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Abstract

We study stopping games in the setup of Neveu. We prove the
existence of a uniform value (in a sense defined below), by allowing
the players to use randomized strategies. In constrast with previous
work, we make no comparison assumption on the payoff processes.
Moreover, we prove that the value is the limit of discounted values,
and we construct e-optimal strategies.
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1 Introduction

Dynkin (1969) presented the following optimization problem. Two players
observe stochastic sequences (r(n), z(n)). Player 1 (resp. player 2) is allowed
to stop whenever z(n) < 0 (resp. z(n) > 0). The two players choose stopping
times y, and p, which obey this rule, and the payoff is given by

7(/’1’17 /‘1’2) = E{1H1<#2T(IJ’1) + 1/141>#2T(/‘I’2)}'

The goal of player 1 is to maximize y(u,, 1t5), whereas player 2 tries to mini-
mize (py, py). Dynkin proved that this game has a value if sup |r(n)| € L',
and constructed e-optimal strategies for the two players.

Kiefer (1971) and Neveu (1975) gave other sufficient conditions for ex-
istence of the value in this zero-sum game and in a variant of it. Neveu
extended the game by allowing the players to stop simultaneously: a pro-
cess (an, b, ) is given (with sup, sup(|as|, [ba|, [ea]) € L'), the two players
choose stopping times u; and u,, and the payoff to player 1 is

E{aﬂl 1#1<H2 + bl‘z 1/‘2<#1 + ¢y, 1H1=H2<‘+‘°°}'

He proved that, under the assumption a, = ¢, < by, the game has a value.

There is a broad literature on continuous time Dynkin games giving suf-
ficient conditions for the existence of the value and optimal strategies: Bis-
muth (1979) proved that under the hypothesis a, = ¢, < b,, some regularity
assumption and Mokobodski’s hypothesis (namely that there exist positive
bounded supermartingales z and 2’ satisfying a < z—2' < b) the value exists.
The regularity assumption was weakened by Lepeltier, Alario and Marchal
(1982), and then Lepeltier and Maingueneau (1984) established the exis-
tence of the value and optimal strategies without Mokobodski’s hypothesis,
assuming only a,, = ¢, < by,.

In the present paper, we focus on discrete time Dynkin game and we allow
the players to use randomized stopping times. We prove the existence of the
value, under the single integrability condition.

This result is related to a result due to Maitra and Sudderth (1993), for
general stochastic games. In such games, the players receive a payoff in each
stage. Maitra and Sudderth define the payoff associated to a play as the
lim sup of the payoffs received along the play. They prove that such games
have a value, provided the payoffs are bounded and deterministic functions
of the state.



It is clear that, under some regularity assumptions on the processes
(an), (b,) and (c,), stopping games may be viewed as general stochastic games
(note however that boundedness of the payoff function will not be satisfied).
Thus, the result of Maitra and Sudderth has some bite in stopping games.
We emphasize that our method bears no relation to their approach (which is
based on transfinite induction).

Our contribution is threefold. (i) We prove that the value exists under
the single integrability requirement, and, moreover, it is uniform in a sense
defined below. (ii) We prove that the value is the limit of the so-called
discounted values, studied by Yasuda (1985). In particular, it follows that
the discounted values converge. (iii) We construct e-optimal strategies for
the players.

Our method is to construct a strategy for player 1 that guarantees him an
expected payoff which is, up to an e, the limit of some sequence of discounted
values. We provide two different constructions for an e-optimal strategy. In
the first construction the player plays at each stage an optimal discounted
strategy, where the discount factor may change from time to time. In the
second construction, which has the flavor of Dynkin’s construction, the player
plays almost the limit of the optimal discounted strategies.

The paper is arranged as follows. In section 2 we present the model and
the main results, in section 3 we introduce few tools, in section 4 we explain
the main ideas of the two constructions, and finally, in sections 5 and 6 we
provide the two constructions of e-optimal strategies.

