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Abstract

We consider rules that choose a location on a graph (e.g. a net-
work of roads) based on the report of agents’ symmetric, single-peaked
preferences over points on that graph. We show that while a strategy-
proof, onto rule is not necessarily dictatorial, the existence of a cycle
on the graph grants one agent a certain amount of decisive power.
This result surprisingly characterizes the class of strategy-proof, onto
rules both in terms of a certain subclass of such rules for trees and in
terms of a parameterized set of generalized median voter schemes.

1 Introduction

The work of Gibbard (1973) and Satterthwaite (1975) has inspired a cottage
industry of papers devoted to classifying the economic environments in which
non-dictatorial, strategy-proof rules do or do not exist (see Thomson, 1998).
One much-studied environment involves the provision of a pure public good.
Consider a society in which the level of provision of public goods is given
by a point in Euclidean space. Zhou (1991) shows that whenever the set
of quadratic preferences over the space is admissible, any strategy-proof rule
with a range of at least two dimensions is dictatorial.
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In contrast is the case in which the range of a rule is one-dimensional.
Here, (strictly) convex preferences are single-peaked. Moulin (1980) intro-
duces the class of “generalized median voter schemes,” which are the only
strategy-proof, onto rules when agents have single-peaked preferences over a
one-dimensional set of alternatives (see Ching, 1997).

This important result has led to the analysis of various related models in
which the concept of a generalized median voter scheme can be extended. In
particular, Border and Jordan (1983) show that when preferences are both
quadratic and separable on higher dimensions, a strategy-proof, onto rule
must be decomposable into such a scheme for each dimension.!

Danilov (1994) shows that when agents have single-peaked preferences
over a tree, strategy-proof rules satisfying a condition known as “peak-only”
can be recursively decomposed into the “median” of triples of constant or
dictatorial rules. Though this result may appear negative, it actually gener-
alizes the class of generalized median voter schemes on a line.

In this paper, we examine the consequences of enlarging the domain of
trees to include graphs with cycles. We consider a simpler structure on
preferences, and assume them to be quadratic (i.e. symmetric and single-
peaked) with respect to (shortest) paths along the graph from some peak.
That is, each agent has a most preferred location on the graph—a peak—
and preference over points is inversely related to (minimal) distance from the
peak.?An example of an application of such preferences exists when agents
have preferences over locations on a road network represented by distance
traveled on the network, and distance is measured identically by any two
agents.

Our results show that the presence of cycles in the graph implies that
strateqy-proof, onto rules must give one agent a degree of power in determin-
ing the chosen location. In particular, (Theorem 1) when all agents’ peaks
are on the same cycle, that one agent’s peak is the chosen location. Second,
(Theorem 2) in any other situation, this agent must consider the chosen lo-
cation to be as good as any point that is on or between any cycle(s) in the
graph.

This second result can be used to characterize the class of strategy-proof,

1See Peremans et al. (1997) for a characterization without the onto requirement.

’Hansen and Thisse (1981) and Demange (1982) restrict attention to graphs that are
trees, and derive existence results for that model concerning Condorcet winners and the
core.
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onto rules in terms of a subclass of such rules for trees. For example, Danilov’s
characterization can be applied, leading to one characterization of strategy-
proof, onto rules for graphs. Corollaries 1 and 2 formalize this style of char-
acterization, stressing the importance of finding a “closed-form” character-
ization of such rules for trees, which at this point is an open question. For
the case in which the graph is not acyclic, Theorem 2 can be used to provide
a closed-form characterization in terms of certain families of generalized me-
dian voter schemes. In Theorem 3, we show that a strategy-proof, onto rule
essentially gives one agent the power to offer the remaining agents his choice
from among a set of generalized median voter schemes acting on certain paths
on the graph.

Section 2 contains a formalization of our model. Section 3 contains The-
orem 1, which restricts attention to any one cycle on a graph. Section 4
contains Theorem 2, which provides the result necessary to characterize the
class of strategy-proof, onto rules. Finally, Section 5 contains the characteri-
zation results.

2 The Model

There is a set of agents, N = {1,2,...,n}, with arbitrary agents denoted 1, j,
etc. There is a “road network” represented by a graph, G, formalized below.
A point (location) is to be chosen on G, based on the agents’ preferences over
points on G.

A (finite) graph® is a subset of Euclidean space, G C R¥, that satisfies
the following conditions:

1. G is the union of a finite number of rectifiable* curves of finite length.
2. Any two of these curves intersect at most at their extremities.
3. G is connected.

Each rectifiable curve is called an edge. Each of the two extremities of an
edge is called a verter. A vertex that lies on a single edge is called a leaf.

