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Abstract

We augment the standard Crawford-Sobel (FEconometrica 1982)
model of cheap talk communication by allowing the informed party
to use both costless and costly messages. The issues on which we focus
are the consequences for cheap talk signaling of the option to use a
costly signal (“burned money”); the circumstances under which both
cheap talk and burned money are used to signal information; and the
extent to which burning money is the preferred instrument for infor-
mation transmission.

1 Introduction

Legend has it that in 509 B.C. Mucius Scaevola was caught trying to kill
Lars Porsena, the king of Clusium, who was besieging Rome. When brought
before Porsena, Scaevola revealed that he was but the first of three hundred
Romans who had sworn to kill him. Porsena threatened to torture Scaevola
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unless he divulged details of the Roman plot. Scaevola refused, claiming
he would never betray his fellows. Recognizing that such a claim was the
epitome of cheap talk, Scaevola proceeded to push his right hand into the
altar fire and hold it there until it burned off. Porsena found the signal
credible, released Scaevola (which, not incidentally, means “left-handed”)
and made peace with Rome [13, 468].

Although somewhat extreme, Mucius Scaevola’s behaviour clearly illus-
trates that in many cases cheap talk is not the only means of communi-
cation. In particular, informed parties typically have the opportunity to
impose costs on themselves. While we expect most people to draw the line
short of self-immolation, we also expect that most people have the willing-
ness and ability to accept some direct loss in utility to transmit information
in a more credible manner than employing cheap talk alone. A common
euphemism for such self-imposed losses in utility (e.g. [18]), and the one we
adopt here, is that of “burned money”.

The canonic model for strategic cheap talk communication is due to
Crawford and Sobel [6]. Subsequent literature applying variants of the Craw-
ford /Sobel model is growing and varied.! But, as suggested above, purely
costless signaling is a polar case. Thus, the extent to which results derived
from applications of the polar case to substantive problems are robust, de-
pends on the extent to which the polar case offers a good approximation
to situations in which there is also some possibility of costly signaling. In
the sequel, we address the robustness issue by augmenting a particular ver-
sion of the standard Crawford/Sobel model of cheap talk communication in
the presence of asymmetric information, allowing the informed party to use
both costless and costly messages. The first main result is that the set of
equilibria can be dramatically increased when costly signals can be used.
In particular, given a sufficient budget, the set of perfect Bayesian equilib-
ria to the strategic communication game always contains a continuum of
semi-pooling equilibria, with the separating equilibrium at one end of the
continuum and the pooling equilibrium at the other. The second main re-
sult is that the availability of costly signals can improve the precision of
cheap talk communication. On the other hand, whether the availability of
costly signals can induce influential cheap talk in situations other than those
in which such signaling is possible without burned money, depends on the
details of the environment. We provide two results on when the possibility
of burning money does not affect the opportunities for cheap talk commu-

1See, inter alia, [8]; [9]; [14]; [10}; [11); [1]; [2]; [12].



nication, and an example in which influential cheap talk is possible only if
costly signals can also be used.

Apart from substantive applications, there is also increasing attention
being paid to equilibrium refinements for cheap talk games.? Although this
paper does not concern such refinements directly, some of our results bear
on the use of efficiency criteria to select the most informative equilibrium in
particular games. Specifically, Crawford and Sobel [6], Gilligan and Krehbiel
(10] and others have argued for using (loosely speaking) the most informative
available equilibrium when looking for predictions from the model in applied
settings. And this selection is justified in most cases both because it is
the unique ez ante efficient equilibrium and because it defines the upper
bound on credible information transmission. However, the possibility of
using burned money to signal information leads to multiple ez ante efficient
equilibria and drives a wedge between the two selection criteria.

Section 2 presents the model. Section 3 examines equilibria to the model,
focussing on the consequences for cheap talk signaling of the option to burn
money and on the circumstances under which both cheap talk and burned
money are used to signal information. Section 4 illustrates the results with
an example much-used in the applied literature and, for this example, de-
velops some welfare comparisons. Section 5 concludes.

2 Model

The basic setup is due to Crawford and Sobel [6]. At the start of the game,
Nature privately reveals the value of a parameter t € [0,1] to the sender;
having observed ¢, the sender transmits a signal to the receiver, who then
takes an action a € R; payoffs are then distributed to both agents. The
sender’s signal may be costless (cheap talk) or costly (burned money). The
critical distinction between the two is that only the latter directly enters the
sender’s utility function. Specifically, let Al be an uncountable and otherwise
arbitrary set of costless signals (messages), with generic element m, and let
b € R, denote a costly signal. So costly signals are associated with the
positive reals. Then given any 4-tuple (a,t,m,b) € R x [0,1] x M x R, the
sender’s and the receiver’s preferences are (respectively) described by:

US(a,t,m,b) =u’(a,t,z) = b (1)
UR(a,t,m,b) = ufi(a,t) (2)

2For example, [7]; (15]; [16]; [4]; [5].




where € (0, 00) is a scalar describing the extent to which the sender and the
receiver share common preferences over (a,t)-pairs. In particular, assume
that, for every (a,t)-pair, limg o u®(a,t,z) = uf{a,t). We also assume u”
and uf are at least twice differentiable in all arguments with finite first
derivatives at all (a,t) € R x (0, 1), strictly concave in a with, for every
t € [0,1], arg maxgex v’ (a,t) and arg maxq,ep u?(a, t, z) finite, and that the
cross partials, ufh, ufl, and uyy are all strictly positive.® It follows that for
any > 0 and all t € [0,1], argmax.en uf(a,t) < argmaxqeenu”(a,t,z)
and the extent to which the sender’s most preferred action exceeds that of
the receiver’s is increasing in x for any t.

