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Abstract

We study efficient, Bayes-Nash incentive compatible mechanisms in a
general social choice setting that allows for informationally interdependent
valuations and for allocative externalities. We show that such mechanisms
exist only if a congruence condition relating private and social rates of
information substitution is satisfied. If signals are multi-dimensional, the
congruence condition is determined by a complex integrability constraint,
and it can hold only in non-generic cases such as the private value case or the
symmetric case. If signals are one-dimensional, the congruence condition
reduces to a monotonicity constraint and it can be generically satisfied.

We apply the results to the study of multi-object auctions, and we
discuss why such auctions cannot be reduced to one-dimensional models
without loss of generality.

1. Introduction

During the last few years several national agencies (including, most prominently,
the U.S. Federal Communication Commission) have conducted auctions of spec-
trum licenses. Spectrum auctions share with other large auction experiments
(such as the recent sale of the 12 parts of Telebras) several main features:
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Saints-Peres, 75007, Paris France, and UCL, London. jehiel@eupc.fr. Moldovanu: Depart-
ment of Economics, University of Mannheim, 68131 Mannheiin, Germany, mold@pool.uni-
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e There are several, heterogenous objects to be sold.

e Valuations for the objects are interdependent.

e There are potential asymmetries among bidders (e.g., incumbents versus
new entrants, regional versus national interests)

e The ensuing allocation affects future market structure (and hence future
payofls.)

e The stated main goal of the auction’s organizer (e.g., governimnent agencies)
is allocative efficiency.

A model for spectrum allocation problems (and for many other similar situ-
ations) must therefore include both informational and allocative externalities in
a context where agents may be asymmetric, and where several objects are being
sold.

Even if values are purely private and no externalities of any kind are present,
a general treatment of an m-object auction requires signals having at least 2™ — 1
dimensions (i.e., at least a real-valued signal about each possible bundle that may
be acquired at the auction). The critical aspect of multidimensionality is the fact
that the payoff relevant part of the signal varies with the chosen alternative. As
we show below, such a framework cannot be reduced to a one-dimensional model
without a serious restriction of generality!.

There exists an extensive literature on efficient auctions and mechanism design.
A situation that has received a lot of attention is the case where each agent ¢ has
a quasi-linear utility function that depends on information (or signal) privately
known to 7, and on a monetary transfer, but does not depend on information
obtained by other agents. In this framework, a prominent role is played by the so
called Clarke-Groves-Vickrey (CGV) mechanisis (see Clarke, 1971, Groves, 1973,
Vickrey, 1961). These are mechanisms that ensure both that an efficient decision
is taken and that truthful revelation of privately held information is a dominant
strategy for each agent. This result holds for arbitrary dimensions of signal spaces
and for arbitrary signals’ distributions. 2.

! An exception is the case where all m goods are perfect substitutes.

2It is well known that, generally, CGV mechanisms do not satisfy budget-balancedness, i.e.,
these mechanisms generate either a monetary surplus or a monetary deficit. d’Aspremont,
Gerard-Varet, 1979, d’Aspremont, Cremer, and Gerard-Varet, 1990, Matsushima, 1990, Fuden-
berg, Levine, and Maskin, 1994, and Aoyagi, 1998 have given conditions under which Bayesian



It is worth noting that in the private values case with quasi-linear utilities and
independent signals we can find for any Bayesian incentive compatible and efhi-
cient mechanism a CGV mechanism that yields the same allocation and the same
ezpected transfers. In fact results such as the Revenue Equivalence Theorem for
private values auctions and Myerson and Satterthwaithe’s Impossibility Theorem
are straightforward consequences of this result (which holds no matter what the
dimension of agents’ signal spaces is - see Williams, 1994%).

Although there are many auction papers that go beyond the private values
case (e.g., the literature following Milgrom and Weber, 1982), almost all of them
restrict attention to situations where signals are one-dimensional, agents are ex-
ante symmetric and do not care about other agents receive at the auction.

In this paper we look at the case where each agent has a quasi-linear utility
function having as arguments the signals received by all agents and the chosen
social alternative. Hence, we allow for both informational and allocative exter-
nalities. Signals, which are independently drawn from infinite spaces, may be
multi-dimensional, allowing, among other things, for a consistent treatment of
general multi-object auctions. Signal independence is the most seriously restric-
tive assumption in an otherwise rather general model (but note that distributional
assumptions do not play any role in the several positive results obtained in the
paper).

Our general aim is to embed the mechanism design problem in a broader eco-
nomic context: the idea is that the agents are engaged in some future interaction,
and that the outcome of that interaction depends both on the allocation chosen
at the prior stage, and on the agents’ signals. Hence, agents’ valuations, which
depend on the chosen alternative and on all signals, stand as reduced forms for
payoffs in future interaction*, and future market structure considerations are in-
troduced in the analysis.

incentive compatible mechanisms can achieve both efficiency and budget-balancedness. Myerson
and Satterthwaithe, 1979 have shown that the above conditions are, together, not compatible
with the requirement of individual rationality.

3The simple idea behind this result has been observed in various settings by many authors -
see also the survey of Laffont and Maskin (1982). Williams explicitly deals with multidimensional
signals and points out the applications.

41f signals do not become common-knowledge beetween the prior stage and the interaction
stage, signalling effects may also play a role. We abstract here from these effects: while they can
be formally thought of as part of the reduced forms, some finer phenomena cannot be studied
through such modeling.



The importance of "market structure” consideratious has been articulated in
the context of single-object auctions in Jchiel, Moldovanu, and Stacchetti (1996,
1999), and Jehiel, Moldovanu (1996,1997).

In the social choice framework considered here, Williams and Radner (1988)
have shown that, in general, no efficient, dominant-strategy incentive compatible
mechanisms exist’. Imnortant insights about auctions with interdependent valu-
ations (but without allocative externalities) and can be found in Maskin (1992)
and Dasgupta and Maskin (1998) . These authors Lave shown that, under a
set of assumptions concerning marginal valuations, an English auction for a sin-
gle good (and the corresponding direct mechanism) is efficient if signals are one
dimensional®. Maskin (1992) observes that, in general, no efficient, incentive-
compatible auctions exist if the signal affecting a buyer’s valuation for the good
is multi-dimensional. Finally, Dasgupta and Maskin (1998) construct a modifica-
tion of the CGV mechanism that achieves efficient allocations (under appropriate
conditions on marginal valuations) if signals are one-din.ensional. Perry and Reny
(1998) present a bidding procedure that achieves efficient allocations for a one-
dimensional model where several identical goods are allocated to buyers with
decreasing marginal valuations.

This paper is organized as follows: In Section 2 we present the social choice
model. In Section 3 we offer some illustrations for auction theory. In Section 4
we obtain a characterization Theorem for Bayesian incentive compatible mecha-
nisms. In Section 5 we briefly look at Groves mechanisms in the private values
case. In Section 6 we exhibit several impossibility results about efficient, Bayesian
incentive compatible mechanisms. We only require value maximization regarding
the chosen social alternative, and we completely ignore budget-balancedness and
any other properties. Hence, we show that correct informational incentives are
not compatible even with another very weak efliciency requirement.