A path between z,y € G is a minimal connected subset of G that contains
x and y. The length of a path is simply the sum of the lengths of the edges (or

3For a more complete formalization of graphs and related concepts, see Berge (1963).
4Roughly speaking, a curve is rectifiable if it can be approximated with a sequence of
line segments. See Berge (1963).



portions thereof) whose union make up the path. The distance between any
two points z,y € G, denoted d(z,y), is the minimum path-length between
the two points. Denote the set of minimal-length paths between z and y by
[z,y] = {2z € G:d(z,2)+d(y,z) = d(z,y)}. Typically, [z,y] is a single path.

A cycle in G is the union of two paths that intersect only at their end-
points. There is a cycle through any two distinct points z,y € G if there
are at least two paths between them that intersect only at z and y. As a
normalization, we assume that the distance around each cycle is at least 1,
i.e. for any cycle C C G, there exist z,y € C such that d(z,y) > 1/2.

Each agent has a quadratic preference relation over G: there exists a
point, p;, called the peak, such that the agent’s preferences are represented
bv the utility function u(z) = —d(p;, 2).

Note that preference relations are uniquely defined by their peaks. Arbi-
trary peaks, though also points on the graph, will be denoted p;, pj, etc. In
standard fashion, for a list of peaks p € G™, the list obtained by replacing
agent i’s peak p; with pl is written (p}, p_;).

A (social choice) rule is a function f:G™ — G mapping lists of agents’
peaks into points on the graph. We are interested in onto rules that are
non-manipulable in the sense of being strategy-proof:

¥pe G i€ N,p, € G, dps;, f(p)) < d(ps, f(pi, p-i)) (1)

A standard result in the literature states that any strategy-proof rule that
is also onto satisfies what is known as unanimity: for all p € G® and i € N,
if for all j € N, p; = p;, then f(p) = pi.

3 The Behavior of Rules along Cycles

In this section we prove that the restriction of a strategy-proof, onto rule to
a cycle must be dictatorial on the cycle.

Consider a small interval (a “short” path) on the graph G. Further-
more, consider only those profiles of preferences for which each agent’s peak
is located within that interval. As we show in Lemma 3 below, for such
profiles, a strategy-proof, onto rule must choose a location within this inter-
val. Furthermore, the restriction of such preferences to this interval induce
what is analogous to single-peaked preferences on a line segment. There-
fore, the restriction of the rule to such a set of profiles must be analogous to



some strategqy-proof, onto rule mapping single-peaked preferences over a line
segment into points on that segment.

In other words, the choice problem on this subdomain of preference pro-
files is, essentially, one that is mathematically equivalent to the problem of
Border and Jordan (1983) for single-peaked preferences on a line. Thus,
it follows from the results of Border and Jordan that on small intervals, f
must behave like a generalized median voter rule. This fact is presented as
Proposition 1 below.

Now consider a cycle, C C G. Proposition 1 requires a strategy-proof, onto
rule to behave like a generalized median voter scheme on each small interval
around C. In order for all of the schemes for these small intervals to be
consistent with each other around the cycle C, each one must be dictatorial.
This notion is used to prove the stronger statement of Theorem 1: there must
be a dictator on the entire cycle (and not only on small intervals along the
cycle).

For the remainder of the section, we take as given a strategy-proof, onto
rule, f, on the graph G. The results hold for any graph, but for Lemmas 4
and 5 to be nontrivial, G should contain at least one cycle.

The following lemma is similar to Border and Jordan’s result saying that
strategy-proofness implies what they call uncompromisingness—moving an
agent’s peak closer to the chosen location should not change the choice of lo-
cation. On graphs, this conclusion is true in a neighborhood of the originally
chosen location.

Lemma 1 (limited uncompromisingness) for alli € N and all z,p; €
G, there exists € > 0 such that for allp_; € G*! and all p] € [p;, f(P)], of

f(p) =z and d(p;, f(p)) <, then f(p;,p—s) = f(p).

Proof: Let p! € [p:i, f(p)], = = f(p), and y = f(p},p-:). By eqn. (1) above,
we have both d(p;,z) < d(p;,y) and d(pl,y) < d(p], z). If p; is sufficiently
close to f(p), it follows from strategy-proofness that =z = f(p), regardless of
the values of p_;. O

Since a strategy-proof, onto rule must satisfy unanimity, this result can
be used to show that the point chosen by the rule must lie “between” the
agents’ peaks, in the sense that the shortest paths from the agents’ peaks to
the chosen point must jointly intersect only at the chosen point.

Lemma 2 (no intersecting shortest paths) For allp € G™ and all i €
N, there exists j € N such that [p;, f(p)) N [p;, f(P)] = {f(p)}.
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Proof: Suppose for a contradiction that

P= ﬂ [k, f(p)] 2 {f(p)}

keN

Hence there exists z € P with z # f(p), such that [z, f(p)] C P. By
Lemma 1, for all 7 € N, there exists p] € [z, f(p)] with p; # f(p) such that,
fwp-d) = f(p).

