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“There is no place where espionage is not possible.”

- Sun Tzu, The Art of War, approximately SO0BC.

Abstract

We consider extensive form and normal form games in which players decide on their
strategies before the start of play and can purchase noisy information about their
'opponents’ decisions concerning future response policies (i.e., spy on their opponents’
decisions). This addition to the agent’s optimization problem naturally changes the set of
subgame perfect equilibria (SPE). For example, in the chain-store model, for sufficiently
small costs of espionage, the population of Incumbents splits into a positive fraction that
accommodates and a positive fraction that fights. For general 2x2 games in extensive
form, the existence of equilibria with espionage turns out to depend on the difference
between the Stackelberg equilibrium payoffs and the SPE payoffs. We characterize the set
of equilibria with espionage as a subset of the set of correlated equilibria. Welfare and

Pareto properties of such equilibria are also explored.
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1 Introduction

In many real world interactions players decide what to do long before they have to play
the chosen action - an army prepares for different situations in the battlefield years before
the war begins; a government decides on its policy and reactions to various scenarios
before starting negotiations; some people are born fighters and others peaceful (thus their
choices are made even before they know they might play the game).

Once decisions are made in advance, espionage comes into mind. Suppose players F
and S engage in a two-stage sequential game that prescribes F to be the first to play an
action and S to be the second. If S decides on her reactions to F’s move in the outset of
the game, F might benefit by sending spies that will reveal the decisions made by S. In
essence, if F spies on S, it is as if the order of actions is switched. Thus, employment of
espionage depends on the existence of a “second-mover advantage.” Even if espionage is
costly and provides a noisy signal of S’s decisions, player F may still profit by utilizing it.

We thus consider the case where a player can purchase information as the game
proceeds. The motivation for this inquiry comes from the attempt to explain the
employment of different institutions providing information in a variety of economic
environments. To mention a few examples, investors can employ experts that report on
different attributes of firms to allow better stock investments; in certain industries,
engagement in industrial espionage is common practice; specialists are often hired to give
forecasts before certain projects are undertaken (e.g., political authorities for defense
projects, geologists before starting new settlements, etc.).

Despite the prevalence of espionage opportunities, it turns out that the mere option to
spy may in fact reduce a player’s profit, since it can allow the second player to exploit a
first mover advantage in the game. In such cases the first player would prefer not to have
the ability to spy, since this ability reduces his expected payoff in equilibrium.
Nonetheless, not utilizing his spying capabilities may make him even worse off.

The role of espionage is, thus, unclear. If only a single player can spy, does he always
profit? Are there games where all players profit when espionage is available? Even if not

all players profit, maybe society as a whole profits; that is, the sum of payoffs of all the



players might increase when espionage is possible. In such a case a social planner will
provide tools for spying.

We provide an extension of the chain-store model where the option of espionage is
available. Players 1 and 2 correspond to the Entrant and the Incumbent in the standard
terminology. (i) First, Player 2 chooses her reaction to the move of Player 1. (ii) Then,
Player 1 has an option to purchase an espionage device, which reveals the action chosen
by Player 2 with some accuracy. Player 1 can choose not to utilize this option and to
receive no information. (iii) Finally, Player 1 chooses an action. His move is announced
to Player 2, who plays according to her chosen strategy.

There is a continuum of espionage devices, and the cost of a device indicates the
accuracy of the information it provides (in particular, zero accuracy corresponds to no
espionage and is costless). Thus, there is a tradeoff between the cost of a device and the
information gain of the player using it.

It is easy to see that any pure subgame perfect equilibrium in the original game is also
a subgame perfect equilibrium in the extended game, where the players do not utilize
their option of spying. Indeed, if the opponent’s strategy is pure, no information can be
gained by way of costly espionage.

However, there are many cases where there are new subgame perfect equilibria. For
example, in the chain-store model there is a subgame perfect equilibrium where the
Incumbent accommodates or fights, both with positive probability, and the Entrant
purchases an espionage device and enters or stays out according to the signal he receives
from the device. This differs from reputational explanations (see, e.g., Kreps, Milgrom,
Roberts, and Wilson [1982] and Fudenberg and Levine [1989, 1992]) both in
assumptions and results. We do not assume anything about the distribution of types of
Incumbents. Hence, the somewhat problematic assumption of “irrational Incumbents” is
not needed in this model. Moreover, our results predict that a non-vanishing portion of
the population of Incumbents will in fact accommodate.

In this equilibrium the payoff of the Entrant is smaller than his payoff in the subgame
perfect equilibrium of the original game, but society as a whole profits when the cost of

espionage is low enough. Nonetheless, it turns out that the device that the Incumbent



purchases (i.e., the information acquired) does not depend on its cost. The cost of the
device only influences the probability that the Incumbent will fight. However, if the cost
of this device is too high, the Entrant will not profit by purchasing it, and there will be no
subgame perfect equilibrium where the option to spy is used.

We generalize the chain-store example and characterize 2x2 extensive form games for
which only one player profits from the existence of espionage and such games for which
both players profit from the availability of espionage. These two classes turn out to be
exhaustive. We also discover that for both classes, for sufficiently low costs of
information, espionage provides an efficiency improvement.

Normal form games can be viewed as extensive form games with imperfect
information and are thus a natural generalization of chain-store models. In general normal
form games, a Nash equilibrium always exists when mixing between purchasing and not-
purchasing information is allowed. However, if a player can choose only among certain
information devices, equilibrium may not exist. It turns out that under certain convexity
assumptions on the cost function, an agent will mix at most two devices: the null device
and a non-trivial device. We also give conditions for existence of pure equilibria.

Since information devices allow for players to correlate their actions, the relation
between equilibria with espionage and correlated equilibria seems a natural one. We
provide a characterization of equilibria with espionage as a specific subset of the set of
correlated equilibria. Namely, the subset of correlated equilibria in which Player 2 (who
is the first to choose her strategy and has no ability to spy) is indifferent between the
signals she can get with positive probability.

