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Abstract:

We study how individuals cope with the complexity of their environment by developing subjective
models. or representations, to guide their predictions and decisions. Formally. an individual who
belicves his environment is deterministic. but too complex to permit tractable deterministic repre-
sentation. builds a probabilistic model embodying perceived regularities of that environment. In this
model, the individual’s inability to think through all possible instances of the problem is represented
by an uhcertainty about random states. The resulting behavior is fully rational in the traditional
sense, yet consistent with an agent who believes his environment is too complex to warrant precise
planing, forgoes finely detailed contingent rules in favor of vaguer plans, and expresses a preference
for flexibility. We consider applications to tine-inconsistent preferences, delegation. and two-player

simultaneous games.




1. INTRODUCTION

One remarkable aspect of human behavior is individuals® ability to cope with complexity. The role
of (‘ompl(‘xity in everyday life is almost self-evident: people engage in complex social and econonic
iuteractions where it is pointless to examine each of the vast set of possible contingencies. Yet somehow
people manage to formulate coherent, goal-seeking plans of action. How individuals confront situations
they recognize as too complex to permit a full analysis remains a key problem in cognitive sclences.

and it is of obvious importance in understanding economic and strategic behavior.

This paper studies how individuals cope with complexity by developing models. or representations.
to enide their predictions and decisions. We counsider a rational agent facing a problem’™ a loose
collection of situations or instances he views as sharing a common structurc. Examples of problems
are; taking an appropriate action on behalf of a superior, adjudicating a legal case. categorizing an
object. diagnosing a disease. ... etc. The agent never gets to directly confront a problem at this level
of abstraction: rather, he faces a series of randomly drawn, specific instances of that problem (e.y..
a specific legal case. specific patient). Each instance is therefore unique, with special idiosyneratic

aspects not shared by others.

We consider behavior displaving: (1) coherent assessment of the average (expected) performance
of plans of action: (2) ex post. once told which instance he is actually facing, it is obvious what the
optimal action should be: nevertheless, (3) it is not possible to describe a full ex ante rule specifying
what the optimal action should be in every possible contingency. Far from odd or pathological, this
seemingly contradictory behavior is pervasive in decision making, arising in planning in intertemporal
settings. devising rules for defining classes of objects. categorization and pattern recognition (sce

Section 2).

We propose to explain such behavior in terms of an agent who believes his environment is de-
terministic, but may be too complex to permit tractable deterministic representation. To see the
intuition, an agent facing a problem may initially be tempted to exhaustively enumerate all data,

i.e.. an-instance-by-instance enumeration of his utility. hence optimal choice. The vastness of the



set of possible instances quickly makes such crude representation unfeasible. so the agent is likelv to
seek simpler representations to exploit any useful patterns or regularities he perceives in the data.
For example, the agent may believe that one particular feature completely determines his utility.
Although the number of possible instances may be unfathomably large. the agent would have no

difficulty providing a simple representation in terms of that single relevant feature.

Complexity (as perceived by the agent and reflected in his choice behavior) arises not because
of the number of possible instances per se, but because of the number of independent pieces of in-
formation that must be assimilated and integrated in the decision process. But an agent able to
formulate coherent plans must perceive enough regularity in his environment to evaluate the average
performance of these plans. This suggests an agent who thinks in terms of generalizations embodying
useful perceived patterns, yvet recognizes the limits of these patterns. that they miss instance-specific
variations accounted for only by essentially enumerating all data. The agent believes these variations

have no further useful structure: in short. to him they "look random’.

Formally, our main result formulates behavioral assumptions that identify an agent’s subjective
representation of his deterministic (and, in principle, knowable) environment in terms of random states
reflecting his inability to think through all instances. In other words, the agent (behaves as if he)
thinks of his cognitive limitations due to the complexity of his environment as cognitive uncertainty

about a suitably chosen state space.

The behavior we describe is that of a fully rational agent in the traditional sense. He optimizes
given a _(toherent model of the environment:; he understands and takes advantage of all the implications
of this model, unhampered by cognitive limitations that prevent him from carrying out reasoning or
drawing inferences that we, as modelers, can perform. In particular, the agent is able to break up
problems into simmpler sub-problems and condition his plans of action accordingly without incurring

any cost for doing so.

Yet behavior displays many features traditionally considered the hallimark of “bounded rationality'.

For instance, there is a discontinuity between the ex ante and the ex post perspectives: the agent



may think the environment is too complex to warrant precise planing, yvet once the particular instance
he is facing is known, what to do becomes “obvious”. He may then forgo finely detailed planning for
future contingencies, choosing to rely instead on coarser and vaguer plans of actions. which he fills in
and completes as events unfold. Such behavior would display a preference for flexibility. suggested by
Kreps (1992) as one of the key implications of an agent’s inability to foresee future contingencies—see

the discussion below.

Our model generates this sort of behavior because it may be interpreted as capturing the Hiniting
properties of environments with increasing complexity but decreasing computational/cognitive cost of
oathering and processing information (Section 2). The limiting behavior (which is what we formally
model) is that of a fully rational agent who confronts a vastly more complex environment. This agent
optimizes. but he does so against a subjective representation that captures perceived patterns of his

environment, rather than detailed, instance-by-instance examination.

Sin(:g agents are rational, their behavior displays the internal consistency of traditional models of
rational behavior. Closed equilibrium models displaying interesting cognitive limitations are possible.
without resorting to exogenously imposed limits on agents’ cognitive abilities, hard-wiring repetitive
tasks. and introspection. This is a considerable advantage in multi-agent settings because it allows
predictions that do not hinge on requiring agents to be dumb, ignore potentially useful information. or
use ad hoe rules that the modeler or a rival could easily exploit. Another advantage of this approach
is that manyv of the theoretical tools and concepts about individual decision making and game theory
extend in a natural way. In Section 6, we illustrate this by considering how our model can be used in

examples of time-inconsistent preferences. delegation. and two-player simultancous games.

This paper relates to several strands of literature. In particular, it is related to the recent literature
emereing from Kreps' interpretation of preference for flexibility (Kreps (1979, 1992)) in terms of an
agent’s inability to foresee future contingencies. Important works in this vein include Nehring {1996).
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and Dekel, Lipman. and Rustichini (1997).! We discuss the link with this literature in Section 4.4-5.

The idea that a probabilistic model may be an effective way to represent deterministic but com-
plex phenomenon is, of course. not new. For example. Lipman’s (1995) representation of an agent’s
perception of the complexity of the logical implications of his assumptions about the world may be
interpreted in this manner. While similar in flavor. our setups and results obviously differ. The point
that plans of action should correspond to procedures that can be effectively carried out (formally, they
must be algorithimic) was made by several authors, including McAfee (1984) Binmore (1987), Gilboa

and Schmeidler (1994), and Anderlini and Felli (1994). See Section 4.5 for more discussion.

Complexity. of course, is a central issue in cognitive sciences.” Our formal model of individuals
facing instances of a problem, cach identified with a potentially large collection of features. shares
many similarities with learning models in the pattern recognition literature (e.g.. Devroye. Gvorfi.
and Lugosi (1996)}. Our focus. however. is quite different. Unlike these works, we do not attempt to
develop procedural models of decision making (i.c., answering questions like: “how do people think?").
or focus on the convergence properties of various classes of algorithms. Rather. our approach is to
take an agent’s behavior in an economic environment as given, and use it to infer how the agent sees

his world. what he considers complex and simple. and how this impacts on his decisions.

The paper is organized as follows. Section 2 provides a simple example containing the main ideas of
the paper. Section 3 describes the formal setup of our model, while Section 4 contains the definition
of subjective representation of complexity and proves the main representation theorem. Section 4
also discusses preference for flexibility and the relationship to Kreps’ model. Section 5 considers two
important extensions of the basic model. Section G discusses applications and Section 7 concludes.

All proofs are contained in the appendix.

I See Dekel et al. (1998) for a survey of this literature.
2 See. for example, Medin and Ross (1992) and Holland et al. (1989).
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2. MOTIVATION AND EXAMPLES

This section is independent from the rest of the paper, and may be skipped without loss of conti-

nuity: it provides informal motivation of the main points developed in this paper.

An agent faces instances of a problem, each defined in terms of the values of objectively given

features {1.....I}. We focus here on a special type of problem which involves devising a rule to
categorize each instance by placing it into one of a predetermined set of categories B = {by.. ... bt

Categorization is a basic and pervasive aspect of decision making.  Mundane tasks in pattern
recognition (e.g.. Is a given object a chair or a table?) are examples of categorization. More complex
examples may be found in legal, managerial, and problem solving contexts. In a sense. categorization
appears in virtually every decision process because decisions tend to be made based on concepts and

categories. rather than raw data.®

What makes a concept or category complex? Consider the problem of devising a rule for categoriz-
ing legal cases based on legal concepts. e.g., perjury. breach. or obscenity. Such decision would have to
be based on the cases” objectively given features (details of evidence. parties™ actions and statements.
and so on). Imagine an agent able to classify each specific instance. but has a hard time exhibiting
the rule followed in his classification. A well-known example is Justice Stewart’s famous statement
confessing that he is unable to come up with a good definition of obscenity. “But I know it when I see
it™.4 This behavior is not odd or pathological: people often have no difficulty performing mundane
tasks, like telling whether an object is a chair or a table, yet have considerable difficulty devising a
corresponding definition. More relevant to economic applications are contractual settings in which it
is obvious to the parties what should be done ex post when facing a specific instance, vet thev have

Lard time codifying such understanding explicitly ex ante.