In general the receiver chooses her action under uncertainty over the
value of t. Assume the receiver and the sender share a common prior on
t, described by the smooth probability density, h(t), with support [0,1].
Let g(-|m,b) denote the receiver’s posterior beliefs over [0, 1] conditional on
hearing a message m € Al and a signal b € .

Let >~ = M x R,. Then the sender’s strategy is given by:

RIS (3)

where we write o(t) = (m(t),b(t)). The receiver’s strategy is given by:

(YZZH%. (4)

By virtue of Al being uncountable and preferences being strictly concave in
actions and increasing in the parameter ¢, the restriction to pure strategies
in (3) and (4) is without loss of generality.

For any signal (m,b) € >, let T((m,b);0) = {t : o(t) = (m,b)}.

Definition 1 An equilibrium to the sender/receiver game described above
is a list of strategies (o*,a*) and posterior beliefs for the receiver g(:|m,b)
such that:

(e.1) Vt € [0, 1}, o*(¢t ) € argmax(,, pyex U° (a*(m, b), t,m,b);

(e.2) V(m,b) € >, a*(m,b) € argmax,en ]1 UR(a,t,m,b)g(t|m,b)dt

(6.3) If T((m,b);0) £ 0 then

/
g(tlm,b) = __hl) vt € T((m,b);o); and

/T( h(r)dr’
g(tm,b) = 0 otherwise.

3Crawford and Sobel [6] only impose the assumption u¥y > 0 for their welfare results.
Although the assumption is mild in the present context, the characterization of equilibria
in their model does not depend upon it.



Often we will refer to a strategy pair (0,a) as an equilibrium, leaving
the restrictions on beliefs implicit. Say that an equilibrium is informative if
the receiver’s posterior belief over [0, 1] conditional on receiving some equi-
librium signal is distinct from her prior belief; and say that an equilibrium
is influential if the receiver’s (equilibrium) strategy is not constant in (equi-
librium) signals. Clearly, influential equilibria must be informative but the
converse is not true. Finally, if a(o(t)) = a for some t € T((m,b); o), say
that the pair (o, ) elicits the action a. Thus at least two actions are elicited
in any influential equilibrium, and we can identify one equilibrium as being
more influential than another in terms of the relative number of distinct
actions elicited in the two. For any equilibrium (o, ) let

Ao, o) = U a(o (1))

denote the set of actions elicited by (o, a).

Because we are interested in the particular roles of cheap talk and costly
signals, it is useful to disentangle their respective effects on the elicited
actions. Evidently, for cheap talk per se to be influential at least two actions
must be elicited in equilibrium by cheap talk messsages alone. Were this not
the case then one can imagine an equilibrium (o, a) in which o(t) = (m®,0)
for all t <t and o(t) = (my,b(t)) for all t > ¢, my # m°, and b(t) strictly
increasing in t. But in this case the cheap talk messages, while different for
some pairs of types, are irrelevant for the receiver’s decision. Similarly, for
burned money per se to be influential at least two actions must be elicited
in equilibrium by costly signals themselves. These remarks motivate the
following:

Definition 2 An equilibrium (o, «) exhibits

(1) influential cheap talk if 3t,t' € [0,1] such that m(t) # m(t'), b(t) =
b(t"), and a(a(t)) # alo(t));

(11) influential costly signals if 3t,t' € [0,1] such that b(t) # b(t') and
a0 (1)) £ alo(t).

Note that an equilibrium exhibits both influential cheap talk and influential
costly signals only if it elicits at least three actions.

The definition above treats cheap talk and burned money asymmetri-
cally. Whereas no restrictions are imposed on the cheap talk component
when defining influential costly signals, there is a restriction on the burned
money component in the definition of influential cheap talk. To see why,
suppose (my,b1) and (mg, bg) are two signals sent in some equilibrium (o, @)
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with my # mg and b; # by. Then there exists an equilibrium (¢/, ) with
Ao, ) = A(0’, ) in which types sending (ma,b2) in (o, @) send (m1,b2)
in (0/,a’); but there need not exist any equilibrium (o', ) in which types
sending (mo,b) in (0, a) send (ma,b;) in (0/,a’), or those sending (m,,b;)
in (0,a) send (my,b2) in (0/,a’). For example, suppose (7, ) is an equi-
librium in which o(t) = (my,b) for all t € [0,¢1), o(t) = (mg,b) for all
t € {t1,t2) and o(t) = (mg, V') for all t € [tg,1]. Then (0, a) exhibits influ-
ential cheap talk if m; # mg, and (0, @) exhibits influential costly signals if
b # b. Furthermore, there exists another equilibrium where ms = my (or
my) and all else stays the same.

3 Equilibrium

One class of equilibria involves the receiver ignoring any costly signal and
any cquilibrium in this class is a Crawford and Sobel cheap talk equilib-
rium (hereafter, CS equilibrium). Crawford and Sobel [6, 1437] show that
“essentially” all such equilibria are of the following form: there is a finite
partition < tg = 0,t1,....,txy = 1 > of the type space [0,1] such that, for
all i =0,...,N — 1 and all types t € (t;,ti11], o(t) = m; and 7 # j implies
m; # m;. The partitions are implicitly defined by the incentive compati-
bility conditions in (e.1) which require boundary types ¢; to be indifferent
between sending the message associated with (t;,-1,%;] and that associated
with (t;,t;+1]. Specifically, since no type uses burned money in a CS equi-
librium, (e.1) implies

Vi=1,..,N =1, uS(a*(mi_1,0),t;,z) = u®(a*(m;,0), t;, x). (5)

Crawford and Sobel show that, for any z > 0, there is an equilibrium in
which N = 1 and the equilibrium is neither informative nor influential.
Further, for any x > 0 there exists a most influential equilibrium identified
by the largest integer N such that ¢; > 0 and (5) holds; let N(z) be this
integer. Then Crawford and Sobel show that as x — 0, N(z) — oo and
t; —ti_1 — 0,7 =1,...,N, and that there exists some finite & such that
N(z) =1 for all z > 2. That is, if the sender’s and the receiver’s preferences
coincide then the most influential equilibrium is fully separating in type
whereas, if x > Z, the only CS equilibrium is wholly uninformative.