Games with endogenous timing have been tackled with in the Industrial Organization
literature. Timing of output choice in the market determines the competition structure.
Sequential choice corresponds to a Stackelberg game, where the first firm to make a
choice is termed the Stackelberg leader and the second is termed the Stackelberg
follower. Simultaneous choice of output corresponds to a Cournot competition. Mailath
[1993] allows a firm with superior information to delay its quantity decision until the
decision period of the less informed firm (so that decisions are made simultaneously).

The unique stable equilibrium turns out to be one in which the informed firm moves first,



even though the leader may earn lower ex-ante profits than it would earn if it was
choosing quantities simultaneously with the follower. Sadanand and Sadanand [1996]
generalized Mailath’s results and showed that when there is demand uncertainty and
firms endogenously choose entry timing, relative firm sizes and uncertainty jointly
determine the equilibrium. Van-Damme and Hurkens [1996, 1997] study the endogenous
timing problem in the context of commitment. In their model, players can see the actions
of players who moved before them. Thus, a player can turn the underlying simultaneous
game to a sequential game in which she is the first to move. A player will then choose an
action early in the game if she has a “first-mover advantage.” Our paper adds to this
branch of literature in that the underlying game can be sequential and the change of turns
is both probabilistic and costly. Thus, part of the optimization problem is the
determination of how much resource is to be allocated for switching turns and exploiting
the “second-mover advantage,” if it exists.

In our model the cost of information is exogenous. There is a vast literature dealing
with the value of information. Several authors (e.g., Hirshleifer [1971], Green and Stokey
[1981], and Allen [1986]) studied the value of private information to a player. Others
(e.g. Kamien, Tauman, and Zamir [1990] and the references therein) considered a
situation in which an agent possesses information relevant to the players of a game in
which he is not a participant. The value of information is then defined according to the
amount this agent can achieve by behaving strategically. We view these theories as
possible foundations for the cost function which we take as given.

The literature on espionage per-se appears to be very sparse. Matsui [1989] did
consider the problem of espionage, but from a different angle. He considered the case of
an infinitely repeated two-person game in which there is an exogenous small probability
that one or both of the players will be perfectly informed of the other’s supergame
strategy at the outset of the game. The players have a chance to revise their strategies on
the basis of this information before actual play begins. Matsui’s main result is that any
subgame perfect equilibrium pair of payoffs is Pareto efficient, provided that the

probability of espionage is sufficiently small. Unsurprisingly, our model yields different



predictions. In particular, not all subgame perfect equilibria with espionage are Pareto
efficient.

We begin by analyzing a few motivating examples in Section 2. We then provide the
general framework for our analysis in Section 3. In Section 4 we specify existence
conditions for equilibria with non-trivial utilization of espionage. Section 5 contains the
characterization of the set of equilibria with espionage via equivalence to a subset of the
correlated equilibria. Section 6 concludes. Technical proofs are relegated to the
Appendix, where we also discuss what are reasonable cost functions of information

devices.

2 Examples

In this section we provide several examples that illustrate the main results of the paper.
All the examples are of games in which each player has only 2 possible actions, and the
information devices are symmetric — they report the correct action with some probability
and the incorrect action otherwise.

We begin by studying games in extensive form. In Example 1 we study the standard
chain-store model, and characterize when there is an additional subgame perfect
equilibrium in which espionage is used, and when this new equilibrium is more efficient.

We then provide a game where both players benefit if Player 1 uses his ability to spy.

Next, we study games in normal form. We first study the Matching Pennies, and find
necessary and sufficient conditions on the cost of devices for the game to have a pure-
espionage equilibrium (i.e., an equilibrium that involves the use of only one information
device). We conclude with the observation that there are games where a pure-espionage
equilibrium need not exist. We also provide an asymmetric version of the matching
pennies that has no pure-espionage equilibrium and, if the cost of information is too low,

has no equilibrium without utilizing espionage either.!

! These observations are reminiscent of some of the results in the auditing literature (see, for example,
Townsend [1979] or Mookherjee and Png [1989]).



EXAMPLE 1: Consider the following extensive-form game (the standard chain-store

model):

Entrant

Incumbent

(b, 0) -1,-1
Figure 1
where a>0, b>0.

The game is played by an Entrant and an Incumbent. The Entrant decides whether to
enter the market or stay out. If the Entrant enters, the Incumbent has to decide whether to
Fight or Accommodate. The payoffs are as given in Figure 1. The first element of any
payoff pair corresponds to the Entrant’s payoff and the second element corresponds to the
Incumbent’s payoff.

It is well known that the unique subgame perfect equilibrium is comprised of the
Entrant entering and the Incumbent accommodating, whereby the equilibrium payoff is
(b, 0).

Suppose now that the Incumbent must decide on her reaction before the Entrant
chooses whether or not to enter and that the Entrant can purchase information on the
decision of the Incumbent. As mentioned in the Introduction, the pure subgame perfect
equilibrium remains a subgame perfect equilibrium in the extended game. We now
proceed to find another subgame perfect equilibrium where the Entrant uses his ability to
Spy.

Suppose that in equilibrium p is the probability with which the Incumbent
accommodates and ®(q) is the spying device purchased by the Entrant before entering:
the Entrant receives the correct report with probability q. The cost of ®(q) is ¢(q),
1/2<q<1, which we assume to be twice differentiable, increasing, and convex in q. We

assume that the cost of the null device is 0, thus ¢(1/2)=0.



DEFINITION 1: A device is effective if the Entrant plays a best reply against the report

of the device.

In the context of the chain-store model, if the report is “Fight” the Entrant stays out,
while if the report is “Accommodate” the Entrant enters.

In Lemma 1 below we prove that in any 2x2 game in normal form, if a device is
purchased in equilibrium, then it is effective.

We will now find the exact values of p and q that constitute an equilibrium with
espionage. In such an equilibrium 0 < p < 1 (else no espionage is needed). Since in
equilibrium the Incumbent is indifferent between fighting and accommodating, and the
Entrant receives a correct report with probability q, it follows that

q = (1+a)/(1+2a) > 1/2.
In particular, it follows that the espionage device that is purchased by the Entrant is
independent of its cost. If the cost is very high using espionage cannot be profitable for
the Entrant, but for sufficiently low costs of espionage, the quality of the purchased
device is determined solely by the Entrant’s payoff from choosing Out.