Let j = argmingey d(p}, f(p)). For all i« € N, let pj = p}. Then by
repeated application of Lemma 1, f(p') = f(p), contradicting unanimaty. O

The next lemma states that when agents’ peaks lie in a sufficiently small
neighborhood, a strategy-proof, onto rule must choose an efficient point—a
point lying in the union of the shortest paths between peaks. Recall that the
length of each cycle has been assumed to be at least 1.

Lemma 3 (limited efficiency) Let p € G™ be such that for allt,7 € N,
d(pi»pj) < 1/8- Then f(p) € Uz’,jEN[pﬁpj]'

Proof: Suppose in contradiction to the Lemma that f(p) & U, ;cn [pi. ;!
Claim: For all i,j € N, if [ps, f(p)]N[p;, f(p)] = {f(p)}, then, where p} = p;,
f(p]7 ) QUemeN[Pme]

Suppose i,7 € N are such that [p;, f(p)] N [py, f(p)] = {f(p)}. Since

(p) & [ps, p;] by assumption, [p;, f(p)] U [p;, f(p)] U {pl,p]] contains a cycle.
Let di = d(p;, f(p)), & = d(pj, f(p)), and d¥ = d(p;, p;). As the minimum
length of a cycle is 1, we have d' + & + dV > 1. Since d¥ < 1/8, we have
either d* > 7/16 or &’ > 7/16 (or both). In the former case, the triangular
inequality implies &’ + d* > d*, hence d? > 5/16 in all cases.

Letting p; = p; and = = f(p},p—5), strategy-proofness implies d(p;,z) >
5/16. For any other agent k € N, d(p;, px) +d(px, z) > d(p;. z), so d(px, z) =
3/16. Therefore = &€ J; men[Pe, P}, and the Claim is proven.

By Lemma 2, let ¢, 5 € N be such that [p;, f(p)]N[p;, f(p)] = {f(p)}. For
all k € N, let p, = p;. By the Claim, we have f(p},p-;) ¢ Ug men | Pes Pml-

Repeatlng the argument by Lemma 2, there must exist £ € N such
that [pl,f Py p=)) O e, f (P} p-5)] = {f(pj, ;)}. By the Claim, we have

f (P, p],p k) Q Ue méN[pl?vpm]
This argument can be repeated until we have f(p') & Uy men(Pe: Pml;

which contradicts unanimaty.



Fix a cycle C C G, and consider the restriction of peaks (i.e., a subdo-
main) to an interval on C of length no greater than 1/8. The induced pref-
erence relations over this interval are single-peaked. Furthermore, Lemma 3
states that on this subdomain, a strategy-proof, onto rule must make its se-
lection from this interval. Therefore, the choice problem on this subdomain
is mathematically equivalent to the problem of Border and Jordan for single-
peaked preferences on a line. Thus, it follows from Border and Jordan (1983)
that on [z,y], f must behave like a generalized median voter rule.

To present this result for points on a cycle, however, it is necessary to
introduce a partial order over points on the cycle. To do so, imagine C as a
circle. For any two points z,y € C such that d(z,y) < 1/8, we write y < x
if and only if the (unique) shortest path from y to z moves in a clockwise
direction on the circle. For example, looking at a clock, if z is at 11:00 and
y is at 10:00, then = > y.

Proposition 1 (generalized median voter schemes) For all z,y € G
such that d(z,y) < 1/8, there ezist 2N points in [z,y], (aZ)scn, such that

(1) S CT C N wmplies o&’ = af, and (1) for allp € |z, y]",
— max mi N Y
f(p) - Iglcé)z}mln{(pz)lc& Qg }

where the max and min operations are taken with respect to the partial order
>

Proof: (Sketch.) The restriction of f to [z,y], say g, is itself a strategy-
proof, onto rule for the interval. Furthermore, the restriction of peaks to
[x,y] defines a subdomain which is identical to the domain of Border and
Jordan (1983).> Therefore, the result follows from Propositions 2 and 4 of
Border and Jordan. O

To present the next set of results, we refer to the parameters described
in Proposition 1. For all 2,y € G such that d(z,y) < 1/8, let (a&)scn be
those parameters.

The following lemma states that these parameters lie at the extreme
points of their respective intervals. Furthermore, for each coalition, the di-
rection in which its parameter lies (i.e., the “right” or “left” of the interval)

SThere is a slight technical difference in that Border and Jordan’s range is the real line
instead of a finite interval. Their characterization can easily be extended to intervals. A
proof is available upon request.



is consistent across intervals. In essence, this implies that on intervals of
length less than 1/8, a strategy-proof, onto rule can be described in terms of
right- and left-coalitions.