Crucial roles are in the analysis played by the dimensions of the agents’ signal
spaces (e.g., by the fact that the payoff-relevant part of an agent’s signal varies

3Cremer and McLean (1985,1988) and McAfee and Reny (1992) have given conditions under
which a principal can extract the full surplus available when types are correlated. Full extraction
mechanisms are, in particular, efficient. Neeman (1998) shows that these results do not hold in
a model that can be interpreted as one where agents have multidimensional signals, and signals
have some private and some common components.

8The strength of this remarkable result comes from the fact that no symmetry assumption
is made. Note that in the p:ivate values case, a first-price auction, say, is efficient only if agents
are syminetric. Moreover, with informational externalities, also the second-price auction need
not be efficient if there arc more than 2 (asymmetric) bidders.



with the implemented social alternative), and by a condition that compares private
and social rates of informational substitution.

Theorem 6.2 shows the impossibility of efficient, incentive compatible mech-
anisms in situations where there is at least one agent possessing essential infor-
mation that affects otlLer agents, but does not directly affect the owner of that
information. The literature on credence goods deals extensively with such frame-
works. A corollary of this result is exhibited in Example 6.4: generically, there
are no efficient, incentive compatible mechanisms if there exist an alternative &
and an agent i such that agent i’s signal affecting her valuation for alternative k
is multidimensional.

The above results imply that, generically, an incentive compatible mechanism
for gent ¢ cannot condition on more than a piece of scalar information per so-
cial alternative’. Our main impossibility result is Theorem 6.5. We consider the
critical framework where each agent ¢ has a K —dimeusional signal s* (where /{
is the number of alternatives). The coordinate s} is a one-dimensional signal
affecting the valuations of all agents for alternative k. In this framework none of
the above inefficiency results apply, since no change of variables yields the needed
features. The Theorem shows that efficient, incentive compatible mechanisms
can exist only if a congruence condition pertaining to private and social rates of
informational substitution is satisfied: As a consequence of the integrability con-
straint associated with multidimensional design problems, incentive compatible
mechanisis necessarily ”pool” together different types along certain lines. Effi-
cient mechanisms will pool types along other lines. Efficient, incentive compatible
mechanisms are possible only if the slopes of the two varieties of pooling lines are
equal. Unfortunately, this last condition cannot hold generically®.

Since modeling general multi-object auctions always requires that an agent’s
payoff-relevant signal depends on the bundle that this agent may acquire, our
Theorem implies that the quest for full efficiency in multi-object auctions is elu-
sive. Also, it is very difficult to exhibit a second-best procedure’ because further
necessary dimensionality reductions become endogenous.

"Hence, any model can be first reduced to a model where signals are K —dimensional without
loss of efficiency.

8We show that the congruence condition is satisfied in non-generic situations where either
symunetry, or the private values assumption hold.

Y Jehiel, Moldovanu and Stacchetti (1998) discuss the methodologically related question of
revenue maximization in a multidimensional private values modcl. The integrability constraint
boils down to a certain partial differential equation. For some special cases, the equation is an
ordinary one, and examples can be analytically computed.

[e8a§



In Section 7 we focus on one-dimensional signal spaces, and we define gen-
eralized Groves mechanisms. Our definition is based on the old idea (which can
be traced back to Pigou) that transfers should stand for the cumulative effect of
one's action (here a signal report) on all other agents. We show that such mech-
anisms are efficient and Bayesian incentive compatible if each agent perceives no
more than two payoff-relevant alternatives. An application is made to auctions
for one indivisible good (as studied by Dasgupta and Maskin, 1998). However,
generalized Groves mechanisms fail to be incentive compatible if agents perceive
more than two payoff-relevant alternatives (even under appropriate conditions on
marginal valuations).

Finally, we inquire whether other types of efficient, incentive compatible mech-
anisms generally exist if agents have one-dimensional signal spaces. To allow a
more amenable differential approach (that provides a somewhat clearer insight)
we assume in this part that the space of alternatives is continuous. We show
that efficient incentive compatible mechanisms exist whenever the private and
the social interests are congruent. In the one-dimensional model the integrability
constraint does not bind at all, and the congruence condition reduces to a usual
- monotonicity condition that can be generically satisfied'

2. The Model

There are K of social alternatives, indexed by k = 1,.../ and there are N agents,
indexed by 7 = 1, .., N. Each agent i has a signal (or type) s' which is drawn from
a space S* C RE*N according to density fi(s'), independently of other signals.
Each agent ¢ knows s*, and the densities {f;(-)}/_; are common knowledge. The
idea is that the coordinate si; of s* influences the utility of agent j in alternative
k', We assume that the signal spaces S* are bounded and convex!?.

If alternative k is chosen, and if 7 obtains a transfer z;, then ¢'s utility is given
by Vi(ski, ..., si) + @i, where Vi(sk;, ..., si;) = S0, al;s},, and where the scalar

parameters'3 {al;}1<k< K.1<ji<n are common knowledge. We assume throughout

19The congruence condition requires here only that some inequalities are satisfied, while it
required that some equalities are satisified in the multidimmensional framework of Theorem 6.5.

'We address below (see Example 6.4 and the discussion preceding it) situations where the
signal of an agent i affecting the utility of agent j in alternative k is itself multidimensional.

2Convexity is assumed only for convenience. If S* is simply connected and if it has a well
behaved boundary, then all results go through unchanged (all what is needed is a condition that
allows proving Stokes’ Theoremn)

BYWe can easily allow the valuation functions to include also a constant, i.e., Vii(sl;, ..., s¥) =
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the paper that Vi,Vk, ai; >0

The special case of linear valuations is chosen because we are mainly going
to prove negative results. Extensions of our impossibility results to nonlinear
frameworks are straightforward. Also, we comment below on the straightforward
generalization of the few positive results to general quasi-linear utility functions.

3. Applications to Auctions

Consider an auction where a set M of objects is divided among n+1 agents (where
agent zero is the seller, and the rest are potential buyers). An alternative is a
partition u of M, p = {M;}¥, , where M; is the set of objects allocated to bidder
i,i=1,2,...N and My is the set of unsold objects. Bidder 's piece of information
si,; (which, in general, may be by itself multidimensional) summarizes, from the
point of view of 7, the important aspects for j (say, attributes of the objects in
M;) given partition p.

This framework is general enough to allow for both informational and alloca-
tive externalities in a multi-object auction with potentially asymmetric bidders.
Particularly simple special cases are: 1) The private values case where Vpi(+) is
only a function of sf“- ; 2) The private values case without allocative externalities
where Vii*(+) is only a function of s, and Vi'(-) = V;i.(-) for all partitions p and
i’ such that i receives the same set of objects , etc...It should be clear that even
such simple cases generally require multidimmensional signals.