We argued in the Introduction that cheap talk messages are rarely the
only feasible means of communication between a sender and a receiver.



What might be equilibria for this case? To begin, we derive some general
properties of equilibria.
Given receiver beliefs g(s|-) and any pair of types t < t', let

!
y(t,t') = argmax/ ult(a, s)g(s|-)ds
a€§R Jt

and write y(t) = y(t,t) to save notation. Under the assumptions on u'?,

y(t,t') is strictly increasing in both arguments.

Lemma 1 Let (0,a) be an equilibrium. Then:

(i) a(a(t)) = a(o(t') Vi, t' € [s, 5] implies b(t) = b(t') Vi, t' € [s, 5],

(i1) oo (t)) strictly increasing int on [s, §| implies b(t) strictly increasing
int onls,s|;

(iti) t >t implies a(a(t)) > a(o(t')).

Proof. By incentive compatibility, for all ¢, € [0,1], ¢t > ¢ :

n

wlalo(t),t,z) —bt) > u’(a(a(t),t,z) — b(t)
Wlala(t),t' z) —bt") > u(alo(t),t’,x) — bt).

Claim (7) follows immediately. To prove (i), first note that since, by sup-
position, a(o(-)) is strictly increasing on [s, 5], o(:) is separating on [s, 3].
By [6, Lemma 1], z > 0 and o(-) separating imply b(t) # b(t') Vt,t' € [s, 5],
t # t' (with the cheap talk component of ¢ on the interval being irrelevant).
In particular, b(t) must be strictly monotone on [s,s] and so, by Royden
[17], differentiable almost everywhere on the interval. Hence, given «f-),
(e.1) implies that V¢t € (s, 5),

Ofus (af-,b(s)),t, z) — b(s)]
0s

s=t
By (e.2) and o(+) separating on [s, 5], a(-,b(s)) = y(s). Substituting for a(-)

and doing the calculus, we find

ui (y(6), £, 2)y' (1) = V' (8).
By assumption, uy; > 0; so, for all s € [0,1] and = > 0,

y(s) < arg maxu®(a, s, z) < oco.

aeR



Hence, uf; < 0 and ufy > 0 imply uf (y(t),t,z)y'(t) > 0 and, therefore, the
equality implies b/'(t) > 0 as claimed. Finally, adding the inequalities above
and collecting terms yields

walo(t),t,z) —u(alo®), t',z) > uS(a(o(t), t,z) — u® (ala(t), 1, ).

By assumption, u152 > 0 or, equivalently, u®(a,t,z) is supermodular in «
and t. Claim (%) now follows from t > ¢'.00

There are two implications of Lemma 1 worth making explicit. The
first implication is that for any equilibrium (o, @), the set of types eliciting
a given action is convex. To see this, let Z(a;0,a) = {t : a(o(t)) = a,
a € R}. Then the claim is trivially true if Z(a; 0, ) is empty or singleton;
if t,t' € Z(a;o,c), t > t/, then Lemma 1(2%) implies that for all t° €
(t,t"), a(o(t°)) = a and hence t° € Z(a;0,a). It is evident that for all
t,t' € Z(a;o,a), we must have b(t) = b(t'); that is, o(t) can differ from
o(t') in at most the cheap talk component of the signal. Therefore, by
6], for any equilibrium (o, «), there exists an equilibrium (0*, a*) in which
o*(t) = o*(t') for all t,t' € Z(a;0*,a*) and, for all t € [0,1], a*(c*(t)) =
afo(t)). That is, if under (o, ) there exist multiple cheap talk messages
associated with t € Z(a;0, ), so all such messages elicit the action a, then
there exists another equilibrium in which all t € Z(a;0,«) send the same
message and elicit the action a. As with Crawford and Sobel, “essentially”
all equilibria have a partition structure in which types in any element of the
partition either pool together by choosing the same signal and eliciting the
same action, or all separate by choosing distinct costly signals and eliciting
distinct actions.

The second implication of Lemma 1 is that the receiver’s equilibrium
strategy a(o(-)), being monotonic and having range [0, 1], must be differ-
entiable almost everywhere on [0,1] ([17]). Since the sender’s equilibrium
payoff US(-,t,-) is clearly continuous in ¢, this in turn implies that the
burned money component of the sender’s equilibrium strategy, b(-), must
likewise be differentiable almost everywhere on [0, 1] (although not neces-
sarily monotonic). In particular, Lemma 1 gives that the only points at
which, in equilibrium, b(-) can be decreasing are discontinuity points (which
only occur at the boundaries of partition segments). Moreover, if at some
t’ > 0 the sender’s equilibrium strategy moves from a pooling to a separating
segment as t increases, then necessarily lim, o b(t' — ) < lim. o b(t' +¢). To
see this, for s € (t,t') with t < ¢/, let § = a(o(s)) = a(m,b) and suppose
o(-) is separating on (t',t"], t” > ¢/; then s’ € (¥, t"] implies a(o(s)) = y(s).



Suppose lim g b(t' —¢) = b > b’ = lim, o b(t' + ¢). Since x > 0 and t' > 0,
our assumptions on preferences give

g <yt < argmaxu®(a,t,z),
acER

so uS(y(t'),t',x) > u’(y,t', ). But, by continuity, the incentive compatibil-

ity conditions implied by (e.1) require
us(gv t/v I) —b= /U’S(y(t/)v tla LE) - blv

which is impossible when b > V.
The following result shows that we can “squeeze in” separating segments
at the far end of any CS equilibrium partition.