Before proceeding, it is useful to note the key features of such behavior. First. there is a dis-

4 This is the prevailing view in cognitive sciences; see Medin and Ross (1992), and Holland et al.
(1989).

© T shall not today attempt further to define the kinds of material I understand to be embraced
within that short-hand description: and perhaps I could never succeed in intelligibly doing so. But 1
know it when I see it.” Jacobellis vs. Ohio. 378 U.S. 184, 197 (1964) {Stewart. J.. concurring).
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continuity between the ex post problem. when the agent is facing one specific instance, and the ex
aute problem where he has to provide a recipe covering all conceivable instances. We interpret the
behavior T cannot define it. but I know it when I see it” as evidence that the agent considers the ex
ante problem an order of magnitude more complex than the ex post problem. Second. a categoriza-
tion rule predicts the instance’s category based on objectively given features. not whin. intuition, or
subjective criteria. In applications like writing a contract or formulating instructions to subordinates.
it is natural to require rules to constitute procedures that can, at least in principle, be codified, com-
municated to others, or used in evaluating performance. Third, an agent may well be able to evaluate
the average performance of a rule or definition, even though he knows it is impossible to make an
instance-by-instance evaluation of such rule. People have little difficulty judging one definition of an
object. say a “chair’. to be better than another. without going over all conceivable objects to check
the fitness of these definitions. In the same vein. an individual may be able to judge one incomplete
contract as better or worse than another, without evaluating the full inplications of cach contract in

every couceivable contingency.

This paper develops a model that explains this and other related behavior in terms of the agent’s
subjective representation of the perceived complexity of his environment. The underlying intuition is
casilv explained in the following special setting. Assume. without loss of generality. that each feature
is binary (i.e.. takes values of either 0 or 1). so the space of instances. X. consists of 20 individual
instances. The agent’s belief that “he knows it when he sees it is a function  © X — B, where
b(x) gives the ‘true’ category of x. Data is generated by random draws of instances according to a
distribution A on X.° We require A to have a diffuse enough support (e.g., A is uniform on X) so ex

ante each instance has vanishing probability of being encountered.

The agent’s problem is to devise a ‘tractable” rule f : X — B to match the true category ba)
as closely as possible. How difficult is this task? If b can be pinned down using a small number of

features. then it can be easily replicated by a rule f. regardless of the size of the space of instances X,

Complexity arises when details matter: If all instance-specific information is potentially relevant. it

5 This rules out active experimentation. Examples are a doctor who has no choice about which

patient to treat. or a judge who has no choice about the cases assigned to him.
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may be impossible to compress this information into a simple sufficient statistic. There is a standard
way to make this formal, the Kolmogorov complexity measure. defined as the length of the shortest
prograni that can reproduce b.° Roughly. b is complex if describing it requires a nearly exhaustive
enumeration of its values. A basic fact is that complexity is the norm: most functions are complex in

this sense.

How would an agent cope with hard problems? Exhaustive enumeration is clearly pointless: the
number of possible instances. 27, increases exponentially with . so no conceivable amount of resources
can capture a complex b. even for moderate values of 1. If the agent resorts to rules whose complexity
is bounded by T, then the impossibility of exhaustive enumeration requires 7" to be substantially less
than 2/, This is just saying that our agent faces the familiar ‘curse of dimensionality™: the problem

has too many potentially relevant dimensions relative to available resources and data.

Our agent gives the problem his "best shot’. identifying the significant patterns or regularities he
perceives. But patterns necessarily lump together otherwise distinet instances. leaving some residual
variability unaccounted for. The agent. who recognizes these limitations. copes with this residual vari-
ability by developing a subjective. probabilistic model in which states represent potentially important
variations too complex to warrant detailed examination. The agent uses this subjective model as his
guide for predictions and decisions. In particular, he uses it to compute the expected payoft of rules
without having to examine what these rules imply on an instance-by-instance basis. However. his
recognition of imperfections in his model implies behavior that may display preference for fexibility

as well as the discontinuity between the ex ante and ex post problems mentioned above.

Our formal model in fact considers the limiting case of the above informal story. Specifically. we
take the set of features to be countable and impose no exogenous bounds on the procedures used by
the agent. This limiting model offers not only a clean and tractable statement of these ideas. but also
a way to capture agents fully rational in the traditional sense as the limit of nearly rational agents in

a vastly more complex environment.

% See Cover and Thomas (1991) chapter 7 for an introduction. and Theorems 7.2.4 and 7.5.1 for

results showing that most functions are complex.
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3. THE MODEL

A problem Q consists of the primitives (X. A B. V. A). where X is the set of instances: A is the
probabilistic process generating the data: B is a finite set of actions: V7 is a finite set of ex post utilities:

and A is an algebra of conditioning events. We formally describe each one of these elements below.

3.1. Instances

An instance is a collection of "objectively” given data about the problem. In light of the example
of Section 2. we want to allow for the possibility that the agenut believes that the number of relevant
features may be unbounded. That is, we do not want to rule out an agent belief that the problem
he is facing is subject to a “curse of dimensionality”: for any set of features the agent considers. there

may be other relevant dimensions he hasn’t considered.

Formally. then. there is a countable number of features, with the ith feature r; taking values in
the set X,. For notational simplicity. we assume that cach X, is binarv {that is. 7, € X, takes one of
two possible values). The set of instances of the problem is therefore the infinite product X' =[], X;:

with each instance corresponding to a sequence (2y..r2....) of values of the features.’

3.2. Actions and ex post Utilities

There is a finite set of actions B, and a finite set. V. of utility functions ¢ : B — [2. which we later

interpret as ex post rankings of actions.

An example is the class of categorization problems. where an agent has to place an object into oue

of I possible categories discussed in Section 2. Here the set of actions is B = {by... .. b }. where by

T Sometimes it may be useful to think of X as the set of binary expansions (sequences of 0's and
1's) of numbers in the interval [0.1]. though this may be misleading. We attach no particular meaning

to the ordering of features. so the ‘location’ of an instance r on the interval is of no relevance.
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represents ‘place the instance in category A’. The set of ex post utilities 1s V = {e),. ... v }. where
v is a K-vector, with value 1 at the kth entry, and 0 elsewhere. We interpret vy as the utility if the
instance is truly of category k. in which case a match (categorizing it correctly) yields a pavott of 1.

while a mismatch vields 0.

3.3. Breaking up Problems into Sub-problems

In tackling a given problem. it is natural to think that the agent breaks it up into smaller. simpler
sub-problems—presumably based on common properties of the underlying instances. We shall think
of this as a finite sequential procedure, consisting of an algebra A of sub-problems. and a tree T

representing the sequence followed in breaking up the problem into these sub-probles.

Before describing A and T formally, we emphasize that a procedure represents an cffective way of
breaking-up the problem: it must consist of steps that can be, at least in principle. codified. written

down. communicated, and instructed to subordinates. This rules out ‘procedures’ based on subjective

criteria that cannot be made explicit, whim. gut-feeling, or oracles.

The algebra of conditioning events. A. consists of all subsets A C X of instances for which there
is an ceffective’ method. formally an algorithm a (i.c.. a Turing machine. or a computer prograu).
to determine membership in A% For a conditioning event A € A. the corresponding sub-problem
@, is the original unconditional problen @. except that the agent may condition his actions on the
knowledge that he will face instances drawn from A. We will often abuse the definition and not

distinguish between A and Q4.

Next, the sequence followed in breaking up the problem is modeled as a finite tree with nodes
T = {ty.t1..... tx}. a precedence relation —. and root 4. Informally. we consider an agent who.

starting with @ ,. partitions A into a finite number of conditioning sub-events. takes each one of these

S That is. the characteristic function of A. x 4. is algorithmic: there is an algorithm a such that
ya(r) = alr) for every z. See Gilboa and Schmeidler (1994) for more detailed formal definitions of

what an algorithm formally means in this context.
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and further partition it, and so on. More formally. let S(t) denote the set of immediate successors of
node t. and let Z denote the set of terminal nodes. Then a decomposition of a sub-problem @, by
a tree T (more precisely. (T.—.ty)) is a function v : T — A such that (writing A(n) for v(t,)): (1)
Q a0y = Q. (the tree has root A); and (2) for every t € T. {A(t') : t' € S(t)} is a partition of A(?).

Of interest is the terminal partition generated by a tree, defined as {A(t) 1t € Z}.

3.4. Behavior. Rules and Options

We now describe the setting in which the agent confronts the problem. Let A be the o-algebra
oenerated by A (Appendix A.1 provides characterizations of A). We assume that A is non-atomic and

. - L
has full support on X.”
For reasons that will become transparent later. we model the agent’s decisions as a sequential

problem:

Ex ante stage: The agent believes he will face an instance drawn at random from X according to

the probability distribution X.

Interim stage: A specific instance x is drawn: the agent knows x but does not vet know his utility.

Ex post stage: The agent finds out his utilitv v € 17

Continuation: Having observed the pair (x.v). the agent faces the ex ante problem again.

The “continuation’ stage introduces a dynamic aspect useful in the representation theorem and in

discussing dvnamic choice. For the moment. however, it may be ignored.

9 The support assumption seems innocuous. since we can re-cefine X" to be the support of A. Non-
atomicity is more substantial: it formalizes the idea that each lustance is unique. with zero probability
of ever beine encountered. Our main results are preserved if we allow atoms-although their statements

o el

would be niore cumbersome. What is essential is that A has a non-trivial non-atomic component.
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At the ex ante stage. the agent must devise a plan to deal with all conceivable instances, which we
model as options. Let C be the set of all non-empty subsets of B. An option is anv function ¢ : X —
measurable with respect to A. The interpretation of an option ¢ is: “vou may wait until an instance
is drawn, then choose any action b you like subject to the constraint b € (). It is important to note
that the option must be exercised at the interim stage, i.e.. after = is drawn. but before the utility

itself is known.tY

An limportant subset of options are those that involve no flexibility: a rule is anv ftunction f : X — B
measturable with respect to A. Unlike options. a rule is an explicit. rigid plau prescribing the precise
action to take in each possible instance. Let F denote the set of rules. and G the set of options.
Obviously, F C G: we refer to G — F as the set of non-trivial options. When clear from the contoext.

we use b and C to denote the constant rule f(x) = b and option g(x) = C respectively.