Lemma 4 (right-/left-coalitions) There exists a family of (right-) coali-
tions, S C 2V, such that for all S C N,

(right) if S € S, then for all z,y € C such that d(z,y) < 1/8 and z = y, we
have o’ =z

(left) if S & S, then for all z,y € C such that d(z,y) < 1/8 and z = y, we
have &g’ =

Proof: Let S C N and let z,y € C be such that z = y and d(z,y) < 1/16.
Let a = a’. We will show that if a # y, then for all v,w € C such that
v = w and d(v,w) < 1/8, we have a¥* = v, i.e., we will show that if o # y,
then S is a “right-coalition.”

Let z € C be such that y > z and d(z,2) < 1/8. Foralli € N, let p; =z
if i € S and p; = y otherwise. By definition of the a-parameters, we have
f(p) = a. Since f(p) # y, we also have

o =« (2)

For all 7 € N, let p, = y if 1 € S and p; = z otherwise. By Proposition 1,
f(p) = min{(p)ies, @%} = y. Therefore Lemma 3 implies f(p) = y. Hence,

af =y (3)

Repeating the arguments that lead to eqns. (2) and (3), we can show
that for all w € C such that w > z and d(w,y) < 1/8, we have o’ = y and
o’ = z.

Therefore, by choosing an appropriate sequence of points around C, the
same arguments show that for all v,w € C such that v = w and d(v,w) <
1/8, we have og¥ = v.

If instead we had & = y, then we would have shown that S is a “left-
coalition.” O

Lemma 5 (peak selection) For allp € C™, f(p) € {p1,p2, .-+ Pn}-

6This terminology should not be confused with the literature’s standard description of
generalized median voter schemes in terms of “right/left coalition systems.”
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Figure 1: Proof of Proposition 2.

Proof: Let p € C". Suppose in contradiction that f(p) € {p1,p2,...,pn}.
By Lemma 1, there exists pj € [p1. f(p)] such that 0 < d(p}, f(p)) < 1/16
and f(p},p-1 = f(p)

Similarly, there exists pj € [ps, f(p)] such that 0 < d(p}, f(p)) < 1/16
and f(py, ph, p-12) = f(p)-

Repeating the construction for the other agents, we have f(p’) = f(p),
d(p;,p;) < 1/8 for all 4,5 € N, and p; # f(p') for all i € N, contradicting
Lemma 4. O

Proposition 2 If |N| = 3, then there exists i € N such that for all p € C3,
f(p) = p:.

Proof: Let p € C*® be such that d(p;,p;) = 1/3 for all 4,5 € {1,2,3},1 # j.
Assume without loss of generality (and by Lemma 5) that f(p) = p;. We
will show that for all p € C3, f(p) = p;.

Let S be the set of coalitions described in Lemma 4. Note that by Propo-
sition 1, it is sufficient to show that both (i) {1} € S and (ii) if S € S and
|S1 =1, then S = {1}.7 Notice also that if S € S, then S C S’ C N implies
S'esS.

For 1 € {2,3}, let p, € [ps,p1] be such that 0 < d(pi,p;) < 1/16 and
f(p1, 05, p3) = f(p) (see Figure 1a). By Proposition 1, we have {3} ¢ S.

Let py,pY,pY € [p1,ps] satisfy d(p},p1) = 1/12, d(p{,p1) = 1/6, and
d(p},p3) = 1/8 (see Figure 1b). Since f satisfies peak selection, strategy-
proofness implies f(p},p2,ps) = p}. Similarly, we have f(p{,p2,p3) = p}
and f(pY', p2,ps3). Strategy-proofness and peak selection also imply that for

“These two conditions are what define a dictator for our class of median voter schemes.



any pi € [V, ps), f(p!, Py, p3) = pY. Therefore, {2,3} ¢ S, which implies
{2} ¢S

The symmetric argument, with p; € [p1, po] satisfying d(py, p2) = 1/8 and
P4 € [P}, p2), demonstrates that f(p1, p2, p5) = p1. Therefore, {1} € S. [

Now we prove the general result. The proof works by showing that if a
strategy-proof, onto rule is non-dictatorial for the general case, then there
must be such a rule for the 3-agent case, contradicting Proposition 2. The
method of proof is similar to that found in Kalai and Muller (1973), Aswal
and Sen (1996), and Schummer (1998).

Theorem 1 (cycle dictator) Let C C G be a cycle on the graph. There
exists an agent 1 € N such that for allp € C*, f(p) = p;.

Proof: The proof is by induction on |{N|. Proposition 2 proves the result
when [N| = 3.

Suppose that for all [N| < n, the result is true. Let f:C"*! — C be a
strategy-proof, onto rule. Define two n agent rules, g and g', as follows:

vp S Cna g(phan s »pn) - f(p1:p27"':pnapn)

Vp € Cn-, g/(pl7p2> s apn) = f(plvplap'.?a s :pn)

That is, g is defined by creating a “copy” of agent n and applying the rule
f. Similarly, ¢’ is defined by duplicating agent 1.
Step 1: g and g’ are both strategy-proof and onto.

