suppose in all continuation games following 8; and an action a, we have

£

Vi (a,8:) = M; (as,6:) 5’

then

a_; €arg max {v_i (at,0¢) — c(as, 6:) + Z&Vk (as, Ot)}
o ki

and the following equality holds:

v_i(a_i,0:) — c(ai, 0s) + Y Vi (ai,0e) — Vi (8:) = €.
ki

It then follows immediately, that there must be at least one action a; such that

M; (at,8:) — Vi (as, 8:) > %

By repeating the argument, we then come to the conclusion that the marginal
contributions of principal ¢ grows without bounds, since V; {at, ;) > 0. But this

is a contradiction to the fact that the value of the game is bounded.
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(<=) Suppose the marginal contribution equilibrium is a truthful equilibrium,
but it is not the unique truthful equilibrium. It then follows that for some 6,

and some S, the inequality

D Vi(6) SW(6:) - max {v_s (a¢,0r) = ¢ (as, 82) + 8W (as,6:) — 6V (as,64)},
= (39)
holds as an equality and 3i € S such that V; (6:) < M;(6;). By Theorem 2,
Vi (6:) > M, (0;) is impossible. By hypothesis a marginal contribution equilib-

rium exists and hence continuation values V; (as, ;) = M; (a¢, 6;) would satisfy

(39) as a strict inequality:

D Vi(0) <W (8)—max {v_s (ae,0¢) — c(ar,0;) + 6W (az,6:) — 6 > M; (as, ot)} ,

i€s €S
It then follows that Ja; € A: and € > 0 such that the continuation value of the
principals V; (a4, 8;) for i € S satisfy
> Mi(ar,0:) = > Vi(ar,6:) > /6. (40)
€S €S
It follows that there is at least one state 6,1 which is reached from 6; and a:

with strictly positive probability so that

D Vi(Ber1) S W (8e41) —

ies
max {v—s (@t+1,0t41) — c (@41, 0e41) + W (a41,0841) — 6 Z Vi (at+1, 9t+1)} ,

but by (40) and the existence of a marginal contribution equilibrium, it follows
that Jas41 € Agyqq such that

ZMi (at,6;) — ZV,' (at,6¢) > 6/62,

= =
and by repeatedly applying this argument, we conclude that the hypothesis of
multiple truthful equilibria leads to a contradiction, since marginal contribution

and equilibrium value are both necessarily finite. Bl
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Proof of Theorem 4. The proof is by contradiction. Suppose for some S and

0;, we have

> M;(8:) > Ms (6:) = W (6:) — W_s (8),
iES
but the inequality

Z M,; (Ot) S w (Ot) - II‘lli}X {’U_S (at, 0t) - c(at, et) + Z 6Vk (at, at)} y (41)

€S kgS
still holds. It then follows that for some € > 0

W_s (6:) — max {v—s (at,0:) — c(at,6:) + Z 6Vi (anot)} > g,
‘ kgs

and in particular for a; = a_g,

SW_s (0t41) — 6 (W (B241) — Z M; (9t+1)> > €,
ies
or

€
zMi (0¢41) — Ms (6¢41) > 5
€S
But if the inequality (41) is still to hold in period t+1, then it necessarily follows
that
£
W-s (6¢41)—max {U—s (at+1,0e41) — € (@es1, 0641) + ) Vi (ass1, 9t+1)} > %
k¢S
and as before this in turn implies that
€
ZM,; (9t+l) — Ms (6t+1) > ?
i€ES
By repeating this argument we come to the conclusion that the marginal con-
tributions of a fixed subset S of principals grows without bound which is a
contradiction to the fact that the value of the game is bounded. B
Proof of Theorem 5. By Theorem 3 it suffices to show that {M; (6:)};cr
satisfy the following set of equalities, Vi,

I :
M;(6;) = n}lz:.x {v (as,0:) — c(as,0:) + Z&Vk (as, Ot)} (42)

k=0

kti

—max {U—i (a¢,0t) — c(as,6:) + Z5Vk (at,Ot)}
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and inequalities VS C 7,

I
ZM,; (Gt) S rr}letlx {’U (at, Ot) — c(at,Ht) + Z&Vk (at, 0t)} (43)