Theorem 1 Let (0,a) be a CS equilibrium with supporting partition < tg
0,t1,...,txy =1 > . Then for all te [0,t1] there exists a partition < s
0,81 =1,82,..., 5N, 5N+1 = 1 > supporting an equilibrium (o, a)(t) such that:

Vi = 0,.,N =1, Vt € [si,si41), o(t) = (m;,0), m; # m; Vi # j;
YVt € [sn,1], a(t) = (m°,b(t)),

where b(t) = fot uf (y(s),s,2)y'(s)ds + C(sn) and
SN
Clsn) = u*(y(sw), sn, @) —u (y(sn-1,5n), v, %) — / ui (y(s), s, 2)y' (s)ds.

Proof. Let (0, ) denote the CS equilibrium in which N actions are elicited.
Let < tg = 0,t1,....,ty = 1 > be the partition supporting (¢,«). This
partition is defined by (5). Let ¢ € [0,#;] and define the partition <
80,81, SN+1 > by so=0,81 =1, syp1=1and, Vi=1,.. N —1,

W (y(sii1,8i), 8, 1) = u® (y(s1,8i41), 51, T).

To see that such a partition exists for any ¢ < t1, fix £ = s; € [0,#1). By defi-
nition of a CS equilibrium, u®(y(0,t,),t1,z) = u®(y(t1,t2), 1, ) and, there-
fore, u®(y(0,t1), s1,2) > u(y(t1,ts), s1, ). By assumptions on the sender’s
and the receiver’s preferences, y(0, s1) < min{arg maxqen u”(a, s1),y(0,t1)}
and, by continuity and monotonicity of y(¢,t') in both arguments, there ex-
ists a type so > s such that y(s1,s2) > y(0,s1) and u¥(y(0,s;),s1,2) =

uS(y(s1,52),51,2). Forany s’ < s <t let

V(s 5,1) = uS(y(s',8),5,2) — u¥(y(s, 1), 5, ).



Holding s’ fixed and setting V' (-) = 0, implicitly differentiate V' to obtain

dt|  ug(y(s,s),s,x) —uj(y(s,t),s,x)
ds|, uf (y(s,t), 8, 2)ya(s, 1) '

(6)

Since V(s',s,t) = 0, y(¢',8) < argmax,ex u(a,s) < y(s,t); by uf; () <0,
therefore, the denominator of (6) is strictly negative. And by assumption,
uiy(-) > 0 so the numerator of (6) is strictly negative also. Hence, dt/ds|y >
0, in which case s; < t; and u®(y(0,s1),51,2) = u(y(s1,s2), 81, ) imply
$1 < 82 < ty. Now fixing s1 and s2 and, mutatis mutandis, repeating the pre-
ceding argument, we find there exists s3 < t3 such that w3 (y(s1,82),80,2) =
u¥(y(s2,53),52,7); and so forth for s4,...,sny < 1. By construction, for all
i=0,...,N—1and for all t € [s;, $;+1), the strategy o(t) = (m;,0) is a best
response to the receiver’s strategy

"Si41
a(m;,0) = arg max / ul(a, s)g(s|ms, 0)ds = y(si, 8i41).
acR | 5

Similarly, this receiver strategy is a best response to a(t) on [0, sn).
For any t € [sy, 1], let b(t) = 3(t) + C(sn) where

B(t) = /0 a§ (y(s), 5, 2)y (s)ds;

then for these types, o(t) = (m°, 3(t)+C(sn)). By earlier reasoning, 3(t) >
0 and strictly increasing in t € [sy,1). Suppose the receiver sees a signal
(m°,b) € M x [B(sn) + C(sn),B(1) + C(sn)]. Given o(-), (e.3) implies
g(tlm®,3(t) + C(sn)) = 1, all t € [sn,1]. Hence, by (2), a(m®,b) = y(t)
is the unique best response. For any out-of-equilibrium signal (m,b) with
m #m® and b € [3(sy) + C(sn),B(1) + C(sn)] = [b(sn),b(1)], the receiver
is free to ignore the message m and set a(m,b) = a(m°,b). And for any
out-of-equilibrium signal (m, b) with b ¢ [3(sny)+ C(sn), 3(1) + C(sn)], the
receiver is free to adopt identical out-of-equilibrium beliefs to those induced
by the equilibrium signal (mg,0). Hence a(m,b) = y(0, s1) is a best response
in this case.

Now fix a(-) as described above and consider the signaling strategy o(t)
for t € [sy,1]. By uf,(-) > 0 and a(m,b) € {a(mq,d),y(0,s;)} for all signals
(m,b) € > such that m # m° or b ¢ [b(sn),b(1)], o(t) is a best response if

(i) US((Y<(T(t)),f,T71(f),b(t)) > US((Y(T”N—Iv0)’tvn1N71a0)7

10



and
(i) V' € [sn, 1), U (a(a (1)), t,m(t), b(t)) > US (a(a(t'), t, m(t'), b(t)).

Inequality (%) is equivalent to

't

wI(y(t),t,z) — /0 ui (y(s),s,2)y (s)ds — C(sn) > u®(y(sn-1,5n)), 1, 2).

By definition of C(sx) and uf,(-) > 0, this inequality holds strictly for all
t € (sn,1] and holds with equality at t = sy. Hence every sender type
t > sy prefers to send o(t) to any signal (m,b) such that m # m° or
b ¢ [b(sy),b(1)]. Given this and F'(s) > 0 on [sn,1], the optimization
problem of the sender of type t is equivalent to choosing:

b€ arg Iglggus(y(ﬁfl(b —C(sn))),t,x) —b.