2 The Model and the Main Results

Let (2, A, P) be a probability space, that is rich enough to support a double
sequence (X,,Y,)%, of iid variables, uniformly distributed over [0,1]. Let
(F.) be a filtration over (2, .4, P) (the information available at stage n). We
assume that (X,,Y,) is F,41-measurable, and independent of F,.

Let (@), (bn), (cn) be processes, defined over (2, A, P). We assume

Sup |aln, sup |bln, sup ||, € L'(P). (1)

A strategy for each of the players is a randomized stopping time. A
strategy of player 1 (resp. player 2) is a process x = (z) (resp. ¥ = (¥n))
adapted to (F,), with values in [0,1]: z, is the probability that player 1
stops at stage n, conditional on stopping occurs after n — 1.
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Given strategies (x,y), define the stopping stages ¢; = inf{n, X, < z,},
to = inf{n,Y, < y,}, and
t = min(ty, ta). (2)

Notice that ¢t + 1 is a stopping time, but ¢ needs not be.

We set 7(X,y) = as, 1, <t, + bey sty + €ty 1ty =ty<400, Which we write also
r+(x,y). The payoff of the game is v(x,y) = E(r(x,y)). The goal of player
1 is to maximize y(x,y), and the goal of player 2 is to minimize it.

DEFINITION 2.1 v € R is the value of the game if v = sup, infy, y(x,y) =
inf, sup, Y(x,y). Let € > 0. A strategy x that satisfies infy y(x,y) > v —e
is an e-optimal strategy for player 1. e-optimal strategies for player 2 are
defined analogously.

Theorem 1 Every zero-sum stopping game that satisfies (1) has a value.

Let A €]0, 1[. Define the A-discounted payoff by ra(x,y) = (1-A)"*'r(x,y)
and v,(x,y) = E(ra(x,y)). Notice the exponent ¢ + 1 in the definition of
rx. This differs from the usual convention which uses ¢ instead. This has no
incidence on the results.

DEFINITION 2.2 vy, is the A-discounted value of the game if vy = esssupyessinfyv,(X,y) =
essinfyesssup, v, (x,y).

Yasuda (1985) proves that the A-discounted value always exists. In the
sequel we prove that

Theorem 2 v = limuv,.

Set 7,(x,y) = E(®=1r,(x,y)li<n). The natural interpretation of v, (x,y)
is in terms of average payoffs: for k € N, set gr = r:(x,y) on {t < k} and
gr = 0 otherwise. Then 7, (x,y) = E(2 £%_, ).

By dominated convergence, lim, 7, (X,y) = 7(x,y). Therefore, if x* is an
e-optimal strategy of player 1, then for every y there exists a stage IV such
that ~, (x*, y) > v — 2¢ holds for every n > N.

We prove that the value v is uniform in the sense below.

Theorem 3 For every €, there erists X* and N, such that, for everyy and
everyn > N, v,(x*,y) > v —e. A symmetric result holds for player 2.



Thus, Theorem 3 is a refinement of Theorem 1. It can be shown that it
also implies Theorem 2.

Theorem 3 was proved by Mertens and Neyman (1981) for general stochas-
tic games with bounded payoffs, in which the discounted values satisfy some
bounded variation property. In the case of recursive games with bounded
payoffs, Rosenberg and Vieille (1998) proved that Theorem 3 holds, if (vy)
converge uniformly as A goes to 0 (the uniformity is with respect to the ini-
tial state of the game). Our proof does not require any conditions on the
discounted values.

For the sake of exposition, we assume that (a,), (b,), and (c,) are adapted.
This assumption can be dispensed with, by replacing everywhere (a,), (bs),
and (c,) by their conditional expectations given F,.

3 Local games

3.1 Reminder and definitions

Let g : A x B — R, where A and B are finite sets (g is the payoff function
of a zero-sum matrix game with action sets A and B). Denote by A(A)
and A(B) the sets of probability distributions over A and B, and by g the
bilinear extension of g to A(A) x A(B).

