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One of the more celebrated results in the theory of preference aggregation
over continua is McKelvey’s theorem (McKelvey [3]{4]). McKelvey (3] con-
sidered the strict majority preference relation for a finite set of n individuals,
each with Euclidean preferences over a convex set of alternatives in Rk In
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Abstract

McKelvey [4] proved that for strong simple preference aggregation
rules applied to multidimensional sets of alternatives, the typical situ-
ation is that either the core is nonempty or the top-cycle set includes
all available alternatives. But the requirement that the rule be strong
excludes. inter alia, all supermajority rules. In this note, we show that
McKelvey's theorem further implies that the typical situation for any
simple rule is that either the core is nonempty or weak top-cycle set
(equivalently. the core of the transitive closure of the rule) includes all
available alternatives. Moreover, it is often the case that both of these
statements obtain.
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this setting, he proved that either the majority preference core is non-empty
or the majority preference top-cycle set includes all of the available alterna-
tives (sce also Cohen [2]). In his subsequent paper, McKelvey [4] proved a
deeper result that essentially implies McKelvey [3] extends to virtually any
preference domain, any set of alternatives representable as topological space,
and any strong simple preference aggregation rule (see also Schofield [6][7]).
Here, an aggregation rule is simple if it is completely characterized by its
decisive sets, or winning coalitions, and it is strong if, for any coalition of
individuals, either the coalition or its complement is decisive (but not both).

An important, but by no means exhaustive, class of simple rules are
g-rules, whereby a set of individuals is decisive if and only if it includes at
least ¢ members with ¢ strictly greater than half the population. However,
the only strong ¢-rule is the strict majority rule (and then only when the
number of individuals is odd): thus McKelvey’s theorems do not apply to
any supermajority rule.

In this note. we review McKelvey's theorem [4] and study its implications
for the entire class of simple rules. The main result is that it is the weak top-
cycle set, or the core of the transitive closure of any simple rule, rather than
the top-cycle set that (typically) includes all alternatives if the core is empty.
So although it may not be the case for non-strong simple rules that any two
alternatives can be connected by a finite sequence of strict preference steps,
it is the case that any two alternatives can be connected by a finite sequence
of weak preference steps. Furthermore, it can be quite generally the case
both that the core of a simple rule is nonempty and that the core of the
transitive closure of the rule includes all available alternatives.

2 Model

The model we use is somewhat more restrictive than necessary for the results
to follow. It is, however, the canonic form for the spatial model used in
applied work. Let NV = {1,2,...n} be a finite set of individuals and let
X C R* be a convex set of feasible alternatives (with X assumed to be of
full dimension).

2.1 Preferences

For all « € N, assume that [’s preferences are a weak order on X, rep-
resentable by a continuous and strictly quasi-concave utility function, u; :
X — R. Let U denote the set of all continuous and strictly quasi-concave



utility functions on X and let U" = U. A preference profile on X is
an n-tuple « = (up.u2,....u,) € U. For any i € N and y € X, let
Li(y) = {vr € X : w(r) = wi(y)}. Say that a profile u € U satisfies di-
versity if and only if, for all y € X, for all distinct 4, j € N, the interior of
L(y) N 1;(y) in the relative topology on [;(y) is empty. For example, Euclid-
can preferences with distinct ideal points satisfy diversity. Let U* C U
denote the set of profiles satisfying diversity.

2.2 Simple rules

Let B denote the set of all complete and reflexive binary relations on X. An
aggregation rule is a map, f: U — B. Given an aggregation rule f, a profile
w € U, and any pair of alternatives ., y € X, write 2Ry = v f(u)y, and
let Py, denote the asymmetric part of Rypy-

For any z,y € X and u € U. let P(a,yiu) = {i € N 1 wy(x) > wi(y)}. A
coalition L € 2V is decisive under f if and only if,

Voy € X, Yuel, [LCP(ry:u) = 2Pyl

Any aggregation rule f induces a (possibly empty) family of decisive
coalitions on 2. Let £(f) € 2V denote the set of all decisive coalitions
under f. It is immediate from the definition of an aggregation rule and
a decisive coalition that L£(f) is proper (L € L(f) = N\L ¢ L(f)) and
monotonic ((L € L(f) and M D L] = M € L(f)). An aggregation rule f is
simple if it is completely characterized by its decisive coalitions. More pre-
cisely, given any proper family of coalitions £ C 2V, define the aggregation
rule fr by:

Va,y € X, Vueld. xPr iy < L€ L: L C P(x,y;u)].

