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1 Introduction

Long-term strategic interactions among a large number of players are characterized
by two competing forces. Since players in a repeated setting consider the long-term
consequences of their actions, their behavior may substantially differ from the one
predicted by short-term, myopic considerations. On the other hand, a player facing
a large number of opponents may judge his impact on future play to be too small to

offset the loss from not taking a short-term optimal action.

Green [4] studied the effects of these two competing forces in an attempt to provide
adequate foundation for competitive behavior in markets where firms interact strategi-
cally in a repeated setting. Sabourian [8] extended Green’s model in several important
directions. In particular, Sabourian drops Green’s restriction to trigger strategies and
relies solely on Green’s continuity assumption. Both papers consider an anonymous
repeated game with random outcomes, and where a player’s stage game payoff may
depend on his own action as well as an aggregate outcome that may be influenced by
other players’ actions. Sabourian proves that if the mapping from the action profile to
outcomes is anonymous and continuous in an appropriate sense, then in any (subgame
perfect) equilibrium of the game, players play their myopic e-best reply at each node

of the game.

In this paper we extend Green’s and Sabourian’s results to the case where out-
comes are not necessarily anonymous functions of players’ actions, and where players
may condition on individualized signals of their opponents not reflected in the col-
lective outcome. In addition, we provide a conceptually simpler proof which clarifies
the intuition underlying Green-Sabourian’s analysis and a potentially useful tool for

carrying it out in new contexts.

Specifically, we consider a setting in which players observe noisy signals of their
opponents’ actions, as well as a collective outcome that is an arbitrary function of
the signal realizations. Players’ payoffs depend on their own actions and the collective

outcome, but their strategies may also depend on their opponents’ signals. We establish
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an analogue of Green-Sabourian’s result that most players play non-strategically. We
do this using a notion of influence that measures the impact of a unilateral change of one
agent’s signal on the expected value of the collective outcome. For a given threshold
a > 0, a player is a-pivotal if his influence exceeds . We use a non-pivotalness
result established in earlier work (Al-Najjar and Smorodinsky [1]) to conclude that the
number of players who are a-pivotal relative to the collective outcome in a given period
is bounded by some integer K. This bound holds uniformly over all strategy profiles,

and independently of the total number of players in the game.

Our version of Green-Sabourian’s result then follows from this non-pivotalness the-
orem: for any equilibrium and at any node of the repeated game, no more than K
players are a-pivotal; i.e., believe their actions have important enough impact on the
common outcome to offset the cost of deviating from taking an approximate myopic
best response. Thus, in any equilibrium and at any node of the repeated game, the
remaining N — K players play approximate one-shot best responses. This, in essence,
is Green-Sabourian’s point, except that their conclusion that ’all players’ play myopic

e-best reply is slightly weakened to ’all but a vanishing fraction of players’.

Aside from its simplicity, this argument also shows that Green-Sabourian’s result
holds when the payoff-relevant outcome depend non-anonymously on the players’ sig-
nals, or when players condition their behavior on signals of their opponents’ actions.
The key feature needed to preserve their result is that a player’s signals affect other
players’ payoffs only indirectly through the common outcome. The relevance of this
extension may be seen in the competitive industry example that motivated Green’s
original work. It is quite natural to allow for the possibility that firms have consider-
able, disaggregated information about the behavior of other firms in their industry. Our
model allows firms to condition in a non-anonymous manner on such signals, provided
they affect payoft’s only indirectly through common outcomes such as market price,
state of demand and technology, and so on. While Green-Sabourian analysis rules out
the possibility of firms conditioning their actions on payoff-irrelevant signals of their
competitors, we show that it is an implication of equilibrium that this added flexibility

has essentially no effect on the behavior of most players. Thus, Green-Sabourian’s
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requirements that firms condition only on a common outcome, and that this outcome

depends only on the players’ frequencies of actions, are unnecessary.

The paper proceeds as follows. Section 2 introduces the repeated game model, which
is essentially that in Sabourian. Section 3 contains the main result for the special case
of a finite outcome set, as well as an extension to a model with a large outcome space.
Specifically, we define a family of repeated games for which the number of players who
play strategically is bounded by an integer that holds uniformly over all game in that
family. Finally, Section 4 contains concluding remarks which relate our results to the

literature and suggests directions for future work.

2 Model

The model we study is an adaptation of a model introduced by Green [4] and later
studied by Sabourian [8]. In the original model the action spaces and the outcome
spaces are continuous. We on the other hand assume that all that the action space is
finite. As for the outcome space, we provide results for the finite case as well as for
the continuous case. We begin by introducing the stage game and move later to the

repeated game.