The min max theorem states that su inf g(z,y)= inf su z,Y),
zeAFA)yGA(B)g( v) yEA(B)zeAFA)g( 2

which we denote by val g. Any z (resp. y) which achieves the sup on the
left side (resp. inf on the right side) is called an optimal strategy of player 1
(resp. player 2). It is well known that the operator val is non-decreasing and
non-expansive: val f < val g if f < g, and |val f — val g| < sup.p|f — gl

For any real-valued J,-measurable function f, we let G,(f) be the 0-sum
game with (F,-measurable) payoff matrix-

f b

an | Cn

in which player 1 chooses a row and player 2 a column.

A strategy of player 1 is an F,-measurable variable z, in [0, 1], to be
interpreted as the probability that player 1 chooses the bottom row. A
strategy of player 2 is defined analogously.



Define G, (Zn,¥n; f) to be the (F,-measurable) payoff to player 1 when
the players use strategies z,, and ¥y,:

G, Un; F) = Tn(1 — Yn)an + Yn(1 — Zn)bp 4 Tayncn + (1 — Zn) (1 —yn) f-
For every w € (2, the game with payoff matrix

f(w) | ba(w)

an (W) | (W)

has a value, denoted by val G,(f)(w).
We now argue that each player has optimal strategies in Gn(f).

PROPOSITION 3.1 Let f be F,-measurable and real-valued. There exists a
strateqy T, in Gn(f), such that, for every y,

Gn(xm Y; .f) > val Gn(f)
A symmetric property holds for player 2.

Proof: for each w, the game with payoff matrix

f(w) | bn(w)

an (W) | en(w)

has optimal strategies for both players. Since f,an,b, and c, are all F,-
measurable, the map which associates to each w the set of optimal strategies
for player 1 is upper-semi-continuous and measurable. By Kuratowski and
Ryll-Nardzewski (1965) its graph has a measurable selection. ]

Any z, that satisfies the conclusion of Proposition 3.1 is said to be op-
timal in the game Gn(f). If z, and y, are optimal strategies in Gn.(f),
one has Gn(n,¥n; f) = val Gn(f) everywhere. In particular, val G,(f) is
F,-measurable.

3.2 Local games and discounted values

It is useful to extend the notions of discounted values to the game starting
at stage n.



For n € N, set &, = {X,7, = 0,Vp < n}, and T, = {y, 9, = 0,Vp < n}.
Those are strategies where the probability that the players stop before stage
n is zero. Set

Tn(A) = esssupy,_essinfz, E[(1 — X)7"ra(x,y)|Fx),
and
v,(\) = essinfr, esssupy, E[(1 — A)7"ra(x,y)|Fa)-

The proposition below contains obvious properties.

PROPOSITION 3.2 (U,()\)) and (v,()\)) are adapted processes. Moreover,
sup, 671()‘), Supyn(/\) € LI(P)

Yasuda (1985) proves that, P-a.s., (T,(A)) and (u,())) are both solutions
of the recursive equation

Ua(A) = (1 = A)val Gu(E[vn 1 (V)| F))- (3)

He then proves that any solution of this sequence of equations is at most
(v,()\)) and at least (U,(A)). Since T,(A) > v,(A) it follows that the two are

equal.
We give a shorter route, adapted from Shapley (1953). Since the value

operator is non-expansive,

[Tn(A) — 2. (M) (1 = NIE@m+1(A) = vas1 (M) 7]l

(1 = NE[Tr+1(A) = 2nsr (W] |Fn]

IN A

By taking expectations, one obtains

[T2(A) —2aMllt < (1= NTa41(A) = 2ar1(Ws
< (1 - )\)p”6n+p()‘) - Qn+p()‘)”1

for each p € N. Since sup, T,()), sup,, v, (\) € L}(P), one obtains by letting
p — oo that T,(A\) = v, (A), P-as.
Notice that v(\) = Efvg(A)]

We now let (),) be any sequence which converges to 0. Set v, = limsup,,_,, va(Ap)-
Note that v, is F,-measurable. We shall prove that v = E[u] is the uniform
value of the game.



PROPOSITION 3.3 One has v, < val G(E[vn41|Fr]), for every n.