By strict concavity, the solution to this problem is uniquely solved by b > 0
such that 95-1()
3 b — Ol t oy ()

By the inverse function rule, this equation is equivalent to

V' (s) = ui (y(s),t,2)y'(s)

which, by definition of b(+), is solved at s = t. Hence, inequality (%) holds
and o(-) is a best response to a(-) as required.0

=1

Figure 1 illustrates the theorem.
Figure 1 here

Theorem 1 immediately implies that although the same number of cheap
talk messages are sent in the equilibrium (o, @)(#) as in the benchmark CS
equilibrium, as £ goes to zero the inferences the receiver draws from at least
one such message become increasingly precise. In other words, the precision
of cheap talk messages in the presence of burned money can increase relative
to that when burned money is unavailable. Moreover, it is immediate from
the theorem that if there exists a CS equilibrium that elicits N > 1 actions,
there exists an equilibrium (o, @)(#) in which N actions are elicited through
influential cheap talk and at least one action is elicited through influential
burned money. In particular, because Theorem 1 goes through for N = 1,
we have the following corollary.

11



Corollary 1 For any t € [0,1] let 3(t) = /Ot ui(y(s),s, )y (s)ds and, for
any t € [0,1]. let

Cl) = uS(y(d). i, x) — uS((0.0).1,2) - /0 u$ (y(s), s, 2)y/(s)ds.

Then for all x > 0 and for all t € [0, 1] there exists an equilibrium such that,
forallt € [0,1], o(t) = (m®,0) and. for allt € (t,1], o(t) = (m°, B(t)+C(t)).

Proof. For any x > 0, there exists an uninformative CS equilibrium that
elicits exactly one action. All such equilibria are supported by the degenerate
partition < tg = 0,t; = 1 >. Let < 0,£,1 > be a binary partition of [0, 1]
with £ € [0,1]. Define the strategies (7, a)(f) as in Theorem 1 with N = 1,
save having the boundary type ¢ pool with t < f rather than separate. By
Theorem 1, (7,a)(#) is an equilibrium, completing the proof.(]

When £ = 0, the equilibrium (o, a)(0) is fully separating in ¢t on [0,1];
and when t = 1, the equilibrium (o, a)(1) is pooling in ¢ on [0, 1]. Therefore,
because the most influential cheap talk equilibrium when x = 0 is sepa-
rating, Corollary 1 shows that there exists a separating equilibrium to the
sender /receiver game for every value of = (conditional on the sender having
a sufficiently lax budget constraint). In particular, for all x > 0, the equilib-
ria (0,a)(0) and (0,a)(1) are the extremes of a continuum of semi-pooling
equilibria: (o, a)(f), £ € [0,1].

Theorem 1 implies that a sufficient condition for there to exist equilibria
exhibiting both influential cheap talk and influential costly signals, is that
there exist influential CS equilibria. In some settings this is also a neces-
sary condition (see Proposition 1, below). More generally, in any influential
CS equilibrium the lowest two actions (i.e. the first two distinct actions
elicited by the lowest types) are by definition elicited by influential cheap
talk. Hence Theorem 1 claims that, when such a CS equilibrium exists,
there is an equilibrium in which the lowest two actions are also elicited by
influential cheap talk and at least one higher action is elicited by burned
money. Conversely, the next result implies that if there is any equilibrium
in which the lowest two actions are elicited by influential cheap talk, then
there is an influential CS equilibrium.

12



Definition 3 Let the partition < 0,t1,...,tn_1,1 > support an equilibrium
(0,a). Say that (o,a) ts a left-pooling influential equilibrium if t; > 0 and
(i) N > 2;
(1) vt € [0,t1), o(t) = (m,b);
(iii) b > limejo bty + €).

As we argued earlier, if the sender’s equilibrium strategy is pooling on some
interval (¢,t') and separating on the adjacent interval (¢',#"], then necessarily
the burned money component of the sender’s strategy must have a discon-
tinuous upwards jump at ¢'. Thus an influential equilibrium is left-pooling
eitherif b = lim. o b(t; +¢), in which case the lowest two equilibrium actions
are elicited by influential cheap talk, or if the first change in the equilibrium
level of burned money as t increases from zero is discontinuous downwards
at t; to another pooling segment. In either case, that is, types in (¢1,%2)
must pool on the same signal, say (m/,b') # (m,b).

Theorem 2 There exists a left-pooling influential equilibrium if and only if
there exists an influential CS equilibrium.

Proof. Theorem 1 establishes sufficiency. To prove necessity, let (o, @) be
a left-pooling influential equilibrium. Then N > 2 and 0 < #; < 9 < 1. Let
limg o b(t1 +¢) = V. By continuity and incentive compatibility,

W (y(0,41),t1,2) —b=uS(y(t1, t2), t1, ) =V,

where, for all t € [0,t1), a(o(t)) = a(m,b) = y(0,t;) and, for all t € (¢, 1],
alo(t)) = a(m/)V) = y(ty,t2), where (m/,b') # (m,b). By assumption,
b > ' so that this equality implies

V(0,t1,ta) = uS(y(0,t1), t1, ) — u”(y(t1, ta), ty, ) > 0.