The Entrant maximizes his expected payoff with respect to p, thus solving;:

1 max {pgb + (1-p)[-(1-q)] - ¢(q), max {0, pb - (1-p)}},

where the first term is his payoff if he purchases the device q, and the latter if he doesn’t

purchase any device. If @ is strictly convex then (1) has a unique solution. The F.O.C that

corresponds to the first part in (1) implies that if an espionage device is purchased then
p= (@ (@)-1)/ (b-1).

Thus, there exists an equilibrium with espionage if and only if

2) O<p<l,
3) pgb + (1-p)[-(1-@)] - 9(q) 20 and
@) pab + (1-p)[-(1-9)] — 9(q) = pb-(1-p).

One can verify that b > 1 implies that ¢’(q) > b and inequality (3) implies (4), whereas if
b < 1 then ¢’(q) < b and inequality (4) implies (3). Moreover, for every positive a and b

for which (2) is satisfied, there is a cost function that satisfies (3) and (4).



Note that in an equilibrium with espionage the Entrant receives a payoff which is
smaller than the payoff he receives in the subgame perfect equilibrium of the game
without the option to spy. Nonetheless, for certain ¢’s, espionage provides an efficiency

improvement. Indeed,

PROPOSITION 1: Assume either a>b>1 or 0<a<b<l. There exists a cost function @
such that the payoffs corresponding to equilibria with espionage constitute a more
efficient outcome than the payoffs corresponding to the subgame perfect equilibrium
without espionage.

Proof: The Entrant’s payoff is

1+a 1+

2207

) Y- 11 - b - 0/ Wb - 11} - 0 s,
while the Incumbent’s payoff is a-qa = a®/ (1+2a).

Assume @((1+a) / (14+2a)) is arbitrarily small. Using continuity, it suffices to show that
the sum of the players’ utilities is larger than b for @’((1+a) / (1+2a)) = b. This is

equivalent to a(b - 1)(a - b) > 0 and is satisfied if eithera>b>1or0<a<b<l A

NOTE: The payoffs corresponding to equilibria with espionage are not Pareto efficient.
This stands in sharp contrast to the main message of Matsui [1989] that information

leakage leads to Pareto efficient outcomes.

EXAMPLE 2: Both players profit when the Entrant uses his ability to spy.
Consider the following extensive-form game (we keep the notation of Entrant and
Incumbent (instead of Players 1 and 2) in order to make the comparison with Example 1

more transparent):



Out, Entrant

(10, 10)

Accommodat Fight Incumbent

(15, 15) (0, 20)
Figure 2

Without espionage, the unique SPE is comprised of the Entrant staying out and the
Incumbent fighting upon entrance. The corresponding payoffs are (10, 10)

A similar analysis to that performed for the first example gives conditions for the
existence of an equilibrium with espionage. Denote by p the equilibrium probability that
the incumbent accommodates if the Entrant enters, and by ®(q) the equilibrium device
purchased by the Entrant. Then q = 2/3 and p = 2 - ¢’(2/3)/5. One can verify that there is
such an equilibrium if 5 < @’(2/3) < 10 and @(2/3) < 10/9. It is clear that both Players get
at least 10 in such an equilibrium (the Entrant has the alternative to stay out and get 10,
while 10 is the lowest payoff in the game for the Incumbent), hence the ability to spy

leads to a Pareto improvement over the SPE result.
The next examples are of 2x2 games in normal form. Player 1 is the row player and

Player 2 is the column player. Player 2 chooses her actions first, and Player 1 has the

option to purchase an information device before he has to choose his action.

EXAMPLE 3: Matching Pennies. We look at the standard 2x2 matching pennies game.

Left Right
Top 1,0 0,1
Bottom 0,1 1,0

If Player 2 assigns probability y to Left in equilibrium, Player 1 solves:
maxq {yq + (1-y)q - 9(q), max {y, 1-y}} = maxq {q - ¢(q), max {y, 1-y}}.

10



The first term in the maximization refers to the payoff achieved by purchasing
information and the second term corresponds to the maximal payoff achievable without
purchasing information.

Denote by ®(q") the information device purchased by Player 1 in an equilibrium with
espionage (if such an equilibrium exists). Then q* is chosen to maximize the first term in
the above problem. The first order condition implies that 1 = ¢’(q*) and q* does depend
on the cost function.

For an equilibrium with espionage we need (p"l(l) - (p((p"l(l)) > 1/2. Note that for this
specific game, any y € [1 - ¢”'(1) + 0@ ' (1), ¢'(1) - (@’ '(1))] is part of an

equilibrium.

EXAMPLE 4: Non existence of pure-espionage equilibrium.

Consider the following zero-sum game:

Left Right
Top 1,-1 0,0
Bottom 0,0 2,-2

This is the Matching Pennies game with different payoffs to different matchings.
We claim that there is no pure-espionage equilibrium in this game.
The mixed equilibrium in the game without espionage is ((2/3, 1/3), (2/3,1/3)).
Suppose Player 2 plays a mixed strategy (y, 1-y). Player 1 then solves

maxq{yq+2(1-y)q-¢(q), max{y, 2(1-y)}}=

=maxq{2g-yq-¢(q), min{y, 2(1-y)} }.

For ¢ small enough (e.g., ¢(3/4)<1/3), the mixed equilibrium in the game without
espionage is no longer an equilibrium in the extended game. However, if information of
quality q>1/2 is purchased, the payoff of Player 2 is -yq-2(1-y)q=yq-2q, which is
maximized at y=1. Hence, for sufficiently low cost functions there is no equilibrium

where Player 1 purchases a unique information device.

11



One could conceive that Example 4 is specific in that we restrict ourselves to
symmetric devices — devices that report the correct report with some probability q,
independently of the action Player 2 chose. It is not difficult to check that for the
“Matching Pennies” (Example 3) there exists a cost function such that the extended game
has no pure-espionage equilibrium, when we allow for a larger set of devices: all devices

of the form ®(q,, qz), where q;=Prob(signal=L | action=L) and q,=Prob(signal=R | action=R).