€S k=0
— max {U—s (at, 0¢) — c(ar,60) + Y _ 6Vi (as, 0t)} ,
k¢S
if and only if the conditions in (16) are met. By hypothesis Vi (a:,6:) =
My (a:,0:) for all k > 0. For notational ease, we omit that a; is restricted
to a; € A(6;). We start with the set of equalities (42). Since all thruthful

equilibria are efficient by Theorem 2 we have the identity:
I
W (8,) = max {v (at,0:) — c(as,6:) + ZéVk (at, Ht)} .

k=0

Consider next the term

max {v_,- (ae,0¢) — c(ar,60) + > 6Vi (at,Ot)}

k#i

which can be written as
max {v_i (as,0:) — c(as,0:) + 6V (ar,0;) — 6M; (as,0:)} = W_; (6¢),

where the equality follows from the definition of the marginal contribution in (1)
and hence the equality in (42) is satisfied. Consider next the set of inequalities
(43):
EM,- (0:) < W (6:) — max {v_s (at, 0:) — c(at,6:) + Z 6V (a, Gt)} . (44)
i€S k¢S
We denote the socially optimal action a; = a and an action a; maximizing the
program in (44) by a_gs. If for any group S, a_s = a, it follows that
> mi(8:) = vs (a,6:),
€S
and hence the group as an aggregate is not making any net contributions to
7\S, and (44) is satisfied. Suppose next that a_s # a, then (44) is equivalent
to

> M; (6:) < W (6:) - max {W (6t |ar) — vs (as,0:) — Y 6M; (at,Ot)} . (45)

i€ES €S
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Since the inequality has to hold for the action a_s which maximizes the payoff
inside the bracket, it follows a fortiori that the inequality has to hold for an

arbitrary action a;. Then we may write (45) as:

> " M; (6:) — vs (s, 00) — > 5M; (ar,6:) < W (6e) — W (B¢ |z ),
i€ES €S

or equivalently

D (Mi(6s) — M; (6 laz)) < W (6:) — W (¢ |ax ),
ics

which completes the proof. ll
Proof of Corollary 2. It suffices to show the equivalency of (16) and (19).
The inequality (19) can be written explicitly as:

> " mi(6y) < (W (6:) — > 6M; (at,ot)) —max {W (B¢ lar) — > 6M; (ax, 0»} ,

i€ES i€S i€S

which is equivalent to

max (W (6elac) = 6M; (a, at)) SW(6:)— > Mi(a:,6:),

i€S €S

and since the equality holds for the maximizing action a_g, it holds a fortiori
for all a;. B

Proof of Theorem 6. Fix a strategy profile (a,r) and the associated set of
continuation profiles £. The vector of continuation payoffs for a given history
heis V (he) = (Vo (he) , Vi (ht) , ..., V1 (he)). We define the set of all continuation
payoff profiles in the state 6 by £y (8). The vector V (k) € Ev (0) if 6 (he) = 6.
1. Consider an M PE (a,r) in truthful strategies. By the Markovian restriction,
the set £y (#) consists of a singleton for every 8. The equilibrium (a,r) is
then a dynamic coalition-proof equilibrium if it is a coalition proof equilibrium
for every 6; and associated (intertemporal) payoffs V; (6;) which are uniquely
defined by the singleton property of &y (8). As the equilibrium is truthful at
f; with continuation payoffs V; (at, 8:), it follows by Theorem 3 of Bernheim &
Whinston (1986a) that (a,r) is also a dynamic coalition equilibrium.
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2. Consider a dynamic coalition-proof equilibrium (a, r) in Markov strategies.
The set £y (0) is a singleton for every 6 by the Markov property of the strategies.
It follows that the dynamic coalition-proof equilibrium is also a coalition-proof
equilibrium for every 6; and associated continuation payoffs V; (a¢, 6;). By The-
orem 2 and 3 of Bernheim & Whinston (1986a) there is a truthful equilibrium at
6; and relative to gross payoffs v; (as, 6:)+6V; (at, 0:) and —c (az, 6;)+6Vo (a, 6:)
which is payoff-equivalent. And since there is a truthful equilibrium at every 8,,
it follows that there is an M PFE in truthful strategies. ll
Proof of Theorem 7.1. By Theorem 5, it is sufficient to show that the
inequalities