Note that options can be used to represent varying degrees of flexibility (e.g.. an option allowing
tull Hexibility (g(xr) = B) for some instances, but much less flexibility elsewhere). Property rights.
discretionary powers, and laws, involve varying degrees of discretion. ranging from completely vague.

option-like plans. to strict rule-like restrictions.

' Later {Section 4) we consider other types of options that differ by the time at which thev may

be exercised.
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4. UTILITY AND CHOICE

4.1. Behavioral Assumptions

We describe the agent's behavior in terms of assumptions on his von Neumann-Morgenstern utility
in the hypothetical decision problem described carlier. To focus on complexity considerations. we
take as-primitive the agent’s utility which, in the context of our experiment. consists of an ex ante
utility Uy reflecting his choices in the ex ante stage. and a continuation utility U; for the continuation

stage. 1

The ex ante utility has the form Uy : G x A — IR. where Uy(g. (Q.,) represents his pavott from an
option g given a sub-problem @ . Let L be the set of probability distributions on V' = {ego. ... At
Our first assumption says that. when faced with a sub-problem . the agent thinks of it as a lottery

over ex post utilities:

A.1: Lottery equivalence: For every A € A there is a lottery I = (... lar) € L such that. for every
CecC.

U(C.Q.) =1 ltler}\ vi(b) + -+ lar 1{{1&\ var(b).

The sense in which this equivalence holds is important. First. it assumes that the agent has von
Neumann-Morgenstern utility over lotteries. Second. the max is taken with respect to the ex post
utilities. This implicitly says that once the agent sees the realized instance 2. he knows what to do.

We relax this in Section 5.1.

Under lottery equivalence, the agent knows he will be facing one of finitely many possible utilities
¢ 1. and has beliefs about their probabilities. assessed for the entire set of instances A. It is natural

to allow the agent to devise more elaborate plans based on more refined sorting of instances. We

11 A more complete treatment would derive the agent’s von Neumann-Morgenstern utility from

more primitive assumptions about his preferences.
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model this by assuming the agent uses trees to refine Q,, (see Section 3.3). Our next assumption puts

some structure on the way the agent evaluates the outcome of such procedures:

A.2: Reduction of Compound Sub-Problems: For any A € A with A(A) > 0, any tree 7" with root A
and terminal partition {A,...... An}, and any option ¢,
N
Uilg-Qa) = > MATA)Uy(g. A)

=1
This says that the agent thinks that if A is broken into {A. A, }. sav. he views (), as equivalent to
a lottery over the sub-problems 4, and Q.+, with weights given by A, Stated differently. the agent
views the uncertain prospect (g, Q.) as a two-stage lottery in which a sub-problem @, is drawn first

according to A, then faces the restriction of ¢ to whichever sub-problem has been drawn.

Our final assumption concerns the continuation utility which. like the ex ante utility. evaluates
option/sub-problem pairs. but taking into account the outcome of one round of facing the problem.
This outcome takes the form of an instance/utility pair (r.¢). so the continuation utilitv takes the
form U, : G x A x X xV — R, where U|(-.-: r.v) is interpreted as the agent’s cardinal valuation of

option/sub-problems given that he observed an instance r and utility ©.

We shall focus on the benchmark case of a long-run, steady-state where the agent believes he has
learned everything there is to be learned from repeated encounters with this problem. In Section 5.2

we discuss how to relax this assumption.
A.3: For every outcome (. v). the continuation utility Uy(-. i, 0) 0 G x A — R coincides with Uy,

The assumption says that observing the outcome of the decision problem does not cause the agent
to alter his evaluation. It may be possible to replace A.3 by a more primitive restriction on behavior.
namely that the agent is not willing to pay anything for an extra piece of data. Later we discuss
how to extend the model to accommodate dynamic adjustments of preferences as a result of learning

useful correlations in the data.
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4.2. Subjective Representation of the Environment

How are we to think of behavior satisfving these assumptions? One such behavior is that of an
agent who strictly prefers to decide after knowing the instance @ even though x was not unforeseen (it
was part of his descriptiou of states). and he understands the way @ can help hin predict his ex post
utility v. We shall interpret this as evidence of the agent believing that there is too much variability
in his utility to make it worthwhile to give a detailed contingent account of how it varies with each
instance. Instead, he subjectively represents his environment as if his von Neumann-Morgenstern
utilities fluctuates randomly. This randomness represents cognitive uncertainty about the outcome of

a deterministic. but complex process.

We first give a general definition of random utility:

DEFINITION: A random utility U is a probability measure A on (X.A), a probability space

(0. . P). and random objects {o(x) : x € X} on (§0.3).

Anticipating our representation result, we focus on random utilities satistying:
B.1: &(r): Q — V. e 8(r)is a V-valued random vector:
B.2: For each m. [,,(r) = P{¢(x) = vy} is a measurable function in z.

B.3: For any finite set of instances {z;.....2;} C X. the random vectors {i(xy).....%(xy)} are

independent.

Assumption B.1 says that the agent knows that he will never have state-contingent utilities outside
the finite set V. Assumption B.2 roughly savs that. although the instance-by-instance description
of his utility may be complicated. the average performance of an action 1s well-behaved. B3 savs
that knowing the state-contingent utility at an lnstance r conveys 1no additional information about
his utility at another instance z’. Violations of B.3 would reflect the agent’s belief that knowledge
gathered at one instance  may be helpful in dealing with new instances never encountered before.
See Section 5.2 for discussion.
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Given a random utility U satisfving B.1-3. we define the ex ante expected utility it generates by

MAUo(9. Q) = E/ max U(b. x.w)dA(x). (1)
J 4 beg(x)

and set U} = Uy for all outcomes (x,v). The ‘max’ captures the idea that g(x) represents the option
to pick the action ex post, subject to the constraint that the action picked belongs to the constraint
set g(x).'? The integral is the Pettis integral. a well-known integral first used in economics by Uhlig
{1996)-—the Appendix provides background and references. For our purpose. this inteeral reduces to

a very simple form:

THEOREM 1. Under assumptions B.1-3.

1) For every C and A. the Pettis integral is a degenerate random variable. and

24

AAU(C.Q 4) / ZI,” Illd\lm(b) dX\(r). (2)

1) For any option g € G.

AAy(9.Q.) / 57 i) e (4)] dN(2). (3)

m

Local Problems and Cognitive Discontinuity: One interpretation of this result is that the agent com-

putes his utility by thinking of (2, as an aggregation of small local problems. Formallv, define let
) = (Li().. ... Lar(r)). let @, be the local problem in which the agent chooses actions facing a
lottery (), and let Ug(C. Q) be the von Neumaun-Morgenstern utility relative to {(a).}* Local
problems are perfectly standard ‘choice under uncertainty’ decision problems that involve no com-

plexity considerations. Then (2) is equivalent to:

Ammwwu=ﬁmmqmmm (2

12

[u the special case of a constant action b. this reduces to E [, #(b. v w)dA ().
U That is: [ () maxpee ¢p(b) -+ -+ = Ly () maxpec var (b).
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This says that the agent computes his expected utility in the potentially complex sub-problem (2, by

ageregating his utility at local problems which involve no complexity considerations.

It is essential to note that @, is not the instance r. but the "average problem’ in vanishingly small
neighborhoods around x. Interesting behavior in our model arises when @, does not degenerate to
a lottery assigning unit mass to the ex post utility at z. In this case, the agent faces a cognitive
discontinuity: ex ante he must think in terms of local problems @, around an instance x, which are

qualitatively different from the ex post problem when he knows which instance x he is facing for sure.

4.3, Representation Theorem

THEOREM 2. A random utility U satisfving B.1-3 generates expected utilities Uy and U, satis-

fving A.1-3.

We now turn to the converse of the last theorem. Suppose we observe an agent making choices and
rauking options in a manner consistent with A.1-3. The next theorem shows that we can think of this
hehavior “as if " the agent formulated a probabilisite model of his environment. and ranked options

based on their expected utility calculated via the Pettis integral:

THEOREM 3. If Uy and U, satisfy A.1-3. then there exists a random utility U satisfying B.1-3

such that Uy is its expected utility (i.e.. Uy satisfies (1) relative toU).

Sketch of the proof: While the proof is involved. a basic sketch is instructive and casy to
present. Starting with a utility Uy. lmagine an agent who uses trees to successivelv refine (), into
simpler sub-problems. Each sub-problem has an equivalent lottery. but these lotteries need not be
unique. What is uniquely defined. however, is the vector of utilities. with enfry for the utility of
each option C € C. Our reduction of compound sub-problems implies that in dividing a problem into
sub-problems. the utility vector of the original problem is the A-average of the vectors of utilities of
the sub-problems. This implies that the vector of utilities is a martingale on X with respect to an
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uppropfiately chosen filtration that generates A in the limit. By the martingale convergence theoremn.
a limiting ‘local” utility U (2) exists. Any such utility has at least one equivalent lottery: in fact
a measurable selection () of such lotteries exists, picking one lottery at cach . This sclection is
used to construct the random utility using standard techniques {(in particular. Kolimogorov extension
theorem). The independence assumption A.3 restricts our construction by requiring that B.3 must

hold.