Then f is simple if and only if f = fz ;). Examples of simple rules include
all g-rules, fy : v Py oy [P, y: w)| > g, n/2 < g < n. Nore generally,
it can be shown that an aggregation rule f is simple if and only if it is
monotonic (if v P,y and, under some new profile ', x does not fall relative
to y in any individual’s ordering, then &P yy), decisive (if 2Pg(,)y and,
under some new profile «’, the set of individuals strictly preferring x to y is
unchanged, then Py, y) and neutral (the rule is symmetric with respect to
alternatives): see. for example, Austen-Smith and Banks {1, Theorem 3.1].
A simple rule fis collegial if and only if there is some individual who is
a member of all decisive coalitions (i.c. NpeppL # 0), and it is noncollegial



otherwise. All ¢g-rules are noncollegial except for the unanimity rule, ¢ = n.
The Nakamura number, s(f). of a simple rule is infinity if the rule is collegial,
and is equal to the smallest cardinality of any family of decisive coalitions in
L(f) with empty intersection otherwise; i.e. f noncollegial implies s(f) =
min{|L] : £ € L(f) and N eyl = @}, The Nakamura number of any
noncollegial g-rule is known to be the smallest integer greater than or equal
to n/(n — ¢). So the Nakamura number for strict majority rule is 3 (unless
n =4 and ¢ = 3, when it is 4). and the Nakamura number of the g =n — 1
rule is n. More generally. the Nakamura number of any noncollegial rule
falls between 3 and n.

For any aggregation rule f and profile « € U, the core for (f,«) in X is
the sct of best alternatives with respect to the preference relation f(u) :

Crlu)y={re X :VyeX, 1Ry}

Given a simple rule f. a preference profile u € U, and X C R* convex and
compact, the core C'p(u) is nonempty for all u € U if and only if & < s(f)—1
(sce. for example. Schofield [8]). For example, majority core points are only
guaranteed to exist when X is one-dimensional and, if X is at least (n —1)-
dimensional, then cores fail to exist for all noncollegial simple rules at some
profiles. Moreover, for sufficiently high dimensional spaces (k = 2 in the
case of majority rule with n odd), the set of smooth profiles for which cores
do exist are non-generic (Saari [5]).

A simple rule f is strong if and only if, for all coalitions L € 2V if the
complement of L in NV is not a decisive coalition, then L itself is a decisive
coalition (i.e. N\L ¢ L(f) = L € L(f)). Thus the unique strong g-rule is
strict majority rule (¢ = ¢p,) it 1 is odd, and there exist no strong g-rules
if n is even. Finally, it is worth noting two ecasily checked properties of
strong simple rules. useful for interpreting the results to follow. First, the
Nakamura number of any noncollegial strong simple rule is 3 and, second,
under the assumption of strictly convex preferences the core of any strong
rule is either singleton or empty.

3 McKelvey’s theorem
The statement of McKelvey's theorem uses the following concepts.

Definition 1 Let [ be a strong simple rule. v,y € X, w €U, andt,5 € N.
Say that. with respect to {x.y} :



i is a dummy voter at w if. YL C N\{i},
Ple.y i} € LS N\P(y,anu)] = [LU{i}y € £(f) = L € L(f)];
i is as strong as j at w if. YL € N\{i.j},
Ple,y i j) © L€ N\P(y,aiw)i = LU} € £(f) = LULi} € £(f).

Thus, if ¢ is a dummy voter then ¢ canunot influence the collective preference
irrespective of how indifferent individuals are treated: and if 7 is as strong
as j then a coalition is decisive with j only if that coalition is decisive with
i.

Given a simple rule f, a profile u, and a point x € X, the set of feasible
alternatives reachable from w via the strict preference relation Py, 1s given
by

Qru(r) = {y € X :Hagp,a1,...,a,} C X such that
ap = r,a, =y, <ooand, Vt <r—1, a1 Pyar}

Note that Q () = 0 if and only if &+ € C'p(u). For any set ¥ C X, let 0Y
be the boundary of Y.