> (M (t) - M; (tlar)) S W (8) — W (t|ar), V£,VS, Vay (46)

€S
are satisfied. The action a; is any suboptimal task allocation a; = (¢1,te, .., ts)
where t; is the time of appearance of action component ¢ along the original
efficient sequence. Let t; < t2 < ... < tp, and t{tx) > tforal k=1,..,n and
at least one t, with t(tx) > t. Notice that SN{¢|T; (tx) # T; (¢t — 1)} = 0.
Without loss of generality, let ¢ = 0. Choosing task v;, earlier than optimal
changes the timing of the remaining tasks and we introduce a new set of counters
to track the modified sequence starting with a¢ and followed by an optimal

sequence. Let

T(r) 2 {#kl|t <7}

and define the accelerated time after using up (71,72,..,7n) in t =0 by
7(1) émin{sls—ff"(s) =7'},
and define also for all i:
G, (1) émjn{s’.s:—f’(.s;) —T: (s) :7'}.

The value W (0|ap) is given by

n th—n 0o .
WOlao) = v + 3 6 oy + Y 8y, (47)
k=1 =0 T=t,+1
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The marginal contribution of principal ¢ € S along the path that starts with ag

is:

ty—n oo
M; (0 |a0) = Z (5t(T+n) (U.;-(.,-) - 'U&i(.,-)) + Z 5t(T) (’U-,- - 'Ua,»(—r)) . (48)
=0 T=t,+1

Using (22)-(24) and (47)-(48), inequality (46) can be written as:

t, n tn—m
Zét(")vr - Zv,-k - Z s 0
=0 k=1 =0
> (49)
ty. t,—n
Z (E 5§t (’U-r — v, (T)) _ Z sHT+n) (v%(T) — v, (T))) .
i€s \r=0 =0

Notice first that
T; (tn) =0= M; (0) =M; (0|a0),

which allows us to truncate the problem at 7,,. Moreover for all i with T; (¢,,) >
0, it follows from (24) and (48) that M; (0)— M; (0|ag) > 0. We can then choose
S without loss of generality to be maximal, or S =Z\ {i|T; (¢x) # Ti (tx — 1) }.

Define the truncated value function by:

t,—T(t,)
weos > 8" os(r), (50)
=0
where
T if =1i(T )
Drry 2 { v M plr) =E(F(r) (51)
0, if t(r)#t(F(1)).

In the truncated program, we need to track only the contribution of principal
i which is not equal to zero according to (51) as all other elements cancel out.

The truncated value W_; (0) after excluding the principal i is defined similarly:

To—Ti(Tn)=T(1s)
W_; (0) & Yoo 80, (52)

=0

where

5. &) Ve if t(r)=t(o71(64)),
"7V 0, i () £t (071 @),
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where the inverse function ;! (4;) identifies the time at which the alternative
&; is realized in the modified program relative to T = &;!(4;). Using the
truncated value functions introduced in (50) and (52), we can rewrite inequality
(49) as:

n

1-Ow©O -3 (1 - 5t<tk>) Ve

k=1

v

> ((1 — W (0)+ i&t(t’“)vtk —(1-8W_;(0) - anat(tk*mtk))vtk)

€S k=1 k=1
and after dividing by (1 — &) and collecting terms further we get
. 21— &)
W)= ——5 v

=1

v

(83)

) ) n (1 - 5t(T.-(tk))) SHTe=Tu(tx))
> (W(O)—W_,-(O)—Z — v.,-k).

€S k=1

The term W (0) — W_; (0) is simply the truncated marginal contribution M; (0)

which can be represented by the truncated flow marginal contributions:

tn_T(tn)
M) = 3 &Tmi(#(n) (54)
=0
which are of the following form:
tu—Ti(tu|#(7)) i
)= Y, FOTO (G rryr) — Doueirry)  (55)

s=F(1)

with the localized counter:

&:(vIr) 2min{s|s =T (sr) — T (s|r) =7},
and the flow values defined by

ooy 2 { Vsilrery) i t(y) =t(F (7)),

0, if t(y)#t(F (),
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-

and s
Voiairryy I t(y) =t (071 (83)),
0, if t(y) #t(o7!(6:)).