Since a strategy-proof, onto rule must satisfy unanimity, it follows that g
is onto. It is also clear that agents 1 through n — 1 cannot manipulate the
rule g. Thus, to demonstrate the strategy-proofness of g it suffices to prove
that for all p € C™ and all p,, € C, d(g(p),pn) < d(g(Py; P-n), Pr)-

By the strategy-proofness of f, for all p € C™ and all p;, € C,

A(f(p1,- . Dn>Pn)sPn) < A(f(P1s- -y Pny Pr),Pa) < A(f (1, - D PR)s Pr)

Hence g is strategy-proof.

Similarly, ¢’ satisfies both properties.
Step 2: if i < n is a g-dictator, then 7 is an f-dictator.

By the induction hypothesis above, there exists i € {1,2,.. ., n} such that
for all p € C™, g(p) = p;. Suppose i # n. We show that for all p € C™*1,
fp) =p.

10



Figure 2: A simple graph with a cycle, admitting a non-dictatorial,
strategy-proof, onto rule.

Let pe C™"!. Forall j € {1,2,...,n} with j # 1, let p; = f(p), and let
p; = p;. Then by repeated application of Lemma 1, f(p') = f(p). By the
definitions of g and ¢, we also have f(p') = g(p},...,p}) = p. = p;.

Step 8: if 1 > 1 is a ¢’-dictator, then 7 + 1 is an f-dictator.
This follows as in Step 2.

Step 4: either i < n is a g-dictator or ¢ > 1 is a ¢’-dictator.
Let p € C"*! satisfy py = ps # Dn = Pusr. Then g(p1,...,pn) = f(p) =
g'(p1,p3. . -, Pnt1). Therefore it cannot be that both g(py,...,p,) = p, and

9'(P1,P3s - - Pnt1) = P1.
Therefore f is dictatorial on C. O

4 The Behavior of Rules on Graphs

Consider the case in which G consists of a cvcle and a line segment intersect-
ing the cycle at one of its endpoints (as in Figure 2). Clearly a dictatorial
rule on G is both strategy-proof and onto. A non-dictatorial, strateqy-proof.
onto rule also exists for this graph. One such rule can be constructed as
follows: for each profile of preferences, if at least one agent’s peak lies on
the cycle, choose the point on the cycle closest to agent 1’s peak; otherwise,
choose the peak of the agent closest to the cycle.

For this rule, agent 1 plays the role of “cycle dictator” from Theorem 1.
On the line segment, the rule behaves just like a (non-dictatorial) generalized
median voter scheme. However, this generalized median voter scheme has the
additional feature that from the perspective of agent 1, the chosen location
(on the line segment) is at least as good as any location on the cycle. In
fact, this notion—that the cycle dictator likes the chosen location as much
as any location on a cycle—is what helps to characterize the strategy-proof,
onto rules for graphs.

11



Figure 3: Drawn with thick lines are two cycles, and a path between them
that intersects no other cycle on its interior.

Before we complete this characterization, we generalize Theorem 1 to
more general cyclic subsets of graphs. We have shown that on any given
cycle, a strategy-proof, onto rule must be dictatorial. This result extends to
certain connected sets of cycles.

The following lemma says that each of the “cycle dictators” described by
Theorem 1 (for each of the different cycles on the graph) are the same agent,
i.e. there is one agent such that whenever all peaks are on the same cycle,
that agent’s peak is chosen.

Lemma 6 (unique cycle dictator) Suppose C and C' are two cycles in
G. There exists an agent i € N such that for allp € C* U (C")*, f(p) = p..

Proof: Without loss of generality, we will assume that C and C’ can be
connected by a path whose interior intersects no cycles. If the conclusion of
the Lemma holds for this case, then the conclusion holds in the general case
by repeating the argument.

Therefore, describe a path connecting C and C’ by letting z € C, 2’ € C'
be such that for any cycle C”, C" N{zx,z'] C {z,z'}. (If C and C’ intersect,
let z = 1’.) See Figure 3.