Theorem 1 (McKelvey) Let f be a strong simple rule and suppose u €
U*. Then for any v € X. either JQ () =0 or both (1) and (2) obtain:
(1) There exists some j € N such that, Vy € 0Quy(x). 0Qny(x) C
Ii(y):
(2) If y.z € 0Q () with z € Li(y) for some i € N\{j} and either i
is not a dummy voter or i is as strong as j with respect to {y,z} at u, then
there exists £ € N\{i.j} such that z € Ir(y).

As McKelvey [4, p.1097] argues, the symmetry properties (1) and (2)
are knife-edge in the extreme and so unlikely to occur. Figure 1 illustrates
these observations for a society N = {1.2,3}, X = R? and strict majority

rule, f = fo..
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(a) (1) and (2) satisfied at .« (b) (1) and (2) fail at x
Figure 1: Conditions in McKelvey's Theorem

In Figure 1(a), individual preferences are Euclidean, i.e. the profile © =
(uy,uz,uy) is such that. for cach i € N and y € X, wi(y) = —|ly — x|,
with ||z;|] < oc. TFurthermore. the ideal points {ay,xp, 23} are colinear.
Then the boundary 9Q () = Ix(r) and condition (2) holds for every
pair {y.z} C dQ (). Figure 1(b) describes the same situation except
that individual 3’s ideal point is perturbed off the line through x; and a9
so u' = (uy,uz.ufy) In this case, both conditions (1) and (2) fail and it
can be checked (using, for example, the construction in McKelvey [3]) that
0Q sy(¢) = 0. In general, therefore, for any &« € X, the boundary 0Q ()
is empty. The consequences of this fact are fairly dramatic.

Because X is a convex set in R¥, if the boundary of any subset ¥ C X
is empty then either Y = () or ¥ = X.! Consequently, if x € X and
JQ r(uy(r) = 0 then. by definition of Qy(,)(-) and the core, either v € Cy(u)
or Qpuy(x) = X. In other words. if the boundary of the set of points
reachable from . via Py, is empty. either r is a core point for (f,u) or
every point in X is reachable from ..

ITo see this. suppose Y # ) and Y # X: then there exist distinct points x,y € X such
that y € Y and € X\Y. By convexity, for all A € (0,1), Ay + (1 — A)x € X. Hence,
there exists = = Ay + (1 — A)a. A € (0. 1), such that, for all ¢ > 0, both B(z,e)NY £ 0
and B(r,¢) N [X\Y] # 0, where (. ¢) is the epsilon open ball centred at . But this
contradicts JY = () (without X convex, essentially the same result holds if we replace
Y = X7 with “closure(Y) = X: see [4, Lemma 3]).



Definition 2 For any aggregation rule f and profile w € U, the top-cycle
set for (f.uw) in X is given by

Tr(u) = {re X :Vye X\{r} Hap,ay....,a,} C X such that
ag =y, ap =20 <oo and. Vt <r =1, a1 Pypyar}.

Thus, ¢ is in the top cycle set if and only if we can get to @ from any
y via the asymmetric part of f in a finite number of steps. And clearly,
if v,y € Ty(u), v # y. then v € Qpuy(y) and y € Qrpy(w). Then the
preceding remarks imply that if. for all v € X. dQjq,(r) = @ then either
Cpu) #Vor Tp(u) = X.

AcKelvey’s theorem essentially asserts that for strong simple rules and
any & € X, the boundary of the set of points reachable from x is typically
cmpty; that is. JQ () = 0 for all x € X describes the general case for
strong simple rules and profiles v € U*. Hence, with McKelvey’s theorem,
we have that in general. for any strong simple rule f and most profiles
w € U*, either the core for (f, u) is nonempty or the top-cycle set for (f, u)
includes all points in X. And in view of the genericity of the set of profiles
with an empty core, the second alternative is the usual case in sufficiently
high dimensional spaces.