2.1 Stage Game
A stage game H is defined as the tuple H = (K, A, S,C, X, F, ).

e K ={1,2,..., K} is the set of players;

A =TIK | A% where AF is a finite set of actions available to player k;

S =1E_, S*, where S* is a finite set of signals of player &’s actions;

C = {C*}K_ |, where C* : A¥ — A(S*) is a mapping from actions to signals;

e X is a finite set of outcomes;?

1For any finite set Y we denote by A(Y) the set of all probability distributions on Y.

2Section 3.2 extends the model to large outcome spaces.



e F:S — A(X) maps action profiles into outcome distributions.

o m={n*}E where 7¥ : A* x X — IR denotes player k’s payoff function.

Note that a player’s payoff depends on the actions taken by his opponents only via

the outcome z.

A player’s (mixed strategy) is a probability distribution o* € A(AF). We shall
often abuse notation and write a* to denote the Dirac measure on a*. Let o =
(cl,02,...,0%) € A(A) denote the strategy profile. As usual we denote by o~* the
strategy profile of all players but player k. A strategy profile o induces a measure

over A x 5 x X, denoted A,. Player k’s expected payoff from the strategy profile o is
EAO’ [Tr(a’k7 :v)]'

Definition 1 A strategy o* is a best response (BR) to =% if

[7(a¥, z)] = Ex [m(a®,2)] <0 v ok e A(A) . (1)

Aok, o—k)

It is an a-BR if the right-hand side of (1) is replaced with an o > 0.

Definition 2 Let J be a nonnegative integer and o > 0. A strategy profile 0 =
(o',...,0%) is called a (J,a)-equilibrium for H if o* is not an a-BR for at most J

players.

In other words, in a (J, a)-equilibrium, all players but at most J, play their o-BR, to
their opponents’ strategy profile. A (0, 0)-equilibrium is commonly known as a (stage

game) Nash equilibrium.

2.2 Repeated Game

Given a stage game H, let H® = H*(4d,...,8%) denote the infinitely-repeated game

with discount factor 6* for player k.



A pure strategy for player k is an assignment of an action a* at time ¢, which may
depend on players’ signals in the previous ¢ — 1 stages.®> A behavior strategy, ¥*, for
player k is an assignment of a stage game mixed strategy instead.* Formally,

[e ]
SF: St A(AR)S .
t=0
Note that players are assumed not to observe opponents’ strategies or even stage game

actions.

The strategy profile & = {£*}£_ induces a probability distribution over (A4 x S x
X)*, denoted Az. We use uy to denote the marginal over S*. Let As; and px ; denote
the corresponding marginals over the t** coordinate. The expected stage-game payoff

at time ¢ to player k is therefore E,[m(a*,z)]. The total expected payoff to player k
from a strategy profile © = (Z1,...,5F) is U¥(Z) = 12, (6%)' By [r(a*, z)].

A Nash equilibrium of the repeated game, H™, is a strategy profile & = (X!,. .. XF)
satisfying U*(Z) > U*(E¥,£*) for any k € K and any behavior strategy 5% of player
k.

2.3 A Uniform Family of Games

In this paper we prove results that hold uniformly for families of games parameterized

by @ <oo, § <1, M < oo, € >0 as follows:

H(Q,6,M,¢) =

3In our model F is deterministic. Therefore we did not formally allow for strategies to depend on
past outcomes, as this is redundant given the dependence on past signals. However one can easily
extend our model to the case where F' may be random and allow for strategies to depend on past

outcomes as well.
“In this paper we restrict attention to behavior strategies. This restriction, from the seemingly

more general mixed strategies, defined as probability distributions over the set of all pure strategies,

is without loss of generality (see Kuhn [5] and Aumann [2]).
SWith some expositional complications the model and results of this paper can be extended to the

case where a player’s strategy may depend on his own past actions.



={H>:|n*| < Q, 6" < Vk, |X| < M, C*d*) € A°(S*) Yk and all a* € 4%} |

where A¢(S*) C A(S*) denotes the set of all probability distributions on S* which

assign probability at least € to any s* € S*.

In words, a repeated game H in such family is one where stage payoffs cannot
exceed () < 00, players’ discount factors are bounded away by é < 1, the cardinality of
the outcome set is bounded by M < oo and probabilities of signals are bounded away

from zero in all games, where @), é, M, € are uniform over the entire family.