Recall y(r,s) is strictly increasing in both arguments and, by assumption,
u‘fQ > 0. Hence,

V(0,t1,1) = w’(y(0,t1),t1, ) — u”(y(t1,1),t1,2) >0,

with strict inequality if to < 1. Similarly, y(t) < arg maxqex u”(a,t,z) for
all t € [0,1] implies V(0,1,1) < 0. Therefore, by continuity of best-response
actions and equilibrium payoffs in type, y(0,t1) < y(0,1) < y(1) implies
there exists some t* € [t;, 1) such that V(0,t*,1) = 0. Now, for all s € [0,¢*],
let 6(s) = (m,0); for all s € (¢*,1], let 6(s) = (m/,0) with m’ # m; and

13



let &(m,0) = y(0,t*) and &(m’,0) = y(t*,1). Then, by construction, (7, &)
is an influential CS equilibrium (with out-of-equilibrium messages identified
by the receiver with, say, the equilibrium message m).0)

Theorems 1 and 2 say that, in the present model, the existence of burned
money can improve the precision of cheap talk communication but may not
expand the set of environments in which cheap talk is credible. However,
Theorem 2 cannot be extended to cover all influential equilibria: there are
circumstances in which equilibria exist exhibiting both influential cheap talk
and influential burned money, but there is no influential CS equilibrium (of
course, such equilibria cannot be left-pooling influential equilibria). To see
this, let the prior distribution on types, h(-), be a beta distribution on [0, 1]
with parameters (p, v) and assume preferences are quadratic:

US(a,t,m,b) = —(x4+t—a)* -0
Ul(a,t,m,b) = —(t—a).

Then for all ¢, arg maxgex U°(a,t,-) = t + 2 > y(t) = t. Assume the
following parameterization obtains:

z = 0.1157
(,v) = (10,2).

Then (to four decimal places), y(0,1) = 0.1667 and it can be checked that
there exists no influential CS equilibrium. However, the following (again to
four decimal places) describes an influential equilibrium (o, «):

Vi € [0,0.15), o(t) = (m,2xt) and a(a(t)) = t;
vt € [0.15,0.2), o(t) = (m,0.0397) and a(c(t)) = 0.1739;
vi e [0.2,1], o(t) = (m”,0.0397) and a(c(t)) = 0.2889,

where m’ # m”. (Notice that the maximal burned money by any separating
type is strictly smaller than the amount sent by types distinguished by their
cheap talk signal; i.e. 22(0.15) = 0.0347 < 0.0397.) Figure 2 illustrates the
equilibrium.

Figure 2 here

The example shows there are situations in which the existence of burned
money induces influential equilibrium cheap talk when it would otherwise
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be impossible.* Although we have been unable to provide a general theo-
rem characterizing such situations (and it seems unlikely that one is readily
available), Proposition 1, below, covering the special case of (i, v) = (1,1)
(i.e. h(-) uniform on [0,1]) suggests that some sort of asymmetry is nec-
essary. Furthermore, the uniform assumption on the distribution of types,
along with that of quadratic preferences, has been much used in applied the-
oretical work involving cheap talk information transmission. Consequently,
we consider it in some detail.

4 Example

Apart from providing a useful and salient illustration of the preceding re-
sults, the quadratic/uniform specification allows us to say something about
the welfare properties of the equilibria identified above. And since these
properties are the basis of the equilibrium selections made in the applied
literature to permit comparative static results (e.g. [10]), checking the ro-
bustness of the properties to the introduction of burned money is important.

Throughout this section, assume the prior distribution over types, i(-), is
uniform on [0, 1] and that preferences are quadratic as defined above. Then
for all s < t, y(s,t) = [s +t]/2 (and, as before, argmax,cn U (a,t, ) =
t+x > y(t) = t). Applying (5), [6, 1440-4] show the arbitrage conditions
characterizing any CS equilibrium here are

to=0ity =1; andVi=1,.. N, t; = tyi +2i(i — 1)z. (7)

Given z and ¢ty = 1, these equations imply t; = t;(NV) = [1-2N(N—1)z]/N.
Thus, the number of actions elicited in the most influential equilibrium,
N(z), identified by the largest integer N such that t;(N) > 0, goes to

*An associate editor offered the following finite game example. The sender may be
one of three equally likely types, {¢1,t2,t3}, and the receiver’s action set contains three
alternatives, {a1, a2, as}. Dollar payoffs, (115((1, t),v%(a,t)), without burned money are as
follows:

a ao as
¢4 1,1 0,0 2,-10
t 0,0 1,2 2.-10"
ts 0,0 1,-10 1001

It is easy to check that there is no influential cheap talk equilibrium. If, however, burned
money 1s available, there is an equilibrium in which the type-f3 sender burns two dollars
and types t; and ¢, separate with cheap talk. Clearly, the asymmetry in payoffs across
types is important here.



infinity as x goes to zero and equals one for all x > 1/4; i.e. if > 1/4 the
only CS equilibrium is wholly uninformative.

Now permit burned money to be used and consider the equilibrium con-
structed in Theorem 1. Suppose the partition < tg = 0,¢1,...,ty =1 >
supports a CS equilibrium in which N actions are elicited. Then for any
t € [0,#;], the partition < s, s1, ..., Sn+1 > defined in the proof to Theorem
1 is characterized by

so=0;81 =t;sy;1=1; and Vi =2,..., N, s, = 810 + 2i(i — D)z.  (8)

Clearly, sy < 1 with strict inequality if £ < ¢;. Let o(-) be as defined in the
theorem for the partition < sg, s1,...,Sy+1 >; then (e.2) and the uniform
prior imply a(m;,0) = [s;41 + s;]/2 for all ¢ = 0,1,..., N — 1. Doing the
calculations, similarly derive o(t) = (m°,b(t)) and «(m°,b(t)) = t for all
t € [sn, 1], where

b(t) = 2at+C(sy)

1
= 2xt+ [sy + SN_IHZ(SN —S$n_1) — .

Given the CS equilibrium, equations (7) imply (t; —t;—1) = t1 +4x(i— 1),
alli = 1,..., N. Similarly, equations (8) above imply that for any s; € [0,1;),
(s; — 8i—1) = 51 +4x(i — 1). Thus, for all ¢ = 0,..., N — 1, the length of
the interval of types sending any given message (m;, 0) shrinks as s; goes to
zero. So although the same number of cheap talk messages are sent in the
cquilibrium supported by (8) as in the benchmark CS equilibrium defined
by (7), as s1 goes to zero the inference the receiver draws froms any such
message becomes increasingly precise. Furthermore, with a uniform prior
and quadratic preferences, Theorem 2 can be strengthened.