4.4. Preference for Flexibility

So far we haven't discussed when the agent ‘thinks’ his enviromment is complex. As an example.
stuppose the agent believes that only two utilities are possible, v and o’ and that the utility at . is
o if and ouly if the first feature has value 1. This is a very simple world the agent believes he can
sort out based on a single feature. Complexity arises when the agent believes ex post utilities (hence
optimal choices) are "mixed-up’, so he cannot disentangle sets of instances over which various actions

should be chosen.

What are the behavioral implications of complexity? Motivated by Kreps (1992). we focus on
preference for flexibility as evidence of the agent’s belief about how complex his environment is.'' To

formalize this, we say that an option ¢ refines g if ¢'(x) C g(x) for every instance .r.

DEFINITION: A random utility U satistving B.1-3 displays no preference for flexibility over @ ,

if every g € G can be refined by a rule f such that Ug(f, Q.) = Us(g. Q).

Our goal is to characterize such preference for flexibility in terins of the agent’s random utility. To

do this. we need the following:

' Our agent. as in Kreps. always weakly prefers more flexibility. Indeed, maxinmum Hexibility

(i.e.. glxy = B for all x) is the unconstrained optimal plan. In specific applications. however. other
considerations generate constraints reflecting benefits to committing to narrower sets of actions (sece

Section 6}, Thus, the more interesting question is whether flexibility is strictly valued by the agent.
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DEFINITION: Two utilities v. ¢’ € V' are ordinally equivalent if they induce the same ranking
over actions. That is, for every b. b: v(b) > ¢o(l/) <= v'(b) > ¢'(b). A lottery | has an ordinally

equivalent support if every v o'

in the support of { are ordinally equivalent.
THEOREM 4.  Suppose that U is a random utility satisfying B.1-3, and such that each v € V
induces a strict ordering on the set of actions. Then U displays no preference for flexibility if and only

if. for almost every instance x. I(x) has ordinally equivalent support.

We now compare our notion of preference for flexibility with that in Kreps (1992) using his example:

Kreps™ Luggage: An agent is told he will travel at a time and to a destination picked at random. Let
B denote the set of all bundles of luggage he can carry with him. The agent comes up with a list §
of objectively describable features of his (yvet unknown) time and destination of travel. For instance.
S may include the month in which travel occurs. the destination’s latitude, altitude. average annual
temperature, and so on. The agent is given the possibility of conditioning his bundle of luggage on the
list of states he can come up with. Thus. the objects of choice are all functions f : 5 — B. Suppose
now we also allow him to choose contingent opportunity sets ¢ : S — C. where C is the set of all
non-empty subsets of B, with the interpretation that in state s, the agent is free to pick ex post anv
bundle he likes from the opportunity set g(s). The agent recognizes that the list of contingencics S
Lie thought about may be incomplete. that he may have missed some relevant contingencies s ¢ 5.
Kreps' idea is that the agent’s recognition that he did not foresee evervthing mayv be inferred from

this agent’s preference for flexibility.

To draw a close comparison with Kreps™ examnple, consider a given finite set of features I, and let
S =2/, What we called rules and options correspond to Kreps™ contingent actions and opportunity

5

sets, respectively.!® Kreps' agents may value flexibility because of complexity, but they may also
value it because they have an intrinsic taste for flexibility, suffer from cognitive limitations. or face

exogenous restrictions on the set of contingencies they can condition on. In Kreps® general setting. it

1% In Dekel et al. (1987) these correspond to actions and menus.
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may be impossible to separate these effects (Kreps (1992, p. 268)).

On the other hand. one would expect the source of an agent’s preference for flexibilitv to he im-
portant when introspection. learning. dvnamic choice. and multi-agent considerations are introduced.
These considerations raise the issue of how the agent goes about improving his understanding of the
world, how he incorporates evidence that contingencies he hadn’t thought about before (i.e.. s ¢ 5)

may be relevant.

In this paper we focused on environments with considerably more structure (by starting with the
agent's von Neumann-Morgenstern utilities. and by including a more detailed description of the states
and an explicit description of the multistage decision process). Our treatment is therefore less general
than Kreps. On the other hand, the added structure allows us to more narrowly identify why the
agent values flexibility: since he can refine his rules by breaking up problems into sub-problems. our
framework takes into account the agent’s attempts at discovering useful regularities or patterns in
the underlying problem that would make flexibility less valuable, or even redundant. Theorem 4 pins
down the value of flexibility in terms of the agent’s inability to figure out an effective way of sorting

out his ex post utilities due to the complexity of the environment.
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4.5. Further Remarks on the Interpretation of the Model

i) Interpretation of Expected Utility as o Law of Large Numbers: Equation (2} can be stated as:

Up(C.Q,4) = Z L (A) Ill)léf}}g v (b). (2"

where A(A),,(4) = f‘ L ()dX is the average probability of v,,. This savs that the agent
behaves by computing the maximum utility for each v,,. then weighs these using the average
probability of [,,(4). This may be interpreted as a law of large numbers. in the sense that
in computing his average utility, the agent uses the average of expectations L (A). effectively
‘assuming’ that idiosyneratic variations wash out.' Here. we do not assume that the Pettis
integral is the correct way to aggregate idiosyncratic variations in utilities. Rather. we prove
that observed behavior satisfving our behavioral assumptions can be thought of as if the agent
believed that this integral provided the correct aggregation. Thus. an interesting by-product of

Theorems 1 and 3 is a decision theoretic interpretation of the Pettis integral.

ii) How Natural is the restriction to A? Our analysis is based on restricting agents to plans for which
there is an effective way of finding out what they imply at each possible instance. Formally. we
require any rule or option to be measurable with respect to the algebra A of algorithmic subsets.
Is this too strong? If we think of plans as procedures to be implemented or communicated to
others. codified in a set of rules or laws. then there must be a finite list of instructions that
can reproduce the implications of such plans (e.g., what subset of actions is allowed) at each
instance. This is precisely the definition of A. This is also the sense in which behavior of
an agent who examined all improvements possible within G is rational: no one. including the
modeler, is able to suggest effective ways of improving on the agent’s decisions. In economics.
game theory, and contracting. the idea that agents are limited to procedures that can be carried
out effectively (and so must be algorithmic in this sense) may be found. for example, in McAtee

(1984). Binmore (1987). Gilboa and Scheidler (1994). and Anderlini and Felli (1994).

10 The interpretation of the Pettis integral as a law of large numbers was proposed by Ullig {1996)

in his study of economies with a continuum of agents.
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iii)

Introspection: Uncertainty about states in our representation is subjective: it is the agent’s way
of thinking about what his utility would be at instances he hadn't considered. By introspection.
the agent may decide to take up a particular instance & and figure out what his utility at thar
instance (assuming no interim uncertainty-see Section 5.1). It is pointless. however. for the
agent to try to think through every possible instance. because there are too manv of them.
each with zero probability of being actually encountered. The agent’s probabilistic model of
his world may be thought of as reflecting his answer to the question: To what extent does
the knowledge gained from introspection about a single instance generalize to other instances?
When the problem is simple. for a typical instance @, introspection pins down not just the utility
at . but also the utility at neighboring instances. Otherwise. such introspection gives onlv a
rough idea about what happens around z, because regardless of how close the agent gets to .r.
thcre are always details left out that interact in a complex way in determining his utility. (This
is the essence of the discontinuity between the local problem @, and the corresponding instance
). In the representation, {() may be interpreted as containing all that is generalizable from

introspection about r.

Subjective derivation of utility: In this paper subjectivity is limited to the new subjective states
the agent creates to represent the perceived complexity of his environment. Aside from this.
we have taken as given his assessment of the probability distribution A. his von Neumann-
Morgenstern utilities over lotteries. and his utility over options and sub-problems. A worth-
while extension of this model would be to derive these from more primitive assumptions about
preferences. In the context of Kreps' framework. Nehring (1998) derives a probability over the
foreseen states from assumptions about the agent’s behavior. while Dekel et al. (1997) derive a
unique subjective state space and a representation where additivity is meaningtul. The methods
developed by these authors may provide a basis for extending our model to derive subjective A

and ex post utilities from the agent’s preferences.



5. EXTENSIONS:

INTERIM UNCERTAINTY AND CORRELATION

The analysis of last section presented the starkest example of behavior consistent with our model:
complete discontinuity between the agent’s perspective before and after knowing the instance 2. Here

we extend our basic model of behavior by allowing for interim uncertainty and correlation.

5.1. Interim Uncertainty

Consider the problem of diagnosing a medical condition. We may think of such problem as consist-
ing of: the ex ante problem of formulating procedures that practitioners can apply in performing such
diagnosis, and the interim problem of deciding what to do given a specific instance of the problem.!”
A rigid diagnosis procedure will be deficient because practitioners may want to amend it to take
into account the specific nature of each instance. However, even facing an instance, one may still be
unsure of the correct diagnosis. This is an example in which uncertainty is resolved in two stages:
first, cognitive uncertainty due to complexity is resolved once a specific instance is encountered, but a
residual interim uncertainty remains: second. interim uncertainty is resolved ex post (e.g.. the patient

lives or dies).

Our model so far focused exclusively on the behavior of an agent for whom all uncertainty is
resolved once he knows which instance  he is facing. An example of such behavior is an agent unable
to give a precise definition of an object (say, a chair) but believes he can correctly categorize such
object when he sces it. This is an example of sharp cognitive uncertainty where ex ante utility is

random. but ex post utility is deterministic once z is known.