The difference between 9;,.) and 9,.) is that the cancelled terms arise in

ba:(r1#(r)) =

the first expression from the program with all principals and in the second
term from the program with all principals but i. For any given 7 (7) with
(1) = 6;(F (1) |7 (7)), it is verified that 7h; (7 (7)) = 0. Hence for an arbitrary
set S, any v;(,) makes at most one nontrivial contribution. On the other hand,
for any 7 with 7 (7) < &; (F (7) [¥ (7)), 7 (7 (7)) can be represented by a sum

of the form

L
> 8 (- y) (56)
=0

with the following properties: (¢) ¥ > Y141, (#4) yo = vr, (488) YL > Ve _Ti(ra]?(r))»
(iv) yr+1 = 0, (v) ng = 0, and (vi) n; < ny4y. All properties follow directly from
(55) and the fact that the optimal sequence v, has decreasing values. Consider

then the rhs of (53) after inserting (54):

t,—T(tn) n (1 - 5t<T,-(tk>)) t—T5(t))
Z 6t(T)m‘F(‘r) (’f' (7')) - Z 1 — 6 ’Utk.
T=0

k=1

It then follows that with every ms(,) (7 (7)) on the right hand side of (53) we
can associate a sequence of positive but increasingly discounted differences of the
form displayed in (56) where y11 is replaced by vz, with 7, = min {¢g |[tx > 7(7) }.
This representation exhausts the rhs of (53). But for every v, and associated
terms on the rhs we can find one and only one term §%™ (v, — v;,) > 0 on the
Ihs, which weakly dominates every corresponding term on the rhs and hence the
inequality follows.

2. and 3. The payoff characterization follows immediately from Theorem 2
in conjunction with Theorem 3. B

The proof of Theorem 8 is facilitated by first proving the result for the
deterministic model. The stochastic version is then shown by first creating a

deterministic version for every sample path w, which satisfies all the properties
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of the deterministic model, and then showing that all the important properties
are preserved when taking expectations.

Consider the following deterministic matching problem. Each principal ?
has an employment opportunity for the agent. The productivity of the agent in
the job offered by principal ¢ is v; (T};), where T; is number of times the agent
previously worked with the principal. The productivity v; (-) is an arbitrary
function of past history T; with the principal i. In particular we don’t assume
monotonicity in T;. This model is a deterministic version of multi-armed bandit
model. The optimal policy is an index policy, where the index ¢; (T;) is given
by

T_ ' 6(3—Ti) ;
¢ (T; (t)) = max lzgi - 5(3_;,(3) Ti(t)] - (57)
The alternative ¢ which has the highest index at T (¢) = (T1 (¢) , ..., T1 (t)):
¢ (t) £ max {¢; (T: (1))} (58)

is selected. See Whittle (1982) or Karatzas (1984) for more details.
Theorem 9

1. The deterministic job matching model has a unique truthful equilibrium.

2. The employing principal i receives: m; (6:) = v; (0:) — ;i (3,6:) and all

other principals, j # 1, receive m; (6;) = 0.
3. The agent receives only spot wages: r (i,0;) = r; (i,6;).

As the proof is rather lengthy, a brief overview is given first. At the center of
the proof are two infinite sequences, one generated by the optimal program, the
other by the program with a single deviation. The inequality to be established
is between the difference of these two sequences, W (t) — W (¢ |a; ), and a sum of
differences, generated by the same sequences, ), s (M; (t) — M; (t|a;)). Here
each individual term, M; (¢) or M; (t|a;) is by itself a difference based on of the
sequences, respectively, and an accelerated version of the same sequence. As

M; (t) = W (t) — W_; (t), the acceleration is due to the removal of the i — th
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alternative. We then use (in this order) three properties of the optimal policy,
and the attendant index characterization to establish the inequality: () by the
index policy, the order, but not the time, in which the alternatives are used
are identical in two sequences for all alternatives but the one which starts the
modified sequence; (¢i) the values of any uninterrupted sequence of alternative ¢
can be r'laced by a constant, which is (almost) its index; (¢4%) the indices along

the optimal path, computed exclusively at the switching times, are decreasing.