Proof: recall that v,(A\) = (1 — A)val G, (E[vn41(A)|Fn]). By monotonicity
of the value operator,

vn(Ag) < apeval Gr(E[sup vny1(Ap)|Fnl),
P2Po
provided ¢ > po, where a,,, = 1 — Ay, if the val is negative, and 1 otherwise.
Since the right-hand side is independent of g, one has

sup Un(A,) < apyval Gu(E[sup vpi1(Ap)|Fn])-

P=po P2po
Both sides are non-decreasing functions of pg. The result follows by domi-
nated convergence. [ ]

3.3 Locally optimal strategies and martingale proper-
ties

Denote by z,(A\) and by z} optimal strategies of player 1 in the games
Gr(E[vn41(A)|Fn]) and Gr(E[vn41|Fn])-
Thus, for every strategy y and n € N, one has

Gn(x:,ayn; E[Un+llfn]) 2 Un, P-as. (4)

and
(1 = X)Grn(@n(N), Yn; E[tni1(A)|Fn]) = va(A) P-ass. (5)
Recall that v,()\) is to be interpreted as the value of the (discounted)

game starting in stage n, conditional on the fact that the game has not been
stopped.

Equation 3 and Proposition 3.3 provide recursive formulas for (v,) and
(vn()\)). In order to interpret these formulas in terms of submartingale prop-
erties, we use auxiliary processes.

We say that an inequality o > 3 holds P-a.s. on an event A if P(4;a <
p) =0.

Let () be an adapted integrable process on (€2, A, (F), P), and 51 < s9
two stopping times (with values in N U {+oc0}). We say that (an), is
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a submartingale between s; and sy if, for every n € N, the inequality
Elony1]Fn] > @, holds P-a.s. on the event {s; < n < s2}. (an)n is a
submartingale up to sy if it is a submartingale between 0 and sp. It is
straightforward to adapt the sampling theorem as follows. Let (an) be a
submartingale between s; and ss. Let s be a stopping time, with P-a.s. fi-
nite values, such that s < sy. Denote by F;, the o-algebra of events known
at stage s;. Then one has E[a,|Fs,] > as,, P-a.s. on the event {s; < s}.

Let (x,y) be a pair of strategies and ¢ the induced stopping stage defined
by (2). We define (&) as &, = a, on {t > n} and &, = r if t < n.
The process (&,) depends on (x,y). To avoid ambiguity, we will sometimes
write: under (x,y), the process (&,) etc, when we wish to emphasize which
strategies are being used in the definition of (&,). With a (convenient) abuse
of terminology, we refer to (&) as the process (a,) stopped at ¢.

We use repeatedly the following relation, which holds P-a.s. on the event
{t > n}:

E[an 1| Fn] = G(Zn, Yn; Qntr)-

Let x* = (%) and x(\) = (z.()\)) be strategies of player 1 that satisfy

n

(4) and (5) respectively.

Lemma 4 Let y be a strategy of player 2, and X €]0,1[. Under (x(}),y),
((1 = A)"5,()\)) is a submartingale up to t + 1. Under (x*,y), ¥ is a sub-
martingale.

Proof: notice that sup, #,()\) and sup, @, belong to L'(P), for every choice
of (x,y). We start with the first claim. Let n € N.
On {t > n}, 9,(\) = v,(A). Thus
E[(1 — N1V Fa] = (1 = NG (@A), Yn; Elvn 1 (V)| Fn)),

which is, P-a.s., at least v,(\), by definition of x().
For a similar reason,
E[ﬁn+1|fn] 2 ﬁn,

on the event {¢ > n}. Since 9,41 = ¥ if t < n, the second assertion is also
established. n

Corollary 5 For every y, v (x(A\),y) = E(vo(N)).
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Proof: for each n, applying the submartingale property with the stopping
time min(¢ 4+ 1,n) yields

E[(l - )\)min(t-*-l’n)ﬁmin(t-f-l,n)] 2> E(’U()(/\)),
that is,
E[(1 — N)"0n(M1isn + (1= X re(x(X), ¥) Licn] = E(vo(A)).