It is worth emphasising what McKelvey’s theorem does and does not
imply. The theorem does not imply anything about core existence. More-
over, the theorem does not imply that observed choices under any strong
simple rule f are “chaotic”. only that if the core is empty then (typically)
there cuaists a preference path linking any two alternatives. It is a theorem
on the analytical structurc of a class of ageregation rules and not on the
empirical behaviour of polities using any rule within the class. Having said
this, it is also important to observe that the class of rules covered by the
theorem is relatively small; in particular, as remarked above, the result does
not include any of the g-rules beyond strict majority rule, and includes the
latter only when n is odd. It is therefore of some interest to analyse what if
anything the result implies for simple rules as a whole.

4 The transitive closure of simple rules

The extension of the results reported in section 3 to arbitrary simple rules
is of the following forni: if the core of f at a profile w is empty then, for all
x € X, every alternative y € X is reachable from 2 via the weak collective
preference relation Ry(,.



Definition 3 For any aggregation rule f and profile w € U, the weak top-
cycle set for (f.u) in X is given by

TF(u) = {reX:Vye X\{r}, JHap.a1,...,a-} C X such that
ag =y.ap = 2.0 < oo and. Vt <r—1, a1 Ryyar}.

Alternatively, we can define this set via the transitive closure of the
induced preference relation, Ry(,). Let f be any aggregation rule, u € U,
£ € X and define:

Q)= {yeX: FHap.ay,...,ar} C X such that
ap =, ay = y,r <ooand, ¥t <r —1, a1 Ry)ar}.

So y € ( i ( ) it and only if 3 can be reached from = via a finite sequence
under thc w Odk social preference relation, Ry, (and clearly, Qg,y(v) C
Qj () (). Now. define the transitive closure of Ry, R}‘(u)’ by:

Vi, ye X, IP[ l/<f>I€qu()

Thus, if .IfR;‘<lL)3/ then 2 1s ranked indirectly to be at least as good as y, since
@ can be reached from y via Ry, in a finite number of steps. Then the
weak top-cycle set for (f. «) in X is the set of maximal elements in X under
the transitive closure relation, R:f.v(m:

TP () ={re X :VyeX, ;1:]??(“);1/}.

Let f and f be two distinct simple rules. f 1s said to be more resolute
than f if, for all v,y € X and all u € U, P,y implies .erf(u)y. In

particular, if f is more resolute than f then ‘l,'Pf"(u)‘(I/ implies xRy (,)y.

Theorem 2 Letw € U, f be any simple rule (mdf be a strong stmple rule,

more resolute than f. If. for all r € X, ()Qf () = 0 then Ci(u) = 0
implies T (1) = X.

Proof. If f is strong, then the result is proved above. Assume f is not
strong and let f Dbe the relevant strong rule. more resolute than f. By
assumption. Va € X, (')Qf(w(.z') = (). So. by an earlier argument, either

C,;(ll) s empty or T};(u) = X. But since f 1s more resolute than f,

(‘f(ll) - Cl/'(ll) and Tf(“) C Tf(“) - T;'E(ll)



Therefore, Cy(u) = ) implies T'(«) = X, as required.t’

McKelvey's theorem, Theorem 1, shows that (typically) if a simple rule
is strong and the core is empty. then the top-cycle set includes all of the
alternatives in X; that is. we can construct a strict social preference cycle
that includes all of X. When the rule is simple but not strong, this may not
be possible. However, Theorem 2 shows that the price paid for having less
than all-inclusive strict preference cycles is that instead we have all-inclusive
weak preference “cycles”. Equivalently, Theorem 2 says that if the core of
a simple rule f(u«) is empty, then the transitive closure of the underlying
preference relation Ry, declares all alternatives socially indifferent: for all
oy e X, .I,'R’jf‘(“)j/ and (1/R';.W<ll).1'. The following example illustrates Theorem
2.

Example 1 Suppose n is odd and let f be any q-rule with ¢, < q < n.
Then majority rule. f,, (where q = qm) is a strong rule and fn, s more
resolute than f. If preferences arve Euclidean and, for all i # j. x; # xj,
then by McKelvey [3] either Cy, (u) # O or Ty, (u) = X. By Theorem 2,
therefore, if C'y(u) = then T (u) = X.0O

Of course, Theorem 2 is predicated on the existence of a suitable more
resolute strong rule f for any simple rule f. Example 1 shows that such
existence is immediate for ¢-rules when n is odd; our next result insures
such existence quite generally.