3 General Framework

We consider two-player games in normal form. Player 1 is the row player and Player 2
is the column player. We denote by A = (a;) and B = (b)) the payoff matrices of the two
players. A game in normal form with espionage is a tuple G = (A, B, S, Q, ¢) where
(i) A and B are nxm payoff matrices, (i) S is a finite set of signals, (iii) Q is a set of
functions q : J = A(S), where A(S) is the set of probability distributions over S. For each
g € Q corresponds an information device ®(q), which, when action j is chosen by Player
2, gives a (probabilistic) signal s with probability q(s, j). Finally, (iv) ¢ : Q — R is the
cost of information device ®(q). In the sequel we will not distinguish between a function
q : J = A(S) and the corresponding device ®(q).

The game is played as follows:
Stage 1 - Player 2 chooses an actionjinJ = {1, ..., m}.
Stage 2 - Player 1 purchases an espionage device ®(q) from a set Q of available devices.
Stage 3 - Player 1 receives a signal s from a set of signals, where prob(sj) = q(s, j)-
Stage 4 - Player 1 chooses an actioniinI= {1, ...,n}.
The payoff for the players is (a;- ¢(q), by).
A strategy for Player 2 is a mixed action y over J. A strategy for Player 1 is a pair (U, x)
where W is a probability distribution over devices, and x=x(q, s) is a (measurable)
function that assigns to each information device that was chosen at stage 2 and each
signal that was received at stage 3 a probability distribution over . If u is concentrated on
a single information device it is called a pure-espionage strategy. In that case we write

x=x(s). Otherwise it is called a mixed-espionage strategy.

12



We can present this game as a game in extensive form as follows:

Player 2

------------------ Player 1

Nature (according to q(:, j))

(a11-0(q@), b11)  (Q1m-9(Q), bim) (An1-¢(q), ba1) (Aum-P(qQ), bum)

Figure 3

We denote by m(y; g, ) the payoff to Player / when Player 2 plays the (mixed) strategy
y, and Player 1 uses the pure-espionage strategy (q, x). Note that if ¢(q) is quasi-convex,
then T(y; g, X) is a quasi-concave function for any fixed x=x(s).

Espionage equilibria are perfect Bayesian equilibria (PBE) of the extended game, as
depicted in Figure 2. Pure-espionage equilibria are espionage equilibria in which Player
1 is using a pure-espionage strategy. Similarly, mixed-espionage equilibria are espionage
equilibria in which Player 1 is using a mixed-espionage strategy.

In general, the cost function is a function from the set of Markov matrices to the real
numbers. However, one might want to impose conditions on the cost function. For
example, swapping two columns in the matrix does not change the information of Player
1 whatsoever, but changes the device we are dealing with. One would like the cost

function to give the same cost to such two matrices.

13



In general, we would expect one information device to cost more than another if and
only if it is “more informative.” Blackwell [1950] defined a partial preference ordering on

information devices (known also as garbling in the information theory literature).

DEFINITION 2: Let P; and P; be two nxm Markov matrices. P; > P if and only if there

exists an mxm Markov matrix M such that P, = P;M.

Intuitively, P, is defined to be at least as good as Py if P; is a noisy distortion of P,.
Alternatively, P, is at least as good as P if a player who receives information according
to P, can pretend to be playing according to P; by ignoring some of his information. In
particular, Player 1 will achieve at least as high a payoff with device P, as with device Py,
for any game.

Thus, we confine our discussion to the set of quasi-convex cost functions over Markov
matrices that preserve the Blackwell relation. Since the determinant is a quasi-convex
function over Markov matrices that preserves the Blackwell relation, this set is not empty.
In the sequel we will see other functions in this set.

In Appendix B we provide a geometric interpretation of the Blackwell relation, and we

prove that any quasi-convex function over nx2 Markov matrices preserves the Blackwell

relation.

4 Existence of Equilibria with Espionage

It is easy to see that any pure equilibrium in the game (A, B) corresponds to a pure
equilibrium in the extended game, where the option to spy is not used’. Moreover, any
nxm game in normal form with espionage that satisfies (i) Q is compact and (ii) @ is
quasi-concave, has an equilibrium in mixed-espionage strategies. Indeed, since the spaces
of pure actions of both Players 1 and 2 are compact, it follows that the space of mixed-
action combinations, which are probability measures over a compact set, is compact in

the w'-topology. The payoff function is continuous and quasi-concave, hence the best-

2 One class of games that has been recently studied in the literature and is comprised of games that always
possess a pure equilibrium is that of potential games (see Monderer and Shapley [1996]).

14



reply correspondence has non-empty and convex values, and its graph is closed. By
Kakutani’s fixed point theorem, an equilibrium in mixed strategies exists.
Note that since Player 2 plays before Player 1, the equilibrium strategy of Player 2 can

be taken to be a mixed action, rather then a probability measure over mixed actions.

4.1 Chain Store Models

In this subsection we study chain-store models; that is, 2x2 games where Player 1 has
an action that yields the players the same payoff, regardless of the action of Player 2. It is
more convenient to present this game in extensive form. The general game without

espionage is thus:

Player 1

(a,ay) Player 2

r

(b1, b2)
Figure 4

(c1,¢2)

For simplicity of exposition, we assume that each player’s payoffs differ across terminal
nodes. W.l.0.g. we assume that ¢, > bs.

We provide two theorems: one characterizes the conditions under which there exists an
equilibrium with espionage, and the other characterizes the conditions under which this
new equilibrium is more efficient than the SPE of the original game.

The proof of Theorem 1, which is rather tedious, is relegated to Appendix A.

THEOREM 1: There exist cost functions for which an equilibrium with espionage exists
if and only if the SPE is different from the Stackelberg equilibrium with Player 2 being
the Stackelberg leader.