Our model can be modified to allow for a distinction between cognitive uncertainty due to com-

plexity, and residual uncertainty. For simplicity. we will not attempt to start from primitive behavior

' An instance in this case is a particular patient with a given set of symptoms. familv history.

genetie composition, and so on.



assumptions as we did earlier, but work directly from the representation. We also make other simpli-

fving assumptions that can be easily dispensed with.

Let D be the set of all degenerate distributions &,. v € V and let L° be a finite set of distributions

that includes all degenerate distributions.!®

To allow for interim uncertainty, we amend our definition of random utility by representing it as a

collection {d(x) : r € X} of functions on (€. %) such that:

B.1%: d(x): Q — L% e d(x) is a D-valued random vector:
B.2’: For each [ € LY, d;(z) = P{d(z) = I} is a measurable function in z.

B.1" allows for the possibility that all the agent knows when he sees an instance z is a distribution
() onex post utilities. Our earlier definition is the special case that precludes interimi uncertainty
by requiring that [(x) € D. i.e.. a degenerate lottery on ex post utilities. Condition B.2" is an obvious

modification of B.2.

With these assumptions, we can show (using essentially the same argumment as Theorem 1) that
the agent evaluates options by :

AMAUu(9. Q) = Z di(x) max Epe(b) dA.
JA e To beg(x)

What are the potentially observable implications of the distinction between the two tvpes of un-
certainty? To address this imagine that we enlarge the set of options available by introducing new. cr
post options, that may be exercised ouly at the ex post stage, after v is known. These differ from the
interim options we have been using so far, which must be exercised in the interim stage. i.e.. after x
is known but before v is known. An individual who believes he knows what to do once he sees the

istance r attaches no additional value to ex post options above and over the value of the interim

Is

That 1s. 6, 1s the element of L that puts unit mass on the ex post utility . and D < LY = L.
The finiteness of LY is used here to economize on inessential technical complications. There does not

seem to be any special difficulty in extending the analysis by taking LY = L.
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options. On the other hand, an individual who believes there is substantial interim uncertainty (e.g..
the doctor in the diagnosis problem) attaches value to the ex post option. Thus. one can in principle
detect some of the behavioral implications of the two tvpes of uncertainty by offering different tvpes

of options.

A second, related. question we can address with the introduction of these new options is the
difference between uncertainty due to complexity and the usual uncertainty where an agent faces a
lottery on a set of payoff functions. As we have seen earlier, complexity is what makes interim options
valuable. Uncertainty about payoffs, on the other hand, makes ex post options valuable. Thus. an
environment with traditional uncertainty about payofts and no complexity is one where an agent niay

be willing to pay a considerable premiun for an ex post options. but nothing for an interim option.!”

5.2. Correlation and Learning

Our independence assumption B.3 is a useful benchmark describing a steady-state reached after
an agent who has accumulated a large number of observations, either directly or by observing other
agents dealing with a similar problem. Such agent believes he had extracted all useful patterns or
regularities in his environment, so observing a new instance adds nothing. has no effect on how he
assess the probability at other instances. Interesting learning possibilities appear if we weaken B.3 to
allow for correlation across instances. While a more general treatment is possible. we focus instead

on a simple example that illustrates the basic points.

Modify Kreps™ luggage example by introducing a travel agent who makes travel plans for a new

9 To sce how this is reflected in the representation. suppose there are just two ex post utilities

v and /. Let d be the distribution that puts cqual weight on &, and é,... Consider first an agent
with random utility & where the interim lottery puts unit mass on d. That is. regardless of which »
the agent encounters. he believes the two utilities obtain with probability é each. Knowledge of the
instance has no predictive value in this case. Contrast this with another agent with random utility
U" such that the interim lottery d(a) puts probability % over each of 6, and é,.. This agent believes
knowledge of the instance x is a prefect predictor of the outcome (7.e., he knows it when he sces it).

but that the environment is too complex for him to think through all possible instances.
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client. The travel agent, who evaluates luggage bundles and flexibility to maximize the client’s ex-
pected utility. continues to face the complexity caused by her inability to think of what is needed
in every possible contingency. However. not knowing the new client very well, the problem is com-
pounded by her uncertainty about the client’s preferences (his taste, travel habits. medical needs,
and so on). More formally, suppose the travel agent believes the client’s random utility is generated
by ecither P with probability s, or P’ with probability ;¢ = 1 = 1. We assume P and P’ satisfy the

independence assumption B.3 and display preference for flexibility.

The travel agent’s valuation of flexibility at the first stage takes into account both the problem’s
complexity and uncertainty about the client’s type. Although first stage preferences satisty Kreps'
axioms. these preferences cannot discriminate between the two uncertainties. a point that was em-

phasized by Kreps (1992).

On the other hand, the two uncertainties are conceptually distincet and lead to different patterns
of dynamic choice. Imagine. for instance. if the problem is repeated over time. then one would expect
the travel agent’s evaluation of rules and options to change to reflect learning the type of the client. In
particular, with accumnulation of information about the client’s preferences. preference for flexibility
due to uncertainty about whether the client is type P or P’ may diminish or disappear, while that

due to the complexity of P or P’ will not.

In sunmunary, an agent may distinguish between (what he views as) learnable patterns, or the
complexity type. of his enviromment. on the one hand, and inherent complexity due to nreducible
variability, on the other. This distinction., which may be mute in static settings. lhas potentially
important implications for dynamic choice, i.e., how preference for flexibility changes over time with

the arrival of new information.



6. APPLICATIONS TO MULTI-AGENT PROBLEMS

\We consider applications to two-player games. where the game played may depend on the instance r.
We make standard game-theoretic assumptions that players have common knowledge of the structure
of their environment. In our context. these include the space of instances X, the distribution A. and

cach other’s random utility.

0.1. Flexibility with Time-Inconsistent Preferences

Here we consider the classic Strotz-Pollak problem of time-inconsistent preferences.®”  Although
this problem involves a single agent, it is formally equivalent to one in which an agent interacts with
his future -self’. Time-inconsistency and preference for flexibility have opposite effects. since time-
inconsistency tends to push the agent in the direction of narrowing his future options. When both
effects are present. the agent’s preference may violate Kreps' monotonicity axiom {which requires that

the agent weakly prefers larger subsets of actions).

Consider an agent who, in a first period (time 0). has a utility ¢, while in the second period
(period 1). his utility may change to U’. The agent’s preferences is time-inconsistent if {4 # Uu'*t For
example, consider an agent who at time 0 must decide whether to accept a credit card solicitation.
He anticipates that flexibility (in the form of having available cards with substantial combined credit
limits) is desirable because he cannot think in advance of every possible contingency that might arise.
On the other hand. this agent also anticipates that his preferences at time 1 might be such that he does
not resist the temptation of excessive spending. Time-inconsistency generates a cost for flexibility. so

it is no longer true that the option g(x) = B for all x is always optimal.

20 Strotz (1955-56) and Pollak (1968). See Asheim (1997) for a recent analysis and more extensive

references.

‘) e . . . r . . . . . . . .
21 The characterization in Theorem 5 below is valid in general. although its implications are useful

primarily when ¢ and U’ induce ordinally different rankings on a set of positive measure of nstances.
The reason 1s that. by Theorem 4. preference for Hexibility is ordinal in nature. We state the results

without additional restrictions for simplicity of exposition.
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Our goal is to characterize the agent’s planning at time 0 and show how it depends on his en-
vironment. To fix notation, suppose that & and U’ are defined on the same finite set of utilities V
(with generic elements denoted v, and u,,. respectivelv).?? Let { and I' denote the distributions on
V' determined by U and U’. We maintain the independence assumption (B.3). so the agent at time
zero believes the utilities are independent across instances. However., we now allow for the random
utilities to be correlated at each instance. At a given x, let p(x) be the joint distribution on V' x 17,

which we require to be measurable in z and to have marginals .’ : X — L. Thus. p measures the

extent of the discrepancy between the agent’s current and future preferences.

Assume that each utility induces a strict ordering on actions. and define b(C. u) = argmax pec u(h)
to be the agent’s optimal action at v € V and C € C. In a given instance . and state w. the agent at
time 1 chooses b = (C.a(x.w)). so the utility of time 0's agent is the random variable £(b. .. w). and

his expected utility is given by the Pettis integral:

Uslg) = FE / t(b(g(x). t(r.w)). x,w)dA

X
/ Pt U )Um (B(g(T) un))dA.
Jx

m.n
The second equality. which may be proven analogously to Theorem 1. simply asserts that one can

evaluate ¢ by computing its value at each local problem ¢, then agercegate the resulting pavofts.

Our goal is to prove the existence of an optimal plan. and to characterize such plan in terms of the
primitives. We call g% globally optimal if Uy(g*) > Us(g) for every g € G. Finding such an optimal
plan involves searching through the function space G, a process which may be both difficult (since G
is infinite dimensional) and not very insightful in terms of clarifying what an optimal rule looks like

(e.g.. how it varies with the primitives of the environinent).

A more useful way to proceed is to consider what kind of plans would solve the problem locally,

in the sense of being optimal at any given local problem Q.. Recall that @, is the artificial problemn

22 Assuming a common set V is without loss of generality because we can alwavs take this set to

be the union of the support the two players’ utilities.



obtained as the limit of a sequence of sub-problems (.4, that decrease to . which mayv be interpreted
as representing how the problem looks like near & (which. in the interesting case, may be quite
different from the problem had x been known). Since each local problem ), may be identified with
a joint distribution p(x), finding the optimal plan is the straightforward problem of finding C' which

maximizes E,,)tn (0(C.uy)). An option g is locally optimal if, for almost every -

g(x) € argmax cec By tan (0(Ct1y))

THEOREM 5.

1) A plan is globally optimal if and only if it is locally optimal.
il) A locally optimal plan exists.