By Theorem 1, there exist 7,7 € N such that for all p € C™ and all
P € (C)™, we have f(p) = p; and f(p') = p;. Let ', 2%,...,z° € G be such
that 2! € C\{z}, =¥ € C'\ {z'}, for k € {1,2,...,£—1}, d(z*,2*"") < 1/8,
and if £>2, 2%, ...,z € [z, 2]

By Proposition 1, the restriction of f to [z¥, 2¥*1]" must be a generalized
median voter scheme for each k. For each k, let (% *""")scn be the param-

12



eters for the rule in which we (arbitrarily) set the partial order < to satisfy
I' =< Tlc+1

Let p; = ! and for all k # ¢, px = z. Since p E C” we have f(p) = py,
which implies that for all S C N such that 7 € S, a5 ™ = z!. Asin the proof
of Lemma 4, this implies that for all m € {1,2,...,£ -1}, & Im’Im_l = ™.

mml

A symmetric argument shows that forallm € {1,2,... ¢~ 1} =

{J}
z™*! Therefore i = j. In fact this also shows that w hen peaks lie within

the same interval of length less than 1/8, agent i's peak is chosen. O

The following lemma states that the unique cycle dictator described in
Lemma 6 is a dictator over the minimal connected subgraph containing all
cycles in the graph. We will refer to this (unique) minimal subgraph as the
cycles neighborhood. In Figure 3, the cycles neighborhood consists of the
part of the graph drawn with thick lines plus everything lying to the right of
C'.

Lemma 7 (cycles neighborhood dictator) Let C C G be the minimal
connected subgraph of G containing all of the cycles in G (i.e., the cycles
neighborhood of G). There exists an agent i € N such that for all p € C",

f(p) = P

Proof: Let p € C. Let i € N be the cycles dictator described in Lemma 6.
Note that Lemma 2 implies that f(p) € C. If f(p) = p;, we are done.
Otherwise, for all j # i, let p; = f(p). By repeated application of strategy-
proofness, f(pi,p_;) = f(p).

By Lemma 1, for all p| sufficiently close to f(p), we have f(p') = f(p).
First suppose there exists such a p; not equal to f(p) which lies on a cycle
also containing f(p). Then by Lemma 6, we have f(p') = p/, contradicting
Lemma 1.

Otherwise, since f(p) € C, there exists such a p] not equal to f(p) such
that p; and f(p) lie on the same path between two cycles, and d(p!, f(p)) <
1/8. As shown at the end of the proof of Lemma 6, in this situation we must
have f(p') = p;, contradicting Lemma 1. O

Our main result is that a strategy-proof, onto rule must choose a loca-
tion along the unique path between the cycle dictator’s peak and the cycles
neighborhood. Therefore, whenever the cycle-dictator’s peak lies in the cycle-
neighborhood, (and, hence, when this path is a point,) that agent’s peak is
chosen.
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Theorem 2 (cycle dictator’s rationality) LetC C G be the cycles neigh-
borhood of G. There exists an agent © € N such that for allp € G",

flp) € mxec[pi= I]'

Proof- Let i € N be the cycle dictator described in Lemma 7. Without
loss of generality, assume that for all j # ¢, p; = f(p) (as in the proof of
Lemma 7). By Lemma 1, for p, € [p;, f(p)] sufficiently close to f(p), we
have f(p,,p—:) = f(p). Therefore if f(p) € C, then with Lemma 7, we must
have f(p) € (N,eclpi. @] (otherwise, there exists such a p} € C such that
f(hpoi) # P)-

If f(p) € C, then an argument similar to the one in the proof of Lemma 6
can be used, along a path from f(p) to C, to show that if d(p}, f(p)) < 1/8,
we must have f(p) = f(p,,p—:) € [p},z] for all z € C. O

5 A Description of Strategy-proof Rules

Reconsider the example of a graph given in Figure 2. According to Theo-
rem 2, under any strategy-proof, onto rule, there exists an agent, say agent 1.
such that for any profile of preferences, (i) if agent 1's peak is on the cycle,
his peak is chosen, and (ii) otherwise, the ct sen location must lie on the
interval between his peak and the cycle.

Conversely, the following method will always produce a strategy-proof,
onto rule for this graph: (i) if agent 1's peak is on the cycle, choose his peak,
and (ii) otherwise, on the line segment, use an onto generalized median voter
scheme that always chooses a point between agent 1’s peak and the point on
the line segment intersecting the cycle.® Given Border and Jordan’s (1983)
characterization of generalized median voter schemes as the only strategy-
proof rules for symmetric, single peaked preferences on a line segment, this
method can be shown to provide the only way to construct strategy-proof,
onto rules for this particular graph.

For more general graphs, a similar characterization holds, as we formal-
ize below. That is, for any graph, each strategy-proof, onto rule can be
constructed by choosing an agent, say agent 1, such that (i) if agent 1's peak
is on the cycles neighborhood (if one exists), choose his peak, and (ii) oth-
erwise, if agent 1’s peak lies on some “subtree,” use any strategy-proof, onto

8The arguments of the generalized median voter scheme are the points on the line
segments closest to the agents’ peaks on the graph—their “peaks” on the line segment.
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Figure 4: A graph with two (non-degenerate) maximal trees. The cycles
neighborhood is drawn with thick lines.

rule for trees that always chooses a point between agent 1’s peak and the
unique intersection of the subtree with the cycles neighborhood.