Theorem 3 For any noncollegial simple rule f, there exists a noncollegial
strong simple rule f that is more resolute than f.

Proof. If f is strong then the result is trivial. So assume f is not strong.
Let
M={LCN:Lg&L(f)& N\L¢L(f)}.

Since f is not strong, M # ) and | M| = 2t for some integer t > 1. Partition
M into two subsets M; and M, such that:

Ml =t, i=12
L e M, &= N\L € M,
L e M, = |L] > |N\L|.




By definition of M., L(f)NM; = (). i = 1,2. Define the preference aggrega-
tion rule f by:

Vi,y € X, Yu€el,
Pyay e (AL € L(f)UM;: L C P(x,y;p).

By definition, £(f) U M; is monotonic and both £(f) and M, are proper.
Suppose L(f) U M, is not proper. Then there exist L € £(f) and A € M,
such that LNAL = §: hence, A/ € N\ L. By M € L(f)UM; and L(f)UM,
monotonic, A/ € N\L implies N\L € L(f)U M;. By definition of My,
N\L ¢ My; so N\L € L(f). But since L € L(f), this contradicts L(f)
proper. Therefore, £(f) U M, is proper. And since, by definition, f is
neutral and decisive, f is a simple rule. Morcover, by construction, f is
strong, noncollegial and more resolute than f as required.]

Finally. unlike with strong simple rules. it is possible here to have T}”(u) =
X and Cyp(u) # (: that is. the core is nonempty yet every alternative 1s
reachable from every other alternative via Ry, in a finite number of steps.

Theorem 4 Let f be a noncollegial simple rule and X be compact. If 2 <
k< s(f) =2 then there exist profiles u € U such that Cp(u) # 0 and
TF(u) = X.

Proof. Let f be a noncollegial simple rule with Nakamura number s(f) >
k + 2. By Theorem 3, there exists a noncollegial strong simple rule f more
resolute than f. By an earlier remark, s(f) = 3. So k > 2 implies there
exist v € U such that C /:(u) = {): in particular, we can always choose such
a profile « to be Euclidean and to satisfy diversity (sce, for example, {9,
pp-146/147]). By Cohen’s theorem [2], therefore, T¢(u) = X for such a
profile w. By definition, T;(u) © Ty (u)so Ty (u) = X. But b < s(f) — 2
implies C'y(u) # @ ([8]) and the result is proved.O

In some circumstances, a stronger statement than Theorem 4 holds. In
particular. recall that on the class of smooth utility profiles, the majority
rule corc when n is odd is generically empty when & > 2 ([5]). Moreover,
when nis odd and f is a noncollegial g-rule other than simple majority rule
foee fin 18 @ noncollegial strong simple rule more resolute than f. Hence, on
the class of smooth utility profiles. if f is a noncollegial g-rule other than
S and 2 <k < s(f) = 2, then generically both Cy(w) # 0 and 77 (u) = X.
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In other words, on this set of preferences, noncollegial g-rules insure core
existence at the cost of declaring all alternatives indirectly as good each
other via the transitive closure, R'{('). We close with an example illustrating
these remarks.

Example 2 Let n =5 and suppose [ is a g-rule with g = 4: then s(f) = 5.
Let X C N2 be a closed sphere centered at (0,0) with arbitrarily large finite
radius. and assume all individuals have Euclidean preferences over X with
ideal points: xp = a1y = (0,1): a3 = g = (1,0): and x5 = (0,0). Then

Crlu)y={reX x=xr;+(1—-Xaxz, A €]0,1]}.

In this case. C'y, (u) = 0 and Ty, (1) = X ([3]): hence, by Theorem 4,
T¥(w) = X. To see this. consider Figure 2 and the points w € Cy(u) and
z & Cr(u). Clearly wPpyz and so u'R}‘(”)z. But it is also the case that
z]?rjl.‘(“)u': by Euclidean preferences and definition of f, it is easy to check
that ay Ry, axProyar, azRypgyaz and 2Ppyaz: hence z € QT;’(U) (w) and,

therefore. 2]??(“)'11'. And it s apparent that this construction can be used for

any pair a,b € X to show both nl?'f(“)b and bR';w(u)a. giving T}”('u,) =X.0

-
b4

Figure 2: C'p(u) # () and Ty (u) =X
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