By dominated convergence, the left-hand side converges to v,(x(}),y). =

Remark: denote by O the strategy which never stops (z, = 0 for all n).
Let x be any strategy which coincides with x(A) from stage n on. It is clear
that, for every y,

E[(1 = N7 (%, ¥)|Fa] 2 va(M),

on the event ¢ > n. Notice that, for y = 0 the left-hand side belongs P-a.s.
to the convex hull of the set {0, a,, @n+1, - . .}. This fact will be used in section
6.

Corollary 5 implies that in the discounted game it is an optimal strategy
for player 1 to play x(\). No such result holds for the original problem in
which playing x* needs not be an optimal strategy.

EXAMPLE

1
110

This matrix notation is a shortcut for the game with payoffs a, = b, =1,
¢, =0, P-a.s. for every n. v, and v,(\) are independent of n and constant.
We simply write v and v()\). The real number 0 < v(A) < 1 is a solution
to the equation v()\) = (1 — A\)valG(v(})), from which it is easily derived
v(A) = 1 — VA, and x(\) = VA/(1 + V). Therefore, v = 1, and x* = 0.
However, vy(x*,0) = 0.

4 The Main Ideas of the Constructions

To explain the ideas that underlie the two constructions of e-optimal strate-
gies, we consider the deterministic case with payoffs bounded by 1. In that

10



case, (vy) is simply a bounded sequence of real numbers. Since ¥y is a sub-
martingale w.r.t. (x,0), and coincides with v, up to t;, one deduces that,
either (v,) is a convergent sequence, or t; < +00, almost surely (or both).

As mentioned in Section 3, x()\) is a A-discounted optimal strategy for
player 1. However, as the last example shows, x need not be an optimal
strategy.

x is not optimal since the v,’s are positive (and equal to 1). Thus, player
1 expects that if the game continues, he will receive 1. However, if the game
continues forever, he never receives this continuation payoff, and his overall
payoff is 0. If, on the other hand, v, was always negative, then, since 0, is
a submartingale w.r.t. (x,y) for every y, following x is an optimal strategy
for player 1.

In the \-discounted game we do not encounter this problem. If the value
is positive and player 1 continues with probability 1, then v,;;(A) must
be larger than v,(\). Since the payoffs are bounded player 1 cannot delay
stopping the game too much.

Assume for a moment that the payoff process is periodic. For a given € >
0, one can choose A sufficiently small such that || v(A) — v ||< €2. Construct
the following strategy: play according to x(A) until the value drops below
0. Then switch to x until the value is above ¢, continue playing according
to x(\) and so on. One can show that whenever the player follows x, v,
is a submartingale, whereas when he follows x()), v,(}) is a submartingale.
Moreover, since the payoffs are bounded by 1, if v, > € and v, < 0 (where
m > n) then the probability that the game is stopped between stages n and
m is at least e.

We would like to approximate the lower bound of the expected payoff
of player 1. It turns out that this bound can be approximated by v, but
each switch between x and x()\) adds an error term of €. Since the game is
stopped after O(1/¢) stages, it means that this strategy guarantees player 1
a payoff of at least v; — O(e).

This method was used by Rosenberg and Vieille (1998) (see also Thuijs-
man and Vrieze (1992) for a precursor) for recursive games.

When the payoff process is not periodic, one needs not be able to choose
a X such that || v()\) — v ||< €. In this case, we choose the appropriate
)\ at each switch. That is, whenever v, exceeds € we choose A such that
lun(X) —v,] < €2, and player 1 follows x()) until the value falls below 0. The
rest of the argument remains the same. This summarizes the method used
in the first approach.
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The second approach is based on a different idea. Since x is locally
optimal, it follows that at every stage n, if the game was not stopped before
that stage then the expected payoff in the local game is at least v,, whatever
player 2 plays. Let us define now a new strategy for player 1. At stage
n, player 1 checks whether a, > v, — ¢; that is, if he stops and player 2
continues, whether his payoff is at least v, — €. If a,, < v, — ¢, player 1 stops
with probability x,, whereas if a,, > v, — €, player 1 stops with probability
X, + €.