3.1. Private values examples

In private values contexts one assumes that aii = 0 for all £ and all j # 1.
Most works consider the one-dimensional case where a;; = 0 for all & # k]
For example k] is the alternative ”agent ¢ gets the object” in a standard auction
- setting for an indivisible object and in the bilateral trading framework of Myerson
and Satterthwaithe, or the alternative ”the public good is provided” in a classic
public good problem. In this case i’'s signal space S* is a subset of the real line,
and it represents ¢'s possible valuations for the alternative k.
A multi-dimensional auction with private values is analyzed in Jehiel, Moldovanu

and Stacchetti (1999): an indivisible object is sold to onc of N potential buyers (a
social alternative is identified with the agent that gets the object) , and a;s%; = s}

n 1 ] . . . . . .
=1 aj;sy; + b}.. Such constants do not affect incentives, and in order to simplify notation, we

assume throughout the paper that Vi, k , b} = 0.



represents the externality suffered by 1 if the object is sold to agent j, while a; ;=0
for all j # i. Hence, if agent j gets the object, agent ¢'s utility is given by s;- which
is known only to ¢. Finally, the multiproduct monopolist model (see for example
Wilson, 1993) can be viewed as a private value auction with an unique agent
whose characteristics are unknown.

3.2. Examples with interdependent valuations

Maskin (1992) and Dasgupta and Maskin (1998) consider the following situation:
an indivisible object is to be allocated among n agents. Each agent obtains
a one-dimensional signal, and valuations for the object are functions of all the
signals received. To accommodate this situation in our setting!!, we identify
social alternatives with the agents themselves, and define: Vi, j, h, i # h, aj, =0
and Vi, §, 57, = sj:j.

Jehiel, Moldovanu and Stacchetti (1996) consider the following framework:
an indivisible object is sold to one of N potential buyers (a social alternative is
identified with the agent who gets the object) , and a;s}; = s} represents the
externality on agent j caused by agent 7 if he gets the object, while ajy =0 for
all 7, h # 1. Hence, if agent 7 obtains the object her utility is given by s! (which is
known to 1), while if agent 7, j 5 i gets the object, ¢’s utility is given by s (which
is known only to j).

4. Direct Revelation Mechanisms

Let S denote the Cartesian product [];v, S’ , with generic element s | and define
St s7t as usual.

A function p : § — R such that Vk,s, 0 < pr(s) <1 and Vs, 3K pe(s) = 1
is called a social choice rule. A social choice rule (SCR) is said to be efficient if

N N N
Vs, py(s) #0 = q € arg mEva,g(sl, .sV) = arg ml;dxz > al;st;.

i=1 i=1j=1

A direct revelation mechanism (DRM) is defined by a pair (p,z) where p is a

social choice rule, and z : S — RV is a payment scheme. The term pi(s) is the
probability that alternative k is chosen if the agents report signals s = (s!, ..., s")

b

M Dasgupta and Maskin consider more general utility functions.



and z;(s) is the transfer to agent 7 if the agents report signals s. A DRM is efficient

if the associated social choice rule is efficient!®. -
For a DRM (p, z) we define functions y; : ' — R and ¢" : §* — R as follows:

p(t) = [ @t s (s s

Gt = [ pelt' s oals™)ds™

Assume that agent i believes that all other agents report truthfully and assume
that i reports type £* when his true type is s'. Then, i's expected utility is given
by:

Ui(ti, Si) =
= [ 05 a5 + () =

= Sashait) + 5 [ et s7) - D ahsk)) (57T 4 wlt)(41)
k k

J#
A DRM is incentive compatible if:
Vi, Vst tt e St Uy(s,s') > Ui(t, ).

Let V;(s') = Ui(s, '), and note that in an incentive compatible mechanism we
must haveV;(s*) = max, U,(t*, s*).

We consider below several properties of incentive compatibe mechanisms. The
function V;(+) is the supremum of a collection of affine functions, hence it is con-
vex!. Convex functions are twice differentiable almost everywhere. The convexity

of V;(+) implies the cyclical monotonicity'” of the subdifferential map dV;(s*). At

15We ignore here the (ex post) ”budget balancedness” condition, which imposes )", z;(s) < 0,
¥s. In other words, we abstract from the efficiency losses due to potential external subsidies.

16This and all following properties of convex functions are listed in the classical text of Rock-
afellar, 1972.

17A (possibly multivalued) mapping ¥ : S — S is cyclically monotone if (x; — x¢) - x5 +
(xg —21) -2} + ...(xg — ) -} <0 for any set of pairs (z;,x}),i = 0,1,...r (r arbitrary) such
that z} € ¥(x;). A monotone mapping needs to satisfy the above condition only for r = 1.
Although there are monotone mappings that are not cyclically monotone, a monotone single
valued mapping € : S* — R which is the gradient of a function w: S* — R is also cyclically
monotone. A necessary and sufficient condition for € to be the gradient of a function w on S* is
48 =0 for every closed curve v in Si. Such a Q is called conservative.

9



all points where V;(-) is differentiable (i.e., almost everywhere) the subdifferential
OVi(+) consists of a unique point, the gradient VV;(-). Hence, the function VV;(:)
is well-defined, monotone and differentiable a.e. Finally, note that a convex func-
tion is (up to a constant) uniquely determined by its subdifferential, and that it
can be recovered (up to a constant) by integrating its gradient.

Assuming that Vj(-) is differentiable at s* we obtain by the Envelope Theorem
that:

ov. . ou. . . o
Wk, S (5) = 5ot 8) ume— alugh(s) (42)
Ski Ski
ov. . ou. , . .
Vk,\/] 7é i, il (Sl) = il (tl,sl) ,ti:siz 0 (43)
Skj Skj

Note that the equality of cross-derivatives (which exist a.e.) implies here that:

. 0g;.(s") A% : oV, : . Oqp/(s?)
Yk k', a. K2 o T ()=t (s))=ql, 4.4
ki O0si; 051,08}, (59 05,084, (s) = aks Jsy; (4.4)
Finally, equation 4.3 and the equality of cross-derivatives imply that:
. Ogi(sY) oV, . ov. .
Vk,V, , O L= ()= —1 (') =1 4.5
J 7 Osk; 0s}; 05}, (") 05}y, 08}; () (4.5)

The following proposition summarizes our observations and characterizes in-
centive compatible mechanisms (for analog results in multidimensional frame-
works see Jehiel, Moldovanu, Stacchetti, 1996, 1999):

Theorem 4.1. Let (p,x) be a DRM, and let {q'(-)}I, be the associated condi-
tional probability assignments. Then (p, ) is incentive compatible if and only if
the following conditions hold:

. P i K . .
L. Vi, the vector field {a},q;.(-)},_, is monotone and conservative.

2. Vi, Vs, Vi(s') = Vi(s') + f;,-i Q'(t') - dt* . The integral is taken on any path
between s* and s' , and Qi(s') € RK*N is the vector where Vk, the ki'™

coordinate is given by al;qi(s') and the kj'" coordinate, j # 1, is zero.