Note that for any H*® € H(Q,d, M,¢), any strategy profile X assigns a positive
probability to every finite history § € 2, S*.6

3 Results

We begin this section with our main result which refers to the model introduced in
the previous section. We then show how to extend this result to the case of a large

outcome space, and finally we make a brief comparison with Sabourian’s results.

For a behavior strategy ©* and a finite history 5 € U2, S of length #, we denote
by ©¥ the continuation strategy after the history 5.7 A (J,a)-myopic equilibrium of
H®* is a strategy profile ¥ such that for any finite history § € S*, which has positive
probability according to Az, the stage game strategy profile £3(0) is a (J, @)-equilibrium
of H.

3.1 Main Result

The following theorem states that in a Nash equilibrium of any Game H*® € H(Q,J, M, ¢)

most players play myopically.

5Consequently, any Nash equilibrium is also a subgame perfect equilibrium. However, had we
considered the slightly more general model where players’ strategies may depend on own past signals,

we would have needed to differentiate between the two solution concepts.
"Namely, $%(5) = £*(55), for any finite history, § € | J;o, S?, of length  and where (53) € Uie, S¢

denotes a new history of length f 4  generated by concatenation.
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Theorem 1 For any (), 6, M, ¢ and any a > 0, there exists an integer J =
J(@,0, M, ¢, ) such that if H® € H(Q,8, M,¢) then any Nash equilibrium of H® is
a (J, @)-myopic equilibrium of H™.

The sense in which ‘most players play myopically’ is formalized in the theorem by
asserting the existence of an upper bound, independent of K, for the number of players

who do not play their a-BR of the stage game.

Theorem 1 follows from the next lemma regarding influence. Let ¥* be a behavior
strategy for k. Denote by Zfa) the behavior strategy which takes the pure action a € A*
at stage 0, and otherwise follows £*¥. We denote by (X%, Efa)) the profile of strategies

where all players j # k play the strategy ¥’ and player k plays E{“a).

Lemma 1l For any @, 6, M, ¢ and any & > 0, there erxists an integer J =
j(Q,5, M, e, &) such that if H® € H(Q,8, M,¢) and X is an arbitrary profile of behav-
ior strategies, then for any stage t there exists a subset K, of at most J players such

that for any k & K, and pair of actions a,b € A*:

m*(d,z) — E m*(d,z)| < & Vd e A~

IE/J'(E—k’zk

Hisk wk
(a)),t (Z—F,2

()"
In other words, Lemma 1 asserts that for all but J players a change of actions at
the beginning of the game can only have a limited effect on their expected payoff at

stage t, as long as the action at stage ¢ is left unchanged.

The proof of Lemma 1, which builds on a result from an earlier work (Al-Najjar

and Smorodinsky [1]), is postponed to the appendix.

Proof of Theorem 1: If ¥ is a Nash equilibrium for H* € H(Q,d, M,e) then Xs is
also a Nash equilibrium for H*, for any 5 € S* (remember that any history is assigned
positive probability according to pyx). Therefore, in order to prove Theorem 1 it is
sufficient to show that for any Nash equilibrium the induced stage game strategies for
the first stage of the game is a (J, a)-equilibrium. In other words it is sufficient to

prove that ¥(0) = {Z*(0)}L., is a (J, a)-equilibrium of the stage game H.
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This follows from two observations. First, as the discount factors and stage payoffs
are uniformly bounded by é§ and @ respectively one can find a stage T' = T(Q, 4, @),
independent of K, such that the discounted sum of stage payoffs after T lies in the
interval [—, §] for any sequence of action tuples taken by the players. Thus, a change in
action taken by player k at the initial stage of the game cannot change his accumulated

discounted payoff from time T" on by more than a/2.

Second, by Lemma 1 there are only J players for which a change of action at stage
0 can increase their payoff at any stage ¢ by more then & = ;5. Therefore we conclude
that at most J = T'J players can increase their accumulated payoff between stages 1

and T, by more than /2, by a change of action at stage 0.