To break up a graph into its relevant parts, we need to define the standard
concept of a tree. A subgraph 7" C G is a tree if it is connected and contains
no cycles. Our description of strategy-proof rules depends on labeling the
trees which, together with the cycles neighborhood, make up G. Let C C G
be the cycles neighborhood of G. A tree T C G is a maximal tree of G
if (i) T contains more than one point, (ii) 7N C contains at most one point,
and (iii) there exists no tree 7" C G such that T C T" and 7" NC contains at
most one point. See Figure 4.

Corollary 1 LetC C G be the cycles neighborhood of G and let Ty, T5, ... . T}
be the mazimal trees of G. A rule f: G" — G 1is strategy-proof and onto if
and only if there exists i € N such that

1. for allp € G™, p; € C implies f(p) = p,

2. for each T;, 1 < j < k, there exists a strategy-proof, onto rule,
f3: T} — T, such that for allp € G™, p; € T; implies

(a) f(p) = f;(P), where for all k € N, Py is the point in T} closest to
px, and

(b) where {z} =CNT;, we have f(p) € [p;, z|.

The formal proof of this corollary is left to the reader.
There is a second way to describe strategy-proof, onto rules for graphs
that more clearly demonstrates the following fact: These rules for graphs
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G T

Figure 5: The tree T is obtained from the graph G by cycle reduction.
Here, (G has three maximal trees, and point « on T is associated with the
cycle neighborhood of G.

should be thought of as a subclass of such rules for trees. We do this by
transforming the graph, G, into a tree, 7', which has the same structure as
G except that the cycles neighborhood is replaced by a single point.

We will say that the tree T is obtained from G by cycle-reduction if T can
be decomposed into subtrees, T}, 75, ..., Tk, such that (i) they have a one-to-
one correspondence with the maximal trees of G, and (ii) they all intersect at
the point corresponding to their intersection with the cycles neighborhood in
G. See Figure 5. Hence, one should think of the intersection point of these
subtrees as a node replacing the cycles neighborhood of G.

As a corollary to Theorem 2, it is easy to see that for the tree T obtained
from G by cycle-reduction, there is a one-to-one correspondence between the
class of strategy-proof, onto rules for G and the class of strategy-proof, onto
rules for T that satisfy the following individual rationality condition on T.
For an agent 7 € N and a point z € G, therule f: G" — G satisfies individual
rationality for i with respect to z if for all p € G™, f(p) € [p;, z].°

Corollary 2 Let T be the tree obtained by the cycle-reduction of G, and let
x € T be the point associated with the cycles neighborhood of G. Then each

9This condition is slightly stronger than its name suggests: not only must agent i
weakly prefer the chosen location to point z, but the chosen point must lie on the path
between his peak and z.
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strategy-proof, onto rule f:G" — G for G is equivalent to some rule for
T, f"T" — T, that is strategy-proof, is onto, and, for some i € N, is
individually rational for i with respect to z.

The proof of this result is trivial. We state it only to emphasize the point
that strategy-proof, onto rules for graphs containing at least one cycle should
be thought of as a particular subclass of the set of strategy-proof, onto rules
for trees.

5.1 A Characterization

Part 2b of Corollary 1 suggests that a characterization of all strategy-proof,
onto rules is possible if G contains at least one cycle. Consider a situation
in which the cycle dictator’s peak lies on a maximal tree of G. The corollary
states that in this situation, a strategy-proof, onto rule f operates in agree-
ment with some strategy-proof, onto rule for the maximal tree. Furthermore,
holding the cycle dictator’s peak fixed, the range of the rule is restricted to
an interval-—the path between his peak and the cycle neighborhood—along
which agents have single peaked preferences.

Therefore, fixing the cycle dictator’s preferences, p,, we can essentially
view the rule f(p;, - ) as an (n — 1)-agent rule mapping single-peaked pref-
erences over that interval into points on that interval.!® Hence, the Border
and Jordan characterization can be applied, stating that with p; fixed, f be-
haves like a generalized median voter scheme (g.m.v.s.) with respect to the
remaining (n — 1) agents.

This leads to a characterization in terms of a family of generalized median
voter schemes—one for each peak p, € C—that satisfy a certain consistency
condition, which we now define. We now assume G to contain at least one
cycle.

Let T1,T5, ..., T} be the maximal trees of G. For each T}, let {z,} = T;NC.
For each T}, and each z € T; \ C (to be interpreted as the cycle dictator’s
peak), let ¢%: [z, 2;]"! — [z,z;] be an (n — 1)-agent g.m.v.s. on [z, z,] for
N\ 7, with parameters {a%}scn\:, where the order is chosen so that z < z;.
The interpretation to follow is that when the cycle dictator’s peak is p;, the
remaining agents face the g.m.v.s. g7.