Theorem 1 is rather intuitive. Divergence of the Stackelberg payoff from the SPE

payoff implies that Player 2 would prefer to use a reaction which is sub-optimal for her in

15



order to get Player 1 to choose an action that differs from that prescribed by the SPE. That
is, Player 2 faces a trade-off between choosing a reaction policy that is optimal if realized
(direct effect) and choosing a reaction policy that is sub-optimal, but causes Player 1 to
choose a beneficial action (indirect effect). In the original game commitment is not
possible and thus, according to the definition of SPE, no player chooses an action that is
sub-optimal at any decision node. However, the existence of espionage allows Player 2 to
commit herself (albeit probabilistically) to a sub-optimal reaction. Thus, as long as the
costs of espionage are not extreme (low or high), espionage makes the trade-off between
the direct effect and the indirect effect on Player 2’s payoffs non-trivial. It is in these
situations that an equilibrium with espionage arises.

Theorem 2 gives a characterization of when existence of espionage provides an

efficiency improvement, as captured by the sum of the players’ payoffs.

THEOREM 2: Efficiency is affected by the option to spy according to the structure of

the game being played:

1. Ifby<a;<ci, a;>cz, and aj+az; < cj+c; then for small enough cost functions
efficiency is improved in the PBE with espionage over the pure SPE in the original
game, but the ability to spy never increases Pareto efficiency. If aj+az > ci+c; then
any PBE with espionage is inferior efficiency-wise to the pure SPE in the original
game.

2. If ¢; < a; < by and by > a; then any PBE with espionage provides a Pareto
improvement over the pure SPE in the original game. In particular, efficiency is
increased.

Proof: Case 1 is equivalent (up to an affine transformation of the players’ payoffs) to

that studied in Example 1 in Section 2.

In case 2, the unique pure SPE is (L, r) which yields the payoff pair of (aj, a;). Assuming

that the cost function is arbitrarily small, in any equilibrium with espionage Player 2 gets

an expected payoff that is a convex combination of a,, by and c,, and is thus strictly

higher than a,. Individual rationality of Player 1 assures that in any equilibrium of the

16



expanded game he receives at least a;. Thus, any PBE with espionage constitutes a Pareto

and efficiency improvement over (L, r). A

4.2 Pure-Espionage Equilibrium

In this subsection we consider 2x2 normal form games with symmetric information
devices: the signal space is assumed to be the action set of Player 2, and Q = [1/2, 1].
Results similar to the ones we present here can be derived for general information
devices. The analysis is, however, more cumbersome.

We denote Player 1’s pure actions by I = {Top (T), Bottom (B)} and Player 2’s pure
actions by J = {Left (L), Right (R)}.
We assume that the cost function ¢ = ¢(q), that depends on a single number 1/2 < q <1,
satisfies @(1/2) =0, ¢’(q) > 0, ®’’(q) > 0. We also assume that no player has a dominating
strategy. In particular, w.l.0.g. a;;>az; and ax>ap,.

Recall that a device is efficient if Player 1 plays a best response against the signal he

receives.

LEMMA 1: If an information device is purchased in equilibrium, then it is effective.
Proof: Assume player 2 chooses L with probability y. Denote by V(b, s) the expected
payoff of Player 1 if he receives the signal s and plays the action b when the information

device purchased is ®(q) (for ease of notation we omit the dependence of V on q).

qya,, +(1-q)(1-y)a,,
qy +(1-q)(1-y)

V(T,L) = -0(q)

(1-q)ya,, +q(1-y)a,,
V(T,R) = -
(R) (1-qy+q(-y) "

qya, + (I-q)1- y)azz
V(B,L)= .
@D qy +(1-q)(1-y) @

(1-q)ya,, +q(1-y)a,
V(B,R) = -
®.R) (1-q@y+q(1-y) @
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If V(T, L) - V(B, L) and V(T, R) - V(B, R) have the same sign or if either equals to
zero, then Player 1 will profit more by playing the same action whatever signal he
receives, foregoing the option to purchase information.

If V(T, L) > V(B, L) and V(T, R) < V(B, R) Player 1 profits most by following the
signal he receives.

Since we restrict our discussion to q = 1/2, the two inequalities V(T, R) > V(B, R) and
V(T, L) < V(B, L) cannot hold together. Indeed, these two inequalities hold if and only if:
qyan + (1-q)(1-y)arz < qyaz; + (1-q)(1-y)az; and
(1-q)yaz1 + q(1-y)az < (1-g)ya +q(1-y)ar.
These two inequalities are equivalent to:
qy(aii-az) < (1-q)(1-y)(az-az1) and
(1-@)y(ari-az21) > q(1-y)(az2-az1).
Since a;;>a;; and ax>ay;, dividing the two inequalities leads to g/(1-q) < (1-q)/q, which

holds only if q < 1/2. A

LEMMA 2: Any equilibrium of the original game in which Player 2 uses a pure
strategy, is an equilibrium in the extended game where espionage is not utilized.
Proof: If Player 2 plays a pure strategy, Player 1 cannot profit by a costly purchase of

information. The result follows from the definition of an equilibrium. N

LEMMA 3: If (A, B) possesses a fully mixed equilibrium (xo, Yo), then it induces an
equilibrium (without utilizing espionage) in the extended game G if and only if:
2(az - ap)(ai — a21) / (a2 — anp + an — az1) < @°(1/2).

Proof: Let (Xo, yo) be a fully mixed equilibrium in (A, B). From the indifference
condition of Player 1, yo = (az - a12) / (a22 — 212 + a1 — az1). If (X, yo) does not induce an
equilibrium without espionage in the extended game, then Player 1 is better off by
purchasing some information device. By Lemma 1, a best reply of Player 1 involves
playing a best response against the signal he receives.

Denote by x =(x(s)) the strategy of Player 1 that indicates his best replies against all

the signals he can possibly receive. Then (Xo, yo) induces an equilibrium without utilizing
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espionage in the extended game if and only if the concave function f(q) = m(yo. q, X))
achieves it’s maximum at q < 1/2. We therefore have,
0>0n'/9q(y; 172, Q") = yan — yaz - (1-y)aiz + (1-y)az - ¢°(1/2)

Substituting y for its value proves the claim. A

In Appendix A we prove the following general result, which characterizes when a pure-
espionage equilibrium exists.