Proposition 1 Suppose preferences are quadratic and the distribution of
types is uniform. Then there exists an equilibrium exhibiting influential
cheap talk if and only if there exists an influential CS equilibrium.

Proof. Sufficiency follows from Theorem 1. To check necessity, first recall
that, by an earlier observation, there exists an influential CS equilibrium
if and only if z < 1/4. Now suppose (0,«) is an equilibrium exhibiting
influential cheap talk. Then 3t,¢' such that o(t) = (m,b), a(t’) = (m',b)
and «a(o(t)) # a(o(t')). Let a; = afo(t)) and a; = ao(t)). Let Z, =
Z(ag;o,), £ = i,j. By earlier arguments, we know that Z; and Z; are
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disjoint convex sets. Let t; = inf Z;, t;y) = sup Zp, £ = 7,j. Without loss
of generality, assume t;11 < t;. There are two cases: (7) t;y1 = t;, or (i)
tiv1 < fj.

(1) Suppose t;11 = t;, so j = i+ 1. Then by (e.2) and (e.3), a; =
[ti + tix1]/2 and a; = [tis1 + tip2]/2. Hence, by continuity of equilibrium
U”(-,t,-) in t, incentive compatibility requires:

—-(.’L‘ +tigy1 — ai)Q = —(-”17 + iy — aj)2~

And this equality holds if and only if = [t; + ;41 — 2t;41]/4. But 0 < ¢; <
tiv1 < tizo < 1 implies sup{[t; + tiy2 — 2tit1]/4} = 1/4.

(i) Suppose tiy1 < tj, so j > i+ 1. If b(-) is weakly increasing on
(tistj41), then b(t) = b ¥Vt € (t;,t;31) in which case, letting ar € A(0, )
be such that inf Z(ax;0,a) = tiy1, setting j = k gives us situation (i).
Therefore, b(-) must be decreasing somewhere on (¢;,t;4+1). Thus, by Lemma
1, Ity € (ti,t;41) such that b(-) is discontinuous at ¢, and, Ve > 0 sufficiently
small, l)(tk - 6) > b(tk + 6). Let b; = 1in1510 b(tk — 6), by = limeio b(tk + 6)
and, without loss of generality, assume o(tx) = (m,b;1). There are then two
possibilities: either b(-) is separating or b(-) is pooling on some subinterval
(tg,try1). Let @ = a(o(ty)). If b(-) is separating on (tx,tk41), continuity of
equilibrium US(-,t,-) in ¢ and incentive compatibility require ¢; indifferent
between eliciting @ and eliciting y(tx) = tx. Therefore,

($+tk—(_l)2—l‘2:b2—b1.

By Z(a; 0, «) convex, (tx —a) > 0. Hence the LHS of this equality is nonneg-
ative but by > by. So b(:) separating on (tx,tk+1) is not possible. Assume
b(+) is pooling on (tg,tky1); then, for t € (tg,tes1), (e.2) and (e.3) imply
oo (t)) = [tg + tes1]/2. Therefore, by continuity of equilibrium U®(-,¢, ) in
t, incentive compatibility requires:

—(z+te — @) = by = —(x + g — [te + trp1]/2)° — bo,
which implies

(e —ter1)® A+ (e —a)?
At + try1 — 2a) (te + tkr1 — 2a)

xTr =

where A = (by — by). Since a < ty < try1 <1 and A > 0, the RHS of the
equation is strictly less than 1/4. This completes the proof of necessity.lJ
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With the example of the previous section, in which preferences are
quadratic but the distribution of types is asymmetric, Proposition 1 in-
dicates that the possibility of burned money inducing influential cheap talk
depends in some way on asymmetries in the environment. Specifically, there
has to be sufficient difference between the payoffs high types can expect to
achieve relative to low types, for otherwise the high types would be unwilling
to burn the necessary money to dissuade low types from pooling with them
in equilibrium.

For the family of equilibria identified in Corollary 1, in which only burned
money is influential, the costly component of the signaling strategy for types
greater than ¢ is simply b(t) = 2xt + ﬂf —4z]. Thus a semi-pooling equilib-
rium of this form exists for ¢ € [0, 1] if and only if the sender has a budget
of at least b(1) = 2x + %[ — 4z] to burn; in particular, a fully separating
equilibrium in burned money (i.e. where t = 0) exists if and only if the
sender has a budget of at least 2x.

Now consider some welfare properties of the equilibria for the quadratic
preference and uniform prior case. Often a criterion of ex ante (i.e. before
Nature reveals the sender’s type t) efficiency is invoked to justify focussing
on the most influential rather than any less influential equilibrium (e.g. [6];
[10]; [11); [2]): only the most influential equilibrium is ez ante efficient and,
moreover, it uniquely defines the most that cheap talk can achieve in the
game. In this context, the following results, for the quadratic preference
and uniform prior specification, are of some interest (the proofs of which,
largely being tedious algebra, are omitted and available from the authors on
request).

For any equilibrium n = (o, a), let (¢, z;7n) denote the n-equilibrium
payoff to the sender of type t € [0, 1] given z > 0, and let @/*(¢;n) denote the
n-equilibrium payoff to the receiver given the sender is type t. Let C'S(N)
denote a CS equilibrium in which N actions are elicited (so C'S(N(z)) is the
(unique) most influential CS equilibrium at x) and, for any CS equilibrium
(7,a), let (o, )(t) be the equilibrium strategy pair constructed in the proof
to Theorem 1.
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Proposition 2 Suppose preferences are quadratic and the distribution of
types is uniform. Suppose t; > 0 in the partition supporting the CS(N(z))
equilibrium for x > 0. Then for all € [0,t1),

gzs(t,x;C'S(N(:c)))dt > gus(t,x;((r,a)(,))dt;

izR(t;CS(N(x)))dt < guR(t:(a,a)(,))dt.