Wé conclude that for all, but J players, a change of action at stage 0 will not change
the total discounted sum from stage 1 on by more than a. As ¥ is a best response to
%~* we learn that the stage game strategy S*() must be an o-BR to X*(0) for all
but J players. This implies that {ZF(0)}£, is a (J, @)-equilibrium for H. 0

3.2 Large Outcome Spaces

In this section we extend the results of the model to the case of a large outcome space,
X. Specifically, we shall assume X = [0,1).® Theorem 1 does not hold in this case

without additional assumptions, as shown in the following example:

Example 1 Let A* = S¥ = {0,1}, let C*(a*) assign probability 1 — € to s* = a* and
ctosk =1—aF. Let F:S — X be any one-to-one function (e.g., F(s!,...,s%) =
Sk sk%k). As F is one-to-one we can allow for the following payoff function, 7*(z) =
sk %(1 —s*). In words, an agent’s payoff depends on his predecessor’s signal as well
as his own signal. From a myopic perspective players should therefore play a* = 0 at all

stages. However, consider the following strategies for all players: at stage 1 let a* =1

8The use of the half open interval is without loss of generality, and is done for notational conve-

nience, as becomes clear in the proof of Theorem 2.



and at stage t let a* = 1 if and only if s*~ was equal 1, at all periods 1,...,t — 1.
Note that, independently of the number of players, these strategies constitute a Nash
equilibrium (if players are sufficiently patient), yet all players do not take myopic best

responses at the first stage.

To recover an analogue of Theorem 1 we add an assumption regarding the continuity

of the payoff functions.

Definition 3 Fir a function p : [0,1] — R;. We say that the payoff function 7% is
p-continuous if for any a* € A*, € > 0 and z,y € X satisfying |z — y| < p(€) then

|m(a*, z) - m(a*, y)| <e.

In order to extend the results of Theorem 1 we replace the restriction on the car-
dinality of X with a uniform continuity assumption. Thus, we consider the following

family of games. Fix of parameters § < 1, p:[0,1] = IRy, € > 0, and define:
H(d, p,€) =

= {H*® : 7* is p — continuous, 6 < § Vk, C*(a*) € A%(S*) Vk and all a* € A*} .

Note that our earlier uniform bound on payoffs is now redundant given uniform
continuity. Note also that the force of uniform continuity is that it is required for all
games in H, independently of the number the players. We now show that players’

equilibrium strategies in this new family of games has a myopic nature:

Theorem 2 Assume X = [0,1). For any 6, p, € and any o« > 0, there exists an
integer J = J(8,p, €, ) such that if H® € H(4,p,€) then any Nash equilibrium of H*

is a (J, @)-myopic equilibrium of H*.

Similar to the proof of Theorem 1, the proof of Theorem 2 builds on a result on

influence, which is equivalent of Lemma 1.
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Lemma 2 For any 8, p, € and any & > 0, there exists an integer J = j(5,p, €, &)
such that if H* € H(S,p,€) and ¥ is an arbitrary profile of behavior strategies, then
for any stage t there exists a subset K, of at most J players such that for any k € K,

and pair of actions a,b € AF:

m™(d,z) — E r*(d,z)| < & Vd € AF

|E“(z-’=,z'° )t

Hign—k
(@ ®=ne

fb)),t

The proof of Lemma 2 is postponed to the appendix.

Given Lemma 2 the proof of Theorem 2 follows exactly in the steps of the proof of

Theorem 1, and is therefore omitted.

3.3 A Comparison with Sabourian’s Results

Our main result is different than Sabourian’s [8] result in a few ways. It is weaker in
some ways and stronger in another way. The relative weaknesses are: (a) We assume
that agents actions are imperfectly observed by the aggregating mechanism, whereas
Sabourian allows for players to recall their own actions. (b) In order to consider a large
outcome space we need to impose a continuity assumption on the payoff function. (c)
The action spaces are assumed finite in our model. We conjecture that this restriction

is not necessary.

On the other hand our result holds without the constraint posed by Sabourian
regarding the structure of the mechanism F. In particular we do not require that I3
be anonymous as Sabourian does. Furthermore we allow for all players to perfectly
observe the history of signals of all players, whereas Sabourian assumes players can

only recall their own actions.
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4 Concluding Remarks

In this paper we provided an extension of Green-Sabourian’s analysis to games with
non-anonymous outcomes and strategies. Using recent non-pivotalness results, we
establish powerful bounds on how many players might act strategically. This pro-
vides a transparent and simple argument that sheds light on the forces driving Green-

Sabourian’s analysis.