To see that this strategy guarantees player 1 an expected payoff of v;, we
note that the following points hold:

1. If player 2 stops the game, then the expected payoff of player 1 remains
the same (up to an ¢).

2. In the case that player 2 always continue, since player 1 changes his
strategy only when a unilateral stopping is favorable for him, Ev, >
V1 — €.

A crucial observation is that a, < v, — € occurs infinitely often, hence
whatever player 2 plays, the game will eventually be stopped. Hence one
conclude that the expected payoff of player 1 is at least v; — e.

5 An e-optimal strategy for player 1 - I

For the rest of the section we fix e > 0. Set m = sup,,(sup(|an|, |br], [cnl]))-
Since m € L'(P), there exists n > 0 such that, for every A € A,

P(A) <= E(mly) <e. (6)

Notice that v,(A), v, < m, P-a.s. for every n.

The sequence (v,) has no convergence properties. On the other hand,
the process (9,,), being a submartingale under (x*,y) (with sup @, € L*(P)))
converges P-a.s. and in L!(P), for every y.

The stopping time ¢; is a function of player 1’s strategy. Under (x*,0),
t = t1, P-a.s. This implies that (v,) converges P-a.s. on the set {t; = +00}.

Choose Nyp such that

P{ sup |v. —vm|>€/2,t1 > No} <. (7)

n,m>Np

12



We define a sequence (s,) of stopping times. Set so = No on {vn, >
e} N{t; > No}, and sq = 400 otherwise. Choose an Fs,-measurable function
Ao With vy, (Ao) > vy — €2 if 8o < +00.

Set 5,41 = inf{n > sp,va(Ap) < 0} and choose an F,,,-measurable
function Ap11, such that vy, (Aps1) > s,y — €2 if 5,41 < +00.

Define X as X, = x* for n < sp and X, = X,(Ap) for s, <n < sp41-

By Lemma 4, for every y, (%,) is a submartingale up to so, and ((1 —
Ap)"@n(Ap))n is & submartingale between min(s,, t + 1) and min(sp+1,¢ + 1).

We prove below the following result.

PROPOSITION 5.1 There exists N such that, for everyy and n > N, one
has v,(X,y) > v — Te.

Comments: X is defined in terms of x* and x(A) for various A’s. Intuitively,
X coincides with x* whenever v, < 0, thus preventing (v,) from decreasing
(submartingale property). If vy, > 0 (No is chosen so that U, no longer
oscillates afterwards), a A is chosen such that v,(\) is approximately equal
to v, and player 1, by playing x()) prevents (v,(A)) from decreasing, until
the approximation of v, by v,()\) gets poor. Player 1 then switches to a
new value for . A crucial feature of this construction is that, with high
probability, in any such switch s,, the new state variable s, (Ap) exceeds
Vs, (Ap—1). Indeed, vs,(Ap—1) < 0 by definition, whereas Vs, (Ap) > Vs, — €2,
which is higher than €/2 — €2 with high probability.

By such a device, player 1 forces the termination of the game when v, > 0,
in a sense which will be made precise below.

We translate these comments into submartingale properties of an associ-

ated state variable.
To avoid “small events” troubles, it is convenient to introduce s = inf{n >

S0, Vs < €/2}. Notice that
P(s < 400) < 7. (8)

We introduce the state variable w,, defined as w, = v, — € for n < s¢ and
Wy, = vp(Ap) for s, < N < Sppq, except if n = s = 5, for some p > 1, in
which case we set wn, = Un(Ap—1)-

Lemma 6 (,) is a submartingale up to min(s,t + 1).
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Proof: let n € N. We prove that E[wy1|Fn] > w, when min(s,t+1) > n.
Ifn < 8o, Wn = Up — €2, Wny1 > Uny1— € (with equality if n+1 < sp), and
Tn = 2. Thus, E[Wns1|Fn] > G(@%, Yn; Blont1 — €| F,]) > vn — €2, where
the second inequality follows from the inequality G(z}, Yn; E[tnt1|Fn]) > vn
and since the val operator is non-expanding.
If s, <N < Spt1, Wp = Vn(Ap), and T, = Zn(Ap). In that case,

1
G(Zn, Yns Elvn41(Ap) | Fn]) 2 ﬁvn()‘p) > Vn(Ap)
P

since v, (),) > 0. The claim follows by noting that Wni1 > Dnt1(Ap).