Corollary 4.2. Let (p,z) be an incentive compatible DRM, and let {q*(-)}1-, be
the associated conditional probability assignments. Then the following conditions
must hold:

10



1. Vi,Vk, gi(-) is non-decreasing in the variable sj;.
2. Vi, ], j #1, Vk, g.(-) is constant in the variable s} ;.

Proof. The first part follows from equation 4.2 and the the monotonicity condi-
tion in the above Theorem. The second part follows by equation 4.5'%.

The above representation Theorem yields the following ” Revenue Equivalence”
result:

Theorem 4.3. Let (p,z) and (p,&) be two efficient and incentive compatible
DRMs. Then, there exist constants {¢;}1<i<n such that ¥s,Vi, §;(s') = yi(s*) + ¢
where §j; and y; are the conditional expected payments associated with (p, ) and
(p, x), respectively.

Proof. By Theorem 4.1 and by equation 4.1, the conditional expected payment
of agent 7 in any incentive compatible mechanism is solely a function of (i.e., an
integral of) the associated expected probability assigniient, and of the expected
utility of an arbitrary type. Since any two efficient SCR coincide almost every-
where, the associated expected probability assignmments are the same, and the
associated conditional expected payments must be, up to a constant, the same.
|

5. Groves Mechanisms for t.he Private Values Case

For the private values case, a Groves mechanism is defiaed by: 1) a function 11(3)
such that fc(s) is an efficient alternative for each vector of reports s. 2) An efficient
SCR p such that, for all s, prs)(s) = 1 and pr(s) = 0, for k # k(s). 3) Transfer
functions & given by:
£:(s) =Y V(') + Di(s™)
J#

where D;(+) : S7" — 3 is an arbitrary function. Fror the interim perspective
what matters is the expected value of D;(+), hence we can replace this function
by its expectation. Note also that Groves mechanisms wre, by definition, efficient,
and that agent ¢’s transfer directly depends only on the chosen alternative and
on the signals reported by the other agents. It is well Luown that, in the private
values case, a Groves mechanism is incentive compatible (no matter how the
multidimensional signals are distributed).

18For a direct proof that does not use the symmetry of cross deiivatives see Jehiel, Moldovanu
and Stacchetti (1996).
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Theorem 5.1. (Williains, 1994) For any efficient and incentive compatible DRM

(p,z) there exists a Groves mechanism (p, %) such that Vs, Vi, p(s) = p(s) and
9:(s') = yi(s') where §; and y; are the conditional expected payments associated

with £ and x , respectively.

Proof. The equivalence result follows immediately from Theorem 4.3 since Groves
mechanisms are efficient and incentive compatible. W

6. Impossibility Results

We first show that efficient, incentive-compatible DRMs do not exist as soon as
at least one agent receives a signal that does not affect her utility, but affects the
utility of others.

Definition 6.1. Let p be an efficient SCR, and let {G'(-)}X., be the associated
conditional expected probability assignments. The variable 5}5 is said to be es-
sential if there exist s*,t* € S* such that:

L. spy = ti for all (K, 5') # (K, J) .
2. s # th -
3. Gi(s') # Gi(t).

Note that unless the density fi(-) is degencrate (i.c., does not have full-
dimensionality), all variables s, such that aj; # 0 are essential. Moreover,
since an efficient SCR is uniquely defined almost everywhere, the definition of
essentiality does not depend on the specific SCR p which is used.

Theorem 6.2. Assume that variable §fcj , wherei # j, is essential. Then efficient,
incentive compatible DRM'’s do not exist.

Proof. Let s',t" satisfy the conditions in Definition 6.1, and let (p,z) be an effi-
cient, incentive-compatible DRM with associated conditional expected probability
assignments {¢'(-)}¥,. By efficiency, we must have ¢'(u’) = §(u') for all u* € S°.
By Corollary 4.2, and the construction of s',t, we obtain that ¢'(s') = ¢*(¢}).
Since, by definition, §*(s") # ¢'(¢'), we obtain a contradiction.

Example 6.3. (A Credence Good)

12



There are two agents i = 1,2 and two alternatives k = A, B. Agent 1 has a two-
dimensional signal s! = (s}, sk), distributed in the square [0, 1]x [0, 1] with density
fi. Agent 2 has a one-dimensional signal s? = s% distributed on the interval [0, 1]
with density f;, and associated cumulative distribution F. Valuations are given
by: Vi(s!,s?) = s; Vi(s!,s2) = 0; V3(s',s?) = 0; VA(s',s?) = sp + s5.

Note that sk does not affect the utility of agent 1 in alternative B, but it does

affect the utility of agent 2 in that alternative.
Let (p,z) be an efficient incentive compatible DRM. Then, it must hold that:

1, if s} > sk, + 52
1 2y ) Ldsy2sg+sy
pals’,s7) = { 0, otherwise

Hence, we obtain that:

ql (31): Fz( Sk—‘S.g), lfsilzsb
A 0, otherwise

On the other hand, by Theorem 4.1 we know that g4 (s') cannot depend on
sk, which yields a contradiction. B

The intuition behind Theorem 6.2 is very simple, but we now show that the
displayed phenomenon has a deeper consequence. Till now we have assumed
that S;;:j’ agent 7' s piece of information affecting the utility of any agent j in
a given alternative, is one-dimensional. We next look at an example where this
dimensionality requirement is not satisfied. The resulting impossibility of efficient,
incentive-compatible mechanisms in situations with this feature has been observed
by Maskin (1992). What we show here is that this impossibility result is, in fact,
a corollary of Theorem 6.2.

Example 6.4.

There are two agents i = 1,2 and two alternatives k = A, B. Signals are
two-dimensional, s* = (s},s}), i = 1,2. Valuations are given by: Vji(s! s?) =
si+a(sy+s3), Va(s',s?) =0, Vi(s',s%) =0, Vi(s',s*) = s{ +a(sy + s2)

The comiponents st | i = 1,2, are the private parts of the signals (i.e., they in-
fluence only i's utility, respectively), while the components s} are common parts'”
(i.e., they influence the utility of both agents). The present example does not,

Y Compte and Jehiel (1998) look at related examples in order to study the value of competition
in standard auctions.
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a-priori, displays the main feature of Example 6.3 where agent i had a signal
that does not affect her utility, but affects the utility of others. Nevertheless, we
now show that the efficient rule cannot be implemented in the above setup: the
problem is that agent i's valuation in alternative ¢ depends on s two-dimensional
signal.

Consider the change of variables as follows:

t' = (t],t;) = (s} + s}, s3)

Note that in the t' type space we obtain: V3 (¢!,¢%) =t} +at3 , VA(t1,t*) =0,
VA, 1Y) =2 +atd , VI3 =0.

Hence, agent i possesses a signal 5, which does not affect her utility, but affects
the utility of agent —i. The impossibility result follows immediately from Theorem
6.2 , exactly as in Example 6.3. The example can be immediately extended to the
case where Vi(s!,s%) = s} +asl+bs? and V3(s!,s?) = s+ asj + bsj. This shows
that, even when the dependence of an agent’s valuation on the signal of another
agent is very small (i.e., b is very close to zero), efficiency cannot be attained. B

The example above illustrates the general phenomenon: a simple matrix-
inversion exercise and Theorem 6.2 can be used to prove impossibility in any
generic framework where the type-matrix can be inverted, as above.