Denote oL = a;; — aj2 + a1 — a; and B =by; — b1z + by — by

THEOREM 3: Let (A, B) be a 2x2 game in normal form. Assume that a;, > aj; and

ay; > as3.

1) There exists a cost function ¢ such that the extended game (A, B, J, [1/2, 1], ¢)
has a non-trivial pure-espionage equilibrium (for a suitable S) if and only if one
of the following holds
a) P=0andb;;=by.

b) B#£0and1/2<(bja—byu)/B<1.

ii) ®(q) is the information device purchased by Player 1 in equilibrium if and only if
a) PBq=biz-ba.

b) If o # 0 then min{ ajj-az1, axp-a12 } < @’(qQ) < max{ ajj-az, ax-ai; } and
o(q) < min{ (1-y)q(az-aiz) — y(1-q)(ai1-a21), yq(a-az1) - (1-y)(1-q)(ax-a12) }
where

(5) y=(@'(q) +anp-ap)/ o
c) Ifo=0 then ©’(q) < ap-a12 (with equality if q=1) and ¢(q) < (q-1/2)(az-212)

= (q-1/2)(ar1-az1).

In the proof we show that if 00 then y = (¢’(q) + a2 — az2) / o is the mixed action

chosen by Player 2 in equilibrium. Note that the game in Example 3 satisfies o.= = 0.

4.3 Mixed-Espionage Equilibrium
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As mentioned before, any game with espionage has an equilibrium in mixed strategies.
As we show now, when the players have only two actions, Player 1 randomizes in

equilibrium between at most two different information devices, one of which is the trivial

device.

PROPOSITION 2: Let (y; U4, x) be a mixed-espionage equilibrium. Then there is
q'e(1/2,1] such that p gives probability 0 to (1/2, ¢ ) (g, 11.

Proof: Denote by x*(q, s) the best reply of Player 1 to the signal s. By Lemma 1, x = X
u-a.s. Assume that the proposition does not hold. Then the average value of p,
conditioned on the interval (1/2, 1], is well defined. Denote this average by q*. The joint
distribution on pairs (b, s), where b is an action chosen by Player 2 and s is a signal
reported to Player 1, is linear in the device purchased by Player 1. Hence both u and q
induce the same joint distribution over the space of these pairs, and therefore the same
expected payoff for Player 1. Since ¢ is strictly convex, the cost of q is lower then the

expected cost of the device chosen by p, hence (y; u, X) is not an equilibrium. A

5 Espionage and Correlated Equilibria
Espionage ensures that players’ actions are correlated. This suggests a comparison
between the set of equilibria with espionage and the set of correlated equilibria. In this

context, ®(q) serves as a correlation device. In this section we set Q = { q: B — A(S) }.
Thus we no longer consider only symmetric information devices, and we assume that

Player 1 can purchase any conceivable device.

EXAMPLE 5: Consider the following example of a 3x3 game (Moulin and Vial [1978]):

L M R
T 0,0 1,5 5,1
I 5,1 0,0 L5
B 1,5 5,1 0,0

The only Nash Equilibrium without espionage is {(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)}.
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Assume that the signal space is {“Not L”, “Not M”, “Not R”} and that Player 1 can
purchase the following information device q with low cost:
gNotL,L)=0, qNotM,L)=1/2, q(NotR,L)=1/2
qNotL,M)=1/2, qNotM,M)=0, q(NotR,M)=1/2
gMNotL,R)=1/2, q(NotM,R)=1/2, q(NotR,R)=0
This device allows Player 1 to rule out one of the actions that Player 2 did not choose.
An equilibrium in that environment is for Player 2 to play (1/3, 1/3, 1/3) and for Player 2
to purchase information (up to a certain threshold) and play T, I or B, depending on
whether the signal was “Not L”, “Not M” or “Not R” respectively. The diagonal entries
are not reached in equilibrium and the corresponding payoff pair, not including the cost of
espionage, is then (3, 3), which corresponds to the optimal correlated equilibrium of this

game.

NOTE: Such a construction cannot be replicated for 2x2 games. It follows from
Theorem 4 below that no matter what the cost function is, one cannot get close to the best

correlated equilibrium (10/3, 10/3) of the following classic example (Aumann [1974]):

Left Right
Top 5,1 0,0
Bottom 4.4 1,5

DEFINITION 3: A semi-correlated equilibrium distribution of a game (A=(a;;),B=(b;;))

is a probability distribution p over the matrix cells such that

1) Foreveryiandi’: Zp,.jaij > Zpijai.j .
j j

2) Foreveryjandj’: Zp,.jbij 2 Zpijbij. .

3) For everyjandj with Zpij,ZPij. >0,

Z Pyb; /2 Py = 2 Pyby /Z Py -
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REMARK: Conditions 1 and 2 are the standard conditions of correlated equilibrium —

no player can profit by acting as if he received a different signal. Condition 3 is the
condition of distribution equilibrium given by Sorin [1998] — the expected payoff of

Player 1 is the same, given any signal that he receives.

Each strategy pair (y; M, X) in the extended game induces a probability distribution

p=(py) on the matrix:

py = [ X ¥,4(s, )x(q, 5)dp(g).

pij is the probability that the cell (i, j) will be played.

THEOREM 4: p=(p;) is a probability distribution induced by an equilibrium in the
extended game if and only if it is a semi-correlated equilibrium distribution of the original

game.
Proof: Let p=(p;) be a probability distribution induced by an equilibrium in the
extended game. Since in equilibrium Player 1 plays a best response given the signal he

received, condition 1 in Definition 3 holds. Let j and j* be such that 2 pij,E p;>0.1If

either 2 p;b; < 2 pyb; or 2 pyb;/ Z p; < 2 pyb; ! 2 p; then Player 2 would not
play the action j with positive probability, and then 2 p; =0. In particular, conditions 2

and 3 in Definition 3 hold for such j and j’.