Lemma 7 One has P(sg = Ny, s =t = +00) = 0.
Proof: we proceed in two steps. We prove first that
P(s, < s=t=8p41 = +00) = 0.

;From min(s,, s,t+1) up to min(spy1,s,t+1), ((1—Ap)"0,) is a submartin-
gale. Thus, for every ng < n < N, the sampling property applied to the
finite stopping time min(s,11, s,t + 1, N) yields

1 .
(1 _ )‘ )nE[m(l_)‘l’)mm(sp+1’s’t+1) 1min(3p+1)s1t+1)SN+wN(1_)‘p)N1min(sp+1,s,t+l)>NI]:n]
P
on the event {s, < ng < n < min(sp41,5,t+ 1)}
By taking N — +oo and by dominated convergence for conditional ex-
pectations, one obtains, for every n > no,

Wy <

W, S E[m(l _ Ap)min(sp+1,3,t+1)—n].min(sp+1,s,t+1)<+oo|fn] (9)

on the event {s, < ng < n < min(sp41,5,t+ 1)}

By taking the limit n — oo in (9), one gets limsup w, < 0 P-a.s. on the
event {s, < my < § =1 = spy1 = +00}. But wy, is at least £, P-a.s. for every
n. Therefore P(s, < ng < s =t = 5,41 = +00) = 0. This ends the first step.

By the first step, applied inductively, P(so = No,s, =t =5 = +00) = 0
for every p.
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By the submartingale property of @,(),) between min(sp,s,t + 1) and
min(sp41, 8, + 1), one has, since vs,,, (Ap) <0,

Usp (Ap) S E[mlmin(s,t+1)§sp+1 +0- 1sp+1<min(s,t+1)|Fsp]

€

on the event {so = Ny, s, < min(s,t + 1)}. Since v,,(A;) > §, it follows by
taking expectations that

€ .
—P(sg = Np, s, < min(s,t + 1)) < E(mlsp<min(s,t+1)<+oo).

4
As p goes to infinity, the left-hand side converges to $P(so = No,s =t =
+00), while the right-hand side converges to 0. The result follows. [ ]

Proof of Proposition 5.1:
Apply first the previous lemma with y = 0: for some N; € N,

P(So = No,t > Nl, s = +OO) <n. (10)

This readily implies that the same holds for every y.
On the other hand, one derives from the definition of Ny and s that

P(so = +o00,t > k, v, > 3¢/2) <, (11)

for every k > Np.
By (6), there is No > Ny such that for every y and every n > N,

1 n
%,y) - ————FE
W®Y) - TN (kle gk)

(for n suficiently large, the average payoff up to stage n is close to the average
payoff between stages N; and n).

For k > N,, we estimate E(gi) as follows. Set Ax = {s < +oo}, By =
{t < k,s = +oo}, Cr = {t > k,s0 = Np,s = +oo}, Dy = {t > kv <
3€/2,80 = 8 = +oo}, and Ex = {t > k,vx > 3€/2,80 = 5 = +00}. Notice
that (Ag, Bk, Ck, Dk, E) is a partition of 2.

On A; and on Eg, gk > —M > Wmin(k,s,t4+1) —2M. On Bi, gk = Wmin(k,s,t+1)-
On Cy, gk = 0 > Wmin(kse+1) — M. On Di, ge = 0 > Winin(k,s,t+1) — 3€/2-

Therefore,

E[gx] > E[Wmink,st+1)) — 3¢/2 — E[2ml4,] — E[2mlg,] — E[mlc].  (13)

<e€ (12)
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Since (Wmin(n,s,t+1)) i & submartingale, E[@min(k,s,t+1)] = E[to] = Elvo] = v.
On the other hand, P(Ax), P(Ck), P(Ex) < 7 by inequalities (8), (10) and
(11).
One thus obtains from (13) and (6)
E(gr) > v—Te.