Our results so far suggest that, in order to obtain generic existence of efficient
and incentive compatible mechanisms, it is necessary that Vi, j, 1 # j, Vk, s;'cj is a
strictly monotone function of si;, and that s}; is one-dimensional. Since we want
to remain in the linear framework, we consider below the case where Vi, j,1 # j,
Vk, s}; is a linear function of s};. By suitably redefining s ; we can assume without
loss of generality that Vi, j,i # j, Vk, si; = s, = S}

Hence, we now look at K — dimensional type-spaces, and we denote by s; agent
i’s one-dimensional piece of information affecting (possibly in different ways) the
utility of all agents in alternative k.

We assume in the sequel that all variables si are cssential. Note that this
requirement. implies that Vi,Vk, TN aj; # 0.

The next Theorem shows that even the above reduction in complexity cannot
generally ensure the existence of efficient and incentive compatible DRM’s. The
impossibility result has now decper causes: it is entirely due to the conserva-
tiveness requirement imposed by incentive compatibility in the multidimensional
case. Recall that equation 4.4 implies that the expected probability assignment
generated by an incentive compatible mechanism must satisfy:

14



COa(s) _ i 0gu(s) (6.1)

ki kK i

asy 0s},
The question of existence of efficient, incentive compatible mechanisms boils
down to the question whether an efficient social choice rule generates a monotone

vector field having the above property?’.

Theorem 6.5. Assume that (p, ) is an efficient DRM that is incentive compat-
ible for agent i. Let k, k' be any pair of alternatives such that there exists a type
tt with qL(t') # 0, and ¢}, (¢*) # 0. Then it must be the case that

. N .

a;ci o Z]’-_—l a‘;C] (6 2)

ai - ZN ai ’
K'i J=1 7k §

Proof. See Appendix.

Condition 6.2 is a congruence requirement between private and social rates of
information substitution. Unfortunately, the implied ulgebraic relations among
parameters cannot be generically satisfied?!. Note that condition 6.2 is trivially
satisfied in two interesting and much studied non-generic cases: the private values
case where Vi, j,i # j,Vk, a;;j = 0, and the symmetric case where Vi, j, k, afcj =
ay;-

The above Theorem has a converse: If condition 6.2 is satisfied, and if an
efficient social choice rule p yields monotone vector field (a};qi(s*))k=1,.k , then
there exists a payment schedule z;(-) such that (p,z) is incentive compatible for
1.

The following 2-agent, 2-alternative example illustrates the insight which un-
derlies the proof of Theorem 6.5.

Example 6.6.
There are two agents ¢ = 1,2 and two alternatives k = A, B. Signals are two

dimensional, s* = (s4,s}), 1 =1,2.
Valuations are given by:

2 Technically and conceptually, the problem is analogous to the celebrated integrability ques-
tion in classical demand theory: which demand functions (for several goods) can be rationalized
by some utilitiy maximization.

21je., the set of parameters satisfying the condition is closed and has Lebesgue-measure zero.



V]:(Si,s_i) = azisi + ak—ii’s;i, Z = 1,2’ , k — A, B
We assume below that
g +tap #0,i=1,2,;k=ADB

Assume that an efficient and incentive compatible DRM exists, and denote it
by (p, z). Let qi(s') denote agent’s i associated interim expected probability that
alternative k is chosen by the mechanism. We know that Vi,Vs', ¢}4(s*) + ¢ (s*) =
1. Let V;(s*) be the utility of agent i with type s* in the truth-telling equilibrium
of (p,z). By Theorem 4.1 we know that:

9V,
ds;

(si) = a};iq};(si), i=1,2, k=ADB

By equation 6.1 we have:
i 0aa(s) _ i 0dp(s)
A sty B adsy,
For the above derivations we have used only conditions imposed by incentive

compatibility. We now look at the consequences of efficiency. Alternative A is
chosen at reports (s!,s?) by an efficient DRM iff

i=1,2 (6.3)

2 2
D sk 2 3N as]
i=1j=1 i=1j=1
This is equivalent to:
(@l + alg)sh — (apy + apg)sp > (ahy + afy)sh — (% + aky)sh (6.4)

We now obtain:

where A(s!) = {s? such that condition 6.4 is satisfied}.
As before, we have also qj(s!) = 1 — gh(s') = 1 = [ao) fo(s)ds?.
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Fix now a type s' and let (al, + al,)sy — (ah; + ajy)sy = C. Then for any
t! such that (al, + aly)ty — (ak, +aky)th = C we obtain that A(t!) = A(s') and
therefore that g4 (¢!) = ¢4(s'). This ”pooling” of types along specific lines yiclds
the following differential condition:
Oq(s') Oqp(s')

1 1 _
(a}u + a}")T}, + (ap; + apa) Bsh =0

Since qi(s') = 1 — ¢};(s"), we obtain that:

Pap(s) _ _0ay(s) . _ .,

i i
Js’y dsly

Combining the last two equations we obtain for i =1

0)(s") 0l (s")
(s @he) =g = (ay + o) = (6.5)

A similar reasoning yields an analogous condition also for i = 2. Equations 6.3
and 6.5 yield together:

i Y (6.6)
ap; g, +ap_;

]

Theorem 6.5 sheds some light on the outcome of any multi-object auction
where the objects and the agents are heterogenous in a non-trivial way. If there
are informational externalities, we have shown that, whatever sale mechanism is
considered (including mechanisins that allow for ”combinatorial” bidding), efhi-
ciency cannot be achieved. The inefficiency has structural causes and the con-
struction of a second-best mechanisim is not at all trivial since it is, essentially, a
problem of finding the monotone and conservative vector field that maximizes a
certain functional. Finally, note that the exhibited inefliciency is not necessarily
diminished as, say, the number of agents (or the number of agents and the number
of objects) gets larger?.

22For examples of market models that display limit efficiency results see Gul and Postlewaite
(1992) and Pesendorfer and Swinkels (1997).
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7. Generalized Groves Mechanisms

We now pursue a further reduction in complexity, and we assume that agents
get one-dimensional signals (i.e., the same, one-dimensional piece of information
affects all valuations in all alternatives).

7.1. The Pigou-Clarke-Groves approach

We first try to mimic the intuition of the Groves mechanisins, which, as we have
seen before, "span” the set of efficient and incentive compatible mechanisms in the
private values case. By the result of Williams and Radner (1988), there is no hope
of finding a generalization that yields dominant-strategy efficient mechanisms.
Nevertheless, as we shall immediately see, generalized Groves mechanisms that
are efficient and (Bayes-Nash) incentive compatible may exist in some cases.

Let s' € [s%,5)]. Here signals need not be independently distributed, and
the equilibrium we find will not depend in any way on the signals’ distribution
functions . A Generalized Groves Mechanism (p*, z*) i5 based on a function k(s)
such that k(s) is an efficient alternative for each vector of reports s and an efficient
SCR p such that, for all s, pi)(s) =1, and pe(s) = 0, for k # k(s).