Let p be a semi-correlated equilibrium distribution. Define y € A(J) by y; = Zi pyj, and
let the signal space be S =1 U J. Define the following function q : J — A(S). For every ]
such that y; =0, q(j, j) = 1 while for every j such that y; >0, q(i, j) = p;j / ¥ = Pjj !/ Zi py.
Finally, define x : S — I as follows: if s € B then x(s) is the action of Player 1 that yields
Player 2 the lowest payoff when she plays s, whereas if s € A, then x(s) = a.

In words, y prescribes Player 2 to play according to the marginal distribution of p. If

she plays an action that has a positive probability according to y, then ®(q) recommends
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Player 1 to play some action, according to the distribution p. x prescribes Player 1 to
follow the recommendation. If Player 2 plays an action that has O probability according to
p, the action is reported deterministically to Player 1, and x prescribes Player 1 to
“punish” player 2.

We will now see that since p is a semi-correlated equilibrium distribution, if the
players play (y; g, x) then Player 2 cannot gain by deviating, and Player 1 cannot gain by
playing a mixed-action different from x. We will then construct a cost function that forces
Player 1 to purchase the information device ®(q).

Indeed, assume that the players play the pure-espionage strategy (y; q, X). The
probability distribution induced on the pairs of actions is exactly p. By condition 3 of
Definition 3 Player 2 is indifferent between all actions j with y; > 0, and by condition 2 he
cannot profit by any deviation. By condition 1, Player 1 cannot profit by not following the
recommendation of q.

We shall now construct a cost function ¢ that “forces” Player 1 to purchase the device
d(q*). Let conv(e, g*) be the convex hull of the null device and the device ®(q*). Let Qo
be the set of devices that are Blackwell-inferior to some device in conv(e, q*). Qo is
convex and closed. (see Appendix B for a geometrical representation of the Blackwell
Relation). Define a cost function @[{q) = r dist(q, Qo), r times the Euclidean distance
between q and Qo. One can easily check that @, is quasi-convex and preserves the
Blackwell relation.

For any device ®(q) that is not in conv(e, q*) there exists r such that if @; is the cost
function, then Player 1 cannot profit by purchasing the device ®(q). By the compactness
of the set of devices, there exists r sufficiently large such that if @; is the cost function,
then Player 1 cannot profit by purchasing any device which does not correspond to a
point in conv(e, q*). Define @¢=¢,.

By the construction of @, Player 1 cannot profit by purchasing any device outside Qo

and the cost of all devices in Qo is 0. A
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6 Concluding Remarks

In this paper we have demonstrated the effects of players’ option to purchase
information on their opponents’ decisions (i.e., to spy on their opponents). This alteration
of the agents’ optimization problem changes the set of predictions of the game. While
pure equilibria of the original game remain equilibria in the extended game with
espionage, the set of mixed equilibria may change for sufficiently small costs of
information. Moreover, there may be additional mixed (perfect Bayesian) equilibria when
espionage is available. Assuming the cost of information is quasi-convex, mixed
equilibria in the extended game give weight to at most two information devices: the null
information device and some non-trivial information device (provided player 2 has 2
possible actions).

The set of equilibria with espionage is closely linked to the set of correlated equilibria
of the original game. A complete equivalence exists when looking at the subset of semi-
correlated equilibria.

Our analysis concentrated mostly on 2x2 extensive form games and one shot 2x2
normal form games. The natural next step is to extend this study to multi-stage games
with a sequence of players’ decisions. The algorithm presented in Section 3 for
transforming the game tree of the original game to that of the extended game can be used
in the same way, but the analysis becomes much more complicated. This extension has
economic relevance to the timing of decisions. Given that spying is possible only on
policies that have already been determined, there might be a trade-off between
committing oneself to policies early on in the game and waiting to a stage where the
opponent’s actions can be spied upon. A resolution of this trade-off can serve to
determine the endogenous timing of policy meetings.

It is also worthwhile noting that espionage can be considered in the context of private
information that is not related to the players’ actions. That is, allowing players to
purchase information on others’ private signals or types could extend the standard models
of games with incomplete information.

Another possible direction for extending this model is allowing for protection against

espionage (folk wisdom suggests that this phenomenon occurs in army related enterprises,
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as well as in industrial/economic ones). Since espionage sometimes leads to a strict
Pareto improvement, it is not clear that even if protection is very cheap, the game is
equivalent to the original game without espionage. We do predict, though, that if
protection is extremely costly, the game resembles the extension considered in this paper.
The authors do not know how the current predictions change when protection costs are
comparable to the costs of information. Nonetheless, it is not hard to construct examples
in which both players invest in information purchase and protection, and payoffs are

Pareto dominated by the equilibria payoffs of the original game.
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Appendix A - Proofs

Proof of Theorem 1:

Since ¢, > b, action r of Player 2 is part of any SPE. If a; < ¢, then the SPE is (R, r) and

the Stackelberg payofTf is different if and only if a; > ¢; and b; < a;. If a; > c; then the SPE

is (L, r) and the Stackelberg payoff is different if and only if b, > a; and a; < b;. To

summarize, the condition of the Theorem holds if and only if one of the following

conditions holds:

1.
2.

b; <aj; <cgand a; > Cy; or

c1<a; <b;and by > a,.

We now go case by case according to the parameters of the game:

1.

If a; < min {by, c;} then R strictly dominates L for Player 1 and since ¢; > b, (R, 1)
with no spying is the unique SPE.

If a; > max {by, c;} then L strictly dominates R for Player 1 and since c; > b,, (L, 1)
with no spying is the unique SPE.

If b; < a; < ¢; and a; < ¢, , since (cq, C») strictly Pareto dominates all other feasible
payoffs, in every SPE (with or without espionage) Player 2 chooses r with probability
1. But then employment of any non-trivial (and thus costly) espionage cannot be part
of an equilibrium and (R, r) with no spying is the unique equilibrium.

If ¢; < a; < by and ¢, > a, > b, the game is one of conflicting interests and the unique
SPE is (L, r) with no espionage.