Two related strands of literature should be mentioned. First, non-pivotalness the-
orems have been used in the literature to address a variety of other questions. These
include, most notably, Mailath and Postlewaite [6] result on the provision of public
goods and Fudenberg, Levine and Pesendorfer [3] in their analysis of agency, reputa-
tion, and repeated games with a large player. While similar in spirit, the techniques
developed in these papers do not allow for the derivation of a bound on the number
of a-pivotal players independent of N as we do here (K defined above). This bound
allows us to develop a clean statement of the result on approximate reversion to myopic

play and provides sharp bounds on the rates of convergence.’®

The second related strand of literature is that concerned with refining equilibria
in dynamic games by appealing to Markovian restrictions on strategies. See Maskin
and Tirole [7] for discussion and bibliography. The analytical and practical appeal
of Markovian restrictions is obvious. However, justifying Markovian behavior hinges
on the plausibility of the assumption that players’ believe their opponents limit their
strategy choices to ones that condition only on payoff-relevant aspects of the environ-
ment. In our context, with no state variables, Markovian behavior reduces to playing
an equilibrium of the one-shot game. In this case, our analysis may be restated as say-
ing that most players optimally ignore payoff-irrelevant aspects of the environment in

choosing their actions.!® Our paper makes explicit what sort of conditions are needed

®Fudenberg, Levine and Pesendorfer [3] informally suggest the possibility (p. 65) of a result in the
spirit of our main results above. Their conjecture seems to claim that on average, over all players,
stage game payoffs are o sub-optimal. This is strictly weaker than providing a bound on the number

of individuals who do not play a myopic a-best reply.
10Note that Green-Sabourian’s analysis cannot address this issue as it assumes that players can
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to justify players making approximate Markovian assumptions about the behavior of
their opponents (e.g., noisy information about actions, large number of players, and
interdependence of payoffs through a common collective outcome, and so on). The
advantage of this analysis is that it gives a set of criteria for judging when the (often
controversial) Markovian assumption is justified. We hope to pursue this in greater

generality in the future.

condition only on payoff-relevant outcomes.
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APPENDIX

The object of this appendix is to prove Lemmas 1,2. The proofs provided are based
on an earlier result from Al-Najjar and Smorodinsky [1].'* We begin by recalling this

result.

Let F': S — [0,1] be an arbitrary assignment from the signal space into the unit
interval. Let u* be an arbitrary probability measure on S* satisfying u*(3) > € for any
player k and any signal 3§ € S*. We denote by u the product probability distribution
of the u*s over S. Player k’s influence on F is

Vk = max E,(F|s*=3) - s[relgrkl E,(F|s* =3).
Note that V* bounds the change in E(F') induced by a unilateral change in the marginal
p*. The result of Theorem 2 in Al-Najjar and Smorodinsky [1] focuses on the number

of players for which this bound exceeds a given threshold 1 > o > 0:

Proposition 1 There exists an integer J:(¢) such that for any K < oo, any signal

space S and any vector of probability measures, {p*}E |

#{k :VFE>a} < Jie).

Throughout the rest of the appendix we hold various parameters of the model fixed:

¢ The parameters @ < 00, § <1, M < o0, p, € > 0 defining the families of games
H(Q, 6, M, e) and H(4, p, €).

e For any game H*® € H(Q,d, M,¢) or in H(4,p,€) and for any player in H>® we
fix an arbitrary action at stage zero, an arbitrary strategy ©* and an arbitrary

stage t.

1This manuscript is available at: http://www kellogg.nwu.edu/research/math/papers/1174R.pdf
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Note that we do not bound the number of players in the game.

These parameters, in turn, fix, for each game, the probability distributions Ag;
over S. As it is assumed that for each H* € H(Q,d, M,¢€) or H*® € H(S,p,¢€) the
distribution C*(a¥) is in A¢(S*), we conclude that Ag; € A%(S*) as well.

Let u be an arbitrary distribution over S. We shall denote by F'() the correspond-
ing distribution over X.
PROOF OF LEMMA 1:
Following Al-Najjar and Smorodinsky [1] we define the influence of player k, V*( H*),
by
Vk(Hoo) = max ||F(ﬂ(z—k,zk ),t) - F(#(z—k,zk ),7:)||-12

a,beAF (a) (v)

Where || - || denotes the sup-norm metric on A(X).1?
The number of a-pivotal players in H*, denoted Jz(H*), is
Ja(H®) = #{k : V¥(H*) > a}.

Al-Najjar and Smorodinsky ([1], Theorem 2) provide a bound, independent of the
number of players K, on J5(H®):

Proposition 2 For any & > 0 there exists an integer J3 such that if H® € H(Q,d, M, ¢)
then J5(H™) < J3.