To formulate the transfers for each agent i, consider {or each vector of reported

signals s7* and for each alternative k the set:
Wi(s™ k) = {t'/k*(t,s7) = k}

Hence, ¥;(s™", k) is the set of reports that can be made by 7 (given reports by
others) such that the efficient alternative is k. For each vector of reported signals
s = (st,...,s"), let §(s7% k*(s)) be a sclection®® out of the set W;(s7*, k*(s)),
which is not empty because, by definition, s* € ¥,(s™, k*(s)). We define transfers

zi(s) = 2i(s7K"(s) = 3 Vi (sTH 8 (sTHR(9))) + Dils ™) =
i
D ey (7K () + 323 ey + +Di(sT)
J# G4 i

where D;(s™) is an arbitrary function of s™*.

BWe discuss later which selections, if any, are suitable.
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Note that z!(s) depends only indirectly on st, namely through the efficient
choice k*(s).

Proposition 7.1. Assume that there are only two alternatives, k = A, B, and
that, for each agent i, the following condition Is satisfied:

N N
al, >, =Y a2 Y aly,k=ADB (7.1)

i=1 i=1

For each agent { and for cach vector reports s, let w be the solution to the
equation Y-, Vi(s™%, 2) = Z]  Vi(s7, 2). Define

L5

if w exists and w € [s

§i(3_i)k*(s)) = gi(s_i) = { ! otherwise

Then, any generalized Groves mechanism (p*,z*) based on the above sclection
is incentive compatible.
Proof. Since the arbitrary function D;(s™*) does not influence incentives, we
assume here for simplicity that it is constantly zero.

Fix agent 7 and assume that the other agents tluthfully rep01t s7*. Observe

that if there exists & such that Vs' € [s¢, 5], ©00, VI (s7, ") > S IV’ (s7%,s"),
then an efficient allocation rule does not depend oni's rep01t, and we noed not
worry about #'s incentives. In particular, given zi(s) = VJ (s7%,s") it is

optimal for 7 to report truthfully.
Assume then that the equation ZJ Vi(sThz) = Z L Vi(s7%, z) has a so-
lution w = §(s™%) € [s¢,5"]. Assume without loss of genelahty that aA, > 031

By assumption, we must also have Z 1aA] > Z] | @, Because Vk, E] | Ok =

;-Vzl (%%——) ,this implies the following:
N ' N
For all s* > &'(s™"), S Vi(s™,s') > D V(s )
j=1 j=1
N N
For all s' < &'( ,ZV ZZ ) S

—

.
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Assuime now that 7 has true type s*. There are two cases:

Case L: s* > §'(s7*). In this case, if ¢ reports truthfully her payoff is given
by Vi(s™,s') + ¥, VA(s™, 8 (s7")). As long as 4 reports t* > §'(s™) , her payoff
does not change

Assume then that i reports £ < §'(s7). Her pdyoff is then Vi(s™',s') +
St VB( ~1, 8 (s7")). We need to show that Vi(s™,8") + X, VA(s™, 8 (s™) >
Vi(s™ st) + 3, V(5™ 8'(s™)). Since s' > §'(s~ ), the result follows because |
by dcﬁnition Vai(s™, 8(s7) + X, VA(s™,87(s7™Y) =

Vi(s™, 8 (s7)+ 25 V(57 §1(s7%)), and because, by assumption, @'y, > aj;;.

Case II st < §(s7Y). In tlus case, if ¢ reports truthfully her payoff is given
by V(s s%) + X, Vi (7%, 8(s7%)). As long as 4 reports t* < §'(s™) , her payoff
does not change.

Assume then that 7 reports ¢ > §'(s™). Her payofl is then Vj(s™, ') +
Y, V(57,8 (s7)). We need to show that Vi(s™, s') + X, VA(s™, 8 (s7%)) >
Vi(s™, 8') + Yy V(™ §(s7)). Since s* < §(s™), the result follows because
by deﬁmtlon Vi(s™, 8 (s )) + 2 Vi(s™,§(s7) =

Vi(s™, 8 (s~ ))+E#, Vi(s7%, 8 (s7")), and because, by assumption, aly, > al;.
The case where a’y; < a%, is analogous. W

For more than two alternatives, condition 7.1 becomes?*:

Vi, Yk, k', ap; > ak; = Za};j > Za}c,j (7.2)
J=1 J=1

Note the analogy with condition 6.2, but note also the gained slack in the one-

dimensional framework. This slack (i.e., required inequalities instead of equalities)

24 A more refined formula is needed if valuations are not linear in signals, i.e. if marginal
valuations are not constant.
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allows the condition to be satisfied for an open set of parameters’ values.

The result of Proposition 7.1 easily generalizes if agents have general valuations
and if there are only two alternatives. Moreover, the result generalizes to the case
where there are several alternatives, but each agent perceives only two alternatives
as different from her point of view. As an illustration, consider the following
auction model, taken from Dasgupta and Maskin (1998):

There are N agents who bid for an indivisible good. We identify alternatives
with the agents, so that alternative ¢ is the alternative "the good is allocated to
agent ”. Signals are one dimensional, s* € [s,5"]. For all 4,7 and for all k # i,
afm- = 0. To simplify notation, we denote a term a{i by al. Hence, the valuation
of agent i is Vi(s,..,sV) = Vi(s',..,sV¥) = =N als’ if i gets the object, and
Vi(st, .., sN) = 0 if agent j # i gets the object (as stated above, linearity is not
necessary for the result).

Observe that each agent i actually perceives only two distinct payoff-relevant
alternatives (i.c., only two alternatives that offer potentially different payoffs): i
gets the object” (call that alternative 7) and "7 does not get the object” (call
that alternative —i). Although there might be X = N > 2 alternatives, this

observation enables the use of the technique of Proposition7.1. Since in this
.o . i avi .. .
model Vj, j # i, M), Vi) 0, condition 7.2 generally translates into:

dst  — 8s'
its) | V()
dst T Os

This is the condition used by Dasgupta and Maskin (1998)%.

A Generalized Groves Mechanism (p*, z*) is now defined as follows: For each
vector of reported signals s = (s!,...,sV), let i*(s) € argmax; Vi(s!,...,sV), and
let pl.y(s) = 1, and pj(s) = 0, for j # i*(s). Assume that s is the vector
of reports. If the alternative ”i gets the object” is chosen, then all j # i ob-
tain a payoff of zero, and hence i's transfer in a Generalized Groves Mecha-
nism should be 0 + D;(s™*) = D;(s™'). From the pcint of view of ¢, if alter-
native "7 does not get the object” is chosen, then, in an efficient mechanisim,
the object is allocated to the agent j # 7 such that j € argmax.. VS(s) ,
and all agents e # j have a payoff of zero. In this case ¢'s transfer should be
max;z; V7 (s7,3(s™")) 4+ Di(s™") . Exactly as before, let 5(s™*) be equal to the
solution of the equation V(s z) = max;y I/jj(s‘i, z), if the equation has a so-
lution in the interval [s*,§] , and let §(s™*) = s' otherwise. By Proposition

Vi, Vs, V5,5 # 1,

25 This condition has been often used in the literature. For example, Gresik (1991) uses it in
the context of a bilateral market. His work focuses on ex-ante efficient trade mechanisms.
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7.1, any such mechanism is incentive compatible and efficient. Taking Di(s7%) =
—(max;4 \/Jj(s“i, 3(s%))) , we obtain the direct mechanismn corresponding to the
English auction studied by Maskin (1992). Dasgupta and Maskin offer a Vickrey
mechanism that yields efficient outcomes, but whose rules do not depend on the
valuation functions as our direct mechanisms do (however, knowledge of valuations
functions is required from the agents).