10There is a technical issue regarding the cases in which a change in an agent’s pref-
erences over G does not change his preferences over the interval. We will deal with this
issue later.



Figure 6: Consider two g.m.v.s.’s corresponding to points z and y, defined
for the subset of agents {1,2} (and imagine agent 3 as the cycle dictator).
For them to satisfy eqn. (5), it must be the case that al{’l 0y = a’{”l 2y

It is easy to see that in order for f to satisfy unanimity, it should be the
case that when each agents peak is equal to p;, g* should chose that location.
In other words, it should be the case that for each z € (T, \ C,

ag =1 (4)

Obviously, each g.m.v.s. is strategy-proof when viewed as an (n — 1)-
agent rule. For f to be strategy-proof, however, the cycle dictator also must
be unable to gain by misrepresenting his preferences. This means that he
should not want to offer the other agents a g.m.v.s. different from the one
they are currently using. This implies a form of consistency between the
g.m.v.s.’s within each maximal tree of G. Particularly, when the range of
two such g.m.v.s.’s intersect, the a-parameters should coincide over that
intersection. In other words, for all T}, all z,y € T}, and all S C N \ 4,

af € [z,7;] Uy, 2] \ [z.y] implies af = of, and (5)
ag € [z,7;) Uy, o;) \ [z, y] implies oF = o (6)

See Figure 6.
Any set of g.m.v.s.’s {9*}.ec\c satisfying eqns. (4), (5), and (6) is said to
be a consistent family of g.m.v.s.’s for G with respect to i € N.

Theorem 3 Suppose G contains at least one cycle. The rule f is strategy-
proof and onto for G if and only if there exists an agent © € N and a
consistent family of g.m.v.s.’s for G with respect to 1, {9*}zec\c, such that
for allp € G™,

p g (p-:) of pi € T;, where p; is the point in [p;, ;] closest to p;
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Proof: It is left to the reader to formally verify that such rules are strategy-
proof and onto: Clearly for any fixed p; € G, the agents in IV \ ¢ either face a
(strategy-proof) (n—1)-agent g.m.v.s., or cannot alter the outcome of such a
rule. Eqns. (5) and (6) guarantee that agent ¢ cannot manipulate f. Eqn. (4)
implies that f is onto.

Conversely, suppose that f is a strategy-proof, onto rule for G. Consider
any maximal tree of G, T}, and any = € T;. Let {z;} = T, NC, and let
I = [z,2;]. Let g:1" — I be the restriction of f to I: for all p € I,
9(p) = f(p). (By Theorem 2, g(p) € I, so g is well-defined.) Note that g
1s a strategy-proof, onto rule on [. Therefore, it follows from Border and
Jordan (1983) that g can be written as a g.m.v.s.

Let 2 € N be the cycle dictator described in Theorem 2. For any p; € I, let
gP I"™! — [ satisfy for all p_; € I"™Y, gP(p_,) = f(p;,p_;). This restriction
of an n-agent gm.v.s. to n — 1 agents is itself a g.m.v.s. (This follows simply
from the definition of a g.m.v.s.) Furthermore, Theorem 2 implies that for
allp_; € I"™Y, g"(p_;) € [pi, z;]. Since f satisfies unanimity, g’ must satisfy
eqn. (4). By a simple but tedious argument, the following is also true: for
any p_; € G, where for each j € N\ ¢, p; is the point in I closest to pj, we
must have f(p) = ¢”(p_;). That is, f should be insensitive to changes in the
peaks of agents in NV \ ¢ when the restriction of those agents’ preferences to
I does not change.

Finally, suppose that eqn. (5) does not hold. Suppose that for some
S © N\t and for some p;,p; € T}, af € [p;,z;] U [p) 2] \ [ps, ] and
al < a?. For all j € S, let p; = a? and for all j € N\ (SU1), let
p; = of. Then, f(p;,p;) = o2, and f(p,,p_;) = o/;:, which contradicts

strategy-proofness. Similar arguments apply to the cases in which ol - a?,
and in which egn. (6) does not hold. O

6 Conclusion

We have derived a characterization of the class of strategy-proof, onto rules
that choose locations on networks (graphs) containing at least one cycle.
Our results are partially negative and partially positive; one agent acts as a
dictator on or between all cycles on the network, but exercises more limited
power on other parts of the network. If the network is thought of as repre-
senting a highway network, with cycles around an urban center, and subtrees
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branching out into the suburbs, the rules can be roughly described as follows:
one agent chooses the suburb in which the location should lie (or chooses an
exact location within the urban area), and the remaining agents choose the
precise location within the suburb (according to a generalized median voter
scheme particular to that suburb).

One question that remains is whether a similar characterization exists for
networks without cycles (i.e., trees). We describe a way in which our rules
can be described as a subclass of strategy-proof, ontorules for trees. At this
time we leave open the generalization of our class of rules.
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