In words, what Proposition 2 says is that all players but at most JZ of them cannot

change the distribution over X by more than &.'*

12A minor difference between the original notion of influence and the one used here, is that here
we take the maximum over pairs of distributions induced by actions in A*, whereas in the original
definition the maximum was over all pairs of Dirac measures. One should note that the influence

defined here is,generally, smaller than the original notion.
13The sup-norm metric is defined as follows. For Fy, Fy € A(X), let ||F; — Fp|| = maxpcx |F1(B) —

Fz(B)l‘ Note that 2||F1 - Fz” = ZzeX |F1(:L') - Fz(l‘)l.
14Two comments are in place: First, because of the argument made in footnote 7 the proposition

applies to the current notion of influence. Second, the statement of the result in [1] applies to the case
@ =1 and M = 2. However, as indicated by footnotes 4 and 8 in [1] the generalization to arbitrary
Q) and M is straightforward.
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We now turn to show that small changes in the distribution over X cause small

changes in the expected payoffs:

Proposition 3 For any & > 0 and any action d € A*, if F\,F, € A(X) satisfy
||Fy — F2] < &/2Q then |Erw*(d,z) — Epm*(d,z)| < é.

Proof:
1B, 2) — Bt (@ 2)| € 5 w(d,2)|Fi(2) = Foe)| <
€
< Q) |Fi(e) - Fa(z)| < 2Q||F1 - ol £ &

z€X
O

We can finally prove Lemma 1. Let @ = &/2Q and let J = Ja, as in Proposition
2. This ensures that there exists a subset of players, denoted K, of size less or equal

J, such that if & ¢ K, then for any pair of actions a,b € AF, HF(M(E—I;,EF)))t) -

F(/.L(E—k,y_:?b)),t)” < a. Proposition 3, in turn, ensures that for & ¢ K;
k k A k
|EF(;A(E_,CYE? LT (d,z) — EF(u(E_k’E?b)),')ﬂ (d,z)| < & Va,b,d € AF,
as required. a

PROOF OF LEMMA 2:

The analog of Proposition 2 for the large outcome space is:

Proposition 4 For any 6, p, €, any & > 0 and any measurable subset X c X, there
exists an integer J = J(8,p,€,&) such that if H® € H(S,p,€) and T is an arbitrary
profile of behavior strategies, then for any stage t exists a subset of players, [;’t, of at

most J players such that for any k ¢ K, and pair of actions a,b € A*:

P (s 5t )@ € X) = Fluggonz, 1)@ € X)) <
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In words, most players’ actions at the first stage of the game has no effect on the
probability that the outcome at time will be in an arbitrary subset of the outcome
space.. The claim of Proposition 4 is actually a rephrasing of Theorem 2 of Al-Najjar

and Smorodinsky [1]. Consequently the proof is omitted.

We turn to the analog of Proposition 3 for the large outcome space. Fix an arbitrary
& > 0. Let M be an integer such that for any H* € H and any player,k, in H*, if
z,y,€ X satisfy |z —y| < & then |r*(a* z)— 7m*(ak,y)| < V& Note that M is a
function of the parameters of the family of games and is independent of the number of

players in the game. Denote by X(m) = (22, 2), m=1,...,M.
Proposition 5 For any & > 0 and any action d € A*, if F\,F, € A(X) satisfy
|[F(X(m)) = Fy(X(m))| < V&/M , for all m=1,..., M, then
|Eg,7*(d, 2) — Ep,n*(d, )| < é&.
Proof:
|Ep, 7*(d, z) — Ep,n*(d, )| <

M A ~
< Z_llFl(X(m)) ~ F3(X(m))|( max 7*(d,z) ~ min 7*(d,z)) <

z€X(m) z€X(m)
M R ) M \/a
< 2 IBX(m) - BEm)Va < 3 T7Va =
m=1 m=1

a

We can finally prove Lemma 2. Let M and X{(m), m = 1,...,M | be as in the
the claim of Proposition 5. Let a = % By Proposition 4 there exist positive finite
integers J(m) = Js(m), m =1,..., M such that for each m there exists a subset of
players, denoted K;(m), of size less or equal J(m), such that if k ¢ K,(m) then for any
pair of actions a,b € A, |F(N(E—k,2?a))’t)($ e X(m))— F(#(z—k,sz)),t)(fc € X(m))| < a.
Let K, = UM_ K,(m). Note that K, consists of at most J = M_ J(m) players, and

obviously J does not depend on the number of players in the game. Proposition 5, in

turn, ensures that for k ¢ K,
|EF(“'(E_’°,E? )),t)ﬂ.k(d’ 2:) - EF(M(E_k’Efb)),t)ﬂ-k(d, :E)l < &. Va, b, d G Ak,
as required. i
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