We conclude this section with a (generic) example showing that Generalized
Groves Mechanisins as defined above may not be incentive compatible if agents
perceive more than two payoff-relevant alternatives.

Example 7.2. There are two agents , denoted by 1 and 2, and three alternatives,
denoted by A, B, C. Siguals s', s? are distributed in [0, 1]. Valuations are as follows:

Vi(s!, 9) 3st+s2 V(s s):22+%s
VA(s!, s%) = 281 + 352 V2(sh,s?) =35 + 5!
Vi(s!, s?) = 4s' + 257 VC(s s*) =35+ 5!

Note ﬁ1 st that condltlon 7.2 1is satlsﬁed
Fix s2 = 1. We obtain the following: Alternative B is efficient for s' € [0, 1]
, Le, Uy(3,B) = [0,3]; Alternative A is efficient for s' € [1,3] | ie., Wi(5,4) =
[2, 4] Alternatlve C is efficient for s' € [3,1] , i.e., ¥y(3, ) 3,1].

M

22



6
!
i3
SEPA o
E Qn\ 3 ///
4! ;
3 / P A
E T N~ j\](\ (52/')
2k =
]
!
1 L 2
‘L\>'Z \/Q9 (Si'>
‘ 3=t
007 02 04 L0608 s’

Note also that 3°7_ (o—vﬂ(s—s) >3 1(9‘-/111(—:13—2) > i 1(—Xff(s—s) .Consider
a Generalized GIOVGS niechanism based on selections 8}, = § ( k) k=A,B,C,
out of the sets ¥,(3,k), k = A, B, C, respectively, and assume that truth-telling
is a Bayes-Nash equilibrium (for any distribution of agents’ signals).

For any s' € ¥,(1, B) = (0, 3] it must hold that:

1 1 NI
VA 5) + VaGing) 2 VA 5) + Vi) @
3 ni 3
sl+2sA—sB 1 < 0
For any s' € ¥,(3,A) = 5, Z it must hold that:
TR 205 L R g L
Vals',5) VA(SA)E) > V(s ’§)+VB('SB’§) =

[\eB
C»J

.
S+'2‘SA —Z > 0
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The only selection which is consistent with the above inequalities is $} = § =

1
5
For any s' € ¥;(3, A) = [, 3] it must hold that:
1 1 1 L1
Va(s'3) Vi(sh, 5) 2 Ve(s', 3) Vo8, 5)
3, » 3
Sl—'Q—AlA—i-Sb—g S 0
For any s! € \1/1(%, C)= [%, 1] it must hold that:
TR s L 1t 205 1
Ve(s', 5) +Ve(se,5) 2 Vals, 5) +Va(sh, o) &
2 2 2 2
3., ; 3
31—5]+§’C—§ > 0
The only selection which is consistent with the above inequalities is § = § =
3 This yields the contradiction 1 = 5 =34 =5, =3. W ;

It can be shown that, provided that condition 7.2 holds, there exist other,
more sophisticated, mechanisins fulfilling both efficiency and incentive compati-
bility. The basic intuition for the case of more than two alternatives has been first
illustrated by Dasgupta and Maskin (1998), while a general condition allowing
implementation with more than two alternatives was first identified in an earlier
version of our paper.

To gain some gencral insight about efficient mechanisins in the one-dimensional
case, we consider below a framework with a continuum of outcomes (or alterna-
tives) z - this allows here a simpler differential approach.

7.2. Efficient mechanisms

Let s’ be the one-dimensional signal of agent j. Agent ¢’ s payoff in outcome z is
given by

Vi(s™, 5% 2) = Za{(z)sj (7.3)

where a] (+) are regular functions of z. Observe that this representation precisely
fits the linear framework we had before: for each outcome z , the payoft function
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is linear in signals. We impose some additional structure, and require that, for
each 7, al(-) is strictly increasing in z.

If z is to be interpreted as a provision of public good, then the model can be
enriched by a cost function C(-) where C(z) is the cost of providing the public good
220, An efficient mechanism is such that for each signal draw s = (s!,s?%, ..., s")
the outcome N

Z(s) = argmax ) V'(s;z) —C(z
(3) = g YV (s:2) =€)
is chosen. For other interpretations, assume that C(z) = 0.

In what follows, we assume that, for every s, the function z — SN, Vi(s; 2) —
C(z) is concave, regular and has a unique maximum?’.

Since ai(-) is increasing, and since (9_Va£§_22 = ai(z), the analog of Condition 7.2
in this setup is as follows:

N
For cach 7, the function z — »_ a}(2) is increasing. (7.4)
j=1

We refer to this condition as the congruence condition.

Proposition 7.3. Assume that the congruence condition is satisfied. Then there
exists an elficient, Baycsian incentive compatible mechanism. Moreover, the as-
sociated transfers do not depend on the distribution of signals®.

Proof. We prove the existence of efficient, incentive compatible mechanisms in
which truth-telling is a Nash equilibrium (no matter what the distributions govern-
ing agents’ signals are). Consider agent 7, and assume that the other agents j, j # ¢
obtain signals s~ and report truthfully. By a standard argument (see Chapter
23 in Mas-Colell, Whinston and Green, 1995), every function s' — z(s*, s7%) that
is increasing in s' can be Bayes-Nash implemented. It suffices thus to show that,
under the congruence condition, the efficient allocation function Z(s) is increasing
in s*. By definition, we know that:

Z(s) = arg max s’ a;(z)) +H(s7,2)| ,

i=1

2611 the special case where a](z) = 0 this model is the one studied by Clarke and Groves, and
the Clarke-Groves mechanisus allows to implement the efficient level of public good.

27This is for example the case if all a!(z) are constant, g;(z) = z , and the cost function C()
is strictly convex.

28 A similar property has been observed by Dasgupta and Maskin (1998) in their auction model
with discrete alternatives.



where H(,-) is a function that does not depend on s°. The first order condition
yields for z = Zz:

di[fja; [+ EH( 2 =o0.

j=1
Total differentiation with respect to s* yields:
d & i 9z(s) 9% | ; Al i —i
'd—z‘[;(LJv(Z)] + (?Si . ﬁ S (Z aj(z)) + H(S ,Z) = ().