Proof of Theorem 9.1 By Theorem 35, it is sufficient to show that the inequal-
ity
D (M () — My (tlar)) S W (8) — W (tlas) , V8, VS, Vay, (59)
€S
is satisfied. EWithout loss of generality, assume that ¢ = 0. Consider the op-
timal policy a and the modified policy é. The modified policy starts with an
assignment & (0) = k with ¢, (0) < ¢ (0), but thereafter continues optimally.
Define the counters T; (t) = {#s|a(s) = i,s < t} and T} (t) ={#s|a(s) =4, s < t}.
For each alternative ¢, we define switching times along program a and é by start-

ing times:
ri, =min{t|a(t) =4, t>r**-'}, forn=0,1,.. and '~ = —1.
and stopping times:
i =min{tla(t+1) #i, t >r, }, forn=0,1,...

Similar times are defined for the program &, with the additional restriction that
T4, > 0 for all j, as we start to count switching times only along the optimal
continuation paths. Consider next the alternative k and its first use between
Tk, and 7% in the optimal program. Without loss of generality, suppose that

the index at 7, is given by:

S, 80 )u; (s)
ZT 6(8—7‘ko )

3=7'k0

o (Tko) = ¢y (rko) =

with 7 = r*0, If the maximal index is obtained with 7 < %o, then we simply

create a new switching time at 7 so that instead of a single interval {r,, ...,r¥},
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we obtain two intervals over which we employ k without interruption, namely
{Fho, -, 70} and {Fk,,...,7*1 } with rg, = Ty, 700 =7, Fiy =T+ 1, 75 = 7o,
In the later case, we simply need to replace all arguments involving rx, and r*o
by 7, and 7.

By the optimality of the index policy,
vy = Oy for all t > ko, (60)

We can therefore restrict our attention to ¢t < r*o. Notice that r* may be
infinite. Moreover, the optimal order of employment among all alternatives but
k remains unchanged when comparing the optimal sequence to a. Formally, for
all t with a (t) # k, we have
Dt =v,_,1)» (61)
and thus all terms involving ¢ # k appear also the modified program, only later.
Before we prove the inequality (59) we rewrite W (0) and W (0 |k) to facili-
tate the proof. Consider the modified program 4. Without loss of generality we

~ ~ A A n A A
can redefine 0; to be ¥, = ¢;, forallt € {'r,-", oy r’"} where

¢ (F +1) <9, < ¢(Fi,),

and
fFin Fin
t—F. A N t—F;
E &7 Tin gy =9y, E & Tin,
t=’f'|‘u t=f“1l

This operation achieves a constant payoff between #; and #*»while preserving
the value collected between starting time 7;, and stopping time #». Observe
also that the modified sequence displays payoffs which are weakly decreasing in
time, since the sequence of optimal allocation indices ¢ (-) is weakly decreasing
in the starting times rx, < ... <7, < ..., but not necessarily in time £. Assign
the same values in the optimal program a by using the identity (61) and to the
values v; with a (t) = k by the obvious relationship of v; = 0, if a(t) =k, and
Tr (7,,) < T (t) < T (r*»). Notice that the reassignment doesn’t affect the
marginal contributions M; (0) or M; (0|k) either as they are just obtained by

differencing the respective social value functions. Finally, we normalize all low
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values by subtracting ¢ (rg,) from each flow value. We work in the following
directly with these normalized values ©;, which are weakly positive for vy, 0;
with t < rko,
Consider next the inequality (59):
W)= M (0)2W(Olk) =) M;(0lk), (62)
i€S i€S

The flow marginal contributions are

mi () = 0if a (t) # 4, (63)

oo
m; (t) = Z(Ss_t (va.-(slt+1) - vai(s|t)) ,ifa (t) =1, (64)

s=t

with the convention that vs,(¢4+1) = vt, and similarly for the program a for all
t > 0. The definition of o; (s |t) is as in (23). Using (63) and (64), we can write
the inequality (62) as