Part (i) ensures that to verify optimality. it is enough to verify optimality at local problems that
ivolve no complexity considerations.  Part (ii). on the other hand. ensures that one can thread

together locally computed optima into a well-defined option.

Theorem 5 provides an insight into the agent’s planning by reducing his problem to that of exam-
ining the trade-off between commitment and flexibility at local problems. The theorem helps identifv
how this trade-off derives from the complexity of the environment and the expected discrepancy

between his current and future utility.

0.2. Delegation Games

A principal decides on how much discretionary control over an action to delegate to an agent. We
model this in the form of an option ¢ € G, with the interpretation that the agent is given discretion
to choose b € g(x) for each . For example, the agent may be a manager of a firm on behalf of au
owner who delegates to him the running of day to day operation of the firm. Another example is a
legislature delegating to a judge control over the adjudication of legal cases. subject to the constraint s
and guidelines reflected in the relevant laws.
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Different choices of ¢ may be used to transfer full, partial, or no discretion to the agent. The
principal’s problem is to determine the optimal level of discretion. reflecting the trade-off between

flexibility and precision.

To formally model this trade-off. we assume that the principal and agent Lave utilities ¢ and
U The difference between these utilities reflects (un-modeled) incentive problems or a different
understanding about what should be done in each possible instance. If the principal and agent had
the same utility functions and the environment is complex. then it is strictly optimal for the principal
to choose ¢(x) = B for all x. On the other hand. if the two utilities do not coincide. then increasing
discretion (i.e.. making g less strict and less rule-like) increases the manager’s freedom to adapt his
action to the particular circumstances he faces. but also increases the chance that Le chooses an action

1ot in the interest of the principal.

Theorem 5 applies the present context without modification. Its interpretation in the delegation

context is as follows. When the marginal { is degenerate (or has an ordinally equivalent support).
the principal is able to be precise about what action he wants the agent to take. Consequently. no
discretion is given: a singleton g(r) dictating the principal’s optimal action is weakly optimal. The
more interesting case is that where the support of { contains ordinally non-cquivalent utilities. We may
interpret this as indicating the principal’s uncertainty about the right action due to the complexity
of his environment. In this case, partial delegation will typically result. to balance the inceutive to
capture some of the gains from flexibility against the probability that the agent takes a suboptimal

action.

As we see from these applications. Theorem 5 is an instance of a more generally applicable op-
timality principle for solving optimization problems in our setup. The basic idea is that our setup
allows to solve the seemingly difficult (infinite dimensional) global problem by threading together

(finite dimensional) local problems.



6.3. Simon’s Model of Authority in Employment Relationships

The delegation model above may be adapted to provide a formulation of Simon’s (1951) seminal
model on authority in employment relationships. Briefly, Simon considers that the distinguishing
feature of employment contracts is the employee’s acceptance, in exchange for a wage. of his employver’s
subsequent discretionary authority to tell him what to do. This creates a trade-off between flexibilitv
and abuse of authority: since the task the agent is asked to perform depends on an unknown state,
it is efficient to give the employer some flexibility in directing the agent as contingencies unfold. On
the other hand, the employer may be tempted to abuse his authority (e.g.. by directing the employee
to taking onecrous tasks). An employment contract gives the employer a limited discretion so as to

balance these forces.

One issue left unanswered by Simon is: what prevents the parties from agreeing to a detailed
enough contract that eliminates the need for flexibility (hence authority and its abuse). One answer
mayv be that the complexity of the environment makes it dificult to adapt the contract’s provisions
to every possible contingency. To model this. we modify the delegation example by imagining that
a contract ¢ is proposed which the agent either accepts or rejects. If accepted. then ¢ endows the
employer with the authority to direct the employee to take action b conditional on the realization of

2. provided that action falls within the employer’s authority. in the sense of b € g(x).

An employment contract is complete if it belongs to F. i.e.. a rule that prescribes a single action
at every possible instance. Typically, this is not optimal because the emplover's discretion may be
aluable in a complex environment. On the other hand, a completely vague contract (e.g.. g(x) = B)
may not be optimal either because it leaves the emplover greater flexibility to abuse his authority
over the employee. As in Simon. the optimal contract ¢= is drawn so as to balance these effects. The
characterization in Theorem 5 above carries through without changes. In particular, we can solve for

g~ byv looking at local solutions for the local problems @,

Lesting for complerity: The predictive vadue of this model obviously depends on whether we can sayv

something about the form of the optimal contract g- (how it should look like and the form of its
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incompleteness) as a function of objective. potentially observable aspects related to the complexity
of the environment. Contracting parties often have access to massive data (generated both internally
within an organization. and through observing similar interactions elsewhere) that can be used to
evaluate the relative complexity of different work environments, tasks. and job assignments. For
example, it may be clear from past experience that the problem of describing the tasks of a company’s
CEO is more complex than that of a security guard or a assembly line worker in one of this company’s
plants. In our model. complexity of a task is (at least in principle) measurable in terms of the
variability of the action required as a function of a given objective description of instances. Testing
for complexity in this case boils down to tests of randomness. i.e.. that there is no remaining structure
or pattern one can uncover in the data. Thus, our formulation of Simon’s model provides a criterion
to distinguish between routine aspects that may be hard-wired into a formal contract. from novel.

non-routine aspects that warrant discretion.

0.4. Nash equilibrium in a two stage game

Here we consider a simple setting in which we define and prove the existence of a Nash equilibrium
in a two playver game. The purpose is to illustrate how our framework mayv be used to formulate and

analvze simultancous move games {define strategies, equilibria, and prove existence).

To economize on notation, we keep the setting as close as possible to that of Section 5.1. For
notational simplicity. we assume there are two playvers 7.7 = 1.2. The set of instances X is as
before. At each . the two players have payoff functions ¢!, and v/ respectively. The payofts are
generated according to the random utilities U and U7, with joint distribution p(r) on the players’

17

pavoft functions. Thus. at each instance 2. a simultancous move game with payoft vector (v} . 02) is

. . .y ‘ R
realized: with probability p(vl . v2:2).23

In this setup. & represents an instance of the environment facing the two players: the situation

2t As before. we assume that p is independent across the instances. although at a given & the

utilities may be correlated.
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they find themselves when they actually get to choose their actions. The dependence of payofts
on x reflects the possibility that the environment may influence the interaction between plavers in
potentially complex ways. To make the model tractable, we assune that the plavers agree on the

probabilitvy A of various coutingencies and liave common knowledge of each other’s random utility.

We consider Nash equilibrium of the normal form of this game. with the restriction that contingent
strategies must be algorithmic. Aside from this restriction, everything else is completely standard.
To prove existence, we need to expand our definition of rules to include randomizations. Formally, a
mired rule for player 7.1 = 1.2, is a function ¢’ : X — AP’ that is A-measurable. That is. a mixed
rule assigns probability distributions on actions. rather than pure actions as in the case of regular

(pure) rules. Given a profile of mixed rules. (o', 0?). we define the expected payoff of plaver i as

Ui(o!r. o) = / Z])((','”. ehoryel (o () o (e dA
Jx

m.n
DEFINITION: A profile (¢!, ¢?) is an cquilibrium (in rules) if for every i.j. o' is a best response

to /.

THEOREM 6. An equilibrium exists.

The idea of the proof is similar to that of Theorem 5 above. Specifically, we imagine the game
as consisting of playving local gaimes @,.. each of which is a normal form game with random payoffs
determined by the joint distribution p(x). Since each such game is finite, it has at least one equilibrium.

The proof shows that it is possible to select a mixed rule from the equilibrium correspondence.

Finally. call a player’s strategy o' sequentially consistent if, with probability one on . the action
o'(r) is optimal when the instance is known to be .2 We may use the analvsis of flexibility (Section
4.4) to characterize when an equilibrium in rules is sequentially consistent. Bv Theorem 4. i a
complex problem. players are likely to revise their strategies ex post as contingencies unfold (/e
they “cross a bridge when they get to it"). These agents will not work out a fully detailed contingent

plan of action that anticipates every contingency. but rather deal with contingencies as they arise.

21 In this discussion we assume that ¢'(z) is pure for simplicity.
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7. SUMMARY AND CONCLUSIONS

While its importance and pervasiveness is bevond dispute. complexity remains an illusive concept to
formally model. Rather than prescribing computational or thought procedures for agents to follow in
coping with their complex environment, this paper attempts to elicit their assessment of the complexity
or simplicity of the environment. the world as they see it. We explain an agent’s behavior as the result
of a coherent model representing the agent’s attempt to find order and regularities in his world. while

at the same recognizing that his model cannot explain evervthing,

Three features of our approach are worth emphasizing. First, we show the possibility that fullv
rational agents confronting complex situations may display behavior often associated with bounded
rationality. Second, despite the complexity of the environment. the agent’s model of it may be re-
markable simple. This, in turn, means that we can develop tractable models of behavior, as illustrated
by Theorems 5 and 6 where complex multi-agent settings may be analyzed using essentially standard

tools and concepts.

The third., and perhaps most important feature of our model is its closure: as in traditional
cconomic and strategic models, agents optimize given an understanding of their environment which
is as good as that of the modeler. There are no arbitrage opportunities or money-pumps through
which an agent may be systematically exploited. This requirement, well entrenched in may areas of

cconowmics, imposes considerable discipline on the model’s predictions.

There obviously remain important questions for future work., One is to explore the implication of
the model in terms of generating similarity- and analogyv-driven behavior. along the lines described in
Gilboa and Schmeidler (1995). Another pressing issues is incorporating learning considerations: our
focus has been on a steady-state where the agent believes he learned all there is to be learned from the
environment. How the agent gets to use data to formulate, refine and extend his model is an obvious

HeXE step.