J=1

The term =[5 al(2)] is positive by the congruence assumption.

The term (;9;2 [s (TN, di(2) + H(s™ z)] is negative because of the second
order condition characterizing the maximand Z(s). aas;() > 0 as
desired.

Given that other agents report truthfully, truthful reporting is optimal for

agent 7 with type s' if the following condition is satisfied:

Vs™i s' € argmax[V*(t, s, 2(t, 7)) + z,(t, s7Y)]
tl
This yields the first order condition:
aVi(st,s7i 2(s)) Oz(s',s7") N Az;(st, s77)
0z ot ot
By the definition of Z(s) we know that :

Vs, O[ijéi Vj(sa Z) - C(z)] -0
0z

Vs, =0

z=2(s)

Combining the two equations above, we obtain that:

dz;(st, s7") N O34 Vi(s,z(s)) — C(z(s))] . 0z(s', s7)
Jst B 0z Jst
It is clear that incentive constraints continue to be satisfied also if we take the
expectation over s7. The transfers z;(,-) do not depend on the distribution of
signals because the densities f;(-) do not appear at all in the first-order conditions
.
In order to better understand the additional complexity, consider the private
value case. In this case, equation 7.5 simplifies to:

Vs,

(7.5)
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Oz;(s',s™) - H[Z#i V(s 2(s)) — C(2(s))]
Os? ds

Vs,

Hence, we can implement the efficient allocation (even in dominant strategies) by
choosing the transfers a;(s*,s7) = ¥, V7 (s, 2(s)) — C(z(s)). This is exactly
the Groves insight.

We conclude the subsection by providing an exaniple.

Example 7.4.

Consider a public good provision framework with two agents, ¢ = 1,2. For a
level z of the public good, valuations are given by V1(s? s!; 2) = (s' + A\;s%)z and
V2(s', s% 2) = (s* + Ags')z, respectively. The cost function is C(z) = % Note
that Vi, ai(z) = z, and that the congruence condition says here: 1+ A; > 0 and
14+ Ay > 0. The efficient outcome rule is given by z(s) = (1 + Ag)s' + (1 + A;)s?,
which, under the congruence condition, is obviously increasing in both s! and s?.

Let z;(s™, s*) be a transfer such that

Oz;(s7, s')

- == —(1+/\_i)(5i+/\i8_i)
gst

For example, z;(s™, s') can be taken to be —(1+)\_,~)(£i%)—2+/\is_isi) , or the ex-
pectation of this termn with respect to s~*. These transfers implement the efficient
allocation. Note that the second order conditions for maximization are satisfied
whenever the congruence condition is satisfied - this is precisely the essence of
Proposition 7.3.

Consider now the private values case where A; = 0,7 = 1,2. We now need that

Qrle o) — ', Observe that V=i(s; 3(s)) — C(3(s)) = [(s™)2 = (s))%] /2 , and
hence that (lv—*(s;z(aszi)-c(z(s))] = —s'. In other words, the transfer x;(s7% s') =

V7 (s;2(s)) — C(2(s)) implements the efficient allocation in this special case. ®

8. Conclusions

We have shown that efficient, incentive compatible mechanisins can exist only
if a congruence condition relating private and social rates of information sub-
stitution is satisfied. If signals are multi-dimensional, the congruence condition

27



is determined by a complex integrability constraint, and it can be satsfied only
in non-gencric cases such as the private value case or the symmetric case. If
signals are one-dimensional, the congruence condition reduces to a monotonicity
constraint and it can be generically satisfied.

The impossibility results in the multi-dimensional case suggest a quest for
the second-best (or constrained efficient) mechanisms. It is straightforward to
construct second-best mechanisms if the inefficiency is purely due to the causes
illustrated in Theorem 6.2 and Example 6.4 : basically, incentive compatibility
implies that we are able to "extract” at most a scalar piece of information per
agent and per alternative. If, after performing these reductions, it is still the
case that the payoff-relevant information depends in a non-trivial way on the
chosen alternative (as it is the case, say, in a general multi-object auction), we are
left in the framework covered by Theorem 6.5: unfortunately, a straightforward
further dimension reduction (say, to a one-dimensional 1nodel) cannot be usually
performed?”’. The problem of constructing a second-best mechanism boils down to
the problem of finding the monotone and conservative vector field that maximizes
a certain functional. This will be the subject of future work.
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AppendiX- Proof of Theorem 6.5:

Let (p, ) be an efficient,incentive compatible DRM, and let (qi(s")E, be the
associated vector field of interim expected probabilities for agent 7. By equation
4.4 we know that:

. Oqi.(sY) : (?q;c, (s)
1 =L —a,. : 9.1
ki Bs;c, D' 0s}, (6.1)

vk k', a

. . ! . . . .
Fix now two alternatives k, k. Since p is efficient, we obtain:

o N N NN
Gi(s) = Prob {}_ 3 al,st =max Y algsl) =

j=lg=1 j=1g=1

—3 S—i ds_i
/. oy I

i) — [o—1 N N J N N 5 ]
where A(s*) = {87 | ;0 Xgm1 Gy Sk = MaXee 3521 D g Qe o Sh. }
An analogous expression holds for g, (s").

Define now the set

' NN NN N N
Qup(s)={s"| YN alsk=) Zai,gsi, = “}j}xz D 4y S}
j=lg=1 j=lg=1 j=lg=1

and note that Qs (s') = 0Ax(s') NNy (s'), where 9A denotes the boundary

of a set A. It should be intuitively clear that %‘;—(s—) involves only an integral over
‘CI

30



Q, (") multiplied by the "rate of change” of this set with respect to s;,. More
precisely, let
N N
T = Z Z aigsi — Z Z ai,gsi,.
J#ig=1 jAig=1

Hence, z is a linear combination of {57}, , and we assuize it to be nondegenerate
in the sense that it is not identically equal to tero. Concider a change of variable
in the {s7},4 space , wlicre  is one of the new variables, and denote by s™* the
set of the other variables. Denote by J(s™*) the Jacobian induced by the change
of variable. We obtain that:

Iqi(s' A . . .
Ik(, ) =-> a.;cfg)/ ’(q'_)f_i(s_’)J(s_’)ds#”I. (9.2)

1
Js Y =

To see this observe that Ag(s') = {s‘i |z > —(X aj,)s, + (2 1 @,)5p and
1Zq 1“kg5k }: 12(} | @ oSk for k7 # k'}. The result follows because

S;C/ appears otly in the first inequality and because the area in Ag(s') where

z=—-(T L lafcq)s}C + (2L 1“’2'g)3;;' is precisely €, ,/(s").

98, (s") |
The terin —’(5,,— 1s analogously computed:

qu (s")

s}, ‘L; /k'k/(si)fvi(s V(s )ds™. (9.3)

Combining equations 9.2 and 9.3 |, we obtain that:

0 i N 0 i/ i N )
‘“° Z _ Je\?) (f )(Z a. ) (9.4)
Jsj, = Y

Equations 9.1 and 9.4 yleld together the wished result. W
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