Z 8 (ve — mals (a(t))) > E & (e — mag)lls (a(2))) (65)

t=0 t=0

with the indicator function

0 ifa(t) ¢S,

H‘S(a(t))z{ 1 ifat)es

By (60), it follows that the maximal set necessary to consider is given by

(e 8) & (3t,t < rg,,a(t) =1), and hence the inequality (65) is equivalent

to
D8 (v — mals (@(t)) = Y6 (b — awls (a(2))). (66)
t=0 t=0

Consider then a particular entry
By — Mhag) () (67)
with @ (t) # k. By (61), we know that there is a corresponding element
Ve Ti(t) ~ Ma(t-Ti(t)) (t - T (t))
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occurring some T} () periods earlier. Using (64), (67) can be written as

B — e = (1= 6) Y 8" Vo, (sit):
s=t
and similarly for a. However due to (60), we can again truncate the infinite

series as follows. For any ¢ and t — Tk (t) in the modified and original problem,

respectively, there exists an §; and s; defined by:
8; £ min {s IU&(t) (s[t) > rko }s

and

s¢ 2 min {s O a(t—T0(t)) (s It — Tk (t)) > rko } .

By (60), it follows that

Z 6s_tv0u(z)(3lt) = Z 6s_tvaa(c)(8|t)‘ (68)

s$=8; 8=8;

Hence when considering the inequality (66), we can not only truncate the com-
parison at 7%, but also the differences in the flow values of the marginal contri-
bution can be exclusively attributed to payoff differences before r*. Summa-

rizing, we can write (66) as

rko se—1 rko
1-8) Is@®) Y 8 vo, ity + 8 (v (1 = Is (a(t))))
=0 s=t t=0
> (69)
rko 5;—1 rko
1= Is@®) Y 8 oo,y eiry + 6 (0:(1 — Is (a (1))
t=0 s=t =0

Observe next that when comparing corresponding elements
t—Th (¢ - s
5 T(®) ('Ut—f'k(t) - ma(t—ﬁ(t))) =(1-19) Z é Vo u(e— i) (312 (70)
s=t—T(t)
and

&t (f)t - m&(t)) =(1-96) Zasvda(t)(ﬂt)’ (71)

s=t
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the precedence order (61) still holds for & (ga(z) (s[t)) # k. For every 6°vs,, (sit)

; : s—T(s) X :
in (71), there is a 6%~ ** Vo o uety oy (o= Te(lt) T2 (70) such that

Yoay(elt) = Yo,y (o) (s=Tx(o)It)"

Hence it follows that if we set 9y = O for all ¢ < r* and a(t) # k, and the
inequality (69) still holds, then it holds a fortiori with the original 9; > 0. Thus
suppose we do set them zero. Then the lhs of (69) is equal to zero, where

we recall the earlier normalization. The rhs can be rewritten after dividing by

(1-96) as

s;—1 rko t
Zﬂs @) Z 8" g (alt) (1= Is (@ (oaqe) (1t))) +E T ° 5 (0:(1—Is(a(®))),

(72)
where all but the trivial terms are realizations of the k — th alternative in form
of different geometric series. Let g, %1, ...,fx be the times at which alternative
k is realized between 0 < t < 7, and denote by Vg, 4,5 -y 0, the values at

these times. Then (72) can be rewritten as

Tko—-1 K 6r,.0+k

Z Zé'r(t k)" + Z T . (73)

t=0 k=0

with

k) {ak(t) (Tk(ork(t))—k), if & <ok(t), (74)

ts = Taonty (s loe (8)), if x>0k (t).
Notice that the second term is equal to zero as it is just the normalized se-
quence of realizations of k between ry, and 7% in the original program mul-
tiplied 1/ (1 — 6). The double sum on the other hand is the same sequence of
realization, but “punctured” as realizations of k are frequently interrupted by

now realizations. But any such punctured series necessarily satisfies

K
> 5R; <o, (75)
k=0

as the highest average discounted payoff is achieved by a sequence starting with

the sequence from vy, to vy, , including in particular v, . Thus any delay, which
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in particular postpones the realization of 9;, has a smaller average discounted
payoff than the original sequence, and as the original sequence was normalized
to be zero, the inequality (75) follows immediately. But then we conclude that
the rhs is nonpositive, and hence the inequality (69) follows, which concludes
the proof.
2. and 3. The payoff characterization follows immediately from Theorem 2 in
conjunction with Theorem 3. Bl