If ¢; < a; < by and a; > ¢, > b, then in any equilibrium with espionage Player 2 should
choose r with probability 1 (in order to induce Player 1 to play L). But then
employment of any non-trivial (and thus costly) espionage cannot be part of an
equilibrium and (L, r) with no spying is the unique equilibrium.

The case b; < a; < ¢; and a, > ¢, is equivalent to the chain store model presented in
Example 1 and does qualify for an equilibrium with espionage for low enough cost
functions as explicitly characterized in Section 2.

Example 2 is a special case of ¢y <a; <bjandc; >b; > a;. In particular, equilibrium

with espionage is possible. The general analysis is analogous to that of the chain store
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model. Using the notation of Section 2, indifference of Player 2 in an equilibrium
with espionage requires that
* _ C2 - 32
d b, +c,-2a,
Player 1’s problem is:

max {pgb1+p(1-q)a;+(1-p)ga;+(1-p)(1-g)ci-9(q), max{a;, pbi+(1-p)c1}

for which the solution is " (p). The pair (p*, ®(q" (p ))) is part of an equilibrium if:

C,—a,

4= T,

Just like for case 6, this condition will be satisfied for small enough cost functions.

Proof of Theorem 3:
Let (y; q, x') be a pure-espionage equilibrium in an extended game (A, B, J, [1/2,1], ¢)
with q > 1/2.
Step 1: Indifference condition of Player 2
In equilibrium y must be fully mixed (otherwise espionage is not needed), and therefore
Player 2 must be indifferent between his actions. In particular,
gby; + (1-q)bz; = qbx, + (1-q)b12,
or equivalently, Bq = bis-by. Since 1/2<q<l, it follows that if a pure-espionage

equilibrium exists then one of conditions (i).a or (i).b holds.

Step 2: Player 1 maximizes his payoff at q
Player 1’s payoff is given by

m'(y; q.x") = yqan + y(1-Q)az1 + (1-y)qag + (1-y)(1-Q)ai2 - ¢(q).
Since Player 1 maximizes his payoff at q, either g=1 and anllaq(y;l,x*)ZO or 1/2<q<1 and
anllaq(y;q,x*)=0. In both cases, if 020 then yo = @’(q)+a;2-a,. Therefore, O<y<1 if and
only if min{ aj;-az1, axp-aiz } < @’(q) < max{ aj-a, ax-a } which proves the first part
of (ii).b. If =0 then @’(q)< ax-a;z, with equality if g<l and @’(q) = ax-az = aji-az1.
Thus the first part of (ii).c is proved.
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Step 3: Player 1 prefers to purchase the device q rather than not purchasing any device.
In a pure-espionage equilibrium Player 1 prefers to purchase the device q and follow its
signal rather than to play always B. Hence

yas; + (1-y)an < yqan; + y(1-q)az + (1-y)qaz + (1-y)(1-q)aiz - ¢(q).

Therefore

(6) y(1-q)(ai — a21) + @(q) < (1-y)q(az — ap).

Similarly, if Player 1 prefers to purchase q rather than to play always T, we have
() (1-y)(1-q)(az2 - a12) + @(q) < yq(ai — az1)-

If a0 then the second part of (ii).b follows. If 0=0 we note that a;;-az; = ax-aj», hence
(6) and (7) translate to
¢©(q) < q(ai-az;) — max{ y, 1-y} (ar1-a21)

Since y has no constraint, by choosing y=1/2 we get the second part of (ii).c

Step 4: Sufficiency of (i).
Taking @(q) to be arbitrarily small, (6) and (7) translate to

I-y ¢q <a11—a21<1—y1—-q.
y 1-q ap-a, 'y ¢

®)

If B = 0 let q be arbitrary. Choose a function ¢ such that y that is defined by (5) satisfies
(8) (this is a constraint on @’(q)), and @(q) is sufficiently small, so that (6) and (7) hold as

well. Then (y; q, x) is a pure-espionage equilibrium in the extended game. A
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Appendix B: The Blackwell Relation

In this Appendix we provide a geometric interpretation of the Blackwell relation for
nx2 Markov matrices, and we use this representation to prove that any quasi-convex

function over the space of nx2 Markov matrices preserves the Blackwell relation.

If P > Q, then any column of Q is a convex combination of P’s columns.

Each nxm Markov matrix P defines a point p in R“(m'l), and therefore, defines a convex
set C(P) which corresponds to the matrices which are less informative than P. Thus, P >
Q if and only if g € C(P), where q is the point in R*™" that corresponds to Q. Note that
in this case C(Q) < C(P).

a

In particular, any 2x2 Markov matrix P = (1 b

1-
baJ corresponds to the point (a,1-b)

in R?, and to the parallelogram defined as conv{(0,0), (1,1), (a,1-b), (1-a,b)}. Figure 5

captures this description graphically:

1y
(a,1-b

CP)

(l-a_h) ’

0,0
Figure 5

PROPOSITION 3: Let f be a quasi- convex function over 2xX2 Markov matrices that
(i) vanishes on the trivial matrices(a=1-b=0 and a=1-b=1) and
(ii)  gives the same value to matrices that differ in the order of columns.

Then f preserves Blackwell’s relation.
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Proof: Let f be a quasi-convex function over the space of 2x2 Markov matrices
satisfying (i) and (ii) above. If P > Q then Q lies in C(P). However, the two null matrices
that correspond to the points (0,0) and (1,1) have f-value 0, whereas f(P) > 0. Therefore
f(P) = f(R) for every R in C(P). In particular, f(P) = f(Q). A

The proof of Proposition 3 can be extended to any nx2 matrix (since then C(P) is
determined by a single point in R"). Nonetheless, these conditions are not sufficient for

matrices of higher dimensions, as the following example illustrates.
EXAMPLE 6: Consider the space of 2x3 Markov matrices and let f be a linear function

, and f satisfies

such that f(P)=1 where P =

1
% , f(Q) = 2 where Q =

A=
N =W | =
N[ =W
N =W

S

the two conditions of Proposition 3.
Since P, Q, and all their equivalents (and the trivial matrices) are not linearly related, such
an extension exists.

Note that P > Q. Hence f does not preserve Blackwell relation.
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