APPENDIX

A 1. Topological and Measurable Properties of A

Our analysis of A and A builds on a result due to Gilboa and Schmeidler (1994. Proposition 3.1.
p. 377). Call a set A C X finitely defined if there is a finite set of features I sufficient for determining
membership in A. That is, the characteristic function of A, x 4, has the property that x4 (z) = x4 ()
for every r and 2" that agree on I (ie.. for every feature i € I, x, = 27). For example. the set
{2 = 0} is finitely defined, while the singleton set {x} is not. Clearly. every finitely defined set is

aleorithmic. What is more surprising is the converse:

PROPOSITION A.1: (Gilboa-Schmeidler (1994)) A subset A C X belongs to A if and only if it

is finitely defined.

The reason why this is not entirely obvious is that algorithms allow for unbounded computation:
for instance, the machine could scan a subset of features and, depending on some internally generated
output. may decide to examine more features. and so on. Nevertheless. the proposition savs that an
algorithm will never look bevond a predetermined finite sct of features. Critical for this result is the
assumption that the algorithm always halts. See Gilboa and Schmeidler (1994) for further elaboration

on this and related points.

Aside from its intrinsic interest, Proposition A.1 makes it quite easy to derive the topological and

measurable structures of A and A:
PROPOSITION A.2:
1) A is a base for the product topology. 7. on X:
1) 7 1s a complete. separable metrizable topology:

iii) A coincides with the Borel g-algebra generated by 7.
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Proof: (i) Let 7' denote the topology generated by taking A as a base (that is the collection of sets
obtained by taking arbitrary unions of sets in A). We need to show that 7 = 7/, Call a set simple if it
is of the form {x : z; = a}. for some feature 7, and « € X;. Note that simple sets are inverse images of
projections, and the product topology is the coarsest topology that makes all projections continuous.
Thus. T-open sets are those sets which can be obtained as arbitrary unions of finite intersections of
simple sets. Obviously, every simple set is in A, and so is any finite union of simple sets. Consequently.
7 C 7. In the other direction. it is enough to show that A C 7. By Proposition A.1. any A € A is
finitely defined in terms of a finite set of features 7. say. Then A can be generated by taking finite
intersections and unions of simple sets corresponding to features in 7. Since every simple set is in 7.

A must also be in 7.

25

(ii) 7 is the product topology of a countable collection of compact spaces.*® Thus, 7 itself is
compact (Royden (1968), Theorem 19. p. 166). metrizable (p. 151). and complete and separable

(Propositions 13-15. pp. 163- 4).

(iii) Since A is countable, the product topology involves only countable unions of sets in A. Thus.
the g-algebra generated by A, namely A. coincides with that generated by the product topology. But
the later is just the Borel g-algebra.

Q.E.D.

A2 The Pettis Integral: Proof of Theorem 1

Here we provide the definition of the Pettis integral as it applies to our setup, and prove Theorem

1. The interested reader may consult Diestel and Uhl (1977) for more detailed account.

The Pettis integral is a method to integrate raudom variables (like our random utilities ©(2) :  —

Voor functions defined on them) by viewing them as elements of a linear space. Here we pursue the

25

In fact discrete spaces. as each X, is assumed to be binary (7.e.. each feature can take onlv one

of two possible values).



most straieghtforward way of doing this. Let L* to be the linear (Hilbert) space of all random variables

. . . . 20
on (Q.%. ) with finite mean and variance.?

The inner product of two points f. f' € L? is defined
in the usual way: (f|f') = /S) Ff (AP = cov(f. Y+ EfEf. We let 1 denote the (equivalence

class of) random variables that take the value 1 with probability 1. and note that (1] f) = E'f.

Consider a function x — f{x)}. which maps X into L? (specifically, we later consider the function
flr) = maxyec: 9(b,x.w)). The Pettis integral is a way to integrate such mapping by averaging the
random variables f(x) as points in L?. While this implies that the Pettis integral itself is a point in
L. we will see that under our assumptions, the Pettis integral is a degenerate random variable (1.,

constant almost evervwhere), so there is an obvious way to identify it with a real number.

We can now provide a formal definition: /x F{x)dA is the Pettis integral of w — f(r) over A € A

<zt / f‘(zzr)dA) - [ Gl )

where the integral on the RHS is the ordinary Lebesgue integral.

if for any z € L2,

General results on the existence and characterization of the integral [\ Flx)dX are available, How-
ever. these results are unnecessary for our purpose since our special structure (especially assumption

B.3) enables us to display and characterize the integral directly.?”

Proof of Theorem 1: (i) Fix A and C. To economize on notation, define f(r) = maxpec; ¢(b. v . w)
and let f(r) = Ef(r). Note that any finite collection of f(z)’s is independent. being functions of

independent random variables.

o6 . Y . . . - . 2
26 Nore precisely. L? consists of equivalence classes of functions because the L norm cannot

distinguish between two random variables that differ only on a set of measure zero. Here. we will
abuse notation and use the same symbols to denote the random variable and its equivalence class. as
the difference plays no role in what follows.

27 This proof derives the value of integral from equation (4) using only elementary properties of
means and covariances. A much shorter proof is possible, although the arguinent would depend on

Hilbert space techniques which may be unfamiliar and less transparent.
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If the Pettis integral of f(z). [, f(x)d\ € L?. existed then from (4), this integral would have to

. - . 9 .
satisfy. for everv z € L*, the equation:

cov (;. /x fd/\> +Ez E./A‘.\ fdX = /\ cov(z. f(x))dA + Ez /‘ flr)dA.

In particular. a necessary condition for the Pettis integrability of f(r) is that f{x) is measurable
in r. a condition satisfied in our case since. from assumption B.2. f(r) = Emaxpec 8b.r.w) =

ZW L () maxpecr vin (b), which is measurable in .

Taking z = 1. we further conclude that

(Ve
~

E/1 fd = /‘ Fla)dx (

which is the equation asserted in part (i) of the theorem. Next. taking z to be any random variable

cov ( | / ‘ f(l/\) = / cov(z. Sl

However. since the random variables f(x) — f(x) are independent, they must be orthogonal as points

with Ez = 0 implics

in L2, s0 cov(z ] f(r)) = 0 except for at most countably many x’s. This implies

COV <:/ f(//\) = (6)
J A

for every mean-zero z. But then ]1 fdX must be degenerate.

I summary. if the Pettis integral existed. then it must be a degenerate random variable with mean
J 4 fla)dX (ie., it must satisty equations 5 and 6). Conversely. the point in L? corresponding to
any degenerate random variable with mean fA F(r)dX satisties (5) and (6). and would indeed be the

Pettis integral.?® Such random variable exists by our earlier observation that the (Lebesgue) intepral

’; Flr)dN exists.

2% There are many degenerate random variables with mean [‘ F(x)dA. but they must all agree off

- . . . - i
sets of measure zero in €. so they correspond to a single point in L<.
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Part (ii) follows from the additivity of the integral and the fact rthat g must be measurable: Fix

4 ¢ A and define Ac = {x: g(r) = C} 0 AL then

AMA)Uply. Q) Z / max (b, x.w)dA

Cee 1o beg(r)
= E / E L (x nm\ vy (b)dA (%)
fec: - qu T)

/Zl,” T nm\ v (b)dA.
A beg(x

m

where (%) follows by noting that g(x) = €' for anv & € A¢ and applying part (i) of the theorem.

Q.E.D.
A.3. Proof of Theorems 2 and 3
Throughout the proof, we use the notation [(A4) = ﬁ S l)dAh € L.
Proof of Theorem 2:  A.3 is obvious from the construction. A.1 follows by using. for every ¢ aud

4. the lottery {{4). To see this. note that Theorem 1 implies

MAYU(C. Q) / {sz m(m,,,(b)} d.

m

But this is just MAY YU b () dX maxpec v, (b). 1t only remains to show A.2. which follows by

the additivity of the integral (using Theorem 1}

AUy(y.C L () max ¢, (b) | dA
AAolg. Q1) / {Z ’)1611(11\( ())}

vz/{

~Z/\ U()(JQ\)

L) max v, (b) | dA
’)651(1‘)

77
m

Q.E.D
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Turning to the proof of Theorem 3, we start with a preliminary result, which uses a martingale
convergence argument to show that our assumptions (especially the reduction of compound sub-
problems. A.2) imply the existence of limiting lotteries. First., we introduce the notation U(C.1) =

Imaxpec v (DY + - -+ Ly maxpec vag(h).

PROPOSITION A.3: Under assumptions A.1-3. there is a A measurable function | X — L

such that for every A € A with M(A) >0, and C € C. Up(C, Q) = U(C.1(A)).

Proof: Let A, be the (finite) partition of X determined by conditioning on the first n features, and
let A, be the g-algebra it generates. By Proposition A.2. U A, = A. Let {C1.Cho. Cyn _y} be

n=1

an enummeration of C. To each © € V', define

= {maxec(h)..... max () ].
(he(?] () beCyn ( )>
Let V = {i: v € V}, and note that V and coV are subsets of IR2" ~!. Define U, : X — ol by

S Uo(Cr.Qay)xa, (2)
L’n(-”) - :

S UN(Con 1. Q) xa, ()

were v, is the characteristic function ot 4;. Note that U7, is A, -mcasurable.