The result then follows from (12). |

Recall that v is defined as v = E[vp], where vy = limsupvo(),). Define
2o = liminfve(),), and z = E[zg]. By symmetry, for each ¢, there exists a
strategy ¥ such that v, (x,¥) < z + B¢, provided n is large enough. This
readily implies v — 5¢ < z + 5e. Since z < v, and € is arbitrary, one obtains
v = z. This shows that v is the uniform value of the game. The claim about
the limit of discounted values is now immediate, since the sequence () used
to define v is arbitrary.

6 An e-optimal strategy for player 1 - 11

Recall the definitions of  and Ny from section 5 (equations (6) and (7)).
Denote

Q’=Q\{ SUP |Un — Um| > €/2, ZNO}.

n,m>Np
By (7), P() > 1—n.
Define the following strategy x

. { min{z} + 7,1} if n > Np and 5¢ < vy, < an + ¢

En = .
" x otherwise.

We will prove that % is an e-optimal strategy for player 1. We set {; =
' N {vn, > 5e}.

Lemma 8 On the set 4, one has, P-a.s, a,, > vy, — 5¢ for infinitely many
n.

Proof: Otherwise, there exists a subset €’ C { such that P(Q2") > 0
and a,(w) > vy, (w) — 5e finitely many times for each w € Q". Let n’ be
sufficiently large such that

P(Q" N {sup a, < vn, — 5€}) > (1 — €)P(Q") > 0.

n>n'
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Since ' C ¥, |un, — vn| On §”, so that

P(Q N {sup a, < v — 4e}) > (1 — )P(Q") > 0.
n>n/
Choose A > 0 such that v,/(A) > v, — € with positive probability on " N

{Sup, s Gn < Uy — 5e}.
On ' N {sup,- an < v,y — 4€}, one then has with positive probability,

U — € < Upr(A) S vy — 4e

a contradiction. Note that the second inequality holds by (6) and by the fact
that v, () lies in the convex hull of {0, an/, anry1, . - -} n

Corollary 9 t is P-a.s. finite on €.
Lemma 10 For everyy, v(X,y) > v — 14e on t > Ny.

Proof: Fix a strategy y of player 2. Set Qy = {t > Ny,vn, > 5S¢}, and
Q3 = Q2 N {sUpP,, >, [V — V| < €}.

Conditional on {t; = n = t}, the expectation of r; is G(&, 1; E[vp41]Fz))-
Since ||#, — zX|| < 7, this expectation is at least v, — €. In particular,

E[Ttlﬂa 1t=t2<+oo] > E{’UNO]‘Q:& 1t=t2<+00] - 26; (14)

On the event {t = t; = n < to}, 1, = a,. By definition of X, this can
happen on 2, only if a, > vy, — 5¢. Thus

Elrilizt;<ts 10s]) = E[vn, Lizt; <t; 10,] — 6e. (15)

Since t; < +00, P-a.s. on 3, and P(Q;\ Q3) < 7, one deduces from (14)
and (15) that
E[Tt1t<+00192] Z E[’UNolgz] — Te.

Finally, define the stopping time § by 8 = Np on {t > No} N {vn, > 5e},
and 8 = +oo otherwise. The strategy X coincides with x* up to 8. Therefore,
(9,) is a submartingale up to 6.

Notice that § = +oo if 8 > Np; Therefore (9,) converges, P-a.s. on the

event {6 > Ny}, say t0 V.
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Given the integrability properties of (%), one has
E(f)@) > ’L~)0 = p. (16)

By definition of (), one has ¥ = 7¢ if t < 400, Too < 6€ if ¢ = +00 and
SUD, m>N, |[Un — Um| < €, and o < m otherwise. Thus, by (6),

E[oolosn] < E[rtlicioolosn,] + 6€ + €.
The inequality (16) may be rewritten as
E[r:li<ng + VN la, + Toolosng] = Vo
and therefore E(r:1li<io0) > vo — 14e. ]

This does not prove that v is the uniform value. The uniformity can be
obtained along similar lines as in section 5.
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