We are now prepared to prove Theorem 8. Unless noted otherwise, the
notation carries over from Theorem 9.
Proof of Theorem 8.1. Fix a sample path w € Q. For every w, the optimal
policy induces a sequence of jobs a (t) £ a(t (w)) and value realizations v (t) £
Va(¢(w)) (t (w)) and similar for any modified program a. For every w, we create
an associated sequence of deterministic values v; and 9;. Neither the flow values
of these sequences nor their aggregate discounted values are necessarily identical
to their sample path realizations under w. Denote the aggregate value of such a
deterministic sequence associated with w by W (w). These new sequences have
two important properties: (i) each w is associated with a deterministic multi-
arm bandit problem as defined in (57) and (58), (i) the social value W (0) of

the original matching model satisfies:

W (0) = /Q W () dpo (@), (76)

where pg (w) is the prior over the sample space Q. It is sufficient to show that
we can construct such sequences satisfying () and (i) to prove (1). Theorem
9 shows that any model satisfying (i) has a unique truthful equilibrium, and
if the model satisfies (59) for every sample point w, then it is also satisfied in
expectation if condition (i7) is satisfied.

We begin the construction with the modified program 4. The construction
relies on the characterization of the optimal policy by the dynamic allocation

index. The optimal policy is to select the alternative with the highest index,
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where the index ¢; (6}) of alternative 1, is given by

E[Y7_, 8 v (s) | F] 77
E[Yi 8 7] "

and F} is the information (filtration) in period ¢ on the alternative .

¢; () = max

Fix w. For every w the decision maker is choosing an optimal action given
Fi(w). Consider next an arbitrary switching time ¢ where a(t) = 4, but
a(t—1) # i. Since the first choice under @ in period 0 is not optimal, we
consider t = 1 as a switching time as well even if @ (0) = @ (1), whereas t = 0 is
not considered as a switching time. By the optimality of the index criterion, it
follows that

BIEL @A W] B[R 0| @)
FERLRO] T B[R W)

for all j # i. Consider now all ' with F; («') = F; (w) and denote the set

Y

by Q(w) = {«’ € Q|F (W) = F: (w)}. Next we contrast the stopping time 7
which maximizes (77) with the random time 7 which is the defined to be the
last time the optimal policy employs i before it switches to another alternative
7 in period 7 + 1. By the definition of the index policy it follows that 7 < 7.
Define the expected average value over all ' € Q (w) until # as

B[S @R @]

0 = ; (78)
E[YI 8 1% )
By construction, ?; is then bracketed by
T 8— i T s—t -5
max BT @ R@] B [l 0] R @] (79)

T B[S0 R W) T B[Sl R W)
Now we replace the realized payoff for the sample path «’ between ¢ (w’) and
#(w') by the constant o, for all w’ € Q(w). This operation changes the
(expected) payoff for every sample path, but the (expected) payoff across all
w' € Q(w) remains unchanged, or
() )
L | S o tue@n @ =a [ |36 do). @0

s=t (w) s=t
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By performing this substitution for all switching times, this process assigns val-
ues for the modified program &, which are weakly decreasing over time. Consider
then the optimal program a and its sequence of value realizations. The sequence

v; is derived from the sequence ¥; by setting
(0o 2 0) & (Te(®) =T (s), Te(®) # T (t=1), Ti(s) # Tk (s = 1)),

for all ¢ with T} (¢) < T (t), and otherwise v; £ ;. Finally, we need to assign
a value to the first realization of k in the modified program. We define it to be

rko rko
TR S At e @
8=T, s=rk0+1

where 7, and 7% are the first switching times for k along the original program,
and to preserve the value of the program we set vy, £ $. By construction,
the sequences v; and 9; now satisfy the requirements of a deterministic multi-
armed bandit problem, and hence for every w, the inequality (59) holds. By
(80) and (81), the expectation over all w € ) satisfies (76), both for @ and
a. Finally, since M; (0) and M;(0|k) are obtained as differences between two
different social values, their values are also preserved under expectations, and
hence a marginal contribution equilibrium exists for the stochastic job matching
model as well.

2. and 3. The payoff characterization follows immediately from Theorem 2

in conjunction with Theorem 3. I
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