We now show that U, is a martingale with respect to the filtration {A,}. That EiU,} < x is
obvious. We need only show that F [U“H} .A{,J = U,. A-as. Let A be an element of the partition
A, and let {B;. By} be the partition of A in A,, | (recall our assumption that each feature can take

ouly two possible values). Then,

U (C1. Q) Up (C1.Qn,)
EUn ()12 e Al = MBI A) : S ABy A :
Uo (Con—1.Qpy) Ug (Con 1. QB,)
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(The last equality follows from the reduction of compound sub-problems.) Thus. (U,.A,) forms a
martingale. By the martingale convergence theorem, there is a A-measurable function. U : X — coV”

such that limy,_—~c Up(z) = Us () for A-a.e. & (Shirvayev (1984). p. 476).

Let T: X —— L begiven by T'(z) = {{l € L: U (C,x) = U(C.1).YC}, where U (C;.x) denotes
the jth entryv in the vector U (x). This correspondence is non-empty valued because Uy € coV. I

fact, there is a measurable selection [, as shown by the lemma below.

To complete the proof. we show that for any measurable selection I, A € A, and C' € C. we have

Uo(C.Q4) = U(C.I(A)):

M

AAU Z/ - llld\lm(//\

m=1

/ E Ln(a 111{1\1,,,(1/\

i

= / U A(C ax)dA
Ja

:/ liin U, (C,2)dA

qn—x

= lim / U (C.x)dA (a)
A

n—oc
2"

= lim / Z Uo(C.Qa,) v, (1)dA

n—oc
i=1

:71121; Z( (C.QA,) /'\'_,\,(.1')(1/\

=1

21
= HILII; Z Up(C.Qa)AMANA)

=1

= MA)Uu(C. Q).

Here, (a) follows from the dominated convergence theorem and the fact that U, converges to U~ for
almost every .

Q.E.D.
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Lemma A.1: The correspondence I admits a measurable selection.

Proof: From Klein and Thompson (1984, Theorem 14.2.1. p. 163). it suffices to show that T is a

measurable correspondence. i.e.. for every closed subset £ C L. {o ()N F # @} € A (for the
G

definition, see Klein and Thompson, p. 153). Let IV = {y : y = Z,'):l 1[(,('1'. [ € F} and note that

this is a measurable subset of coV. Since U is A-measurable. we have {r U, e N} e A. But

R

{r:Ux €W}y ={x:3l e Fsuch that Uy (z) =) 1“1 Lejy ={x:T(x)n F # 8}

1=

Q.E.D.

Proof of Theorem 3:  We coustruct the state space with standard argument using the Kolmogory
Extension Theorewm (Shirvayev (1984)). The set of states  will be the set of all functions w : X — 17,
Viewing €2 as a product space, projection on the z coordinate, denoted 7, : Q@ — V. is 7 {w) = w(r).
We define ¥ to be the g-algebra generated by projections: that is, ¥ is the smallest o-algebra containing

all sets of the form {w : 7, (v)}. for v € X and v € V.

For cach r. define ¢, : €@ — V bv ¢ (&) = w(x) (i.e.. the projection of the state w on ). Clearly,

U, Is measurable with respect to Y.

For every finite set of instances {ey.....xg}. define the probability distribution Pp,., .., on
the finite set V¥ so that the random variables {@,,..... ¢, } are independently distributed with
E¢, = l(x,). Clearly, the P,

o} 8 satisfy the consistency condition in Kolmogorov's Extension

Theorem (Shirvayev (1984). Theorem 4. p. 165). so there is a unique probability measure £ that

. .. . . . . . D
agrees with every finite dimensional distribution P{_,.lﬂ___._,._\_}.“"

We now have a random utility U on a probability space (€. 3, 7). By construction. U satisties B.1-3.

It is also immediate that A.3 is satisfied. It only remains to show that expected utility maximization

29 The consistency condition here says that for any two subsets of instances {y;..... yry <

{ri.....rs}. and any (vy..... vr) e VT, Py ymi@reoovr) = Proyeg e vr). This is
true by our construction of the P’s as independent distributions based on the same expectation func-
tion [(.r).

11



relative to U induces the utility Uy. From Proposition A.3. we have that for every A € 4 and ¢ € C.

Us(C. Q) Zl ma}um (7)

m
where [ is the measurable selection derived in Proposition A.3, and used in the construction of P above.
But by Theorem 1. expected utility maximization of U generates the same values for the average
lotteries 1(A) in (7). This means that expected utility maximization induces the same preference on
constant options (C.Q,). Assumption A.2 implies that this pins down the preference over general
options (g. Q).

Q.E.D.

A 4. Proof of Theorem J

Suppose that () has ordinally equivalent support for almost every - (we drop all “almost every’
qualifications below as they play no role in the argument). Fix an option ¢ and define f(r) =
ArgMax pe g2y Uo(g(2). Q2 ). Obviously, f refines ¢g. Furthermore, the fact that I(2) has ordinally
equivalent support implies that f is single-valued. Next we show that f € F (i.e., f 1s measurable with
respect to A). For C € C and V' C V. define the set A(C. V') = {x : suppl(z) C V' and g(z) = C}:

this set clearly belongs to A. Partition V into equivalence classes of ordinally equivalent utilities

Ve (Wi Vot By assumption. for cach . supp{(«) € Vi for one such equivalence class. The
assumption of ordinally equivalent support implies that sets of the form A(C. V). for ¢ € C and
Vee Voo, Vg1, partition X. and that f is constant on cach A(C. V). Hence f € F.

To complete the proof, we show that Up(f. Q) = Un(g.Q.). Since | puts positive weight
oulv on utilities with the same ranking of actions. for any ' and [ that is ordinally equivalent.
Yo (@) maxpee vy, (b)) = maxpec Y, Ln(2)vn(b). In terms of local problems Q. this equality is

just Ug(ylx). Q) = Up(f(). Q). Theorem 1 (ii) implies that Up(g(a). Q) = Up(f(). Q).

In the other direction. suppose that U displays no preterence for flexibility., By way of contradiction.
suppose, that there is A with positive measure such that the support of {(x) is not ordinally equivalent
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for every € A. Then for every such x. there are utilities v. ¢’ in the support of [(2) and actions b.
(all depending on ) such that o(b) > v(b). ¢'(b) < '(b"). Since the sets of actions and utilities are
finite. there is A7 = A with A4’ € A and A(A") > 0. such that this holds for fixed e 0 b 4. Since i
displavs no preference for flexibility, there is f € F such that Uy(f. Q) = Up(g. Q). Define the sets
By = AC. By = An{f = b}. By = An{f = V'}. Clearly. {B). Bs. B3} is a partition of X by sets in A.

However. Uy (f.Qp,) < Us(y.Qp,). i =1.2.3, and with strict inequality for ¢ = 2.3. Contradiction.

A5 Proof of Theorems 5 and €

Proof of Theorem 5: To prove part (i). suppose that ¢~ is a locally optimal option, and let

g be any other option. From Theorem 1 (ii). we have Us(g) = [y Uolg. Q.)dA and Ug(g™)

Il

Sy Unlg . Qr)dA. where Q, is the local problem with joint distribution p(z). But Un{g*. Q)

Y

Uo(g. Q) for every w, since g is locally optimal.  Thus, Us(g7) — Us(g) = Iy Uoly . Q)

U()(_(]. (21)(1)\ 2 0.

To prove part (ii). define first the correspondence

G('I:) = argiax cec Z 1)(l'm ' ll,,l)((17)’l,‘,”([)((«‘. Uy ))

mn
of locally optimal options at a local problem Q5. Our problem is to show that we can select an option
¢. such that g(x) € G(x) for all 7. To prove this. we show that G is a measurable correspoudence. in
which case a measurable selection exists by Klein and Thompson (1984, p. 163). That is. we must
show that for every closed F C C.

{0 Gr)n F # 0} € A.
Since € s finite. we may restrict attention to singleton sets F' = {C} (since A is preserved under finite
unions and intersections). Thus. for C' € C. we have
{r:Gl)ynC # 0} ={0:CeGr)}

= {a: E oy tm (0(C. uy)) > E,,(_,.)(',”(b(@/. 1w, ). vC e ¢}

13-



Nevee{r: E,,(J.)U,”(()(C. Un)) > E,,<_I.>'zr,,l(b(C". )}

Neveel{r - Epin[tm ((Cluy)) — U (B(Cuy, 1)) > 0} (%)

The expression E,y [0 (B(C.uy)) = v (b(C'.u,))] depends only on the probability weights
(. un) (). Since the joint distribution p(x) is measurable with respect to A. every set in the

finite intersection in (**) is in A. Thus, G is indeed a measurable correspondence.

Q.E.D.

The idea of the proof of the next theorem is analogous to that of Theorem 5. We first identity
equilibrium behavior at artificial local games, where at each x players believe they are facing a lottery
over payoff vectors given by p(z). Cowmplexity considerations in such games do  not arise. e
use a measurable selection argument to show that we can select an equilibrium at each instance.
measurably relative to (X, A). It is then immediate that the resulting profile of locally optimal

strategies constitutes a globally optimal rule.

Proof of Theorem 6: Let L be the set of probability distributions on V! x V2. 11 and {* are
the marginals of p on V! and V? respectively. Define € : L — AB' % AB” 10 be the correspondence
where £(1) is the set of Nash equilibrium profiles of the local game Q.. i.e.. the game in which payolfs
are randomly distributed according to [. Then &£ is a compact valued and upper hemicontinuous
correspondence. By Klein and Thompson (1984, Example 13.3.5 p. 159 and Theorem 14.2.1. p. 163).
there exists a measurable selection from €. If e one such selection, then since p: X — L is measurable
by assumption, e o p is a function on X. measurable with respect to A, and such that e o p(r) is
an cquilibrium of the local game Q.. Note that no local deviation is profitable. since e o p(x) is an
equilibrium for each z. Integrating over X. no global deviation is optimal. Thus. the pair of rules

implied by e o p constitute an equilibrium.

Q.E.D.
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