The benefit to the sender from playing an equilibrium (o, @) (#) over the
most influential CS equilibrium, C'S(N(x)), is in the reduction of variance
in final payoffs that (o,a)(t) affords; the cost is in terms of the expected
costly signal conditional on the realization of ¢t being sufficiently high. When
preferences are quadratic and there is a uniform prior on the unknown para-
meter (), therefore, the proposition shows that the expected cost of burned
money dominates the expected gain from more precise cheap talk. In the
presence of costly signals, therefore, the ex ante selection criterion no longer
yields a unique equilibrium. It follows that results in the applied literature
that exploit such a selection need further qualification.

More generally, the ex ante welfare criterion is suspect since it is sensitive
to monotonic type-specific transformations of the sender’s utility schedule.
Specifically, suppose we rescale utilities so that

U%(a,t,m,b) = —v(t)[(x +t — a)? + D]

with v(t) > 0 all ¢ € [0,1]. Then for every t € [0, 1], the sender’s interim
optimal behaviour (i.e. once t is revealed) is invariant to the choice of v(t).
But it 1s easy to see that any ez ante welfare calculation is certainly not
invariant to the choice of v(t) across t. It is of some interest, therefore, to
identify circumstances under which interim and ez ante calculations yield the
same prediction. In particular, because the receiver is clearly best off in the
separating equilibrium with costly signals, (o, @)(0), identified in Corollary
1, the interesting questions involve the sender’s welfare.

An equilibrium (o, ) is said to be SP(t) if and only if ¢ is as defined
in Corollary 1, ¢ € [0,1]. Then SP(0) and SP(1) are, respectively, the fully
separating equilibrium and the fully pooling equilibrium.

Proposition 3 Suppose preferences are quadratic and the distribution of
types is uniform. For all x > 0 and t € (0,1}, a”(t,z; CS(N(z))) >
w’ (t, x; SP(0)) with strict inequality for a set of types with strictly positive
measure.
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Proposition 3 says that all sender types prefer the most influential CS equi-
librium, CS(N(z)), to the most influential (separating) equilibrium, SP(0).
(Of course, the receiver’s preferences are the reverse.) Consequently, the
proposition immediately yields,

Corollary 2 Let US(a,t,m,b) = —v(t){(z +t — a)? + b] be the sender’s
payoff, v(t) > 0 for all t € [0,1] and assume the distribution of types is
uniform. Then, for all x > 0, the sender ex ante strictly prefers CS(N(z))
to SP(0).

Because Proposition 3 obtains when N(x) = 1, a plausible conjecture
is that for any semi-pooling equilibrium SP(#), £ € (0,1), all sender types
likewise prefer the pooling equilibrium SP(1) to any SP(t) equilibrium, and
prefer any SP(#) equilibrium to the separating equilibrium SP(0). How-
ever, so long as x < 1/2 (in the current specification) this conjecture is false
in general. In particular, it can be shown that for any C'S(N) equilibrium
(0,a), there exists a (c,a)(t) equilibrium under which some sender types
strictly prefer the (o,a)(t) equilibrium to the CS(N) equilibrium [3]. For
example, if N = 1 and x € (1/4,1/2) the relevant (7,a)(#) equilibria are
the semi-pooling equilibria SP(t) and, for any t € (4z — 1,1), only moder-
ate types strictly prefer the CS(1) (equivalently, the SP(1)) to the SP(#)
equilibrium. Furthermore, since a positive measure of both high and low
extreme types hold the opposite strict preference to that of the moderates,
the set of types strictly preferring the SP(t) equilibrium to the C'S(1) equi-
librium here is not convex. Thus ez ante welfare calculations for the model
are not always invariant to how payoffs are scaled across types.

5 Conclusion

The Crawford and Sobel model of cheap talk communication has been widely
applied, and the extent to which results from such applications are robust
depend in part on the extent to which the polar case of cheap talk only is a
good approximation to a world in which both cheap talk and burned money
might be used to signal information. The equilibrium results reported here
suggest that if the sender has sufficient resources the polar case may be
misleading, and so care should be exercised in interpreting applied results
that rest on this case. In particular, Theorem 1 and its corollary showed how
the burning money option can be used to signal essentially any amount of
information, up to and including separation. But more importantly, we have
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also demonstrated a more indirect effect of this option, namely the ability
to signal through cheap talk: while the conditions for influential cheap talk
to exist in the Crawford/Sobel model are equivalent to those for a class of
equilibria in the presence of burning money (Theorem 2), an example shows
how burning money can actually allow for influential cheap talk when it
could not otherwise exist. We also proved how the environments in which
this indirect effect can occur must necessarily depart from the standard
uniform/quadratic specification of the model (Proposition 1).

In many applied problems the focus is on the most influential of the
available equilibria. Justifications for such a focus typically rest on ex ante
efficiency arguments or on identifying the upper bound on credible infor-
mation transmission. Our results indicate that, from the informed party’s
perspective, the ability to send a costly signal with burned money generates
a conflict between these two rationales. Specifically, Proposition 3 demon-
strates that (at least in the quadratic preference and uniform prior environ-
ment) cven at the interim stage, the informed party invariably prefers the
most influential cheap talk equilibrium to the fully separating (and hence
fully informative) equilibrium. On the other hand, the remarks following
the proposition indicate that a mix of cheap talk and separation through
burned money can be preferred by a subset of informed sender types to any
cheap talk equilibrium.
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Qlustration of Theorem 1 for a binary CS equilibrium supported by
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Figure 2

Burned money can induce influential cheap talk signaling
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